
iXj: Interactive Source-to-Source Transformations for Java
Marat Boshernitsan, Susan L. Graham

University of California at Berkeley
Computer Science Division, EECS

Berkeley, CA 94720-1776
+1 510 642 4611

{maratb,graham}@cs.berkeley.edu

ABSTRACT

Manual large-scale modification or generation of source code can
be tedious and error-prone. Integrating scriptable source-to-
source program transformations into development environments
will assist developers with this overwhelming task. We discuss
various usability issues of bringing such ad-hoc transformations
to end-users and describe a developer-oriented interactive source
code transformation tool for Java that we are building.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments –
integrated environments, interactive environments.

General Terms
Design, Human Factors, Languages.

Keywords
Interactive Environments, Program Transformation Languages.

1. INTRODUCTION
Changing software source code can be tedious and error-prone.
The process is complicated because a conceptually simple change
may entail pervasive large-scale modifications to a large portion
of source code. Examples of such changes abound in the many
maintenance tasks faced by developers. For instance, consider a
simple task of inserting the name of the enclosing function into
the code that prints debugging messages to the console. Unless
the language provides programmatic access to “current function
name,” the implementation of this trivial change might take hours
of the developer’s time.

Various proposals have been made for automating systematic
modification to source code. However, few tools have found their
way to the “programming trenches.” If a modification is a simple
behavior-preserving refactoring and the development environment
is sufficiently advanced to include automated support for such
transformations, the change process is quick and convenient.
However, many modifications simply cannot be broken down into
a sequence of well-behaved refactorings. (Several compelling
examples may be found in Roberts and Brant [9].) Another option
is to employ a general source-to-source transformation engine
such as REFINE [3] or TXL [4]. Unfortunately, specifying
transformations with these tools requires familiarity with a fairly
complex transformation language; so, using such a system for

simple changes is overkill. If the modification is not
complicated, developers may choose to utilize regular expression-
based pattern matching facilities of Perl, SED, or other text-
oriented tools. Needless to say, using regular expressions for
anything but the most trivial of transformations is usually an
exercise in frustration.

To solve these problems, we propose to use ad-hoc source-to-
source transformations in an interactive mode during authoring
and editing phases of software development. Transformations can
be construed broadly. In addition to replacing existing code,
transformations can also generate new code fragments based on
linguistic structure or on meta-information embedded in program
source code. In all cases, such tools must meet unique challenges
posed by their interactive mode of use. Not only must interactive
transformations tools be sufficiently powerful to deal with a broad
range of code changing tasks, but also they must address usability
issues that arise when attempting to manipulate a non-textual
linguistic representation of program source code.

To deal with these challenges, we developed iXj1 – a language for
specifying source-to-source transformations on Java source code.
iXj transformations are constructed in an interactive environment
that assists the developer with visualizing and directing the
transformation process. iXj enables the programmers to utilize
high-level linguistic structure and programming language
semantics similar to those used when thinking about and
discussing software changes. This allows the programmers to
express operations on program source code at a level above text-
oriented editing, which we believe will improve their efficiency
and introduce fewer errors during the modification process.

2. THE HUMAN FACTOR
Many existing tools support specification and execution of
transformations on program source code. In addition to
aforementioned REFINE and TXL, notable examples include
TAWK [7], Inject/J [6], the IP environment [10], and the
Refactoring Browser Rewrite Engine [9]. However, these tools
are intended for expert use on large and complex tasks. By
contrast, our system is oriented toward end-programmers – the
end-users of traditional development environments. We draw this
distinction to differentiate end-programmers from language tool
experts. Language tool experts are those who understand the
structure of program source code from the perspective of
compiler-like tools, and may be comfortable thinking about
source code in terms of linguistic data structures. We do not
expect end-programmers to possess this skill.

1 iXj – Interactive Xformations for Java

Copyright is held by the author/owner(s).
OOPSLA’04, Oct. 24–28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

Nevertheless, end-programmers’ understanding of program source
is based on its structure. This is supported both by our empirical
observations of developer expression and by the experimental
results in psychology of programming [5]. When describing
source code to one another, programmers say things like:

“Put p:= link(p) into the loop of show_token_list, so that it
doesn't loop forever.” [8]

“Change BI_* macros to BYTE_* for increased clarity.” [11]

Programmers evoke notions such as variables, expressions,
statements, loops, and assignments. They directly refer to names
found in source code. They use patterns to describe large classes
of similar changes. Inspired by these kinds of examples, we can
design a formal language for source code transformations.

3. INTERACTIVE TRANSFORMATIONS
Guided by the above principles, we are building an end-
programmer-oriented interactive tool for source code
transformation. In order to enable developers to describe
transformations using familiar concepts, we targeted our notation
toward the Java programming language. While iXj is a language
tightly coupled with Java, we expect that our design methodology
will be applicable for other programming languages.

Prior to designing iXj, we conducted an informal user experiment
to understand what programming paradigm is most “natural” for
expressing transformations. In this experiment the participants
were shown “before” and “after” snapshots of a piece of source
code and were asked to write down the transformation that was
used to perform the change. In particular, we were interested how
developers reference code fragments to be transformed, how they
describe the output, and what programming style they use. We
learned that to describe a location in the source code developers
use language concepts (“in class Employee, method getName…”)
interspersed with code fragments in Java (“replace
System.out.println(x) with…”). We also discovered that
imperative programming style (“first do this, then do that”) is
most natural for describing modifications.

Armed with this knowledge, we based the first version of iXj on
the selection/action programming model. A selection is a pattern
that describes a set of Java source code fragments. One or more
actions describe a transforming operation for each selection.

In order to provide scaffolding to help developers learn and use
an unfamiliar notation, we are also building an integrated
transformation environment for creating and executing iXj
programs. This environment is being prototyped on the Eclipse
platform, augmented with the Harmonia framework [1] to provide
advanced program analysis infrastructure.

In addition to offering context-sensitive assistance during creation
of iXj programs, the transformation environment enables the
programmers to visualize execution of iXj selections and actions
as well as to view partial results of the transformation.
Additionally, the developer can examine each transformation site,
selectively undo or modify individual transformations, etc. The
transformation environment can also capture the source code
change history in terms of high-level transforming operations.
Such a capability helps to document important aspects of program
evolution, as well as supports selective rollback of high-level
changes days, months, and even years later.

An important advantage of using an integrated environment for
transforming source code is the ability to treat the iXj programs as
abstractions. Not only does this permit naming transformations
and storing them in a library for reuse, but also it allows treating
transformations as update agents. An update agent is a
metaprogram bound to both the source and the target (generated)
program elements. An integrated transformation environment can
track dependencies between the two sections of source code and
act appropriately if the developer makes changes to either.

We believe that iXj will provide the right high-level vernacular
for describing code, and we expect professional developers to
have no trouble specifying the control structure of pattern
matching and transformations in a textual notation. At the same
time, the transformation environment augments iXj with direct
manipulation. Selection patterns can be created “by-example,”
whereby the user selects a source fragment that represented a
single matching instance and then abstracts the generated pattern
to match a larger class of code fragments.

4. CONCLUSION
The presented work draws on our earlier proposal for ad-hoc
manipulation of source code with interactive transformations [2].
Since then, we have designed the iXj language and partially
completed the implementation. This experience has informed our
understanding of the issues involved in designing a human-
oriented source code transformation tool.

5. REFERENCES
[1] M. Boshernitsan. HARMONIA: A Flexible Framework for

Constructing Interactive Language-Based Programming Tools.
Technical Report. UC Berkeley. UCB/CSD-01-1149, 2001.

[2] M. Boshernitsan. Program Manipulation via Interactive
Transformations. In Companion of the 18th Conference on Object-
oriented programming, systems, languages, and applications. 2003.

[3] S. Burson, G. B. Kotik, and L. Z. Markosian. A program
transformation approach to automating software reengineering. In
Proceedings of the 14th International Computer Software and
Applications Conference. IEEE Computer Society Press, 1990.

[4] J. R. Cordy, C. D. Halpern, and E. Promislow. TXL: A rapid
prototyping system for programming language dialects. In
Proceeding of the International Conference of Computer
Languages, pp. 280-285, Miami, FL, Oct. 1988.

[5] F. Detienne. Software Design – Cognitive Aspects. Springer-
Verlag, New York, NY, 2001.

[6] T. Genssler and V. Kuttruff. Source-to-source transformations in
the large. In Proceedings of Joint Modular Language Conference
(JMLC) 2003.

[7] W. G. Griswold, D. C. Atkinson, and C. McCurdy. Fast, flexible
syntactic pattern matching and processing. In Proceedings of the 4th
Workshop on Program Comprehension. 1996.

[8] D. E. Knuth. The errors of TeX. Software – Practice and
Experience, 19(7):607-685. July 1989.

[9] D. Roberts and J. Brant. Tools for making impossible changes -
experiences with a tool for transforming large Smalltalk programs.
In IEE Proceedings Software, 151(2):49-56. April 2004.

[10] C. Simonyi. The death of computer languages, the birth of
intentional programming. Technical Report MSR-TR-95-52,
Microsoft Research (MSR), Sept. 1995

[11] B. Wing. XEmacs ChangeLog entry for 2002-05-05.
http://cvs.xemacs.org/viewcvs.cgi/XEmacs/xemacs-
20/src/ChangeLog

