
Transformation-based Refactorings: a First Analysis

N. Anquetil, M. Campero, S. Ducasse, J.-P. Sandoval and P. Tesone

Abstract

Refactorings are well-known behavior preserving transformations. Little work exists on the analysis of
their implementation and in particular how traditional refactorings might be composed from smaller,
reusable, parts. In this article we study the seminal implementation and evolution of Refactorings as
proposed in the PhD of D. Roberts and that it implemented in the Refactoring Browser package in
Pharo. In particular we focus on the possibilities to reuse transformations independently from the
behavior preserving aspect of refactoring. The question we want to answer is: Is it possible to have more
atomic transformations and refactorings composed out of such transformations? We study the expressed
preconditions of existing refactorings and identify several families. We identify missed opportunities
of reuse in the case of implicit composite refactorings. This analysis should the basis for composable
refactorings and tool assisted transformations the do not aim at behavior preservation.

1. Introduction

Refactorings are behavior preserving code transformations. The seminal work of Opdyke
[1] and the Refactorings Browser (first implementation of Refactorings of Roberts and Brant
[2, 3, 4]) paved the way to the spread of refactorings [5]. A plethora of research has been
performed on refactorings such as for their detection [6], practioner use [7, 8, 9, 10], or atomic
refactorings for live environments [11]. Refactorings are now a must-have standard in modern
IDEs [12, 9, 8, 10, 13].

Still from a daily development perspective, refactorings and their behavior preserving form
are not enough [14]. Non behavior preserving code transformations are also needed. For
example, consider replacing all the invocations of a given message by another one (that we
might name Replace Call(msg1,msg2)). It should update all the msg1 invocations to msg2
invocations. Such transformation might well not preserve behavior, yet it is a need that arises in
real situations. It is clear that Replace Call has strong similarities with the Rename Method
refactoring, but it would be awkward for a developer to perform it by applying the refactoring.
When in need for this transformation of the source code, a developer is left to perform the
changes manually or with a code rewriting engine that can be cumbersome to use [14].

Defining some specific code transformations such as Replace Call is our long term engi-
neering goal. While targeting this goal, we wish to shed a new light on the following related
questions:

• Can both refactorings and transformations share their code transformation logic?

• Can we decouple code transformations from refactorings to be able to reuse them when
behavior preservation is not a concern?

IWST
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org
Reviewer
Highlight
They are claimed to be but some are not, just for example performance

Reviewer
Strikeout

Reviewer
Insert Text
,

Reviewer
Highlight
transformations

source-code transformations really or AST transformations?

Reviewer
Highlight
Why this one in particular? What about other implementations? In other programming languages?

Reviewer
Highlight
This states implicitly that current refactorings are implemented using "smaller" implementations, is that true?

BTW, relevant related work:

- SPOON: A library for implementing analyses and transformations of Java source code

- A case study to evaluate the suitability of graph transformation tools for program refactoring

- Design and implementation of an extensible and modifiable refactoring tool

- Formalizing refactorings with graph transformations

Reviewer
Strikeout

Reviewer
Highlight
The refactoring and the pre/postconditions are two different things, aren't they?

Reviewer
Insert Text
tool

Reviewer
Replace

Reviewer
Replace
Yet

Reviewer
Highlight
This problem seems orthogonal to what the abstract says...

Reviewer
Highlight
Detail more and give actually the solution using RenameMethod to show how "painful" it would be...

Reviewer
Highlight
No other (more recent) works?

Reviewer
Replace

Reviewer
Replace
reaching

Reviewer
Strikeout
Not yet defined/introduced/explained

Reviewer
Strikeout

• Can we compose refactorings from such code transformations?

• Can complex refactorings be expressed out of simpler ones?

• What would be the impact on the Refactoring preconditions?

• How would preconditions of complex refactorings compose?

This article is focusing on the duality of preconditions and transformations that make refac-
torings, and how they can be composed together. Our contributions are the following:

• An analysis of the original implementation of Refactorings. We study the current imple-
mentation that evolves from the original one and is available in Pharo 10.

• The identification of different kinds of preconditions: some linked to applicability of the
refactorings, some checking possible system breakage and others that are more complex.

• The identification of missed reuse opportunities in current refactorings implementation.

The outline of the paper is the following: Section 2 sets the vocabulary, the research questions,
and the context of this analysis. Section 3 presents an analysis of refactoring preconditions.
Section 4 focuses on composition either explicit or implicit of refactorings. Section 4 presents
paths to identify and reuse transformations.

2. Refactorings and transformations

In this section we define the domain of our study: We want to understand whether existing
refactorings (behavior preserving modifications of the source code) can be used alongside with
behavior agnostic modifications of the source code and possibly share their implementation. By
behavior agnostic, we refer to the etymological sense1, meaning that the modification of the
source code has no knowledge of (and does not care about) the behavior of this code.

We will first define the vocabulary used in the paper, we then analyze the case of changes of
invoked methods, with two existing refactorings and a possible transformation. Finally from
this first analysis, we set some research questions.

2.1. Vocabulary

We first clarify the vocabulary used in this paper.

Refactoring: behavior preserving modification of the source code. Refactorings were intro-
duced by Opdyke [1] and first implemented in Smalltalk by Roberts and Brant [2, 3, 4];

Transformation: behavior agnostic modification of the source code. This is a modification of
the source code without consideration for the impact on its behavior. Transformations
should, however, not be syntax agnostic or semantic agnostic, which means, they should
take care of producing source code that is syntactically correct (it parses) and semantically
correct (it compiles);

1a=not/without, gnōstos=know

Reviewer
Highlight
Does it matter in the context of this paper?

Reviewer
Highlight
See my comment above: it seems to me that pre/postconditions and transformations/refactorings are two different things

Reviewer
Highlight

Reviewer
Strikeout

Reviewer
Strikeout

Reviewer
Highlight
More than duality, they are complementary but not directly necessary to one another

Reviewer
Highlight
Nothing about transformations?

Reviewer
Highlight
Merge in intro.

Reviewer
Highlight
This seems a different question than what the abstract and the intro. say...

Reviewer
Highlight
Source-to-source syntactically

OR

AST based

OR

Something else entirely?

Pre-condition: Typically, the implementation of refactorings includes some pre-conditions
that may check the possibility of applying the refactoring. For example, the refactoring
Rename Method(oldName,newName) first checks that a newName method does not
already exist in the target class;

Elementary refactoring: A refactoring that is not implemented using some other refactorings;

Composite refactoring: A refactoring that is implemented using some other refactorings
(elementary or composite);

Elementary operation: A local modification of the source code, like changing an invocation
in a method’s body.

2.2. Examples: Changing invoked methods

A source code modification that is often required, is to change the name of an invoked method.
This can happen either to rename the method invoked, or to change it for the invocation of
another method, or in Smalltalk, to add or remove parameters to the method.

RBChangeMethodNameRefactoring

renameMessageSends
transform
...

RBRenameMethodRefactoring

...

RBReplaceMethodRefactoring

transform
...

Figure 1: The class RBChangeMethodNameRefactoring and two of its subclasses.

In Pharo, these refactorings are implemented by different classes that all inherit from the
abstract RBChangeMethodNameRefactoring (see also Figure 1). Thus we find RBRenameMetho-
dRefactoring that changes a method’s name in the target class and all references (invocations)
in the senders of the method.

Thus we find RBRenameMethodRefactoring that changes a method’s name in the target
class and all references (invocations) in the senders of the method.

RBChangeMethodNameRefactoring >> transform

self renameImplementors.
self renameMessageSends.
self removeRenamedImplementors

Listing 1: RBRenameMethodRefactoring behavior, inherited from RBChangeMethodName-
Refactoring.

Reviewer
Highlight
How related to transformations?

Reviewer
Insert Text
,

Reviewer
Strikeout

Reviewer
Strikeout

The refactoring renames the implementors with the new name, renames all the old references,
and finally removes the old selector. Its transform method is actually inherited (and not
overridden) from its abstract superclass RBChangeMethodNameRefactoring and uses actions
defined in this abstract superclass.

There is also another refactoring, Replace Method, implemented by RBReplaceMethod-
Refactoring, that does not change the name of a method itself but replaces its invocation by
invocations to another method.

RBReplaceMethodRefactoring >> transform
self replaceInAllClasses

ifTrue: [self renameMessageSends]
ifFalse: [self renameMessageSendsIn: {class}]

Listing 2: The transformation of the class RBReplaceMethodRefactoring.

This is essentially only applying the second step in of the previous refactoring (Listing 1),
again by using RBChangeMethodNameRefactoring»renameMessageSends defined in the same
superclass.

Note that here, since the method that is invoked is not the same after the refactoring (this
is not just a change of name), there is no way to guarantee behavior preservation. Thus this
“refactoring” is actually a transformation.

This analysis highlights the need for both transformations and refactorings [14]. The imple-
mentation, based on inheritance, also shows that, from a software engineering point of view,
it is important to be able to reuse some subparts of the logic. This situation is emphasized by
the definition of new generation refactorings such as the atomic refactorings supporting live
object programming [11]. We want to understand whether refactorings could be implemented
in terms of transformations that would themselves be independent operations, usable by the
developers.

2.3. Research questions

To support the understanding of the duality of refactorings and transformations both at a
conceptual and implementation level, this article wants to provide a first answer to the following
questions:

• Can refactorings and transformations share their code transformation logic?

• Can we decouple code transformations from refactorings to be able to reuse them inde-
pendently of each other?

• What is the impact on the refactoring preconditions?

• Can more complex refactorings be expressed out of simpler ones? What is the status of
preconditions and their composition?

• What are concrete issues encountered to transform an existing refactoring into a
transformation-based refactoring?

Reviewer
Strikeout

Reviewer
Strikeout

Reviewer
Strikeout

Reviewer
Highlight
I totally agree, that's why I never "bought" the definition of refactorings as "behaviour preserving". However, using "transformation" here may be confusing because a refactoring should be composed of (smaller) transformations, not be a transformation itself... maybe find a better name or explain more?

Reviewer
Strikeout

Reviewer
Highlight
Stil no clear: on source code or something else?

Reviewer
Strikeout
Different from the questions in the intro.?

What is the cost to introduce a transformation? Some old refactorings are directly
accessing elementary operations.

Adding a method to a class is something that could be considered an elementary operation.
Elementary operations are those that simply add or remove one element of an object. This could
be adding or removing a class, a method, or a variable. Add Method is a refactoring that does
one very elementary action, which is to add a single method to a given class. This refactoring
accomplishes this by calling the Class»compile: method. Its preconditions simply check the
applicability of this operation by checking if the name for this new method is available. Since
many other refactorings are frequently adding new methods, the Add Method Refactoring is
one that should be reused by these more complex refactorings.

Can we reuse transformation logic between refactorings and transformations? Since
transformations do not need to preserve behavior, it would be easier to add some procedures to
a transformation to make them refactorings. This way the refactorings can reuse the transfor-
mation logic, only with a few extra checks such as break checking preconditions.

What is the status of precondition composition in the context of composite refactor-

ings? Composite refactorings check the preconditions of any refactorings they invoke when
using RBRefactoring»performCompositeRefactoring. They may have their own separate pre-
conditions or only check the ones defined by the invoked refactorings. Each invoked refactoring
checks its preconditions at the time of being executed, so the first precondition check is that
of the composite refactoring, and then once it is executing its transformation it will check the
preconditions of the refactorings it is using. Since the precondition check is done before the
transformation, it would be possible for one of the inner refactorings to invalidate the composite
refactoring’s preconditions after it is executed.

2.4. Context of the analysis

The analysis presented in this article is based on the implementation of Refactorings as done
by J. Brant and D. Roberts [2, 3, 4] and their evolution as available in Pharo [15]. Caveat, since
multiple developers maintained and evolved the code, our analysis will report a situation that is
not the one described in the original document. It may happen that some preconditions are
missing or where changed or that new refactorings are not extending existing ones.

Appendix A presents the list of original refactorings as described in the PhD of D. Roberts
[16]. The Pharo implementation contains more refactorings as shown in Appendix B.

2.5. Implementation overview

As shown in Figure 2, the refactoring engine is defined with three large elements (dashed boxes):
the program model (bottom) with a representation of the entities (ex: RBMethod, RBClass) and
their AST (for methods); refactoring definitions (top left), and change model (top right). In essence
a refactoring uses a program model to check preconditions and performs code transformations
either at the level of the model or using a parse tree rewriter. The output of a refactoring is a
sequence of changes that, once applied to the existing code, will perform the refactoring.

Reviewer
Strikeout

Reviewer
Strikeout

Reviewer
Strikeout

Reviewer
Strikeout

Refactorings

RBM
ethod

RBN
am

espace

RBEntity

RBAbstractC
lass

RBPackage

RBM
etaclass

RBC
lass

Changes

AST

ParseTreeRewriter

C
ondition

Program Model

Figure 2: Overview of the refactoring engine architecture.

Many refactorings are using the program model API to perform the code transformations.
In terms of refactoring reuse and reification, the question to understand whether there is a
duplication between the API uses and the refactorings using such API. In the context of our
analysis, the following pieces of information are important to assess:

• API. Understanding the API of the program model is key and in particular its use by
the actual refactorings. Indeed the program model is the lowest API on which precondi-
tions are expressed and on which the actual program modifications are performed. We
want to understand whether such API should be exposed as Elementary refactorings or
transformations.

• Reification as elementary operations. An elementary refactoring reifies a set of elementary
operations, however it is unclear if the necessary API is reifed and reused by refactorings.
In addition, we need to assess whether an elementary operation can be reified as a first
class transformation that can be reused by refactorings.

3. Different Kinds of Preconditions

Refactorings have preconditions. Such preconditions contribute for example to the expression
of the behavior preserving aspect of the refactorings, some may also ensure the syntactic or
semantic correctness of the refactorings. We analyzed the preconditions of existing refactorings
to classify and assess them. Since the implementation of refactorings is using inheritance, some
preconditions defined in super-classes are shared by several refactorings (sub-classes). During
our analysis we conceptually flattened such shared preconditions to be able to reason about
them individually. The analysis shows that (1) there are different families of preconditions, and
(2) transformations also need preconditions as explained hereafter.

3.1. Precondition families

In addition to refactorings not defining preconditions, our analysis identified three main families
of preconditions: Applicability checking, Break checking, Not idiomatic. Refactorings with these
precondition types are listed in Appendix C.

No precondition. Some refactorings have no preconditions. They are listed in Appendix C.1.
There is no check for the applicability of these refactorings. Most of them are not defined in the
original PhD and they probably got added later on by different authors. A deeper analysis is
required to assess whether the pre-conditions are not managed at another level (for example in
the UI). In addition some, such as Extract Set Up Method And Occurrences and Extract
Method To Component, are composite refactorings and they “inherit” the preconditions from
the refactorings they use.

Applicability check. The applicability preconditions are mainly checking that the refactor-
ings can be applied. They are listed in Appendix C.2. The pre-conditions may be checking,
for example, that an entity, target of the refactoring, exists, that an entity with the same name
already exists, or that information (such as names) given is correct.

The pre-conditions may be expressed as a composition of simple (low-level) conditions
implemented as class-side methods in the RBCondition class. Appendix D gives the complete
API of this class. The pre-conditions may also be expressed from methods implemented in the
program model.

For example, the following precondition method checks that a class effectively defines a
variable before creating its accessors. It uses two methods from RBCondition: #definesClass-
Variable:in: and #definesInstanceVariable:in:

RBCreateAccessorsForVariableRefactoring >> preconditions
^ classVariable

ifTrue: [RBCondition definesClassVariable: variableName asSymbol in: class]
ifFalse: [RBCondition definesInstanceVariable: variableName in: class]

This other precondition example uses directly methods from the program model: RBAbstract-
Class»#hierarchyDefinesInstanceVariable:. It checks, before pulling up an instance variable,
that it exists in the all the sub-classes.

RBPullUpInstanceVariableRefactoring >> preconditions
^RBCondition withBlock:

[(class hierarchyDefinesInstanceVariable: variableName)
ifFalse: [self refactoringFailure: ’No subclass defines ’ , variableName].

(class subclasses
anySatisfy: [:each | (each directlyDefinesInstanceVariable: variableName) not])
ifTrue: [self

refactoringWarning: ’Not all subclasses have an instance variable named.<n>
Do you want pull up this variable anyway?’ , variableName , ’.’].

true]

Listing 3: Pull Up Instance Variable preconditions.

Break check. While applicability preconditions are related to the existence of a given situation
supporting the application of the refactoring, this category uses preconditions that check
whether the application of the refactorings would break the system.

For example the Remove Class refactoring checks that the class is not referenced anymore
that it does not have subclasses, that it is not used by other classes or that it is not a metaclass.
The refactoring checks this by implementing its on pre-condition methods, that call simpler
method from RBCondition.

RBRemoveClass >> preconditions

^ classNames inject: self emptyCondition into: [:sum :each |
| aClassOrTrait |
aClassOrTrait := self model classNamed: each asSymbol.
aClassOrTrait ifNil: [

self refactoringFailure: ’No such class or trait’].
sum & ((self preconditionIsNotMetaclass: aClassOrTrait)
& (self preconditionHasNoReferences: each)
& (self preconditionEmptyOrHasNoSubclasses: aClassOrTrait)
& (self preconditionHasNoUsers: aClassOrTrait))]

Listing 4: Remove Class preconditions.

Not idiomatic check (for lack of a better name). We classified in this “family” some complex
conditions that are implemented in an ad hoc way and exhibit some implementation issues. We
give some examples in next section. Some complex refactorings such as Extract Method,
Move Method or Pull Up Method has really complex and large preconditions. Section 3.2
presents one example.

3.2. Complex precondition examples

We analyze here two refactorings with complex preconditions such as Move Method and Pull
Up Method.

Move Method (see Listing 5). It moves a method to the class of one its instance variables. It
is a composite refactorings and as such as also complex preconditions.

RBMoveMethodRefactoring >> preconditions
^(RBCondition definesSelector: selector in: class)

& (RBCondition withBlock:
[self buildParseTree.
self checkForPrimitiveMethod.
self checkForSuperReferences.
self checkAssignmentsToVariable.
self getClassesToMoveTo.
self getArgumentNameForSelf.
self checkTemporaryVariableNames.
self getNewMethodName.

true])

Listing 5: Move Method

There are some design flaws in the preconditions of this refactoring. First, these “precondi-
tions” retrieve the class to move the method to (#getClassesToMoveTo), or the new selector of
the method to move (#getNewMethodName). It is clear that “preconditions” for this refactoring
are not just checking if the refactoring can proceed, but also setting up the transformation since
they are in charge of getting additional information. Another design flaw, is that a method
like #getNewMethodName, in the case of method name collision (when the new method name
already exists in the target class), will present an error dialog to the user and ask if he wishes
to change the name. The logic of a refactoring should be independent from the graphical
user interface and should not request information from the developer. It should be configured
appropriately up front. This is a key point if we want to be able to reuse the refactorings, for
example by composing them. It is also important if we want to separate refactorings in reusable
preconditions and tranformations.

Pull Up Method. The Pull Up Method refactoring is a unique refactoring in the sense
that it has some of the most complex preconditions. The preconditions method calls upon
several other methods of its own. One of these methods down the chain of calls even per-
forms another refactoring of its own (Pull Up Method is composed of another refactoring).
PullUpMethod»preconditions (Listing 6) calls #PullUpMethod»checkInstVars which in turn
calls #pushUpVariable: (Listing 7), and this last one creates and then executes the refactoring
Pull Up Instance Variable.

RBPullUpMethod >> preconditions

self requestSuperClass.
^(selectors inject: (RBCondition hasSuperclass: class)

into: [:cond :each | cond & (RBCondition definesSelector: each in: class)])
& (RBCondition withBlock:

[self checkInstVars.
self checkClassVars.
self checkSuperclass.
self checkSuperMessages.
true])

Listing 6: Pull Up Method Preconditions.

RBPullUpMethod >> pushUpVariable: aVariable

| refactoring |
refactoring := RBPullUpInstanceVariableRefactoring

model: self model
variable: aVariable
class: targetSuperclass.

self performCompositeRefactoring: refactoring.

Listing 7: Pull Up Method calling Pull Up Instance Variable.

3.3. Lessons on transformation and preconditions

To support the implementation, reuse, and composition of code transformations, it is important
to understand the difference between a transformation and a refactoring. As outlined in Section
2.1, an important difference is that a transformation does not have to be behavior preserving
(we called it behavior agnostic). At first, we hypothesized that another difference would
be that refactorings have preconditions while transformations would not need them. There
would be a clear dichotomy in refactorings between their preconditions on one side and their
transformations on the other side, both parts being independent and mutually exclusive.

The analysis of the preconditions above shows that not all preconditions are concerned with
the behavior preserving aspect. For example, we identified the applicability check family of
preconditions. Therefore, we were led to review our initial hypothesis:

• Transformations can have preconditions mainly for to check their applicability;

• Among the refactorings, the best candidates to be composed out of transformations are
the ones from the precondition families none and applicability check;

• From an implementation point of view, we see that the preconditions may be: class-side
methods of RBCondition, methods in the Program Model, or methods in the refactoring
class itself. It would seem a good engineering approach to try to standardize these
implementations.

4. Refactoring composition analysis

To better understand the current situation, we now analyze existing refactorings, how they
are (or not) composed of other refactorings and/or elementary operations. We thus start by
looking at Elementary Refactorings that are not using other refactorings although they might
be based on elementary operations implemented by a model of the system. Then we analyze
the composite refactorings that do make use of (are composed of) more simpler refactorings.
Finally, we identified some missed reuse opportunities: Refactorings that could be calling simpler
refactorings but instead change the model directly.

4.1. Elementary Refactorings and Operations

As explained in the implementation overview, refactorings do not modify source code directly,
but instead do it through the program model and a number of elementary operations that it
offers. This is the API used by every refactoring in order to apply the changes. It is important
to understand this API to identify what operations are available to refactorings or, in the future,
to transformations.

In Table 1, we extracted the methods in RBEntity subclasses that perform code changes
(elementary operations). There are four main subclasses: RBAbstractClass, RBClass, RBMethod,
RBNamespace and 53 of these methods in total. The only operation from this list that is not
currently being used by a refactoring is RBNamespace»renameClassVariable:to:in:around:.
This is because any refactorings wishing to rename a class variable already does it by calling

RBAbstractClass

addInstanceVariable:

addMethod:

addSubclass:

compile:

compile:classified:

compile:withAttributesFrom:

compileTree:

convertMethod:using:

removeInstanceVariable:

removeInstanceVariable:ifAbsent:

removeMethod:

removeSubclass:

renameInstanceVariable:to:around:

RBClass

addClassVariable:

addPoolDictionary:

addProtocolNamed:

comment:

removeClassVariable:

removeClassVariable:ifAbsent:

removePoolDictionary:

removeProtocolNamed:

renameClassVariable:to:around:

RBMethod

compileTree:

RBNamespace

addClassVariable:to:

addInstanceVariable:to:

addPackageNamed:

addPool:to:

addProtocolNamed:in:

category:for:

changeClass:

comment:in:

compile:in:classified:

convertClasses:select:using:

createNewClassFor:

createNewPackageFor:

defineClass:

description:

performChange:around:

removeClass:

removeClassKeepingSubclassesNamed:

removeClassNamed:

removeClassVariable:from:

removeInstanceVariable:from:

removeMethod:from:

removePackageNamed:

removeProtocolNamed:in:

renameClass:to:around:

renameClassVariable:to:in:around:

renameInstanceVariable:to:in:around:

renamePackage:to:

reparentClasses:to:

replaceClassNameIn:to:

Table 1

RBEntity Model Operations called by Refactorings

RBClass»renameClassVariable:to:in:around: instead. There is code duplication here that should
be removed.

From these operations, the refactorings are build. Table 2 presents the refactorings that are
not referencing any other refactorings: Elementary refactoring, directly composed from the
Elementary operations. The table also shows whether these Elementary refactorings are reused
by other refactorings (i.e., composite refactorings discussed in Section 4.2). Finally, the table
identifies those acting on a single entity of the source code, those marked with an asterisk (*).
These last refactorings correspond to what Santos et al., [14] defined as “Level one operators”:

Class Used By

AddClass* ChildrenToSiblings, CopyClass, SplitClass
AddClassVariable* CopyClass
AddInstanceVariable* CopyClass, SplitClass
AddMethod* CopyClass
AddParameter
CategoryRegex
CreateCascade
DeprecateMethod
ExpandReferencedPools AbstractVariables, PullUpMethod, PushDownMethod
ExtractMethod ExtractMethodAndOccurrences, ExtractMethodToComponent,

FindAndReplace
InlineMethod InlineAllSenders
InlineParameter
InlineTemporary
ProtocolRegex
RealizeClass
RemoveClass*
RemoveClassVariable*
RemoveInstanceVariable* SplitClass
RemoveMethod
RemoveParameter
RemoveSender RemoveAllAccessors
RenameArgumentOrTemporary
RenameClass RenamePackage
RenameClassVariable
RenameMethod
ReplaceMethod
SourceRegex
SplitCascade

Table 2

Elementary refactorings not using other refactorings and how they might be reused by others – * means
that the refactoring adds or remove only one entity in the model.

atomic and generic elementary tasks. They are atomic because they describe the addition
or deletion of a single code entity. For example, these refactorings are routinely proposed
as development helpers (e.g., Add Method). They are generic in the sense that they are
independent of the system, the application domain, and sometimes even the programming
language.

We analyzed some of the elementary refactoring of Table 2 and will discuss one case here:
Add Class refactoring. Listing 8 gives a part of its implementation. It exhibits an opportunity
to re-implement the refactoring using a, simpler, transformation.

We see in the last line of the code that the refactoring can actually support the insertion of a
class within a hierarchy. If the proposed parent of the new class has no sub-classes then the
new class is created and nothing else happens. But this refactoring can accept subclasses of the
parent class as parameters in order to insert the new class between their superclass (to become

parent of the new class) and themselves. This is done by the #reparentClasses:to: call at the end
of the listing.

RBAddClassRefactoring >> transform
self model

defineClass: (’<1p> subclass: #<2s> instanceVariableNames: ’’’’ classVariableNames: ’’’’ poolDictionaries: ’’’’
category: <3p>’

expandMacrosWith: superclass
with: className
with: category asString);

reparentClasses: subclasses to: (self model classNamed: className asSymbol)

Listing 8: AddClassRefactoring

Therefore, this refactoring could be called Insert Class and could invoke a transformation
Add Class that would only perform a class addition.

4.2. Explicit Composite Refactorings

To understand how to compose refactorings we analyzed composite refactorings that explicitly
refer to other refactorings in their implementation. Table 3 presents all the composite refactoring
we found. It is, in a sense, the counter part of Table 2 (showing elementary refactorings used in
composite ones).

For example, both Pull Up Method and Push Down Method are composite refactorings.
They both invoke the Expand Referenced Pools refactoring.

Pull Up Method is a refactoring for moving methods up in the inheritance hierarchy from
subclasses to their superclass. Implementation details for this refactoring are shown in Listing
9. Before recompiling the target method in the superclass (last statement), another refactoring
has to be executed: Expand Referenced Pools.

RBPullUpMethodRefactoring >> pullUp: aSelector
| source refactoring |
source := class sourceCodeFor: aSelector.
source ifNil: [self refactoringFailure: ’Source for method not available’].
refactoring := RBExpandReferencedPoolsRefactoring

model: self model
forMethod: (class parseTreeFor: aSelector)
fromClass: class
toClasses: (Array with: targetSuperclass).

self performCompositeRefactoring: refactoring.
targetSuperclass

compile: source
classified: (class protocolsFor: aSelector)

Listing 9: RBPullUpMethodRefactoring implementation details: pullUp: method is called for
each target method in the refactoring.

Push DownMethod refactoring, conversely, moves methods down the inheritance hierarchy.
It has a similar implementation with a #pushDown: method that resembles the #pushUp: method,
also using the Expand Referenced Pools refactoring before recompiling the target method in
each subclass.

Refactoring Uses refactorings

AbstractClassVariable CreateAccessorsForVariable
AbstractInstanceVariable CreateAccessorsForVariable
AbstractVariables CreateAccessorsForVariable, ExpandReferencedPools
AccessorClass CreateAccessorsForVariable
ChildrenToSiblings AddClass, PullUpInstanceVariable, PullUpClassVariable
CopyClass AddClass, AddMethod, AddInstanceVariable, AddClassVariable
CopyPackage CopyClass
ExtractMethodAndOccurrences ExtractMethod, FindAndReplace
ExtractMethodToComponent ExtractMethod, InlineAllSenders, MoveMethod
ExtractSetUpMethodAndOccurrences FindAndReplaceSetUp, ExtractSetUpMethod
ExtractSetUpMethod TemporaryToInstanceVariable
FindAndReplace ExtractMethod
FindAndReplaceSetUp ExtractSetUpMethod
InlineAllSenders InlineMethod, RemoveMethod
InlineMethodFromComponent AbstractVariables
MergeInstanceVariableIntoAnother CreateAccessorsForVariable
MoveMethod AbstractVariables
MoveMethodToClassSide CreateAccessorsForVariable
ProtectInstanceVariable InlineAllSenders
PullUpMethod ExpandReferencedPools, PullUpInstanceVariable
PushDownMethod ExpandReferencedPools
RemoveAllSenders RemoveSender
RemoveClassKeepingSubclasses PushDownClassVariable, PushDownInstanceVariable, PushDownMethod
RemoveHierarchyMethod RemoveMethod
RenameInstanceVariable CreateAccessorsForVariable
RenamePackage RenameClass
SplitClass AddClass, AddInstanceVariable, CreateAccessorsForVariable,

RemoveInstanceVariable

Table 3

Explicit composite refactorings and the refactorings they are composed of.

Since both Pull Up Method and Push Down Method are removing methods from one
class and adding them to another, they could also use the Add and Remove refactorings in their
transformations.

4.3. Implicit composite refactorings: Missed reuse opportunity

Implicit composite refactorings are those that could be calling simpler refactorings but instead
change the model directly, duplicating functionalities implemented elsewhere. They should
probably be changed to reuse these other refactorings and become explicitly composite. We list
the implicit composite refactorings that we identified in Table 4, and Table 5 proposes some
potential reuses in these implicit composite refactorings.

For example, Pull Up Instance Variable does not use Add Instance Variable (see Listing
10), and its preconditions do not take into account the preconditions of Add Instance Variable
(which is checking if a name is valid, and if a variable with the same name does not already exist

- ChangeMethodNameRefactoring

- ChildrenToSiblings

- ClassRegex

- CreateAccessorsForVariable

- CreateAccessorsWithLazyInitializationForVariable

- DeprecateClass

- GenerateEqualHash

- GeneratePrintString

- MoveInstVarToClass

- MoveMethodToClass

- PullUpClassVariable

- PullUpInstanceVariable

- PullUpMethod

- PushDownClassVariable

- PushDownInstanceVariable

- RemoveClassKeepingSubclasses

- RemoveMethod

- RenameInstanceVariable

- SwapMethod

- TemporaryToInstanceVariable

Table 4

Implicitly composite refactorings: composite refactorings not reusing existing elementary ones.

in the hierarchy). Pull Up Instance Variable is based on the assumption that the variable to
be pulled up already satisfies the validity constraints. It means, however, that if a script using
this refactoring is created, it could break the system just by using Pull Up Instance Variable
with inadequate names. We believe that not checking name validity is an optimization that is
not worth the risk it introduces. Reusing the logic of Add Instance Variable would make sure
that all the names are validated.

RBPullUpInstanceVariableRefactoring >> transform
class allSubclasses do:

[:each |
(each directlyDefinesInstanceVariable: variableName)

ifTrue: [each removeInstanceVariable: variableName]].
class addInstanceVariable: variableName

RBPullUpInstanceVariableRefactoring >> preconditions
^Condition withBlock:

[(class hierarchyDefinesInstanceVariable: variableName)
ifFalse: [self refactoringFailure: ’No subclass defines ’ , variableName].

(class subclasses
anySatisfy: [:each | (each directlyDefinesInstanceVariable: variableName) not])
ifTrue:

[self
refactoringWarning: ’Not all subclasses have an instance variable named.<n> Do you want pull up

this variable anyway?’
, variableName , ’.’].

true]

Listing 10: PullUpInstanceVariableRefactoring

RBPushDownInstanceVariableRefactoring >>transform
class removeInstanceVariable: variableName.

Refactoring could use. instead of
ChangeMethodName RemoveMethod removeMethod:
CreateAccessorsForVariable AddMethod compile:

CreateAccessorsWithLazy- AddMethod compile:
InitializationForVariable

DeprecateClass AddMethod compile:
GenerateEqualHash AddMethod compile:
GeneratePrintString AddMethod compile:

MoveInstVarToClass AddMethod addMethod: and compile:
RemoveInstanceVariable removeInstanceVariable

MoveMethodToClass AddMethod addMethod: and compile:
RemoveMethod removeMethod:

PullUpClassVariable RemoveClassVariable
PullUpInstanceVariable RemoveInstanceVariable
PushDownClassVariable RemoveClassVariable
PushDownInstanceVariable RemoveInstanceVariable
RemoveMethod RemoveMethod

SwapMethod AddMethod and compile: and
RemoveMethod removeMethod:

TemporaryToInstanceVariable RemoveInstanceVariable

Table 5

Potential reuse in implicit composite refactorings

class subclasses do: [:each | each addInstanceVariable: variableName]

Listing 11: PullUpInstanceVariableRefactoring

5. Potential Transformation Candidates

In this section we build on the analyses that were presented in this paper to propose some
refactorings that could be turned into transformations and thus be reused by the original or other
refactorings. They could also be used directly by any developer ready to take the responsibility
to automatically modify the source code without the security of behavior preservation.

5.1. Reusing Add Method

We discussed
In a previous example, Push Down Method refactoring was shown to be a composite refac-

toring because it invokes Expand Referenced Pools (Section 4.2). We also said that if could
use Add Method, since its last statement does the same thing. Here we propose a AddMethod-
Transformation transformation (12) and a modification of RBPushDownMethodRefactoring to
use this transformation (Listing 13).

Reviewer
Strikeout

RBAddMethodTransformation >> transform
class compile: source classified: protocols"

Listing 12: Proposed RBAddMethodTransformation

Push Down Method could be altered in the following way and mantain its behavior.

RBPushDownMethodRefactoring >> pushDown: aSelector

| code protocols refactoring addMethodRef|
code := class sourceCodeFor: aSelector.
protocols := class protocolsFor: aSelector.
refactoring := RBExpandReferencedPoolsRefactoring

model: self model
forMethod: (class parseTreeFor: aSelector)
fromClass: class
toClasses: self allClasses.

self performCompositeRefactoring: refactoring.
self allClasses do: [:each |

(each directlyDefinesMethod: aSelector) ifFalse: [
addMethodRef := AddMethodTransformation

model: self model

addMethod: code

toClass: each

inProtocols: protocols.

self performCompositeRefactoring: addMethodRef]]

Listing 13: Proposed RBPushDownMethodRefactoring using the RBAddMethodTransformation

While this specific example ends up with more code, it would be easier to maintain in case
the Program Model model’s API were to change. Instead of looking for every instance where
the model’s API is invoked, only Add Method would need to be modified.

5.2. Rename Method and Replace Method Revisited

In Section 2.2 we discussed the implementation of Replace Method and the Rename Method
refactorings.

Rename method is one of the most used refactorings. It boils down to the following steps as
described in Fowler’s book [5]

1. Check that the newName method does not exist in the class and its superclass.

2. Add a new method with same body than the old method but with the newName.

3. Identify all the call sites of the oldName method and rewrite them to invoke the newName

4. Remove the old method from the class.

Replace Method(name1, name2) replaces a method’s invocations by invocations to another
method:

1. optional: Check that there is a method name1 in the system.

2. Identify all the call sites of the name1 method and rewrite them to invoke the name2
method.

As such, ReplaceMethod cannot guarantee behavior preservation, it is not an actual refactoring.
Listing 2 gives the #transform method of this refactoring. It invokes renameMessageSends on
either a single class or all classes in the model, depending on an optional parameter (see Listing
14).

RBChangeMethodNameRefactoring >> renameMessageSends
self convertAllReferencesTo: oldSelector using: self parseTreeRewriter

Listing 14: Rename Message Sends

RBChangeMethodNameRefactoring»renameMessageSends is used in both Rename Method
as one of three operations, and on its own in Replace Method. It could be converted into a
transformation (RBRenameMEssageSendTransformation) that would be more indicative of its
behavior agnostic nature.

5.3. Discussion

The analyses performed and reported in previous sections show tracks for improving the reuse
of logic between transformations and refactorings. We sketch here some general guidelines
that future work will have to validate.

• Refactorings having only validity checking precondition are good candidate to trans-
formations. They do not implement behavior preservation and as such can be used as
transformation.

• Low-level API used by implicit refactorings are also opportunity to call their corresponding
transformations.

• For the behavior preserving preconditions, it is unclear that it makes sense to turn them
into mere transformations that could then been called by refactorings performing adequate
behavior preserving analysis.

6. Related work

There are really few research focused on the engineering and definitions of refactorings them-
selves.

Independent and cross Languages. While the definition of language independent or cross
language refactorings does not have focus to discuss the reuse of transformation logic, they are
the only works beside the PhD of D. Roberts formalizing refactoring implementation. Tichelaar
[17, 18] presents some language independent refactorings on top of the FAMIX meta model
[19] while Mayer et al., presents a meta model to support cross language refactorings [20].
Such approaches are interesting because they focus on the implementation of the refactorings.
Nevertheless they do not provide an analysis on the reuse of transformation and composition
of refactorings.

Refactoring engines. There are some works on refactoring engines for languages such as
Erlang with tidier [21, 22], Wrangler [23], or refactoring for Ruby (RubyMine from jetbrains).
But there is no explanation or information about the actual implementations of the refactoring
engines themselves. Refactorings are simply explained from a user perspective.

Semantics-driven. Kesseli in his PhD [24] explores semantics-driven refactorings by opposi-
tion to syntactic refactorings (the ones mentioned in this paper). He presents and implements a
program synthesis algorithm based on the CEGIS paradigm and demonstrates that it can be
applied to a diverse set of applications. It does not discuss, however, the reuse of refactoring
logic.

Refactoring Detection and Mining. Some work focus on identifying the application of
refactoring (Extract method application [25]), general refactorings [26]) with tools such as
RefactoringMiner2.0. Another tool was developed to identify and refactor duplicate code in
Java Projects [?]. Other works mined missed opportunities to refactor code (move method
[27], missed polymorphism [28]. The work presented in this article is concerned about the
implementation and in particular the reuse of logic between transformations and refactorings -
not the applications of refactorings on existing code base.

7. Conclusion

The goal of this article is to support the understanding whether it makes sense to compose
refactorings out of simple code transformations or other refactorings. For this we did a deep
analysis of the current implementation of the original version of refactorings as defined by D.
Roberts and J. Brant. We presented a classification of preconditions that identified four families
of preconditions. In particular we learned that some preconditions are mainly checking the
applicability of the refactorings and that as such the corresponding transformations can benefit
from preconditions. We studied elementary refactorings (the ones that do not reuse any other
refactorings) as well as the elementary operations offered by the system to actually implement
the elementary refactorings. We wanted to understand whether the fact that not all the API of
the system elementary operations are exposed as elementary transformation forced developers
to implicit compose refactorings instead of simply reuse an elementary one. We studies explicit
composite refactorings to understand how the preconditions and the elementary refactorings
where interplaying. This led to the analysis of implicit composited refactorings (refactorings
compose of multiple transformations but not using refactorings to perform them). We show
that some implicit composite refactorings can easily be turned into explicit ones. Our analysis
is the first step in the design of a co-existing and collaborating transformations and refactorings.
The next step is to actually change implicit composite refactorings into explicit ones.

References

[1] W. F. Opdyke, Refactoring Object-Oriented Frameworks, Ph.D. thesis, University of Illinois,
1992.

[2] D. Roberts, J. Brant, R. E. Johnson, B. Opdyke, An automated refactoring tool, in: Proceed-
ings of ICAST ’96, 1996.

[3] D. Roberts, J. Brant, R. E. Johnson, A refactoring tool for Smalltalk, Theory and Practice
of Object Systems (TAPOS) 3 (1997) 253–263.

[4] J. Brant, D. Roberts, “Good Enough” Analysis for Refactoring, in: Object-Oriented
Technology Ecoop ’98 Workshop Reader, LNCS, Springer-Verlag, 1998, pp. 81–82.

[5] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of
Existing Code, Addison Wesley, 1999.

[6] D. Dig, C. Comertoglu, D. Marinov, R. Johnson, Automated detection of refactorings in
evolving components, in: ECOOP, 2006, pp. 404–428.

[7] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know it, IEEE
Transactions on Software Engineering 38 (2011) 5–18.

[8] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, R. E. Johnson, Use, disuse, and
misuse of automated refactorings, in: Proceedings of the 34th International Conference
on Software Engineering, ICSE ’12, IEEE Press, Piscataway, NJ, USA, 2012, pp. 233–243.
URL: http://dl.acm.org/citation.cfm?id=2337223.2337251.

[9] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, D. Dig, A comparative study of manual and
automated refactorings, in: 27th European Conference on Object-Oriented Programming,
2013, pp. 552–576.

[10] M. Vakilian, N. Chen, R. Z. Moghaddam, S. Negara, R. E. Johnson, A compositional paradigm
of automating refactorings, in: European Conference on Object-Oriented Programming,
2013, pp. 527–551.

[11] P. Tesone, G. Polito, L. Fabresse, N. Bouraqadi, S. Ducasse, Dynamic software update from
development to production, Journal of Object Technology 17 (2018) 1–36. doi:10.5381/
jot.2018.17.1.a2.

[12] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know it, in:
International Conference on Software Engineering (ICSE), 2009, pp. 287–297.

[13] X. Ge, Q. L. DuBose, E. Murphy-Hill, Reconciling manual and automatic refactoring, in:
Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, IEEE
Press, Piscataway, NJ, USA, 2012, pp. 211–221. URL: http://dl.acm.org/citation.cfm?id=2337223.
2337249.

[14] G. Santos, N. Anquetil, A. Etien, S. Ducasse, M. T. Valente, System specific, source code
transformations, in: 31st IEEE International Conference on Software Maintenance and
Evolution, 2015, pp. 221–230.

[15] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker, Pharo by Example,
Square Bracket Associates, Kehrsatz, Switzerland, 2009. URL: http://books.pharo.org.

[16] D. B. Roberts, Practical Analysis for Refactoring, Ph.D. thesis, University of Illinois, 1999.
[17] S. Tichelaar, S. Ducasse, S. Demeyer, O. Nierstrasz, A meta-model for language-independent

refactoring, in: Proceedings of International Symposium on Principles of Software Evo-
lution, ISPSE’00, IEEE Computer Society Press, 2000, pp. 157–167. doi:10.1109/ISPSE.
2000.913233.

[18] S. Tichelaar, Modeling Object-Oriented Software for Reverse Engineering and Refactoring,
Ph.D. thesis, University of Bern, 2001. URL: http://scg.unibe.ch/archive/phd/tichelaar-phd.pdf.

[19] S. Ducasse, N. Anquetil, U. Bhatti, A. Cavalcante Hora, J. Laval, T. Girba, MSE and FAMIX

http://dl.acm.org/citation.cfm?id=2337223.2337251
http://dx.doi.org/10.5381/jot.2018.17.1.a2
http://dx.doi.org/10.5381/jot.2018.17.1.a2
http://dl.acm.org/citation.cfm?id=2337223.2337249
http://dl.acm.org/citation.cfm?id=2337223.2337249
http://books.pharo.org
http://dx.doi.org/10.1109/ISPSE.2000.913233
http://dx.doi.org/10.1109/ISPSE.2000.913233
http://scg.unibe.ch/archive/phd/tichelaar-phd.pdf

3.0: an Interexchange Format and Source Code Model Family, Technical Report, RMod –
INRIA Lille-Nord Europe, 2011.

[20] P. Mayer, A. Schroeder, W. Löwe, Cross-language code analysis and refactoring, in: In
Proceedings of the International Workshop on Source Code Analysis and Manipulation,
2012. doi:10.1109/SCAM.2012.11.

[21] K. Sagonas, T. Avgerinos, Automatic refactoring of erlang programs, in: A. Porto, F. J.
López-Fraguas (Eds.), International Conference on Principles and Practice of Declarative
Programming, ACM, 2009, pp. 13–24. URL: https://doi.org/10.1145/1599410.1599414. doi:10.
1145/1599410.1599414.

[22] T. Avgerinos, K. Sagonas, Cleaning up erlang code is a dirty job but somebody’s gotta do
it, in: C. B. Earle, S. J. Thompson (Eds.), 8th Workshop on Erlang, ACM, 2009, pp. 1–10.
URL: https://doi.org/10.1145/1596600.1596602. doi:10.1145/1596600.1596602.

[23] H. Li, S. Thompson, G. Orosz, M. Tóth, Refactoring with wrangler, updated: Data and
process refactorings, and integration with eclipse, in: Workshop on ERLANG, Association
for Computing Machinery, New York, NY, USA, 2008, pp. 61–72. URL: https://doi.org/10.
1145/1411273.1411283. doi:10.1145/1411273.1411283.

[24] P. Kesseli, Semantic Refactorings, Ph.D. thesis, University of Oxford, 2018.
[25] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, Identification and application of

Extract Class refactorings in object-oriented systems, Journal of Systems and Software 85
(2012) 2241–2260. URL: https://linkinghub.elsevier.com/retrieve/pii/S0164121212001057. doi:10.
1016/j.jss.2012.04.013.

[26] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig, Accurate and efficient
refactoring detection in commit history, in: Proceedings of the 40th International Confer-
ence on Software Engineering (ICSE ’18), ACM, New York, NY, USA, 2018, pp. 483–494.
doi:10.1145/3180155.3180206.

[27] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring opportunities,
IEEE Transactions on Software Engineering 35 (2009) 347–367.

[28] N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring opportunities introducing
polymorphism, Journal of Systems and Software 83 (2010) 391–404.

A. Original list of refactorings

Original list of refactorings as in [16] in alphabetical order:

- Abstract Class Variable

- Abstract Instance Variable

- Add Class

- Add Class Variable

- Add Instance Variable

- Add Parameter to Method

- Convert Superclass to Sibling

- Convert Temporary to Instance Variable

- Create Accessors for Class Variable

- Create Accessors for Instance Variable

- Extract Code as Method

- Extract Code as Temporary

- Inline Call

- Inline Temporary

http://dx.doi.org/10.1109/SCAM.2012.11
https://doi.org/10.1145/1599410.1599414
http://dx.doi.org/10.1145/1599410.1599414
http://dx.doi.org/10.1145/1599410.1599414
https://doi.org/10.1145/1596600.1596602
http://dx.doi.org/10.1145/1596600.1596602
https://doi.org/10.1145/1411273.1411283
https://doi.org/10.1145/1411273.1411283
http://dx.doi.org/10.1145/1411273.1411283
https://linkinghub.elsevier.com/retrieve/pii/S0164121212001057
http://dx.doi.org/10.1016/j.jss.2012.04.013
http://dx.doi.org/10.1016/j.jss.2012.04.013
http://dx.doi.org/10.1145/3180155.3180206

- Move Method to Component

- Move Temporary to Inner Scope

- Protect Instance Variable

- Push Up/Down Class Variable

- Push Up/Down Instance Variable

- Push Up/Down Method

- Remove Class

- Remove Class Variable

- Remove Instance Variable

- Remove Method

- Remove Parameter from Method

- Rename Class

- Rename Class Variable

- Rename Instance Variable

- Rename Method

- Rename Temporary

B. Refactorings added in Pharo

- Abstract Variables

- Accessor Class

- Add Method

- Category Regex

- Class Regex

- Copy Class

- Copy Package

- Create Accessors With Lazy Initialization For
Variable

- Create Cascade

- Deprecate Class

- Deprecate Method

- Expand Referenced Pools

- Extract Method And Occurrences

- Extract Method To Component

- Extract SetUp Method And Occurrences

- Extract SetUp Method

- Find And Replace

- Find And Replace SetUp

- Generate EqualHash

- Generate PrintString

- Inline AllSenders

- Inline Method From Component

- Inline Parameter

- Merge Instance Variable Into Another

- Move Inst Var To Class

- Move Method To Class

- Move Method To Class Side

- Move Variable Definition

- Protect Instance Variable

- Protocol Regex

- Realize Class

- Remove All Senders

- Remove Class Keeping Subclasses

- Remove HierarchyMethod

- Remove Sender

- Rename Package

- Replace Method

- Source Regex

- Split Cascade

- Split Class

- Swap Method

C. Refactorings with their precondition families

We found four precondition families in the refactorings: None, Applicability check, Break check,
and Not idiomatic. These families were described in Section 3. We list here in alphabetical order
the refactorings using each family of precondition.

C.1. Refactorings with precondition family: None

- Abstract Class Variable

- Abstract Variables

- Category Regex

- Class Regex

- Extract Method To Component

- Extract Set Up Method And Occurrences

- Expand Referenced Pools

- Protocol Regex

- Source Regex

C.2. Refactorings with precondition family: Applicability check

- Abstract Instance Variable

- Accessor Class

- Add Class

- Add Class Variable

- Add Instance Variable

- Add Method

- Add Parameter

- Children To Siblings

- Copy Class

- Copy Package

- Create Accessors For Variable

- Create Cascade

- Create Lazy Initialization

- Deprecate Class

- Deprecate Method

- Extract Method And Occurrences

- Extract Set Up Method

- Extract To Temporary

- Find And Replace

- Find And Replace Set Up

- Generate Equal Hash

- Generate Print String

- Inline All Senders

- Inline Method

- Inline Parameter

- Merge Instance Variable Into Another

- Move Inst Variable To Class

- Move Method To Class

- Move Method To Class Side

- Move Variable Definition

- Protect Instance Variable

- Pull Up Class Variable

- Pull Up Instance Variable

- Push Down Method

- Realize Class

- Remove All Senders

- Remove Hierarchy Method

- Rename Argument Or Temporary

- Rename Class

- Rename Class Variable

- Rename Instance Variable

- Rename Method

- Rename Package

- Replace Method

- Split Cascade

- Split Class

- Swap Method

C.3. Refactorings with precondition family: Break check

- Remove Parameter

- Remove Sender

- Inline Method From Component

- Remove Class Variable

- Push Down Instance Variable

- Remove Instance Variable

- Temporary To Instance Variable

- Remove Class

- Remove Class Keeping Subclasses

- Push Down Class Variable

C.4. Refactorings with precondition family: Not idiomatic

- Extract Method

- Move Method

- Remove Method

- Pull Up Method

D. API of the RBCondition class

List of simple (low-level) conditions implemented in the RBCondition class. These methods are
used to create more complex preconditions as described in Section 3.

- #accessesClassVariable:in:showIn:

- #accessesInstanceVariable:in:showIn:

- #canUnderstand:in: checkClassVarName:in:

- #checkInstanceVariableName:in:

- #checkMethodName:

- #checkMethodName:in:

- #definesClassVariable:in:

- #definesInstanceVariable:in:

- #definesSelector:in:

- #definesSelector:in:orIsSimilarTo:

- #definesTempVar:in:ignoreClass:

- #definesTemporaryVariable:in:

- #directlyDefinesClassVariable:in:

- #directlyDefinesInstanceVariable:in:

- #hasSubclasses:

- #hasSubclasses:excluding:

- #hasSuperclass:

- #hierarchyOf:canUnderstand:

- #hierarchyOf:definesVariable:

- #hierarchyOf:referencesInstanceVariable:

- #isAbstractClass: isClass:

- #isEmptyClass:

- #isGlobal:in:

- #isImmediateSubclass:of:

- #isMetaclass:

- #isSubclass:of:

- #isSymbol:

- #isValidClassName:

- #isValidClassVarName:for:

- #isValidInstanceVariableName:for:

- #isValidMethodName:for:

- #methodDefiningTemporary:in:ignore:

- #referencesInstanceVariable:in:

- #reservedNames

- #subclassesOf:referToSelector:

- #validClassName:

- #withBlock:

	1 Introduction
	2 Refactorings and transformations
	2.1 Vocabulary
	2.2 Examples: Changing invoked methods
	2.3 Research questions
	2.4 Context of the analysis
	2.5 Implementation overview

	3 Different Kinds of Preconditions
	3.1 Precondition families
	3.2 Complex precondition examples
	3.3 Lessons on transformation and preconditions

	4 Refactoring composition analysis
	4.1 Elementary Refactorings and Operations
	4.2 Explicit Composite Refactorings
	4.3 Implicit composite refactorings: Missed reuse opportunity

	5 Potential Transformation Candidates
	5.1 Reusing Add Method
	5.2 Rename Method and Replace Method Revisited
	5.3 Discussion

	6 Related work
	7 Conclusion
	A Original list of refactorings
	B Refactorings added in Pharo
	C Refactorings with their precondition families
	C.1 Refactorings with precondition family: None
	C.2 Refactorings with precondition family: Applicability check
	C.3 Refactorings with precondition family: Break check
	C.4 Refactorings with precondition family: Not idiomatic

	D API of the RBCondition class

