
Semantic Refactorings

Pascal Kesseli

St Cross College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Hillary 2017

Abstract

Refactorings are structured changes to existing software that leave its

externally observable behaviour unchanged. The intent is to improve

readability, performance or other non-behavioural properties of a program.

Agile software engineering processes stress the importance of refactoring

to keep program code extensible and maintainable. Despite their apparent

benefits, manual refactorings are time-consuming and prone to introducing

unintended side effects. Research efforts seek to support and automate

refactoring tasks to overcome these limitations.

Current research in automatic refactoring, as well as state-of-the-art au-

tomated refactoring tools, frequently rely on syntax-driven approaches.

They focus on transformations which can be safely performed using only

syntactic information about a program or act overly conservative when

knowledge about program semantics is required. In this thesis we ex-

plore semantics-driven refactoring, which enables much more sophisticated

refactoring schemata. Our semantics-driven refactorings rely on formal

verification algorithms to reason over a program’s behaviour, and we con-

jecture they are more precise and can handle more complex code scenarios

than syntax-driven ones.

For this purpose, we present and implement a program synthesis algorithm

based on the CEGIS paradigm and demonstrate that it can be applied

to a diverse set of applications. Our synthesiser relies on the bounded

model checker CBMC [22] as an oracle and is based on an earlier research

prototype called Kalashnikov [29]. We further define our Java Stream

Theory (JST) which allows us to reason over a set of interesting semantic

refactorings. Both solutions are combined into an automated semantic

refactoring decision procedure, reasoning over program behaviours, and

searching the space of possible refactorings using program synthesis. We

provide experimental evidence to support our conjecture that semantics-

driven refactorings exceed syntax-driven approaches in precision and scope.

Keywords: refactoring, formal verification, program synthesis

Acknowledgements

I would like to thank my supervisor, Professor Daniel Kroening, for giving

me the chance to pursue research at this prestigious institution, and for his

continued support and encouragement throughout my degree. I also thank

my co-supervisor, Dr Cristina David, from whom I learned a great deal

over the course of my DPhil, and who was always ready with encouraging

words in times of need. I further thank all my colleagues at the Systems

Verification Group, with whom I had the pleasure of sharing many research

projects, each of which was unique, challenging and rewarding in its own

way.

Finally, I thank Ms Xiao Fei Song for her unwavering support over the

course of the three years of my degree, for every helping hand, every

endearing encouragement, and every word of advice she provided.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 State of the art . 3

1.3 Research goal . 4

1.4 Outline . 7

1.5 Contributions . 8

2 Preliminaries 11

2.1 CBMC and Symbolic Execution . 11

2.2 Loop Safety Invariants . 16

2.3 Java Native Interface . 16

2.4 CEGIS paradigm . 19

3 Related Work 21

3.1 Opaque library modelling . 21

3.2 Bug finding . 23

3.3 Inductive program synthesis . 24

3.4 Refactoring . 25

4 Exemplar: Remove unnecessary reflection 27

4.1 Background . 28

4.2 Model Extraction for JNI/C . 29

4.3 Experimental Evaluation . 41

4.4 Threats to validity . 45

5 Inductive Program Synthesis 48

5.1 Program Analysis using the Synthesis Fragment of Second-Order Logic 51

5.2 Solving the Synthesis Fragment using Program Synthesis 52

5.3 Synthesis for Program Variables with Bit-Vector Domains 56

i

5.4 Instances of Program Synthesis Problems 66

5.5 Implementation and Experimental Results 70

6 Refactoring Synthesis 76

6.1 Our approach . 79

6.2 Motivating Examples . 84

6.3 Java Stream Theory . 88

6.4 Synthesising Refactorings . 97

6.5 Experiments . 100

6.6 Threats to Validity . 103

7 Conclusion 106

A Example: Non-existential second order synthesis problem 108

B Example: C goto to Java transformations 110

C C to Jitsune expression translations 113

D Jitsune instructions 117

E Kayak instructions 118

ii

List of Figures

1.1 Replace redundant algorithm (a) by existing utility function in Java (b). 2

1.2 Move Method refactoring from class B (a) to A (b). 3

1.3 Reflection example invoking all methods prefixed with “test”. 4

1.4 Unnecessary reflection (a) and its removal (b). 5

1.5 Explicit filter implementation (a) and Java 8 Stream filtering (b). . . 5

2.1 CBMC loop unwinding . 12

2.2 Function call expansion . 13

2.3 SSA conversion . 14

2.4 Nondeterminism example . 15

2.5 Assumption example . 16

2.6 JNI features . 17

2.7 Native method call . 18

2.8 Call Java method from native . 19

2.9 Abstract synthesis refinement loop 20

4.1 Synthetic Oracle example. 30

4.2 C to Java translation and JNI model creation 31

4.3 Mapping simple C expressions to Java. 32

4.4 Pointer arithmetic in the JNI model. 34

4.5 Wrapped function body. 35

4.6 C to Java goto control flow graph node transformation. 35

4.7 C to Java function entry transformation. 36

4.8 C to Java function exit transformation. 36

4.9 Finalisation and undefined behaviour. 37

4.10 JNI system call translation using reflection. 38

4.11 JNI system call translation using an explicit method call. 38

4.12 Method and class name depend on the Java method result. 40

4.13 Wrapped Java Native Interface. 40

iii

4.14 Distance to JNI. 43

4.15 Average coverage improvement per Distance to JNI. 45

4.16 Average coverage improvement per distance cut-off. 46

5.1 Abstract refinement algorithm . 53

5.2 GA crossover example. 55

5.3 GA mutate example. 55

5.4 The language L. 59

5.5 The synth and verif formulae expressed as a C− program. 60

5.6 The C− structure we use to encode an L program. 60

5.7 Decision tree for increasing parameters of L. 63

5.8 A tricky bit-vector program. 64

5.9 Rules for extending an m-bit wide number to n-bit wide. 64

5.10 Existence of a safety invariant for a single loop. 67

5.11 Existence of a danger invariant for a single loop. 68

5.12 Safe and buggy examples. 69

6.1 Filtering and mapping examples with external (a) vs. internal (b)

iteration. 78

6.2 Filter example. 78

6.3 Informal description of JST. 81

6.4 JST Example. 83

6.5 Selection sort: (a) original code, (b) constraint. 87

6.6 Inference rules for Java Collection Theory. 91

6.7 Abstract heap example. 94

6.8 C struct representing JST doubly-linked list nodes. 96

6.9 C struct for full abstract heap. 96

6.10 The refactoring refinement loop. 97

6.11 Foreach example with original (a) and stream (b). 104

A.1 Second order constraint expressed as a C− program. 108

B.1 Goto translation to Java. 111

B.2 Goto into control structure and translation to Java. 112

C.1 Primitive type declarations. 114

C.2 Type declarations with pointer access. 114

C.3 Standard library calls. 114

iv

C.4 Operators on wrapped types. 115

C.5 Pointer arithmetic. 115

C.6 Branches. 115

C.7 Loops. 116

v

Chapter 1

Introduction

1.1 Motivation

Agile software engineering describes a category of software development processes based

on the evolutionary creation of software. Such approaches focus on cooperation with

stakeholder requirements combined with flexibility towards changes in the program

source code at any time during the development process. This approach stands

in direct contrast to traditional, milestone-based project processes for which late

changes in requirements or program behaviour represent exceptional events. Agile

software engineering embraces change at any stage of the project, which may be

driven by a variety of reasons, such as customer requests or technological limitations.

The popularity of these agile development approaches grew substantially in the

past decade and gave rise to software development frameworks, such as SCRUM,

Extreme Programming (XP), and Rapid Application Development (RAD) [34, Ch. 2].

Software projects developed in this fashion begin with early drafts and prototypes of

desired features, which are then continually rewritten, expanded, and improved as the

specification for the software evolves.

To implement agile engineering processes, developers must continually adapt and

improve existing source code in a structured manner. In certain cases, this is done to

change the semantics of the program by introducing new features or changing existing

behaviour. Frequently, however, program code needs to be improved without changing

its externally observable behaviour. Such changes are called refactorings and are

introduced to improve the structure and readability of a program’s source code while

maintaining its current semantics [61, Ch. 3].

Refactoring is the process of adapting and restructuring existing source code

without changing its externally observable behaviour. The intent of refactoring is

1

void i n t e r s e c t (L i s t lhs , L i s t rhs)
{

I t e r a t o r i t = l h s . i t e r a t o r () ;
while (i t . hasNext ()) {

Object e = i t . next () ;
i f (! rhs . conta in s (e))

i t . remove () ;
}

}
(a) Redundant algorithm in Java.

void i n t e r s e c t (L i s t lhs , L i s t rhs)
{

l h s . r e t a i n A l l (rhs) ;
}

(b) Refactored utility function call.

Figure 1.1: Replace redundant algorithm (a) by existing utility function in Java (b).

not to introduce new features or repair faults, but to improve the non-functional

aspects of the software. As an example, refactorings may eliminate redundancy,

simplify an existing algorithm or improve a program’s structure. Other non-functional

improvements to software also include performance optimisations, such as reducing an

algorithm’s CPU and memory consumption.

Refactoring Example: Fig. 1.1 provides a simple example of a typical source code

refactoring in the Java programming language illustrating an intersection algorithm

for two input lists in Fig. 1.1a. This code segment is redundant since the Java runtime

library provides the r e t a i n A l l operation for its collection types providing the same

semantics. The source code is considered refactored in Fig. 1.1b with the use of this

function instead.

While refactorings are an accepted and important part of agile software engineering

processes, they impose a non-trivial workload on software developers. Spotting

instances such as the one presented in Fig. 1.1a, requires detailed code review sessions

as incorrectly applied refactorings can introduce unexpected bugs. Therefore it is

desirable to automate and support the refactoring process with a formal verification

that the refactored code satisfies the desired properties. Based on the related work

in the area (cf. Sec. 3.4), we assess this effort is accomplished only for one specific

sub-category of refactorings and remains largely unsolved for the remainder. We

explain this perceived dichotomy in refactoring automation in the following section.

2

class A {
public stat ic int COUNT = 0 ;

}

class B {
public stat ic int opera t ion () {

return ++A.COUNT;
}

}
(a) Original code with opera t i on in B.

class A {
public stat ic int COUNT = 0 ;

public stat ic int opera t ion () {
return ++COUNT;

}
}

class B {
}

(b) Operation moved to A.

Figure 1.2: Move Method refactoring from class B (a) to A (b).

1.2 State of the art

We divide the set of refactorings defined by Fowler et al. into the two categories of

syntax- and semantics-driven. The former are code changes which can be performed

without having to understand or provide a model for the changed program’s behaviour.

These are usually conservative and purely syntactical changes, such as the Move

Method refactoring [34, Ch. 7] illustrated in Fig. 1.2. The method operat i on is

moved from class B in Fig. 1.2a to class A in Fig. 1.2b, with the intent of simplifying

the program syntactically, since opera t i on is solely dependent on the field COUNT

in class A.

To perform this refactoring, no actual understanding of the semantics implemented

in opera t i on , i.e., the fact that it increments COUNT, is required. A syntactic

analysis of the method, such as a dependency analysis on the program’s abstract

syntax tree, is sufficient to perform it safely. We refer to this category of refactorings

as “syntax-driven”. By contrast, the preconditions for the redundancy removal in

Fig. 1.1a are much harder to establish. To prove redundancy and replace the code with

the existing method, a decision procedure needs to confirm that both code snippets

are equivalent under any possible input. The refactoring decision, in this case, is

entirely dependent on the semantics of the program in question, which is why this

category of refactorings is referred to as “semantics-driven”.

The subject of syntax-driven refactorings has been extensively researched, and

industrial software exists to support developers in this task. A comprehensive list

of related publications is included in Sec. 3.4. The research presented in this thesis

3

is exclusively focused on semantics-driven refactorings, where a model of program

semantics is a key requirement to perform the necessary code changes soundly.

1.3 Research goal

The goal of this thesis is to develop an approach for automating semantics-driven

refactorings. We first present two specific semantics-driven refactorings followed by

an outline of the methodology used for developing an automated reasoning engine to

apply the refactoring to generic source code.

Remove unnecessary reflection: The Java Reflection API is a language feature

provided by the Java programming language allowing programmers to access an in-

program representation of the program’s own source code. This is useful to examine and

adapt the behaviour of a Java program at runtime [85]. We provide a example code of a

reflection feature in Fig. 1.3 that executes all methods in the class Re f l e c t i onTes t

prefixed with t e s t .

class Test {
stat ic void testX () {

// . . .
}
stat ic void testY () {

// . . .
}
stat ic void c loseX () {

// . . .
}

stat ic void r e f l e c t i o n I n v o k e () throws Exception {
for (Method method : Test . class . getDeclaredMethods ()) {

i f (method . getName () . s tartsWith (” t e s t ”))
method . invoke (null) ;

}
}

Figure 1.3: Reflection example invoking all methods prefixed with “test”.

Reflection is a flexible and powerful feature used to express semantics over the

program structure. However, the use of reflection comes at the cost of an additional

level of indirection, which negatively impacts performance and code complexity. Its

use is discouraged if the same semantics can be accomplished using regular Java

language features. In the context of automatically generated or translated Java source

4

code, unnecessary use of the Reflection API is an undesirable side effect. An example

of unnecessary Reflection use is illustrated in Fig. 1.4a as well as an appropriate

refactoring for this situation in Fig. 1.4b.

class Peer {
stat ic void op () {

Class<?> c l s = Test . class ;
Method method =

c l s . getDeclaredMethod (” testX ”) ;
method . invoke (null) ;

}
}

(a) Static method call in Reflection.

class Peer {
stat ic void op () {

Test . testX () ;
}

}

(b) Explicit method call without indi-
rection.

Figure 1.4: Unnecessary reflection (a) and its removal (b).

Replace Loop by Java 8 Stream query: Domain-specific languages (DSL) are

programming languages or sub-languages within a programming language intended

to facilitate programming within a specific domain. The Java Stream framework is

a DSL introduced to Java in version 8. Its purpose is to facilitate the extraction

of information from Java collection types. This allows programmers to implement

algorithms which retrieve data from Java collections in an explicit query language,

hence conveying the intent of the program more clearly. Fig. 1.5 illustrates this benefit

by implementing a common filtering algorithm, using an explicit loop in Fig. 1.5a,

and its equivalent Java 8 Stream query in Fig. 1.5b.

List<Str ing> l = getData () ;
I t e r a t o r<Str ing> i t = l . i t e r a t o r () ;
while (i t . hasNext ())
{

St r ing e = i t . next () ;
i f (e . l ength () > 10)

i t . remove () ;
}

(a) Original code with loop.

List<Str ing> l = getData () ;
l = l . stream ()

. f i l t e r (e −> e . l ength () <= 10)

. c o l l e c t (C o l l e c t o r s . t o L i s t ()) ;

(b) Equivalent Java 8 Stream query.

Figure 1.5: Explicit filter implementation (a) and Java 8 Stream filtering (b).

Introducing a domain-specific language to transform commonly used semantics

into explicit instructions of an interpreter language is a special case of the “Replace

5

Implicit Language with Interpreter” refactoring described by Kerievsky in [61, p.269]. It

increases code readability by explicitly naming the performed actions using instructions

in the introduced DSL. For example, instead of using a generic whi l e - i f construct as

in Fig. 1.5a, the refactored version in Fig. 1.5b invokes the Java 8 f i l t e r operation

with an appropriate property. This conveys the intended semantics that elements in

the list are to be removed according to a provided property.

Key ideas developed in this thesis: The two refactorings require semantic knowl-

edge of the input source code to be applied soundly. In the case of “Remove unnecessary

reflection”, it needs to be first established that the reflection is unnecessary and that

the invoked function is always the same under every possible execution. For the

“Replace Loop by Java 8 Stream query”, we need to determine if there exists a query

in the Java 8 Stream domain-specific language which is equivalent to the current

code. We hypothesize is that these semantic preconditions to these refactorings can

be established by using the bounded model checker CBMC [22] (cf. Sec. 2.1).

While the first problem is expressible in CBMC, the refactoring to Java 8 streams

requires us to prove that a stream query is equivalent to the existing source code and

identify an equivalent stream query out of a set of possible queries in the allowed

Java 8 Stream grammar. Other than the reflection refactoring, the stream refactoring

represents a program synthesis problem we solve by presenting a refactoring synthesis

engine using CBMC as an oracle.

Methodology:

1. Establish that CBMC is suitable to verify properties relevant to semantic

refactoring preconditions. We demonstrate this by implementing the reflection

refactoring as an exemplar in Chapter 4. We provide a selection of JNI-enabled

benchmarks to corroborate our hypothesis that CBMC is sufficient to establish

preconditions relevant to refactorings.

2. Develop a program synthesis engine with CBMC as an oracle which is scalable

enough to handle programs comparable to our Java 8 stream refactoring problem.

This step is presented in Chapter 5. We evaluate our synthesis engine using

relevant benchmarks from renowned software verification competition sources.

This evaluation is presented as evidence that our engine is of practical use for

synthesis problems similar in complexity to our refactoring synthesis use case.

6

3. Formalise the refactoring constraints for the Java 8 stream refactoring problem

and combine them with the previously implemented program synthesis engine

to establish a refactoring synthesis engine. We present this step in Chapter 6.

Randomly selected Java benchmarks from open source repositories are used

to compare our semantics-driven refactoring engine against traditional syntax-

driven refactoring tools.

1.4 Outline

This thesis consists of contributions in the field of automated, semantics-driven

refactorings. The presented research investigates the necessary techniques to implement

a fully automated program refactoring algorithm. Chapter 1 introduces the agile

software engineering literature related to program refactorings with explanations of

the methodology as well as current research efforts and limitations. A brief description

of preliminary techniques and frameworks follows in Chapter 2.

In Chapter 4, we present the first exemplar of an automated, semantics-driven

code transformation engine. The presented algorithm is an automated source code

translation and minimisation engine that translates native JNI/C code fragments to

the Java programming language. We further illustrate cases where semantic properties

need to be established using a bounded model checker to minimise the translated

source code safely. The chapter concludes with the implementation of our proposed

algorithm in our tool Jitsune, performing the explained code translation and using the

bounded model checker CBMC to establish preconditions for code minimisation [22].

The thesis author’s contributions are detailed in Sec. 1.5.1.

Chapter 5 introduces and describes our program synthesis algorithm and its

applications. We illustrate in Sec. 5.4 how a variety of verification and synthesis

problems can be mapped to our engine, such as safety checking, bug finding and

controller synthesis. We demonstrate experimentally that our algorithm compares

favourably against both general purpose program synthesisers as well as specialised

verification tools [28, 26, 2, 3]. The thesis author’s relevant contributions in this area

are listed in Sec. 1.5.2, Sec. 1.5.4, and Sec. 1.5.5.

In Chapter 6, we present our fully automated refactoring decision procedure, which

employs the previously introduced program synthesis engine to construct provably

correct, semantics-driven refactorings. We further present our Java Stream Theory

JST, which reasons over the Java 8 Stream semantics on Java heap data structures with

sufficient precision to establish refactoring preconditions. Based on both contributions

7

we present our tool Kayak, which implements the “Replace Loop by Java 8 Stream

query” refactoring introduced in Sec. 1.3. The author’s contributions to the work

presented in this chapter are listed in Sec. 1.5.3.

1.5 Contributions

The contributions of the author of this thesis, referred to as “the author” in the follow-

ing, are listed in the following with references to the respective research publications.

1.5.1 Remove Unnecessary Reflection

The engine presented in Chapter 4 is based on the CBMC bounded model checker [22].

The Java implementations of ANSI-C standard libraries, the translators from C to

Java expressions and the constraint generation passing the equivalence problems to

CBMC are solely the work of the author.

1.5.2 Danger Invariants

In [28], a program synthesis engine based on the Counterexample-guided inductive

synthesis paradigm [88, 13] is presented. The purpose of this engine is the synthesis

of danger invariants, which prove the presence of deep bugs. A program attempting

to solve this program synthesis problem, called “Kalashnikov”, was published in

[29] without the author’s contribution. Kalashnikov is implemented in the Python

scripting language and implements the CEGIS paradigm. As a synthesis engine for

new candidate programs both a genetic search strategy and CBMC’s [22] symbolic

execution engine are used. The verification engine is implemented using CBMC along

with explicit and exhaustive counterexample search due to low performance of the

CBMC back-end. The paper was rejected from relevant venues and was published on

arXiv on 18th March 2015. The author of this thesis then joined the group with the

goal to prove that the CEGIS paradigm was a viable strategy to synthesise danger

invariant bug proofs. The author implemented the CBMC CEGIS module, which

is an extension programmed into C++ and directly integrated in the CBMC code

base. This new CBMC extension is solely the author’s work and features the following

improvements over the original Kalashnikov implementation:

8

Faster candidate solution verification: Direct integration in CBMC allows trans-

lation of candidate solutions to CBMC’s GOTO instruction language before verifying.

This reduced verification time to a point where this phase became a negligible portion

of the synthesis time (< 5%) and the explicit, exhaustive counterexample search was

no longer necessary.

Biased GA crossover: The previous off-the-shelf genetic algorithm implementation

was replaced by a custom implementation for the program synthesis domain. The new

implementation features a biased selector function when selecting parents for a genetic

crossover implementation. The function favours the combination of parents which

solve disparate counterexamples reducing the risk of entering local minima, evidenced

by the additional benchmarks solved between [29] and [28].

Information sharing for CEGIS engines: The symbolic execution and GA en-

gine in Kalashnikov were completely independent and did not share information apart

from found counterexamples. The author’s new implementation transports counterex-

amples found by the symbolic execution engine into the genetic population of the

competing GA back-end. Copies of such a candidate program replace a configurable

portion of the GA’s solution population. This allows the symbolic execution engine to

guide the GA back-end out of local minima. The effect of this was significantly faster

synthesis times as presented in [28] and compared to [29].

Additional benchmarks: The author repeated the experiments conducted with

Kalashnikov and also extended the benchmark set with additional entries from the

SV-COMP 2016 [93] software verification competition.

The improved danger invariants solver implemented using the new CBMC CEGIS

module was accepted for presentation in [28].

1.5.3 Kayak: Safe Semantic Refactoring to Java Streams

The program synthesis engine presented in [28] is used in [27] to refactor redundant Java

loops to equivalent Java 8 Stream constructs. The presented CBMC CEGIS extension,

the front-end used to interpret refactoring problems, as well as the implemented

abstraction and refactoring constraint generation are solely the work of the author.

The author entirely programmed the presented refactoring tool “Kayak”.

9

1.5.4 Program Synthesis for Program Analysis

The author’s contributions listed in Sec. 1.5.2 and Sec. 1.5.3, combined with synthesis-

related work by other authors [31, 32], were published as an extended journal version

in [26].

1.5.5 Controller synthesis

Our work published in [2] and [3] enables the synthesis of digital controllers for

continuous plants and state-space physical plants. The algorithm is based on the

CEGIS engine presented in [28]. The author solely implemented the digital controller

extension to the CBMC CEGIS module and significantly contributed to the digital

controller synthesis constraints expressed in the C programming language in [2]. The

author also significantly contributed to the completeness threshold controller synthesis

constraint presented in [3].

The presented results are an alternative application of the synthesis engine pub-

lished in [28] and demonstrate its wide range of applications.

1.5.6 Learning the Language of Error

The program visualisation engine published in [16] allows for the generation of an

abstract graphical representation of programs as well as errors in programs or changes

between program versions. This is particularly useful for visualising the impact of

code refactorings. The author contributed significantly to the formal algorithms as

well as the C++ implementation of the presented tool, of which the author remains

the chief maintainer. The paper represents corollary work in the area of refactoring

support and is not included in this thesis.

1.5.7 Assisted Coverage Closure

The coverage generation engine published in [77] explores the use of CBMC’s symbolic

execution engine to generate missing coverage in large industrial projects. It demon-

strates that CBMC can be successfully employed to remove coverage gaps in a unit

test suite. This is especially important before refactoring tasks to increase confidence

in the correctness of the introduced changes.

This line of work is considered a side project to the author’s automated refactoring

efforts and is not included in this thesis. The author solely implemented the RapiCover

extension presented, which automatically generates coverage queries for the FShell

test vector generator.

10

Chapter 2

Preliminaries

2.1 CBMC and Symbolic Execution

Symbolic execution examines the semantics of a given program statically by computing

a symbolic model of the program’s possible states [64]. In this document we frequently

refer to the bounded model checker CBMC [22], which employs symbolic execution

for model checking. We give a brief overview of how CBMC analyses a program

to provide the context for the model checking features we rely on in the following

chapters. CBMC employs symbolic execution to map a program’s semantics to a SAT

formula which is satisfiable iff a certain property about the program semantics holds.

This technique is used to find bugs in programs, such as an assertion violation or a null

pointer dereference. Another common property to check using symbolic execution is

the functional equivalence of two programs or functions under any possible input [41],

which proves the soundness of refactorings and other code mutations. CBMC’s

symbolic execution by default limits the number of iterations for loops in the program,

to produce a finite SAT formula in the context of possibly infinite loops. We summarise

the specific steps by which CBMC converts an input program to an SAT instance in

the following.

Unwind loop constructs: Loops implement the repeated execution of a list of

instructions until a certain condition is met. CBMC handles loops by a process called

“unwinding”. It repeats the loop body a limited number of times and guards each

body execution with the loop guard as illustrated in Fig. 2.1, with the original loop

in Fig. 2.1a and the unwound statements in Fig. 2.1b. In the case of loops for which

CBMC cannot determine an upper bound of necessary unwindings, users can specify

a limit to instruct CBMC to disregard program paths containing more loop iterations

in its analysis. CBMC optionally instruments an unwinding assertion at the end of its

11

loop unwindings, as seen in Fig. 2.1a, which CBMC also translates as a property to

be verified. Unwinding assertion property violations warn the user that the chosen

loop bound was not sufficient for all paths in the program.

int r e s u l t = 1 ;
int i = 0 ;

while (i < 3) {
r e s u l t ∗= 2 ;
i ++;

}

(a) Original loop

int r e s u l t = 1 ;
int i = 0 ;

i f (i < 3) {
r e s u l t ∗= 2 ;
i ++;

}

i f (i < 3) {
r e s u l t ∗= 2 ;
i ++;

}

i f (i < 3) {
r e s u l t ∗= 2 ;
i ++;

}

a s s e r t (i >= 3) ;

(b) Unwound statements

Figure 2.1: CBMC loop unwinding

An alternative to unwinding is computing corresponding safety invariants for the

loops in the input program. We explain the concept of loop invariants briefly in

Sec. 2.2. Using this approach, we can reason over properties of the input programs

irrespective of the number of times its loop bodies are executed (cf. Chapter 6).

Expand function calls: CBMC inlines function calls in its expansion phase by

replacing re turn statements by goto statements to the end of the function call, and

potential return values by an assignment to a meta variable. This process is illustrated

in Fig. 2.2, with the original function call in Fig. 2.2a and its replacement in Fig. 2.2b.

12

int g (int x) {
i f (x < 0) {

return 0 ;
}
return x ∗ 2 ;

}

void f () {
int x = 0 ;
x = g (x) ;

}

(a) Original function call

void f () {
int x = 0 ;

int g r e t ;
int g x = x ;
i f (g x < 0) {

g r e t = 0 ;
goto g end ;

}
g r e t = x ∗ 2 ;
g end :

x = g r e t ;
}

(b) Expanded call

Figure 2.2: Function call expansion

Recursive function calls are treated similar to loop constructs and are unwound up

to a bound, asserting afterwards that the recursion does not continue deeper.

Convert to static single assignment (SSA): After the previous steps, a program

can be transformed to static single assignment form (SSA), requiring that each variable

in a program to be assigned exactly once. CBMC accomplishes this by introducing

versions for each program variable depending on which assignment is applied to the

variable. Fig. 2.3 illustrates this transformation with the original program in Fig. 2.3a

and the SSA equivalent in Fig. 2.3b. SSA transformation is necessary to represent

the model of sequential program statements in an unordered SAT instance. The

variable versions allow the formula to express that e.g. the property in the assertion

in Fig. 2.3a refers to the value of the variable x after it has been assigned a new value

in the previous statements.

13

int x = x + y ;

i f (x > 0) {
x = x ∗ 2 ;

} else {
x = x + 1 ;

}

a s s e r t (x > 0) ;

(a) Original code

int x1 = x0 + y0 ;

i f (x1 > 0) {
x2 = x1 ∗ 2 ;

} else {
x3 = x1 + 1 ;

}

x4 = x1 > 0 ? x2 : x3 ;
a s s e r t (x4 > 0) ;

(b) SSA form

Figure 2.3: SSA conversion

Convert to bit-vector equations: The SSA program in Fig. 2.3b can be inter-

preted as two bit-vector equations:

P :=x1 = x0 + y0∧

x2 = x1 ∗ 2∧

x3 = x1 + 1∧

x1 > 0⇒ x4 = x2∧

x1 <= 0⇒ x4 = x3

A :=x4 > 0

In order to check that the property holds for the program, CBMC converts the formula

P ∧ ¬A to conjunctive normal form and passes it to a SAT solver. If the formula is

unsatisfiable the program is safe. Otherwise CBMC uses the satisfying assignment

provided by the solver to construct a counterexample trace.

CBMC exposes a rich API which allows the use of its bounded model checking

functionality as a framework. Client applications can use this API to build decision

procedures reasoning about the behaviour of input programs. Multiple contributions in

this thesis rely on CBMC’s framework, and we highlight at this point two key features

which are frequently used when working with it: nondeterminism and assumptions.

Nondeterminism: A frequent use case in verification is testing a property of a

program or function under every permitted input. For this purpose, CBMC allows

14

assigning a nondeterministic value to a variable. Doing so permits the underlying

SAT solver to assign it any value within the variable’s domain to expose a bug in the

program. CBMC exposes this feature through many ways in its API, one of which is by

assuming the return values of functions without a body are nondeterminstic. Fig. 2.4

illustrates this with a short code example, which verifies if any integer multiplied by the

constant 2 is larger than the original number. CBMC will provide a counterexample

for the illustrated property, since any negative integer number violates this constraint.

int nondet in t () ;

void f () {
int x = nondet in t () ;
int y = x ∗ 2 ;
a s s e r t (y >= x) ;

}

Figure 2.4: Nondeterminism example

Assumptions: CBMC considers every possible path through the input program

with respect to the program’s transition relation and the nondeterministic choices

configured. In some verification scenarios, it is useful to restrict this selection, such as

if certain traces are not interesting or outside the input specification of the program.

For this purpose, CBMC provides the concept of assumptions, which instruct it to

encode explicit constraints into the SAT formula, thus restricting its analysis to a

subset of the paths in the program. As an example, in Fig. 2.4 it would be desirable to

restrict the permissible inputs for the variable x to positive integer values to exclude

obvious or uninteresting counterexamples. The CBMC API syntax achieving this is

illustrated in Fig. 2.5. With this assumption in place, CBMC will provide a more

interesting counterexample for x, which will violate the property by causing an integer

overflow.

15

int nondet in t () ;

void f () {
int x = nondet in t () ;

CPROVER assume(x >= 0) ;
int y = x ∗ 2 ;
a s s e r t (y >= x) ;

}

Figure 2.5: Assumption example

A detailed description of CBMC’s remaining features and implementation is

available in [22].

2.2 Loop Safety Invariants

We assume a generic loop with a pre- and postcondition, guard G, and transition

relation T : {Precondition} whi le (G)T {Postcondition}.
For such a loop, we can prove partial correctness, i.e. any terminating execution

starting in a state satisfying Precondition reaches a state satisfying Postcondition, by

finding a safety invariant, Inv , with the following properties:

∃Inv .∀x, x′.Precondition → Inv(x) ∧ (2.1)

Inv(x) ∧G(x) ∧ T (x, x′)→ Inv(x′) ∧ (2.2)

Inv(x) ∧ ¬G(x)→ Postcondition (2.3)

In this formula, (2.1) ensures the safety invariant holds in the initial state, (2.2) checks

that the invariant is inductive with respect to the transition relation, i.e., the transition

relation maintains the invariant, and (2.3) ensures that the invariant establishes the

postcondition on exit from the loop. This can be generalised to multiple, potentially

nested, loops.

2.3 Java Native Interface

Compiled bytecode for the Java programming language runs within a virtual machine,

independent of the underlying platform. JNI is a programming framework that

16

provides Java programs access to native machine code libraries. This feature is used

to improve performance and enable the reuse of existing libraries.

Java Bytecode

Native Code

Call
Native
Method

Call
Java
Method

Load
Classes

Allocate
Objects

Throw
Excep-
tions

Enter
Synchro-
nisation
Monitors

Figure 2.6: JNI features

The source language for these native libraries varies, and C or C++ is used in

most cases. For the rest of this document, we thus focus on native code written in C.

We refer to the combination of a Java program with JNI-enabled C code as JNI/C.1

Fig. 2.6 illustrates the features accessible by JNI-enabled code, and we enumerate and

explain a subset of these features with examples in the following.

Call a native method: Fig. 2.7 illustrates the syntax necessary to call a native

C function from a Java program. The function square in this example is part of a

library “libtest” which must be explicitly loaded before calling the method. The JNI

interface for C programs exposes equivalent types for all Java types, such as the type

j i n t in the example, which provides the same domain guarantees as the Java i n t

type.

1http://docs.oracle.com/javase/6/docs/technotes/guides/jni/spec/jniTOC.html

17

class JNITest {
stat ic {
System . loadLibrary (” l i b t e s t ”) ;
}

native int square (int x) ;

public void f (int x) {
int y = square (x) ;
int z = x ∗ x ;
a s s e r t y == z ;
}
}

(a) Java

JNIEXPORT j i n t JNICALL
Java JNITest square (JNIEnv ∗env ,

j o b j e c t object , j i n t x) {
return x ∗ x ;
}

(b) Native JNI/C

Figure 2.7: Native method call

Calling a Java method from native code: Similar to the example in Fig. 2.7,

native methods are equally able to access and call methods in the Java virtual machine.

Since the Java programming language supports features without first class equivalent

in C, the JNI programming interface exposes data structures and utility functions in

order to manipulate Java objects. Fig. 2.8 illustrates the process of calling a Java

method from a native function.

18

class JNITest {
stat ic {
System . loadLibrary (” l i b t e s t ”) ;
}

public native void t e s t (S t r ing param) ;

public stat ic void main (St r ing [] a rgs){
JNITest obj = new JNITest () ;
obj . t e s t () ;
}

public void sayHe l lo (){
System . out . p r i n t l n (” He l lo world ! ”) ;
}
}

(a) Java

JNIEXPORT void JNICALL
Java JNITest te s t (JNIEnv ∗env , j o b j e c t obj) {

j c l a s s JNITest = (∗ env)−>FindClass (env , ”JNITest”) ;

jmethodID sayHe l lo = (∗ env)−>GetMethodID (env ,
JNITest , ” sayHe l lo ” , ” ()V”) ;

(∗ env)−>CallVoidMethod (env , obj , sayHe l lo) ;
}

(b) Native JNI/C

Figure 2.8: Call Java method from native

2.4 CEGIS paradigm

The Counterexample Guided Inductive Synthesis (CEGIS) [88, 13] paradigm describes

a category of algorithms frequently used in the context of program synthesis. Algo-

rithms implemented in the CEGIS paradigm are comprised of an iterative refinement

loop and consist of a Synth and a Verif phase, as illustrated in Fig. 2.9. CEGIS

algorithms traverse solution sets of exponential size, where a correct solution needs

19

to satisfy a constraint over an exponential domain. The algorithm performs well in

scenarios where a limited subset of counterexamples from the domain is sufficient to

constrain a solution that will pass for the entire domain.

Synth Verif Done

Candidate solution

Counterexample input

Valid

Figure 2.9: Abstract synthesis refinement loop

The algorithm starts with an empty or uninitialised candidate solution, The

Verify phase checks a given candidate solution against the input constraint. If the

candidate is valid, then the algorithm terminates. Otherwise a counterexample from

the domain is provided for which the solution does not satisfy the constraint. These

counterexamples are used in the Synth phase to refine the current candidate solution

and guide the search through the solution set. In the case of program synthesis, the

solution set is the set of all possible programs within a specified grammar, and the

domain is the set of all allowed program inputs for which the synthesised program is

expected to behave correctly.

The CEGIS paradigm only describes a family of counterexample guided refinement

search algorithms. The actual algorithmic implementations are contained in the

Synth and Verif phase algorithms and vary greatly depending on the solution set

and domain over which the synthesis process is performed.

20

Chapter 3

Related Work

This chapter summarises relevant existing work for each chapter of this thesis, and

along with Sec. 1.2 and Chapter 2 represents our assessment of the state of the art

upon which this thesis seeks to progress.

3.1 Opaque library modelling

The work cited in this section is focused on the problem of modelling native or

otherwise opaque program libraries. They represent competing modelling strategies

to the one presented in Chapter 4.

There are alternative approaches for analysing native method calls in Java programs.

In particular, any algorithm that abstracts library method calls is applicable in this

scenario. Shafiei and van Breugel present a JNI extension to the Java model checker

JPF in [84]. The plug-in passes any native method call to the underlying virtual

machine, effectively executing it on the system. While this is a viable solution for

many scenarios, the approach entails some significant drawbacks. Since the state of the

JNI code is not modelled within JPF, symbolic values and other optimisations cannot

be applied. The executed calls also have an impact on the system environment, which

may not be readily reversible to explore a different path. Database applications and

other persistence systems are particularly problematic. In this scenario, the verifier

manipulates the database content during verification, which can yield unsound results.

Werner and Holger further present a summarisation approach for library func-

tions [43] with an algorithm that automatically generates transformation summaries

and error triggers from the library binary. The goal of the transformation summary

is to specify how the program state is affected by the function call, which is expressed

as a transfer relation. Error triggers serve as program state assertions and indicate a

possibility of a program failure if satisfied at the call site. This information generates a

21

numeric program, which they verify using off-the-shelf numeric analysers. The system

targets use cases where programs use well-established library functions. In particular,

verification of the library function itself is not addressed.

Another translation approach to this problem is provided by Trudel et al. [95].

They provide full source-to-source translation from C to Eiffel by creating equivalent

Eiffel models for all C language elements. Pre-compiled library functions are modelled

manually.

Other systems abstract library calls by means of pre- and postconditions. Cousot et

al. present such an algorithm with which they automatically infer necessary precondi-

tions. They define necessary preconditions as conditions which, if violated, render the

program always incorrect. This is a weaker condition than sufficient preconditions and

leads to a sound, but incomplete abstraction. Overall, their approach outperformed

comparable approaches by 9–21% precision [25].

Mariani and Pezzè further illustrate a run-time behaviour capturing approach

to solve this problem with a system that monitors component libraries and collects

run-time data during program executions. This data is then used to approximate the

behaviour of the library and determine its properties [74]. Mariani, Pezzè, et al. also

present a static approach to model extraction called “Static Extraction of Interaction

Models (SEIM)” [73] that targets interactions between web services and clients. It

produces a finite-state automaton that models the protocol requests sent by the client

application. Interpreting native method calls in Java as a client-server protocol would,

in a similar fashion, enable the extraction of models for Java verification.

Tan explores formal operational models for foreign function interfaces (FFIs) in [94].

This approach is hampered by the lack of formal specifications for systems falling

into this category. Tan presents JNI Light (JNIL), which models a subset of JNI and

provides explicit abstractions for interactions between high-level, garbage-collected

languages and lower-level native languages. Tan proposes abstractions for handling a

shared heap, cross-language method calls, exception handling, and garbage collection.

Using JNIL with existing Java model checkers is subject to explicit integration and

may provide weaker guarantees due to its abstractions than what the target model

checker would be able to establish on regular Java code.

Tan and Li also present a static analysis algorithm in [70] to detect misuses of

exceptions in the context of JNI. Their approach is targeted at specific misuse patterns

of exceptions in native code and is implemented as an Eclipse plug-in. Other semantics,

bugs or abstractions outside the misuse of exceptions are not covered.

22

Siefers, Morrisett and Tan also present a sandboxing approach to verify native

code in their work on Robusta [87]. Instead of verifying arbitrary native code, they

present a framework that entirely prohibits unsafe system modifications, confidentiality

violations, and dynamic linking/loading. These restrictions allow for establishing

security-related properties at the cost of a runtime overhead due to the sandbox.

This work is extended by Sun and Tan in [92] where they present the tool Arabica.

While Robusta is closely linked to an OpenJDK implementation, Arabica’s two-layered

implementation is portable between different VMs. Both Arabica and Robusta rely

on restricting the functionality of the native code, and are not usable for arbitrary

native programs.

3.2 Bug finding

Static bug finders that use techniques such as Bounded Model Checking (BMC) search

for proofs that safety can be violated. They also have the attractive property that

once an assertion fails, a counterexample trace is returned, to be inspected by the

user [20], which represents proof that an assertion violation occurs. To construct such a

danger proof, bounded model checkers compute underapproximations of the reachable

program states by progressively unwinding the transition relation. The downside of

this approach is that static bug finders fail to scale when analysing programs with

bugs that require many iterations of a loop. The computational effort required to

discover an assertion violation typically grows exponentially with the depth of the

bug.

Notably, the scalability problem is not limited to procedures that implement BMC.

Approaches based on a combination of over- and underapproximations such as predicate

abstraction [21] and lazy abstraction with interpolants [75] are alo not optimised for

finding deep bugs. This is because they can only detect counterexamples with deep

loops after the repeated refutation of increasingly longer spurious counterexamples.

The analyser first considers a potential error trace with one loop iteration, only to

discover that this trace is infeasible. Consequently, the analyser increases the search

depth, usually by considering one further loop iteration. This repeated unwinding

suffers from the same exponential blow-up as BMC.

Danger invariants enable proving the existence of a bug without explicitly showing

an error trace. This allows for more compact and intuitive proofs, which allow for

more scalable analyses that do not suffer from false alarms.

23

Concerning the verification of temporal properties, a danger invariant for a loop

with an assertion A essentially proves the CTL property |= EF¬A over the loop.

While there exist CTL verifiers based on a reduction to exist-forall quantified Horn

clauses [9, 8], we specialise the concept for finding deep bugs and describe a modular

constraint generation technique over arbitrary programs instead of transition systems.

Another successful technique for finding deep bugs without false alarms is loop

acceleration [67, 68]. This approach works by taking a single path at a time through

a loop to compute a symbolic representation of the exact transitive closure of the

path (an accelerator) and add it back into the program before using an off-the-shelf

bug finder, such as a bounded model checker. Loop acceleration requires that each

accelerated path be represented in closed-form by a polynomial over the program

variables, which is not always possible. In contrast, danger invariants are complete

such that a program has a corresponding danger invariant iff it has a bug. Loop

acceleration could be used in concert with danger invariants, since if an accelerator

can be found, then it is the strongest inductive fact about a loop making it a good

candidate danger invariant.

3.3 Inductive program synthesis

Program synthesis is the mechanised construction of software that provably satisfies a

given specification. Synthesis tools promise to relieve the programmer from thinking

about how the problem is to be solved. Instead, the programmer only provides a

compact description of what is to be achieved. Foundational research in this area

has been exceptionally fruitful, beginning with Alonzo Church’s work on the Circuit

Synthesis Problem in the sixties [19]. Algorithmic approaches to the problem have

frequently been connected to automated theorem proving [72, 66]. Recent developments

include an application of Craig interpolation to synthesis by [51].

In the seminal paper, [46] describe Brahma as a program synthesiser for loop-free

programs over bit-vectors. A key difference between our work and Brahma is that

Brahma is designed to be used by a human operator guides the synthesis process,

while our synthesiser is fully automatic. While Brahma uses a fixed set of components

and encodes a program by finding appropriate ”wiring” between the components, our

tool finds SSA programs of arbitrary length. An important advantage of this encoding

is that it does not require the user of the synthesiser to include all specification details,

such as how many addition operations may appear in the program, which is key in

enabling us to use the synthesiser as a black-box back-end for a plethora of use cases.

24

A recent successful approach to program synthesis is Syntax Guided Synthesis

(SyGuS) [4], which supplements the logical specification with a syntactic template that

constrains the space of allowed implementations. Thus, each semantic specification is

accompanied by a syntactic specification in the form of a grammar. In contrast to

SyGuS, our program synthesiser is optimised for program analysis according to the

three aforementioned key dimensions.

Other second-order solvers are introduced by [44] and [9]. As opposed to ours,

these are specialised for Horn clauses and the logic used is undecidable. [100] present

a decision procedure for a logic related to the synthesis fragment, the Quantified

bit-vector logic, which is a many sorted first-order logic formula where the sort of every

variable is a bit-vector sort. It is possible to reduce formulae in the synthesis fragment

over finite domains to Effectively Propositional Logic [76], but the reduction requires

additional axiomatisation increasing the search space and defeating the efficiency we

aim to achieve.

3.4 Refactoring

Cheung et al. describe a system that automatically transforms fragments of application

logic into SQL queries [17]. Moreover, similar to our approach, the authors rely on

synthesis technology to generate invariants and postconditions that validate their

transformations (a similar approach is presented in [56]). The main difference with

our work, other than the research goal, is that the lists they operate on are immutable

and do not support operations such as remove. Capturing the potential side effects

caused by these types of operations is one of our work’s core challenges.

In syntax-driven refactoring engines, program transformation decisions are based

on observations on the program’s syntax tree. Visser presents a purely syntax-driven

framework [96] intended to be configurable for specific refactoring tasks, but cannot

provide guarantees about semantics preservation. The same holds for [24] by Cordy

et al., [62] Sawin et al., [57] Bae et al., and [18] Christopoulou et al. In contrast to

these approaches, our procedure constructs an equivalence proof before transforming

the program.

Steimann et al. present Constraint-Based Refactoring in [89], [91], and [90] with an

approach that generates explicit constraints over the program’s abstract syntax tree

to prevent compilation errors or behaviour changes by automated refactorings. This

gives rise to a flexible framework of customisable refactorings, implementable through

a refactoring constraint specification language (cf. [90]). The approach is limited by

25

the information a program’s AST provides and favours conservative implementations

of syntax-focused refactorings, such as Pull Up Field.

Fuhrer et al. implement a type constraint system to introduce missing type param-

eters in the use of generic classes (cf. [38]) and to introduce generic type parameters

into classes which do not provide a generic interface despite being used in multiple

type contexts (cf. [63]).

Raychev et al. present a semi-automatic approach where users perform incomplete

refactorings manually and then employ a constraint solver to find a sequence of default

refactorings, such as move or rename, which include the users’ changes. The engine is

limited to syntactic matching with the users’ partial changes and does not consider

program semantics [82].

Weissgerber and Diehl rely on meta information to classify changes between

software versions as refactorings [99]. The technique aims to identify past refactorings

performed by programmers but is not a decision procedure for automated refactorings.

O’Keffe and Cinnéide present search-based refactoring [79, 80], which is similar to

syntax-driven refactoring. They rephrase refactoring as an optimisation problem by

using code metrics as a fitness measure. The method optimises syntactical constraints

and does not take program semantics into account.

Bavota et al. implement refactoring decisions in [7] using semantic information

limited to identifiers and comments, which may differ from the actual semantics (e.g.,

due to bugs). Kataoka et al. also interpret program semantics to apply refactor-

ings [58], but use dynamic test execution rather than formal verification, hence their

transformation lacks soundness guarantees.

Franklin et al. implement a pattern-based refactoring approach transforming

statements to stream queries [49] with a tool called LambdaFicator [36], which is

available as a NetBeans branch. We compare Kayak against it in our experimental

evaluation in Sec. 6.5.

26

Chapter 4

Exemplar: Remove unnecessary
reflection

The Java Native Interface (JNI) offers an interface between native machine code

with Java programs. Java programs that use the JNI are a challenge for static

analysers. Reliable figures about the popularity of JNI are not readily available. As an

approximate data point, there are around half a million C/C++ files referring to the

JNI header files on GitHub1. This number suggests that JNI is used in a significant

amount of open source software, so static analysis of such code is desirable.

We present a novel approach for automatically translating JNI code to Java

models and test the hypothesis that these models enable the application of static

analysers, such as model checkers and test case generators. Naive translation will

yield undesirable properties in the translated code, such as an overuse of the Java

Reflection API, so we apply an explicit automated refactoring to improve the code

and remove unnecessary use of this API. We implement this approach in our tool

called Jitsune2. We include a brief account of existing solutions to model native code

in Java in Sec. 3.1, and we argue that this support can be measurably improved

through the extraction of automatically generated Java models from the native source

code. We substantiate this claim using experiments on a large set of open source Java

benchmarks that access C library features using the JNI API. We use JPF [97] as a

representative Java Model Checker and Evosuite [37] as a test case generator. Our

contributions in this section and in the presented Jitsune tool are the following:

1. Translation of C to Java.

2. Java model of the JNI API system functions.

1Test search queries on http://www.github.com executed on 12/01/2016.
2A play on the Japanese word Kitsune, the shape-shifting fox.

27

3. Java model of the ANSI C standard library functions.

4. Post-processing and automated refactoring using the bounded model checker

CBMC to remove unnecessary use of reflection.

5. Experimental analysis of Jitsune with Evosuite against a benchmark set of over

290,000 LOC.

4.1 Background

Motivating example: Java Pathfinder (JPF) is a Java model checker originally

developed at the NASA Ames Research Center [97] containing a Java Virtual Machine

implementation written in Java, and directly accepts Java bytecode input. In our

experiments, we use the JPF core program (jpf-core) as well as the modules jpf-

nhandler and jpf-symbc. The former allows concrete execution of JNI operations to

approximate a model, and the latter implements symbolic execution and testing on

top of the existing JPF architecture.

We illustrate the benefit JNI models offer for Java verification and test generation

tools, such as JPF and Evosuite, using the example in Fig. 4.1. Both JPF and Evosuite

aim to analyse code that uses the JNI, by concretising the symbolic state to a single

concrete state, and then executing the JNI binary code with specific input values.

This approach is ineffective for the function resetDevice in this example as the input

space for the native operation has size 232. Since no real hardware device handles

are set up beforehand, the only handle value which will cover the failing “Don’t reset

working device!” branch is NULL HANDLE or 23, 999. Without a model for the

JNI/C portion of the code, both JPF and Evosuite have no option other than to try

every possible handle value to cover the special case. With a timeout of 300 seconds,

both tools failed to do so in our experiment. JPF reports the program as safe, and

Evosuite only achieves 67% coverage with its generated test cases. However, if we

provide both tools with an equivalent Java model for the JNI code, JPF immediately

reports an exception violation and Evosuite generates a correct test suite with 100%

coverage. This example represents a best-case scenario for precise JNI models.

Models for native code, as generated by our approach, remediate two important

liabilities of concretisation. First, concretising a symbolic analysis down to single values

implies a substantial increase in computational complexity. To achieve completeness,

the native code needs to be explicitly executed with every possible input value.

Second, if the JNI code contains an internal state, executing these methods may lead

28

to changes in this state, which can cause inconsistent feedback from the perspective of

the verification tool as well as unsound analysis results. An experiment measuring the

effect obtained on large-scale real-world projects is described in Sec. 4.3.

Use cases: There are multiple use cases for the extraction of reliable models for

JNI/C code. Since the models we extract are given as pure Java code, any Java model

checker can integrate the system to obtain JNI/C support. Programmers who rely

heavily on JNI for performance or compatibility reasons gain the opportunity to fully

analyse the system. Currently, they need to manually abstract JNI method calls,

which is error-prone and laborious. Better static analysis is desirable for mobile Java

code, since distributing updates to these platforms is challenging. Our algorithm also

allows migration of JNI-dependent Java programs to platforms that do not support

JNI. The respective native code can simply be converted to Java so that the resulting

program does not rely on native code.

Furthermore, our approach simplifies the modelling of Java runtime library func-

tions, which are implemented in the native language. These are invoked using explicit

JNI or equivalent native call mechanisms. Our approach can automatically convert

these native C implementations to a Java model, which allows Java verifiers to analyse

these functions automatically without the need for a manually constructed model.

Finally, our JNI models enable automated test case generators to increase the

coverage achieved by providing a model for otherwise non-transparent JNI operations.

To illustrate this specific point, we conduct an extensive experiment on the effects of

our JNI models on Java test case generators in Sec. 4.3.

4.2 Model Extraction for JNI/C

The model extraction in Jitsune is comprised of two major components as illustrated

in Fig. 4.2. The first phase translates the JNI/C source code to equivalent Java

code by mapping each C expression to an equivalent Java expression, removing goto

statements, which are not supported by Java, and translating pointer arithmetic.

The translated Java model is usable by model checkers and test case generators,

such as JPF and Evosuite. The post-processing mode automatically refactors and

optimises the generated model to simplify the analysis task for these tools. JNI system

calls, which use string variables to look up Java class and method names, are translated

by default using reflection. Reflection, however, makes the Java code less accessible

for model checkers and should be avoided. Our post-processing phase rewrites these

29

#define MAX HANDLES 24000
#define NULL HANDLE MAX HANDLES − 1
#define OK STATUS 0
#define ERROR STATUS 1

// Always f a l s e dur ing t e s t s .
Bool ex i s t sHand l e (int handle) ;

JNIEXPORT j i n t JNICALL
Java Dev ice s checkStatus (/∗ . . . ∗/ , j i n t handle) {

i f (NULL HANDLE == handle)
return OK STATUS;

i f (! ex i s t sHand l e (handle))
return ERROR STATUS;

// Use r e a l hardware , never the case in t e s t s . . .
}

(a) Native JNI/C

class Devices {
private stat ic f ina l int OK = 0 ;

stat ic {
System . loadLibrary (” dev i c e s ”) ;
}

stat ic void r e s e tDev i c e (int handle) {
i f (OK == checkStatus (handle)) {

// Don ’ t r e s e t working d e v i c e !
throw new RuntimeException () ;

} else {
// Reset d e v i c e . . .

}
}

stat ic native int checkStatus (int handle) ;
}

(b) Java

Figure 4.1: Synthetic Oracle example.

30

Map ex-
pressions

Remove
GOTOs

Translate
Pointer
Arith-
metic

Contains
JNI Call?

Refactor
Verify
with

CBMC
Sound? Revert

Load
System

Libraries

Run JPF
/ Evosuite

Done

Yes

No

Skip

C to Java translation
(Sec. 4.2)

Post-processing: Remove reflection
(Sec. 4.2)

Figure 4.2: C to Java translation and JNI model creation

statements into equivalent code that does not use reflection and checks equivalence of

the refactored model using CBMC. All processing steps in Jitsune are described in

detail in the following.

Translation of C to Java: Fundamentally, creating our JNI Java models from

C source code is a translation from one Turing-complete language to another. This

translation poses many challenges resulting from the disjoint feature sets of the two

languages. A large subset of the C language expression tree can be mapped to a direct

equivalent in Java, such as function calls, operators, and declarations. Fig. 4.3 gives

an example of such an expression-based mapping from C to Java.

We further illustrate translation from C features that are not directly supported

in the Java language. Since both languages are equally expressive, every C feature

can be modelled by a sufficiently complex Java model.

Pointer arithmetic: Most translated models do not explicitly maintain a C memory

model. C types are translated to equivalent Java types and managed in the Java virtual

machine’s memory model. This process is sufficient to obtain equivalent behaviour,

and provides optimal performance for Java analysers. We deviate from this approach

only in the case of C pointer arithmetic. Pointer arithmetic allows read/write access

to arbitrary locations within an object. Instead of analysing the precise semantics

of such programs, which is undecidable in the general case, we create an explicit

31

void main (int argc , char ∗argv []) {
char data [] = { 1 , 2 , 3 } ;
int sum = 0 ;

int i = 0 ;
for (; i < s izeof (data) ; ++i) {
sum += data [i] ;
}

puts (”Done\n”) ;
}

(a) Native JNI/C

class main conta iner {

stat ic void main (St r ing [] a rgs){
byte [] data = { 1 , 2 , 3 } ;
int sum = 0 ;

int i = 0 ;
for (; i < data . l ength ; ++i) {
sum += data [i] ;
}

System . out . p r i n t (”Done\n”) ;
}
}

(b) Java

Figure 4.3: Mapping simple C expressions to Java.

32

representation of the C memory model and move all variables that could be accessed

using the pointer into this model. The C memory model knows both heap and stack

memory categories [1]. We create a Java byte array for each with pre-configured

maximum stack and heap sizes.

Theorem 4.2.1 (C and Jitsune memory equivalence). The original C program’s heap

contains a memory block m iff the translated Jitsune program’s heap model contains

an equivalent memory block m′.

Proof. In the C language, every block of memory on the heap must be allocated using

the mal loc family functions [1]. Our algorithm replaces each mal loc family function

invocation by a call to a matching model function S t d l i b . mal loc . We assume that

every address returned by mal loc is a positive integer. For the case where memory

allocation fails, both mal loc and S t d l i b . mal loc return a canonical representation

of n u l l p t r and are trivially equivalent.

Allocated memory blocks in Jitsune are stored in a single byte array. We assume

this array is larger than the maximum byte address on the original C heap. For every

pointer i referring to a byte on the heap, there exists an element heap[i] on the Jitsune

heap. Jitsune maintains a tuple for each memory allocation, storing its index and

size. In this system, for every allocation (p, s) by mal loc , where p is the memory

pointer and s is the size of the allocated block, there exists an equivalent allocation

in Jitsune (ip, s) with array index ip and size s in the heap byte array. Equally, for

every allocation by S t d l i b . mal loc (i, s), there also exists an allocation of (pi, s) in

the original C program.

Thus, both the original code and its translation will always maintain equivalent

heaps and provide pointer representations to equivalent memory blocks.

Fig. 4.4 demonstrates a translation of C pointer arithmetic to Java. We avoid

wrapping other variables since this represents an unnecessary performance impairment.

Goto statements: goto statements are part of the Java bytecode language but

are not exposed in the Java source code language. Our goal is to generate Java source

code, which requires modelling this feature using source-level Java. To emulate goto

semantics, we combine the backwards edge of a whi l e loop with the Java switch

statement’s forward edge to arbitrary positions marked with case labels. The entire

body of a translated function is wrapped inside such a nested switch statement, as

illustrated in Fig. 4.5. When translating from C to Java, our algorithm transforms the

program’s control flow graph as illustrated in Fig. 4.6. It replaces goto statements

33

void run () {
int ∗v = mal loc (2u) ;

int ∗p = (int ∗)v ;

∗p = 0 ;

++p ;

∗p = 1 ;

}

(a) Native JNI/C

public stat ic void run (){
Pointer<Void> v =

Po inte r s . mal loc (2u) ;

Pointer<Integer> p = Casts . c a s t (
Types . g e t I n t e g e r () , v) ;

Operators . equa l s (
Opertors . d e r e f e r e n c e (p) , 0) ;

Operators . preIncrement (p) ;

Operators . equa l s (
Opertors . d e r e f e r e n c e (p) , 1) ;

}

(b) Java

Figure 4.4: Pointer arithmetic in the JNI model.

by an assignment to label and a subsequent cont inue statement. We prove the

equivalence between these constructs in theorem 4.2.2.

Theorem 4.2.2 (C and Jitsune goto equivalence). The Jitsune go to replacement

has the same successor nodes in the control flow graph as the original C go to under

any possible execution.

Proof. For this proof, we demonstrate that for every execution of a goto statement

in the original C code there exists an execution of the Jitsune goto replacement,

which, for the same original state, will lead to the equivalently labelled statement in

the subsequent program state. We prove this by showing that both code constructs

only have one possible execution trace which leads to a statement with the goto’s

associated label. We assume that any loop in the C function body has been replaced

by conditional backward goto statements, which is a transformation pre-applied by

CBMC [22].

The first conjunct of this proof is trivially true since the C goto statement is

defined as an unconditional jump to the statement with the associated label, as

illustrated in Fig. 4.6.

34

stat ic void f (){
int label = 0 ;
while (label >= 0) {
switch (label) {
case 0 :

// . . .
case 1 :

// . . .
default :
label = −1;
}
}
}

Figure 4.5: Wrapped function body.

l a b e l =1; cont inue ; whi l e (l abe l >=0) switch (l a b e l)

Function exit

case 1 :

case 2 :

. . .

goto L1 ; L1 :

Figure 4.6: C to Java goto control flow graph node transformation.

For the second conjunct we assign every label in the C function to translate an

integer x > 0. In the translation we wrap the C function’s original body in a whi le -

switch wrapper illustrated in Fig. 4.5. It is syntactically legal to replace every

labelled statement of the C function with a case x : label of its associated x. The C

goto statement itself is replaced by the statements l a b e l=x ; cont inue ; . Since

loops are replaced from the user code by CBMC, the successor node in the control

flow graph of the cont inue statement is whi l e (l a b e l >= 0). Since x > 0, the

loop guard holds and is succeeded by switch (l a b e l) . The Java switch semantics

guarantee that its successor will be the statement labelled with case x : . Since the

variable l a b e l is assigned to x and never changed before reaching label x, this is

the only possible execution. This sequence is illustrated in Fig. 4.6, and we present

extended examples of this transformation in Appendix B.

35

Function entry i n t l a b e l =0; whi l e (l abe l >=0) switch (l a b e l)

Function exit

case 0 :

case 1 :

. . .

. . .

Function entry . . .

Figure 4.7: C to Java function entry transformation.

. . . l a b e l =−1; whi l e (l abe l >=0) Function exit

switch (l a b e l) . . .

. . . Function exit

Figure 4.8: C to Java function exit transformation.

Initialisation rules: Unless explicitly initialised, local variables in C programs have

a nondeterminate initial value. This is not the case in Java where all variables are

initialised using appropriate default values. To match the C behaviour, we explicitly

assign nondeterministic values to uninitialised variables in the translated models.

Nondeterministic values are obtained using the API of the model checker, as in the

case of JPF. If no such API is available, the default fallback is the java.util.Random

class.

Finalisation: Variables allocated in stack memory are subject to deterministic

finalisation in C. Accessing a variable outside of its lifetime scope results in undefined

behaviour. Whenever Jitsune leverages Java heap objects to simulate stack variables,

it uses a try-catch statement to make sure the respective memory is freed as soon as the

variable is out of scope. This allows Jitsune to throw an UndefinedBehaviourException

whenever memory is accessed out of scope. Thus, model checkers, such as JPF can

detect and report undefined behaviour caused by illegal memory accesses. Fig. 4.9

provides an example of this feature.

ANSI C standard library: The ANSI C standard library is a vast set of utility

and system functions. We explicitly model all standard library functions used in our

36

void run () {
int ∗p = 0 ;

{
int i = 0 ;
p = &i ;
}

// Undefined behav iour
int j = ∗p ;
}

(a) Native JNI/C

public stat ic void run (){
Pointer<Integer> p = make nul l () ;

try { Memory . s t a r tB lock () ;
Pointee<Integer> i = wrap (0) ;
Operators . equa l s (p , r e f (i)) ;
} f ina l ly { Memory . endBlock () ; }

// Undef inedBehaviourExcept ion
int j=unwrap (d e r e f (p)) ;
}

(b) Java

Figure 4.9: Finalisation and undefined behaviour.

benchmarks. The Java runtime library provides the facilities to implement all features

accordingly, but mapping specific ANSI C function signatures requires a non-trivial

model. Such a model is integrated into our implementation of Jitsune.

Model post-processing: JNI offers an API for accessing Java program elements,

such as classes or methods, for invocation from the JNI/C program. Classes and

methods need to be looked up by name and are retrieved as meta-objects, which

can be invoked later. The precise behaviour of the string-based class and method

lookups can be reproduced in Java using Java’s reflection API. Fig. 4.10 illustrates a

reflection-based translation of a JNI system function call.

However, reflection is a non-trivial feature and remains challenging for Java

analysers to implement, so our model creation algorithm attempts to avoid reflection.

We observe that the class and method names in the example of Fig. 4.10a are constants.

They will always result in the same method invocation under any execution. We,

therefore, replace the reflection-based code by an explicit method call, as illustrated

in Fig. 4.11. To apply this optimisation, we need to show that the string values for

the class and method names will remain the same for any run of the program.

We obtain and verify this invariant using CBMC, which is a bounded model

checker for C and C++ [22]. Among other features, it performs verification of program

properties specified in the form of assertions up to a user-specified bound. If an

assertion can be violated by any program input, CBMC will detect this and provide

37

j c l a s s c l a z z = (∗ env)−>FindClass (env , ”JNITest”) ;
jmethodID sayHe l lo = (∗ env)−>GetMethodID (

env , c lazz , ” sayHe l lo ” , ” ()V”) ;
(∗ env)−>CallVoidMethod (env , obj , sayHe l lo) ;

(a) Java

Class<?> c l a z z = Class . forName (”JNITest”) ;
Method sayHe l lo = c l a z z . getDeclaredMethod (” sayHe l lo ”) ;
sayHe l lo . invoke (obj) ;

(b) Native JNI/C

Figure 4.10: JNI system call translation using reflection.

((JNITest) obj) . sayHe l lo () ;

Figure 4.11: JNI system call translation using an explicit method call.

38

a trace leading to the violation. We first use CBMC to generate an execution trace,

from which we extract a candidate class and method name. We use this candidate to

refactor the JNI system call into an explicit method call. CBMC then verifies the two

models always call the same operation under any input. This process is illustrated

in Fig. 4.2. It is important to note that the equivalence guarantees this refactoring

provides are limited by CBMC’s verification guarantees. CBMC verifies equivalence

only up to a user-specified maximum loop unwinding. Future work could expand

on this limitation by relying on different model checking software to establish the

equivalence property.

Explicit JNI model: Another component required for our approach is an explicit

model for the functions provided by the JNI API in Java. The framework provides

access to over 200 individual operations ranging from buffer allocation to throwing

Java exceptions3. Our current implementation is incomplete but spans all operations

necessary to model our benchmarks given in Table 4.1.

Limitations: Our current approach has two significant limitations, which reduce

precision. First, during the automatic optimisation described in Sec. 4.2, we only

analyse the JNI/C portion of the program to establish that the called operations are

invariant. Although rare, it may be the case that the value of the class and function

name strings depend on the associated Java model. One example of such a situation

is given in Fig. 4.12. The method to be called on line 23 is determined by the return

value of the Java method call on line 10. Since we are using CBMC as a pure C

model checker for our invariant check, we have no model available for the result of

the getMethodCall operation and must assume its return value is not constant. This

issue could be addressed by passing the Java code to the model checker to extend the

invariant check beyond the boundaries of the JNI framework.

A second limitation is rooted in the fact that our algorithm is specifically designed

to optimise the direct usage of the Java Native Interface. Other interfaces or custom

wrappers are not considered. Fig. 4.13 gives a trivial wrapper operation for a Java

method call from JNI/C that will not be optimised by our algorithm. Addressing

such constructs is outside of the scope of this contribution.

3http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html

39

http://docs.oracle.com/javase/7/docs/technotes/guides/jni/spec/functions.html

j c l a s s c l a z z = (∗ env)−>GetObjectClass (env , obj) ;

jmethodID getMethodName =
(∗ env)−>GetMethodID (
env , c lazz , ”getMethodName” , ” () Ljava / lang / St r ing ; ”) ;

j s t r i n g methodName = (j s t r i n g)
(∗ env)−>CallObjectMethod (env , obj , getMethodName) ;

const char ∗strzMethodName =
(∗ env)−>GetStringUTFChars (env , methodName , 0) ;

jmethodID operationToBeCal led =
(∗ env)−>GetMethodID (
env , JNIExample , strzMethodName , ” ()V”) ;

j s t r i n g f i n a l R e s u l t = (j s t r i n g)
(∗ env)−>CallObjectMethod (env , obj , operat ionToBeCal led) ;

Figure 4.12: Method and class name depend on the Java method result.

int JNI CALL COUNT = 0 ;

void m y j n i c a l l (JNIEnv ∗env ,
j o b j e c t obj , jmethodID methodId) {
(∗ env)−>CallVoidMethod (env , obj , methodId) ;
++JNI CALL COUNT;

}

Figure 4.13: Wrapped Java Native Interface.

40

4.3 Experimental Evaluation

We experimentally test our claim that the JNI models generated by Jitsune improve

the static analysis of Java programs using JNI/C. Specifically, our experiments show

that exchanging Evosuite’s internal model by JNI models generated by Jitsune improve

class statement coverage by up to 80%.

4.3.1 Selection of Benchmarks

We use a set of 14 real-world Java software packages with JNI dependencies on four

different native libraries as a benchmark suite. The four native libraries are SQLite,

Heartbeats, NanoVG, and the JNI µ-Benchmarks set. The programs were selected

randomly from GitHub using its search API (Table 4.1), and the total size of all

benchmarks is over 290,000 LOC (before translation).

We provide both Jitsune as well as our benchmark set for download at http:

//www.cprover.org/refactoring/jitsune.tar.gz.

4.3.2 Experimental Setup

Evosuite is an automatic test case generator for Java projects. It employs a dual

strategy consisting of both a search-based component and a dynamic symbolic execu-

tion engine (DSE). This combined approach makes it an interesting and challenging

candidate for our experiments. We expect our JNI models to benefit purely symbolic

tools most, since the flow-sensitive analysis cannot gather any information from JNI

methods, requiring their over-approximation. Evosuite, on the other hand, does

not rely alone on information retrieved from the Java source code, but can also

employ concrete execution and evolutionary search combinations to improve its test

suites [39]. Evosuite has a built-in model for handling JNI, which concretises the

symbolic execution to single traces and executes the native binary code with explicit

values.

We compare our generated JNI models against its built-in approach. We run

Evosuite for each class in the benchmarks with its built-in model and with a JNI

model generated by Jitsune. We only load the Jitsune JNI models if Evosuite executes

a class that either contains a native method or has a dependency on a class with

native methods. We measure the number of classes in the dependency chain between

a specific class and a native method as “Distance to JNI”, illustrated in Fig. 4.14. For

classes with large Distance to JNI, the probability that it uses the model decreases.

We thus define a cut-off distance after which we do not load Jitsune’s model to avoid

41

http://www.cprover.org/refactoring/jitsune.tar.gz
http://www.cprover.org/refactoring/jitsune.tar.gz

Name Size (LOC) Description
SQLite 116,300 Relational Database Management System con-

tained in a single C library. SQLite stores data
in file-based databases and is popular espe-
cially in embedded environments. The library
includes an extensive test suite. 4 5

Wakandan FYP 24,277 Marketplace simulation application. Illustrates
use and effectiveness of Trust Models against
real-world Attack Models. 6

JCompoundMapper 21,860 Library for fingerprinting (decomposition) of
chemical compounds. Features exporting op-
tions for data mining toolkits. 7

MZDB Access 21,295 Java library for reading and querying mzDB
files. mzDB (Mass Spectrometry SQLite
Database) is a file format developed by the
Proteomics French Infrastructure (ProFI). 8

Pacioli 16,859 An accounting and project management system.
9

Paysup 14,566 Personal desktop application for the creation
of payment files for electronic banking. 10

jjb 14,498 A bot for the Jabber XMPP instant messaging
service. 11

PMViewer 12,735 Management application for archived myBB
private messages on PC and Mac. 12

CSC202 12,466 A credit card processing database developed
for testing purposes. 13

sfscraper 12,146 HTML scraping utility. 14

WebBot 12,144 Web crawler capable of parsing and download-
ing various web-related data types. 15

JNanoVG 7,044 Java wrapper for NanoVG, a small antialiased
vector graphics rendering library for OpenGL
using the GLESv2 rendering library. 16 17

Heartbeats Simple 2,429 Low-level performance monitoring and analysis
framework. 18 19

JNI µ-Benchmarks 1,648 Academic benchmark set for JNI performance
analysis. 20

Table 4.1: List of benchmarks.

42

Distance:
3

Distance:
2

Class
with

native
methods

Figure 4.14: Distance to JNI.

Name Increase
SQLite 60.17%
NanoVG 100.00%
Heartbeats 67.63%
JNI µ-Benchmarks 0.00%

Table 4.2: Results per native library. (cut-off=3)

unnecessary overhead. We present both coverage increases for classes at each Distance

to JNI as well as the overall coverage improvement for all classes up to a maximum

distance to JNI. We run Evosuite with a fixed seed value to improve reproducibility

and set a time limit of 300 seconds per class.

4.3.3 Results

Table 4.2 groups the average coverage gains in the Java projects by their respective

native library dependency. In the case of NanoVG, the coverage increase is 100%,

since Evosuite is unable to generate any coverage without our models. This is

because NanoVG relies on object handles passed to its native functions, and invalid

handles crash the program. Evosuite’s default JNI model, effectively guessing its input

parameters, keeps crashing the VM and is unable to generate any coverage. Using the

models generated by Jitsune, the Java program becomes trivially coverable, and we

achieve full statement coverage. This represents a best-case scenario for Jitsune.

Due to our random selection strategy, the benchmarks also contain a worst-case

scenario for Jitsune. The JNI µ-Benchmarks are a performance test environment

for JNI and use deterministic inputs for its native method calls. Evosuite’s explicit

execution strategy represents an ideal approach for this scenario since all input

parameters that will generate the necessary coverage are statically known and constant.

Jitsune cannot generate any additional coverage in this scenario, which results in a

0% increase when using the generated model.

43

4.3.4 Discussion of Results

Our experimental results suggest that the Distance to JNI of a class significantly

affects the benefit of the JNI model generated by Jitsune. For benchmarks with

100,000 lines of code and more, the generated JNI models are equally large and slow

down Evosuite’s dynamic symbolic execution process, thus generating less coverage in

the same amount of time. As an example, the SQLite C source code is comprised of

116,300 lines of C code, which is translated by Jitsune to 299,612 lines of Java code.

Since the Java projects using SQLite via JNI only include 10,000 lines of code on

average, the generated model significantly increases the complexity of the full Java

model. This performance penalty is offset by the fact that Evosuite can traverse the

JNI functions more precisely using Jitsune’s generated model. As illustrated in the

motivating example in Sec. 4.1, without our JNI model Evosuite effectively needs

to guess inputs that will result in return values necessary to cover remaining code

sections. With the JNI model, Evosuite’s dynamic symbolic execution can directly

determine the necessary inputs to achieve the desired outcome.

The negative impact of the increased model size and the positive impact of increased

precision for the JNI model balance each other and represent a trade-off for the coverage

increase Jitsune provides. Classes that never call a JNI operation do not benefit from

the more precise symbolic execution, and only suffer the performance impairment of a

large JNI model loaded into Evosuite. Additionally, even if a class has an indirect

dependency on a JNI method, our experiments show that the likelihood of coverability

of a code section depending on a JNI output decreases as the Distance to JNI increases.

We call this phenomenon the “Shielding” effect, since classes with high Distance to JNI

4http://www.sqlite.org
5https://bitbucket.org/almworks/sqlite4java
6https://github.com/wakandan/FYP
7https://github.com/fortiema/jCompoundMapper
8https://github.com/mzdb/mzdb-access
9https://github.com/nathanvander/pacioli

10https://github.com/davsva/Paysup
11https://github.com/stylesuxx/JJB
12https://github.com/Saadtronics/PMViewerNew
13https://github.com/rechner/CSC202CreditCardProcessor
14https://github.com/andreasaronsson/sfscraper
15https://github.com/SnakeDoc/WebBot
16https://github.com/memononen/nanovg
17https://github.com/chriscamacho/Jnanovg
18https://github.com/libheartbeats/heartbeats
19https://github.com/libheartbeats/heartbeats-simple
20https://github.com/qzan9/jni-ubmk

44

http://www.sqlite.org
https://bitbucket.org/almworks/sqlite4java
https://github.com/wakandan/FYP
https://github.com/fortiema/jCompoundMapper
https://github.com/mzdb/mzdb-access
https://github.com/nathanvander/pacioli
https://github.com/davsva/Paysup
https://github.com/stylesuxx/JJB
https://github.com/Saadtronics/PMViewerNew
https://github.com/rechner/CSC202CreditCardProcessor
https://github.com/andreasaronsson/sfscraper
https://github.com/SnakeDoc/WebBot
https://github.com/memononen/nanovg
https://github.com/chriscamacho/Jnanovg
https://github.com/libheartbeats/heartbeats
https://github.com/libheartbeats/heartbeats-simple
https://github.com/qzan9/jni-ubmk

0 1 2 3 4 5 6

0

20

40

60

80

100

Distance to JNI

C
la

ss
co

ve
ra

ge
im

p
ro

ve
m

en
t

(%
)

Figure 4.15: Average coverage improvement per Distance to JNI.

are shielded from the direct impact of JNI results by the abstraction the intermediate

classes provide.

Fig. 4.15 quantifies the coverage gained for classes with a certain Distance to JNI.

For our benchmark set, the average coverage benefit sharply declines after Distance

3. For classes with 4 or more intermediate classes to a JNI call, we obtain limited

improvements from the precision of the JNI model compared to the performance

impairment caused by the increased code size. Fig. 4.16 highlights the coverage benefit

achieved using Jitsune when applied to classes with Distance to JNI up to a given

threshold. The results over the 14 projects in our benchmark set suggest that Jitsune’s

JNI models should be applied for classes with a maximum Distance to JNI of two

or three. At this limit, Jitsune achieves a coverage improvement of 80%. Classes

beyond this cut-off do not benefit enough to justify the increased complexity caused

by the size of the model.

4.4 Threats to validity

We identify four threats to the validity of our claims.

Translation Bugs: Jitsune is experimental research software, and bugs in Jitsune

can lead to JNI models that are not equivalent to the original JNI/C source code.

This might increase coverage artificially and is a threat to the claim that our approach

improves static analysis of such programs. When used with Java model checkers,

bugs in the translation result in unsound verification results. This threat is partially

45

0 1 2 3 4 5 6

0

20

40

60

80

100

JNI Model cut-off

C
la

ss
co

ve
ra

ge
im

p
ro

ve
m

en
t

(%
)

Figure 4.16: Average coverage improvement per distance cut-off.

mitigated by our evaluation using Evosuite, which verifies the generated test vectors

against the original program and removes them if they do not cover the expected code

section. Potential bugs in Jitsune could be observed as reduced test coverage.

We further mitigate this threat by running the unit tests of each benchmark with

the generated JNI model. For projects such as SQLite, which comes with an extensive

set of test suites that achieve 100% branch and MC/DC coverage, this provides

reasonable assurance that the generated models are correct. Other projects among

our benchmark set do not feature comparable test suites, however, and are susceptible

to model equivalence bugs.

Choice of benchmarks: A second threat is that our benchmarks are not rep-

resentative for JNI/C programs. This critique is addressed using our large-scale

experimentation with a code base of over 290,000 LOC of open-source programs.

However, it remains possible that closed-source projects, which are inaccessible to us,

exhibit systematically different usage of JNI that would reduce the measured coverage

benefit compared to what we observe on open-source projects.

Choice of analysers: A third threat is the limited set of analysers (JPF and

Evosuite) used in our evaluation. Other Java analysers might obtain less benefit from

our JNI/C models or might be unable to analyse the Java code we generate.

Choice of metrics: The primary metric for the claim that our approach improves

the analysis of Java programs using JNI/C is test coverage. The validity of test

46

coverage as a metric for the utility of software testing is disputable [53], and the

standard critique of such metrics applies in our case. Generated test coverage has

the benefit of enabling a straightforward quantitative measure of the benefit provided

by our models. Another way to draw such a quantitative improvement comparison

would be to use benchmarks with a large set of known bugs and measure the number

of additional bugs exposed with the model present.

Distance to JNI: The Distance to JNI is an abstract measure introduced in this

chapter to estimate the benefits expected from applying our model. While this

measure is congruent with our data and reliably predicts the impact of the model in

our experiments, other measures may be better suited. Distance to JNI is a purely

syntactic metric, and other metrics could instead measure how frequently a JNI

method is invoked from a given class as an indicator of whether or not to apply our

abstract model.

47

Chapter 5

Inductive Program Synthesis

In Chapter 4, we explored the use of bounded model checking for properties relevant

to software engineering and refactoring decisions. In the provided examples it was

sufficient to assert a given property over the input program and then perform a well-

defined mutation of the program code. However, this is not sufficient if the resulting

mutation is not predetermined, but needs to be selected from a large set of possible

mutations. An example of this situation is the “Loop to Java 8 Stream” refactoring

illustrated in Sec. 1.3. Algorithms applying this refactoring need to synthesise a query

from the Java 8 Stream grammar which is equivalent to the original code. Proving

that a given Stream query is equivalent to the original code can be mapped to a

Propositional Satisfiability (SAT) instance using bounded model checking, as explained

in Sec. 5.2 and 6. However, generating a query Q equivalent to the original code C

introduces an additional quantifier alternation: ∃Q.∀x.Q(x) = C(x). Fundamentally,

constructing query Q presents a program synthesis problem.

In this chapter, we solve this synthesis problem by proposing a general-purpose

program synthesis framework. The chapter is based on our conference papers [28, 2, 3]

and our journal publication [26]. The journal paper and this thesis use the synthesis

problem definition and specification language introduced in “Using Program Synthesis

for Program Analysis” [32]. The initial prototype of our program synthesis engine was

called “Kalashnikov” and was implemented by Matt Lewis. Kalashnikov is considered

obsolete and was replaced for our subsequent publications by the program synthesis

framework implemented and presented in this thesis.

Our present framework allows implementing new program synthesis use cases by

only providing a description of the corresponding program proofs. For a problem to be

solved with our framework, it must be expressible in a fragment of second-order logic

with restricted quantification, which we call the synthesis fragment. We show that the

48

synthesis fragment is general enough to capture many such problems by providing

instantiations of our framework for the following diverse set of tasks:

• Safety – none of the assertions in the program can fail.

• Danger – at least one of the assertions can fail.

• Refactoring – making structured changes to existing code that improve its non-

functional properties while leaving its externally observable behaviour unchanged

(cf. Chapter 6).

To solve the problems expressed in the synthesis fragment, we built a novel

program synthesis engine. We describe in the following how our engine differs from

other general-purpose program synthesisers in three dimensions (identified as the three

key dimensions in program synthesis by [45]).

Expression of user intent: Our specification language is GOTO, the intermediate

representation of the bounded model checker CBMC [22], which results in concise

specifications of program properties. GOTO contains only 18 instructions in CBMC’s

current version 5.7, chief among which is its namesake conditional goto expression to

implement loops and branches. Despite a limited instruction set, GOTO instructions

operate on a rich grammar of expressions similar to C. GOTO programs can thus

represent C program semantics in a succinct and intuitive manner. Using our tool to

implement a program synthesis use case only requires providing a generic specification

of the problem to solve. Our experiments show that this results in specifications that

are an order of magnitude smaller than the equivalent specifications with comparable

general-purpose program synthesisers.

Search space of programs: For finite-state programs, the language in which we

synthesise our programs is universal, i.e. every finite function is computed by at

least one program in our language. Our solution language also has first-class support

for programs that compute multiple outputs as well as constants. The former allows

the direct encoding of lexicographic ranking functions of unbounded dimension [23],

whereas the latter improves the efficiency when synthesising programs with non-trivial

constants (as shown by our experimental results).

49

Search technique: An important aspect of our synthesis algorithm is how we search

the space of candidate programs. We parametrise the solution language, which induces

a lattice of progressively more expressive languages. As well as providing an automatic

search procedure, this parametrisation increases the efficiency of our system since

languages low down the lattice are easy to decide safety for.

Contributions:

• We define the synthesis fragment (Sec. 5.1.2) and show that its decision problem

over finite domains is NEXPTIME-complete (Sec. 5.3.1).

• We build a program synthesis engine able to handle the use cases described in

the introduction. While we focus on the synthesis of loop-free programs over

bit-vectors, which are sufficient for most of our use cases, we also illustrate how

to extend our synthesiser for generating programs with potentially unbounded

loops over heap containers (cf. Chapter 6).

• We show how the synthesis fragment can be used to express several program syn-

thesis problems, e.g., safety (Sec. 5.4.1), bug finding (Sec. 5.4.2), and refactoring

(Chapter 6).

• We propose the use of second-order tautologies for avoiding unsatisfiable instances

when solving program analysis problems with program synthesis (Sec. 5.5.1).

• We demonstrate our program synthesiser implementation and its performance

on a set of program synthesis problems. Our experimental results show that, on

benchmarks generated from static analysis, our program synthesiser compares

positively with specialised tools in each area as well as with general-purpose

synthesisers (Sec. 5.5).

• We present our Java Stream Theory (JST) to reason over collections and stream

queries in Java. We use our program synthesiser over this logic and implement

an automated refactoring decision procedure for the “Loop to Java 8 Stream”

refactoring (cf. Chapter 6).

50

5.1 Program Analysis using the Synthesis Frag-

ment of Second-Order Logic

5.1.1 Example problem

Program analysis problems can be reduced to the problem of finding solutions to a

second-order constraint [47, 44]. In this section, we briefly discuss the constraints

generated when proving safety. Note that this section gives only a brief description of

the encoding of some program analyses and, later in the document, we will present

the actual instantiations of our framework for all those exemplars (Sections 5.4.1 to

5.4.2).

When describing analyses that process programs with loops, we will characterise

each loop by its initial state I, guard G and transition relation T .

Safety invariants: Safety checking is one of the most basic program analysis tasks.

Given a safety assertion A, a safety invariant is a set of states S that is inductive

with respect to the program’s transition relation, and that excludes an error state.

A predicate S is a safety invariant iff it satisfies the following criteria:

∃S.∀~x, ~x′.I(~x)→ S(~x) ∧ (5.1)

S(~x) ∧G(~x) ∧ T (~x, ~x′)→ S(~x′) ∧ (5.2)

S(~x) ∧ ¬G(~x)→ A(~x) (5.3)

Conjunct (5.1) says that each state reachable on entry to the loop is in the set S, and

in combination with conjunct (5.2) shows that every state that can be reached by the

loop is in S. The final conjunct (5.3) says that if the loop exits while in an S-state,

the assertion A is not violated. Note that since we quantify over the set of states S,

this constitutes a second-order constraint.

5.1.2 The Synthesis Fragment

We provided an example of a logical formulation of a specific static analysis prob-

lem, and now identify a logic expressive enough to encode those formulas and to

extend to further, similar program analysis problems. We refer to the logic as the

synthesis fragment1, a fragment of second-order logic with restrictions on the use of

quantification.

1We will discuss the relation with program synthesis in Sec. 5.2

51

Definition 1 (Synthesis Fragment (SF)). A formula is in the synthesis fragment iff

it is of the form

∃~P . ~Q~x.σ(~P , ~x)

where the ~P range over functions, the ~Q are either ∃ or ∀, the ~x range over ground

terms, and σ is a quantifier-free formula.

If a pair (~P , ~x) is a satisfying model for the synthesis formula, then we write

(~P , ~x) |= σ. For the remainder of the presentation, we drop the vector notation and

write x for ~x, with the understanding that all quantified variables range over vectors.

Expressiveness of the Synthesis Fragment: As illustrated in Sec. 5.2, finding

a satisfying model for SF is an undecidable problem. It is important to stress that,

as we explain in Sec. 5.3, our synthesis algorithm implementation reasons only over

finite domains, rendering the problem decidable. While we use second-order logic

syntax to express our constraints, the implemented algorithm solving SF is strictly

less expressive than plain second-order logic.

Existential second-order syntax: The shape of SF limits it to existential second-

order formulas, meaning that no quantifiers over functions are allowed apart from the

initial existential quantifier. This is a limitation of the application of program synthesis

that we address using our solver for SF . We illustrate in Appendix A that our solver

implementation can handle more generic constraints. However, a formula of the form

∃ ~Px. ~Q ~Py.σ(~Px, ~Py) describes a desired program ~Px by its behaviour with respect to a

quantified set of other possible programs ~Py. For the program synthesis applications

we target in this thesis, e.g., the refactoring synthesis presented in Chapter 6, such

constraints are not applicable.

5.2 Solving the Synthesis Fragment using Program

Synthesis

A satisfying model for a formula in SF is an assignment mapping each of the second-

order variables to some function of the appropriate type and arity. We are interested

in generating programs that compute these functions. For this purpose, we make use

of program synthesis.

The synthesis problem is given in the form of a specification σ, which is a function

taking a program P and input x as parameters and returning a boolean telling us

52

1: function CEGIS
2: inputs← ∅;
3: while true do
4: candidate← Synth(inputs);
5: if candidate = UNSAT then
6: return UNSAT ;

7: result← Verif(candidate);
8: if result = valid then
9: return candidate;

10: else
11: inputs← inputs ∪ result;

12: function Synth(inputs)
13: (i1, . . . , iN)← inputs;
14: query ← ∃P.σ(i1, P) ∧ . . . ∧ σ(iN , P);
15: result← Decide(query);
16: if result.satisfiable then
17: return result.model;
18: else
19: return UNSAT ;

20: function Verif(P)
21: query ← ∃x.¬σ(x, P);
22: result← Decide(query);
23: if result.satisfiable then
24: return result.model;
25: else
26: return V ALID;

Figure 5.1: Abstract refinement algorithm

whether P did “the right thing” on input x. The synthesis problem is to determine

the truth of the formula given in Definition 1.

While SF is undecidable, we can sketch the design of a solver by converting the

SF satisfiability problem into an equisatisfiable synthesis problem, which we then

solve with a program synthesiser. This design will be elaborated next, followed by a

description of how to instantiate it for the synthesis of finite-state programs in Sec. 5.3

and for synthesising programs with unbounded loops in Chapter 6.

5.2.1 Our synthesis algorithm

We use an instantiation of the CEGIS paradigm described in Sec. 2.4 to find a program

satisfying our specification. Algorithm 5.1 is divided into two procedures, synth and

verif, which interact via a finite set of test vectors inputs.

The synth procedure tries to find an existential witness P that satisfies the partial

specification,

∃P.∀x ∈ inputs.σ(x, P)

If synth succeeds in finding a witness P , this witness is a candidate solution to the

full synthesis formula. We pass this candidate solution to verif, which determines if it

does satisfy the specification on all inputs by checking satisfiability of the verification

formula,

∃x.¬σ(x, P)

53

If this formula is unsatisfiable, then the candidate solution is, in fact, a solution to

the synthesis formula, and so the algorithm terminates. Otherwise, the witness x is

an input on which the candidate solution fails to meet the specification. This witness

x is added to the inputs set and the loop iterates again. It is worth noting that each

iteration of the loop adds a new input to the set of inputs being used for synthesis.

The full CEGIS refinement loop is described in Fig. 2.9.

5.2.2 Program generation strategies

An important aspect of our synthesis algorithm is the way we search the space of

candidate programs. We employ the following strategies in parallel:

1. Symbolic Bounded Model Checking. A complete method for generating candidates

is to use BMC [22] on a programmatic representation of the synthesis problem,

as illustrated in Sec. 5.3.3.

2. Genetic Programming and Incremental Evolution. Genetic programming (GP) [69,

15] meta-heuristic, which we adapted and optimised for the evolution of candidate

programs.

The GP option provides an adaptive way for searching through the space of

programs for an individual that is “fit” in some sense. We measure the fitness of

an individual by counting the number of tests in inputs for which it satisfies the

specification.

The symbolic bounded model checking strategy explores programs in increasing

size and is guaranteed to find a minimal program. This is not the case for the GP

strategy, which traverses a space of programs up to a configured maximum size. Our

GP algorithm is not biased towards shorter solutions, but its population is influenced

by solutions discovered by the symbolic strategy. If the symbolic strategy finds a

solution before the GP, then a configurable portion of the GP population is replaced by

this instance to transfer its properties into the pool. This mechanism is also leveraged

in the initialisation of the genetic population as the GP engine is only activated after

a configurable amount of solutions are found by the symbolic engine. This extends

the randomly generated GP population with candidate solutions which were suitable

for the inputs of previous iterations.

The GP iteratively evolves the population by applying the genetic operators

crossover and mutate. Crossover combines selected existing programs into

new programs, whereas mutate randomly changes parts of a single program. Fitter

54

programs are more likely to be selected and be present in future generations of the

GP. We bias the crossover operation to connect solutions that work on disparate

subsets of inputs. As an example, a solution working for inputs 1− 7 is very likely to

be crossed with a solution working correctly for inputs 8− 10.

Our mutate operator manipulates a program by either exchanging instructions

while maintaining operators, such as replacing x+ y with x− y, or replacing operands,

such as x+ y and x+ z. This is applied to a configurable percentage of the population

at each generation. The crossover operation splits the two parent programs at

a random location and recombines the resulting prefixes and suffixes into two new

programs. Both the mutate and crossover operations are restricted to produce

well-formed programs only. Fig. 5.2 provides an example of a crossover operation at

a given location and Fig. 5.3 illustrates an operand as well as an operator mutation

operation. When a solution consists of multiple programs (e.g., a ranking function

and an invariant) the crossover algorithm only recombines programs of the same

category.

Pa → x = y+ z; y = x− 1

Pb → a = b+ c; c = x+ 1

c(Pa, Pb) →
{
x = y + c; c = x+ 1
a = b + z; y = x− 1

Figure 5.2: GA crossover example.

Pa → x = y + z; y = x− 1

m(Pa) →


x = a + z; y = x− 1
x = y + z; y = x ∗ 1
. . .

Figure 5.3: GA mutate example.

Instead of generating a random population at the beginning of each subsequent

iteration of the CEGIS loop, we start with the population at the end of the previous

iteration. The intuition here is that this population contained many individuals that

performed well on the k inputs from before, so they will probably continue to perform

well on the current k + 1 inputs. In the parlance of evolutionary programming, this is

known as incremental evolution [42].

55

5.3 Synthesis for Program Variables with Bit-Vector

Domains

Programming languages such as C and Java use numerical data types with finite ranges,

and give semantics to the arithmetic operators using fixed-width binary encodings,

otherwise known as bit-vectors [54]. We are interested in solving static analysis

problems for these programming languages. For this purpose, we investigate the

special case of the synthesis fragment over finite domains (Sec 5.3.1) followed by using

finite-state program synthesis in order to decide it (Sec 5.3.2).

5.3.1 The synthesis fragment over finite domains

When interpreting the ground terms over a finite domain D, the synthesis fragment is

decidable, and its decision problem is NEXPTIME-complete.

Theorem 5.3.1 (SFD is NEXPTIME-complete). For an instance of Definition 1 with

n first-order variables, where the ground terms are interpreted over D, checking the

truth of the formula is NEXPTIME-complete.

Proof. For this proof, we make use of Fagin’s Theorem [33], which says that the class

of sets A recognisable in time ‖A‖k, for some k, by a nondeterministic Turing machine

is exactly the class of sets definable by existential second-order sentences.

To apply Fagin’s Theorem, we must establish the size of the universe it implies.

Since Definition 1 uses n D variables, the universe is the set of interpretations of the

n variables. This set has size |D|n, and so by Fagin’s Theorem, Definition 1 over finite

domains defines exactly the class sets recognisable in (|D|n)k time by a nondeterministic

Turing machine. This matches the definition of the class NEXPTIME, thereby checking

the validity of an arbitrary instance of Definition 1 overD is NEXPTIME-complete.

We write SFD to denote the synthesis fragment over a finite domain D. The

finite-state synthesis problem checks the truth of the formula given in Definition 2.

Definition 2 (Finite Synthesis Formula).

∃P.∀x ∈ D.σ(P, x)

Satisfiability of SFD can be reduced to finite-state program synthesis, as shown by

Theorem 5.3.2.

56

Theorem 5.3.2 (SFD is Polynomial Time Reducible to Finite Synthesis). Every

instance of Definition 1, where the ground terms are interpreted over D is polynomial-

time reducible to a finite synthesis formula (i.e., an instance of Definition 2).

Proof. We first Skolemise the instance of Definition 1 to produce an equisatisfiable

second-order sentence with the first-order part only having universal quantifiers (i.e.,

bring the formula into Skolem normal form). This introduces a function symbol for

each first order existentially quantified variable taking linear time. Next we just

existentially quantify over the Skolem functions, which takes linear time and space.

The resulting formula is an instance of Definition 2.

Corollary 5.3.3. Finite-state program synthesis is NEXPTIME-complete.

5.3.2 A decision procedure for SFD based on program syn-
thesis

The following shows how the generic construction of Sec. 5.2 can be instantiated to

produce a finite-state program synthesiser. A natural choice for such a synthesiser

would be to work in the logic of quantifier-free propositional formulae and to use a

propositional SAT or SMT-BV solver as the decision procedure. However, we propose

a slightly different track of using a decidable fragment of C as a “high level” logic

referred to as C−. The characteristic property of a C− program is that safety can

be decided using a single query to a Bounded Model Checker. A C− program is a C

program with the following restrictions:

(i) all loops in the program must have a constant bound,

(ii) all recursion in the program must be limited to a constant depth, and

(iii) all arrays must be statically allocated (i.e., not using malloc) and be of constant

size.

C− programs may use nondeterministic values, assumptions, and types with arbitrary

but fixed width. This effectively makes C− programs textual representation of CBMC’s

internal GOTO programs with a syntax similar to the C programming language [22].

Since each loop is bounded by a constant and each recursive function call is limited

to a constant depth, a C− program necessarily terminates in O(1) time. If we call

the largest loop bound k, then a Bounded Model Checker with an unrolling bound

of k will be a complete decision procedure for the safety of the program. For a C−

program of size l and with largest loop bound k, a Bounded Model Checker will create

57

a SAT problem of size O(lk). Conversely, a SAT problem of size s can be converted

trivially into a loop-free C− program of size O(s). The safety problem for C− is,

therefore, NP-complete, which means it can be decided efficiently for many practical

instances [32].

5.3.3 Encoding the synthesis problem

We now express the synth and verif formulae as safety properties of C− programs

as shown in Fig. 5.5.

In the synth portion of the CEGIS loop, we construct a program synth.c, which

takes as parameters a candidate program P and test inputs. The program contains

an assertion which fails iff P meets the specification for each of the inputs. Finding a

new candidate program is then equivalent to checking the safety of synth.c. The

synth program is a C− program, which means we can check its safety with Bounded

Model Checking.

A candidate solution P is written in a simple RISC-like language L, whose syntax

is given in Fig. 5.4. The exact C− encoding of an L program is shown in Fig. 5.6.

The prog_t structure encodes a program, which is a sequence of instructions. The

parameter a is the number of arguments the program takes, and c is the number

of constants in the program. The i-th instruction has opcode ops[i], left operand

params[i*2], and right operand params[i*2 + 1]. An operand refers to either a

program constant, a program argument or the result of a previous instruction, and its

value is determined at runtime as follows:

val(x) =


x < a the xth program argument

a ≤ x < a+ c consts[x− a]

x ≥ a+ c the result of the (x− a− c)th instruction

Since any instruction whose operands are all constants can always be eliminated

(since its result is a constant), a loop-free program of minimal length will not contain

any instructions with two constant operands. Therefore, the number of constants that

can appear in a minimal program of length l is at most l.

A program is well-formed if no operand refers to the result of an instruction not

yet computed, and if each opcode is valid. We add a well-formedness constraint of the

form params[i] < (a+c+i/2) for each instruction, which requires a linear number

of well-formedness constraints. If these constraints are satisfied, then the program is

well-formed.

58

Integer arithmetic instructions:
add a b sub a b mul a b div a b

neg a mod a b min a b max a b

Bitwise logical and shift instructions:
and a b or a b xor a b

lshr a b ashr a b not a

Unsigned and signed comparison instructions:
le a b lt a b sle a b

slt a b eq a b neq a b

Miscellaneous logical instructions:
implies a b ite a b c

Floating-point arithmetic:
fadd a b fsub a b fmul a b fdiv a b

Figure 5.4: The language L.

We supply an interpreter for L, which is written in C−. The signature of this

interpreter is void exec(prog_t p, int in[N], int out[M]), where, out is an

output parameter.

Best encoding: A sequence of instructions (as our L programs) is a natural encoding

of a program, but we might wonder if it is the best encoding for our candidate programs.

We show that for a reasonable set of instruction types (i.e., valid opcodes), this encoding

is optimal with respect to a property defined below. An encoding scheme E takes

a function f and assigns it a name s. For a given ensemble of functions F , we are

interested in the worst-case behaviour of the encoding E. In other words we are

interested in the quantity

|E(F)| = max{|E(f)| | f ∈ F}.

If for every encoding E ′ we have

|E(F)| ≤ |E ′(F)|,

then we say that E is an optimal encoding for F . Similarly, if for every encoding E ′

we have

O(|E(F)|) ⊆ O(|E ′(F)|),

then we say that E is an asymptotically optimal encoding for F .

The next lemma shows that languages with ITE are universal and optimal encodings

for finite functions.

59

void synth () {
prog t p = nondet () ;
int in [N] , out [M] ;

assume (wel l formed (p)) ;

in = t e s t 1 ;
exec (p , in , out) ;
assume (check (in , out)) ;
. . .
in = testN ;
exec (p , in , out) ;
assume (check (in , out)) ;

a s s e r t (fa l se) ;
}

void v e r i f (p rog t p) {
int in [N] = nondet () ;
int out [M] ;

exec (p , in , out) ;
a s s e r t (check (in , out)) ;

}

Figure 5.5: The synth and verif formulae expressed as a C− program.

typedef BV(4) op t ; // An opcode
typedef BV(w) word t ; // An L−word
typedef BV(log2dc+ l + ae) param t ; // An operand

struct prog t {
op t ops [l] ; // The opcodes
param t params [l ∗ 2] ; // The operands
word t cons t s [c] ; // The program c o n s t a n t s

}

Figure 5.6: The C− structure we use to encode an L program.

60

Lemma 5.3.4 (Universal and Optimal Encodings for Finite Functions). For an

imperative programming language including instructions for testing equality of two

values (EQ) and an if-then-else (ITE) instruction, any total function f : S → S can

be computed by a program of size O(|S| log |S|) bits.

Proof. The function f is computed by the following program:

t1 = EQ(x, 1)

t2 = ITE(t1, f(1), f(0))

t3 = EQ(x, 2)

t4 = ITE(t3, f(2), t2)

...

Each operand can be encoded in log2(|S|+ l) = log2(3× |S|) bits. Therefore, each

instruction can be encoded in O(log |S|) bits and there are O(|S|) instructions in the

program, so the entire program can be encoded in O(|S| log |S|) bits.

Lemma 5.3.5. Any representation that can encode an arbitrary total function f :

S → S must require at least O(|S| log |S|) bits to encode some functions.

Proof. There are |S||S| total functions f : S → S. Therefore, by the pigeonhole

principle, any encoding that can encode an arbitrary function must use at least

log2(|S||S|) = O(|S| log2 |S|) bits to encode some function.

From Lemma 5.3.4 and Lemma 5.3.5, we can conclude that any set of instruction

types that include ITE is an asymptotically optimal function encoding for total

functions with finite domains.

Theorem 5.3.6. Furthermore, our representation for candidate programs as finite

lists of instructions in SSA form is optimally concise as there is no encoding that

offers a shorter representation to every function.

Proof. From Lemma 5.3.4 and Lemma 5.3.5.

5.3.4 Parameterising the search space

A key feature of our search algorithm that applies to all three strategies above is

parametrising the solution language, which induces a lattice of progressively more

expressive languages. We start by attempting to synthesise a program at the lowest

point on this lattice and increasing the parameters until we reach a point at which

the synthesis succeeds.

61

As well as giving us an automatic search procedure, this parameterisation signif-

icantly increases the efficiency of our system since languages low down the lattice

are easy to decide safety for. If a program can be synthesised in a low-complexity

language, then the entire procedure finishes much faster than if synthesis had been

attempted in a high-complexity language.

We use the following parameters.

• Program Length: l. The first parameter we introduce is program length denoted

by l. At each iteration, we synthesise programs of length exactly l. Starting

with l = 1, we increment l whenever we determine that no program of length l

can satisfy the specification. When we do successfully synthesise a program, we

are guaranteed that it is of minimal length since we have previously established

that no shorter program is correct.

• Word Width: w. A solution program runs on a virtual machine that is

parametrised by the word width, i.e., the number of bits in each internal register

and immediate constant.

• Number of Constants: c. By minimising the number of constants appearing in a

program, we can use an efficient program encoding that speeds up the synthesis

procedure substantially.

5.3.5 Adjusting the search parameters

The key to our automation approach is establishing sensible way in which to adjust

the parameters of the solution language to cover all possible programs. Two important

components in this search are the adjustment of parameters and the generalisation of

candidate solutions, both of which are discussed in the following.

After each round of synth, we may need to adjust the parameters. The logic for

these adjustments is given as a tree in Fig. 5.7.

Whenever synth fails, we consider which parameter caused the failure with two

possibilities: either the program length l or the number of allowed constants c was

too small. If c < l, we increment c and try another round of synthesis, but allowing

ourselves an extra program constant. If c = l, there is no point in increasing c because

no minimal L-program has c > l. If it did, then there would have to be at least one

instruction with two constant operands. This instruction could be removed (at the

expense of adding its result as a constant), which contradicts the assumed minimality

62

Synth
succeeds?

Verif
succeeds?

c < l?

Done!

Verif
succeeds
for small
words?

c := c + 1
c := 0
l := l + 1

Genera-
lisation?

Parameters
unchanged

Refinement

Yes

No

Yes

No

Yes

No

Yes

No

YesNo

Figure 5.7: Decision tree for increasing parameters of L.

of the program. So, if c = l, we set c to 0 and increment l before attempting synthesis

again.

If synth succeeds but verif fails, then we have a candidate program that is

correct for some inputs and incorrect on at least one input. However, it may be the

case that the candidate program is correct for all inputs when run on a machine with

a small word size. Thus, we try to generalise the solution to a bigger word size, as

explained in the next section. If the generalisation can find a correct program, then

the process is complete. Otherwise, we need to increase the word width of the machine

for which we are currently synthesising.

5.3.6 Generalisation of candidate solutions

It is often the case that a program satisfying the specification on a machine with

w = k will continue to satisfy the specification when run on a machine with w > k.

For example, the program in Fig. 5.8 isolates the least-significant bit of a word. This

is true irrespective of the word size of the machine on which it is run on, i.e., it will

isolate the least-significant bit of an 8-bit word just as well as a 32-bit word. An often

successful strategy is to synthesise a program for a machine with a small word size

and then check if the same program is correct when run on a machine with a full-sized

word.

The only drawback is that we will sometimes synthesise a program containing

constants. If we have synthesised a program with w = k, the constants in the program

will be k-bits wide. To extend the program to an n-bit machine (with n > k), we

63

int i s o l a t e l s b (int x) {
return x & −x ;

}

Example:
x = 1 0 1 1 1 0 1 0
-x = 0 1 0 0 0 1 1 0
x & -x = 0 0 0 0 0 0 1 0

Figure 5.8: A tricky bit-vector program.

BV(m,m) → BV(n, n)

BV(m− 1,m) → BV(n− 1, n)

BV(m+ 1,m) → BV(n+ 1, n)

BV(x,m) → BV(x, n)

BV(x,m) → BV(x,m)· BV(0, n−m)

BV(x,m) → BV(x,m)· . . . · BV(x,m)︸ ︷︷ ︸
n
m

times

Figure 5.9: Rules for extending an m-bit wide number to n-bit wide.

need to derive n-bit-wide numbers from k-bit ones. We try several strategies for

this, which are given in Fig. 5.9. Here, BV(v, n) denotes an n-bit wide bit-vector

holding the value v and b· c represents the concatenation of bit-vectors b and c. For

example, the first rule says that if we have the 8-bit number with a value of 8 and

we want to extend it to some 32-bit number, then we try the 32-bit number with a

value of 32. These six rules are all heuristics that we have found to be effective in

practice. The generalisations illustrated in Figs. 5.7, 5.8 and 5.9 were first introduced

in Kalashnikov [32]. Our current synthesis engine expands on this with further

generalisation strategies applicable to digital controller synthesis [2] (cf. Sec. 1.5.5).

5.3.7 Termination of program synthesis

For finite-state synthesis, if a specification is unsatisfiable, the algorithm still terminates

with an “unsatisfiable” verdict. Intuitively, we can observe that any total function

taking n bits of input is computed by some program of at most 2n instructions.

Therefore, every satisfiable specification has a solution with at most 2n instructions.

This means that if we ever need to increase the length of the candidate program

we search for beyond 2n, then we can terminate safely with knowledge that the

specification is unsatisfiable.

Although this gives us a theoretical termination condition for unsatisfiable instances,

a bound this high may simply be unsatisfactory in practice. To avoid such cases, we

use the approach described in Sec. 5.5.1.

64

5.3.8 Soundness, Completeness, and Efficiency

We will now state soundness and completeness results for the SFD solver.

Theorem 5.3.7. Alg 5.1 is sound – if it terminates with witness P , then P |= σ.

Proof. The procedure synth terminates only if synth returns “valid”. In that case,

∃x.¬σ(P, x) is unsatisfiable and so ∀x.σ(P, x) holds.

Theorem 5.3.8. Alg 5.1 with the stopping condition described in Sec 5.3.7 is com-

plete when instantiated with C− as a background theory – it will terminate for all

specifications σ.

Proof. Since the explicit search routine enumerates all programs (as seen by induction

on the program length l), it will eventually enumerate a program that meets the

specification on whatever set of inputs are currently being tracked, since by assumption

such a program exists. Additionally, since safety of C− programs is decidable, the

query in verif will always provide an answer.

According to Theorems 5.3.7 and 5.3.8, Algorithm 5.1 is sound and complete when

instantiated with C− as a background theory and using the stopping condition of

Sec 5.3.7. This construction therefore gives as a decision procedure for SFD.

Runtime as a function of solution size: We note that the runtime of our solver

is heavily influenced by the length of the shortest program satisfying the specification.

If a short program exists, then the solver will find it quickly. This is particularly

useful for program analysis problems where if a program exists, then most of the time

many programs exist, and some are short ([65] relies on a similar remark about loop

invariants).

We next show that the number of iterations of the CEGIS loop is a function of

the Kolmogorov complexity of the synthesised program. The Kolmogorov complexity

of a function f is defined as follows:

Definition 3 (Kolmogorov complexity). The Kolmogorov complexity K(f) is the

length of the shortest program that computes f .

We can extend this definition slightly to talk about the Kolmogorov complexity of

a synthesis problem in terms of its specification:

Definition 4 (Kolmogorov complexity of a synthesis problem). The Kolmogorov

complexity of a program specification K(σ) is the length of the shortest program P

such that P is a witness to the satisfiability of σ.

65

Let us consider the number of iterations of the CEGIS loop n required for a

specification σ. Since we enumerate candidate programs in order of length, we

synthesise programs with a length no greater than K(σ) (since when we enumerate

the first correct program, we will terminate). So, the space of solutions we search

over is the space of functions computed by L-programs of length no greater than

K(σ), which we will denote as the set L(K(σ)). Since there are O(2K(σ)) programs

of length K(σ) and some functions will be computed by more than one program, we

have |L(K(σ))| ≤ O(2K(σ)).

Each iteration of the CEGIS loop distinguishes at least one incorrect function from

the set of correct functions, so the loop will iterate no more than |L(K(σ))| times.

Therefore another bound on our runtime is NTIME
(
2K(σ)

)
.

5.4 Instances of Program Synthesis Problems

The following covers the details of how to use our algorithm to solve several program

analysis and synthesis problems.

5.4.1 Building a Safety Prover

To use the program synthesis based framework for constructing a safety prover, we

must first look at the formulation of safety invariants (which is inside the synthesis

fragment).

Safety invariants: Given a safety assertion A, a safety invariant is a set of states S

that is inductive with respect to the program’s transition relation, and that excludes

an error state. A predicate S is a safety invariant iff it satisfies the criteria in Fig. 5.10.

The first criterion is that each state reachable on entry to the loop is in the set S. The

second is that every state that can be reached by the loop is in S. The final criterion

says that if the loop exits while in an S-state, the assertion A is not violated.

Example 5.4.1. The program in Fig. 5.12a is safe as x and y will not be equal

regardless of how many times y gets incremented inside the loop (x is already ahead

by 1). Thus, the safety invariant that our framework synthesises is S(x, y) = x 6=y.

As we deal only with over-approximations, the generation of constraints correspond-

ing to proving the safety of a program with nested loops is straightforward and will not

be covered in this thesis. A safety prover implementation uses our program synthesis

engine to find a program S that matches the requirements of a safety invariant on all

program inputs.

66

Definition 5 (Safety Invariant [SI]).

∃S.∀x, x′.I(x)→ S(x) ∧
S(x) ∧G(x) ∧B(x, x′)→ S(x′) ∧
S(x) ∧ ¬G(x)→ A(x)

Figure 5.10: Existence of a safety invariant for a single loop.

5.4.2 Building a Bug Finder

Dually to proving safety, another problem of interest is finding bugs. Ideally, if a bug

exists, we would want a proof in the form of a concrete execution trace leading to it.

Then, the question is how to encode the existence of such a trace in the synthesis

fragment? We achieve this by introducing the notion of a danger invariant, which can

be seen as a compact representation of an error trace [28].

The existence of a danger invariant D must show that if the loop exits having

started in a D-state, an assertion will certainly fail. We require that a danger invariant

is inductive with respect to the loop and that it holds in some initial state, although

it need not hold in every initial state. A predicate D is a danger invariant for the loop

I,G,B,A iff:

∃x.I(x) ∧D(x) (5.4)

∀x.D(x) ∧G(x)→ ∃x′.B(x, x′) ∧D(x′) (5.5)

∀x.D(x) ∧ ¬G(x)→ ¬A(x) (5.6)

Conversely to the definition of a safety invariant where all the initial states had

to be in the invariant, 5.4 says that there exists some D-state in which the loop can

begin executing. Other than in the regular safety invariant use case, I represents an

under-approximation to provide this guarantee. For the induction, 5.5 says that each

D-state can reach at least one other D-state via an iteration of the loop. Finally, 5.6

says that if the loop exits while in a D-state, then the assertion fails.

However, this is not enough to conclude that the assertion does fail, since we

have not yet established that the loop terminates from any D-state. So, we are in

the situation where the danger invariant denotes either an assertion violation or the

presence of a recurrence set. We refer to this as a total danger invariant.

If we want only to prove an assertion violation, then we must additionally infer

a ranking function R (i.e., a function that is bounded and monotonically decreasing

67

with respect to the transition relation B), resulting in a partial danger invariant as

captured in Definition 6.

Definition 6 (Partial Danger Invariant Formula [DI]).

∃D,R, x0.∀x.∃x′.I(x0) ∧D(x0) ∧
D(x) ∧G(x)→ B(x, x′) ∧D(x′) ∧
R(x) > 0 ∧R(x) > R(x′) ∧
D(x) ∧ ¬G(x)→ ¬A(x)

Definition 7 (Skolemized Danger Invariant Formula [SDI]).

∃D,R, S, x0.∀x.I(x0 ∧D(x0) ∧
D(x) ∧G(x)→ B(x, S(x)) ∧D(S(x)) ∧
R(x) > 0 ∧R(x) > R(S(x)) ∧
D(x) ∧ ¬G(x)→ ¬A(x)

Figure 5.11: Existence of a danger invariant for a single loop.

Removing the quantifier alternation: In the definition of a danger invariant, to

specify that from each D-state we can reach another by iterating the loop once, we

require an extra quantifier alternation. Consequently, the formula [DI] is not in the

synthesis fragment. As our goal is to express everything in the synthesis fragment,

which we can solve, we need to eliminate the extra level of quantifier alternation.

If the transition relation B is deterministic, then we do not need the quantifier

alternation, since each x has precisely one successor x′. Thus, we can replace the

inner ∃x′ in the formula [DI] by ∀x′. However, if B is non-deterministic, we must find

a Skolem function which resolves the non-determinism by telling us exactly which

successor is to be chosen on each iteration of the loop. This is shown in the formula

[SDI] of Definition 7.

Example 5.4.2. In program 5.12b, any execution trace violates the assertion unless

the nondeterministic choices (denoted by “*”) are such that y is incremented once less

than x. One danger proof for this program is ((0, 1), y + 1, (x < y, 1000000 − x))

meaning that D(x, y) = x < y holds in the initial state where x = 0 and y = 1, and it

is inductive with respect to the loop’s body if the nondeterministic choices are given

68

x = 1 ; y = 0 ;
whi l e (x < 1000) {

x++;
i f (∗) y++;

}

a s s e r t (x != y) ;

(a)

x = 0 ; y = 1 ;
whi l e (x < 1000000) {

i f (∗) x++;
i f (∗) y++;

}

a s s e r t (x == y) ;

(b)

x = 0 ; y = 1 ;
whi l e (x < 1000000) {

x++;
i f (∗) y++;

}

a s s e r t (x != y) ;

(c)

Figure 5.12: Safe and buggy examples.

by the Skolem functions Sy(x, y) = y + 1 and Sx(x, y) = x+ 1, respectively. In other

words,

∀x, y, x′.x < y → x′ = Sx(x, y) ∧ x′ < Sy(x, y)

The ranking function is R(x, y) = 1000000− x.

Program 5.12c is similar to program 5.12b, with the exception that x is incremented

in each iteration and the assertion is negated. This example is more intricate as the

danger invariant needs to capture the evolution of x and y from the initial state, where

they are not equal, to a final state, where they are equal (and cause the assertion to

fail).

One danger proof for program 5.12c contains D(x, y) = y = (x < 1?1 : x) and

R(x, y) = 1000000−x. Essentially, this invariant says that y must not be incremented

for the first iteration of the loop (until x reaches the value 1), and from this point

for the rest of the iterations, y is incremented such that x = y. For this case, D is a

compact and elegant representation of exactly one feasible counterexample trace. The

witness Skolem function we obtain is Sy(x, y) = (x < 1?y : y + 1).

69

5.5 Implementation and Experimental Results

We implemented our decision procedure for SFD in several tools, which we discuss in

this section.

5.5.1 Avoiding Unsatisfiable Instances

As described in Sec. 5.3.8, our program synthesiser is efficient at finding satisfying

assignments, when such assignments have low Kolmogorov complexity. However, if a

formula is unsatisfiable, the procedure may not terminate in practice. This illustrates

one of the current shortcomings of our program synthesis based decision procedure:

we can only conclude that a formula is unsatisfiable once we have examined candidate

solutions up to a very high length bound.

However, we note that many interesting properties of programs can be expressed as

tautologies. For illustration, let us consider that we are trying to prove that a loop L is

safe according to an assertion A with respect to its transition relation. Thus, following

Sections 5.4.1 and 5.4.2, we can construct two formulae: one that is satisfiable iff L is

safe and a second that is satisfiable iff L is unsafe. We call these formulae φ and ψ,

respectively, and denote PS and PD as the proofs of safety and danger, respectively,

∃PS.∀x, x′.ψ(PS, x, x
′) and ∃PD.∀x.φ(PD, x).

We can combine these as (∃PS.∀x, x′.ψ(PS, x, x
′)) ∨ (∃PD.∀x.φ(PD, x)),

which simplifies to ∃PS, PD.∀x, x′, y. φ(PS, x, x
′) ∨ ψ(PD, y).

Since L either has a bug or is safe, this formula is a tautology in the synthesis

fragment. Thus, either PS or PD must exist. In this manner, we avoid undesirable

cases where we try to synthesise a solution for an unsatisfiable specification.

5.5.2 Safety and danger

To evaluate our safety and danger synthesis, we implemented the Dangerzone

module for the bounded model checker CBMC 5.5. We ran the resulting prover on 50

programs from the loop acceleration category in SV-COMP 2016 [93]. We selected

this specific category as it has benchmarks with deep bugs and we are interested

in challenging our hypothesis that danger invariants are well-suited to expose deep

bugs and can complement the capabilities of existing approaches, such as BMC.

Unfortunately, we had to exclude programs that make use of arrays, since these are

not yet supported by the synthesiser. In addition, we introduced altered versions of

the selected SV-COMP 2016 benchmarks with extended loop guards to create deeper

bugs, challenging our hypothesis further. We refer to benchmarks as having a doomed

70

loop head if every state in the precondition to the successor of the loops’ backwards

edge implies a violation of the property. For each benchmark, we try to synthesise

both a partial danger invariant (i.e., a danger invariant, a ranking function, an initial

state, and Skolem functions witnessing the nondeterminism corresponding to partial

correctness in Def. 7) and a total danger invariant (i.e., a danger invariant, an initial

state, and Skolem functions as shown by equations 5.4, 5.5, and 5.6 in Sec. 5.4.2). To

provide a comparison, we ran two state-of-the-art bounded model checking (BMC)

tools, CBMC 5.5 and SMACK+CORRAL 1.5.1 [50], on the same benchmarks. In

addition, we ran the benchmarks against CPAchecker 1.4 [10], the overall winner of

SV-COMP 2015, and Seahorn 2.6 [48], the second-placed tool in the loops category

after CPAchecker. We reproduced each tool’s SV-COMP 2015 configuration with

small alterations to account for the benchmarks where we increased loop guards.

Finally, we manually translated the benchmarks to be compatible with Microsoft’s

Static Driver Verifier Research Platform (SDVRP [6]) with the Yogi 2.0 [78] back-end.

Yogi’s main algorithms are Synergy, Dash, Smash, and Bolt.

A benchmark contains a deep bug if it is only reachable after at least 1,000,000

unwindings. Each tool was given a time limit of 300 s, and was run on a 12-core

2.40 GHz Intel Xeon E5-2440 with 96 GB of RAM. The full result table of these

experiments is provided in Tab. 5.1.

The results demonstrate that the Dangerzone module outperforms all other

tools on programs with deep bugs. It solves 37 (partial) and 38 (total) out of the 50

benchmarks in standalone mode, and 46 when used with CBMC. By itself, CBMC

only finds 27, SMACK+CORRAL 24, CPAchecker 26, and Seahorn 31 bugs. This

result is because the complexity of finding a danger invariant is orthogonal to the

number of unwindings necessary to reach it. Dangerzone’s success is not determined

by how deep the bug is, but by the complexity of the invariant describing it. As a

result, we perform comparably on both deep and shallow bugs and can expose 18 out

of the 20 deep bugs in the benchmark set. This supports our hypothesis that danger

invariants are well-suited for this category of errors.

5.5.3 Controller synthesis

We implemented the tool DSSynth to use our synthesis algorithm to generate con-

troller implementations for benchmarks selected from the literature. The first set of

benchmarks uses the discrete plant of a cruise control model for a car and accounts

2https://github.com/diffblue/cbmc/archive/bbae05d8faecfec18a42724e72336d8f8c4e3d8d.zip

71

https://github.com/diffblue/cbmc/archive/bbae05d8faecfec18a42724e72336d8f8c4e3d8d.zip

SV-COMP’15 Dangerzone 5.5 2

Benchmark Deep CBMC SMACK+ CPA- Sea- Yogi Standalone with CBMC
Bugs 5.5 CORRAL checker horn 2.0 Partial Total Partial Total

1.5.1 1.4 2.6-svn

const1∗ – 1.15 s 7 7 33.21 s 7 9.09 s 0.55 s 1.15 s 0.55 s
const1t∗ – 1.80 s 7 4.01 s 0.55 s 10.09 s 5.45 s 0.64 s 1.80 s 0.64 s
const2∗ – 0.36 s 3.40 s 3.54 s 0.43 s 7 4.26 s 0.66 s 0.36 s 0.36 s
const3∗† X 252.42 s 7 7 7 7 0.62 s 1.07 s 0.62 s 1.07 s
diamond1 – 1.13 s 22.58 s 28.25 s 0.90 s 7 12.94 s 39.20 s 1.13 s 1.13 s
diamond1t – 7 7 4.36 s 7 9.19 s 7 7 7 7
diamond2 – 0.21 s 6.18 s 7 0.90 s 14.46 s 7 65.14 s 0.21 s 0.21 s
diamond2t – 7 7 56.71 s 7 7 7 7 7 7
for1 X 7 7 7 7 14.24 s 7 7 7 7
functions1∗ X 7 7 7 7 7 1.36 s 1.08 s 1.36 s 1.08 s
functions1t∗ X 7 7 56.70 s 0.29 s 136.48 s 0.76 s 0.83 s 0.76 s 0.83 s
multivar1∗ – 0.15 s 1.18 s 2.12 s 0.43 s 7 1.23 s 0.60 s 0.15 s 0.15 s
multivar1t – 7 7 1.45 s 0.30 s 10.58 s 1.53 s 1.30 s 1.53 s 1.30 s
multivar2∗ – 0.18 s 1.15 s 2.11 s 0.52 s 7 1.12 s 0.66 s 0.18 s 0.18 s
overflow1∗ X 7 7 7 7 7 4.07 s 5.32 s 4.07 s 5.32 s
overflow1t X 7 7 58.22 s 0.27 s 7 1.43 s 1.45 s 1.43 s 1.45 s
phases1∗ X 7 7 7 7 7 79.41 s 3.81 s 79.41 s 3.81 s
phases1t X 7 7 58.29 s 7 12.27 s 2.01 s 1.88 s 2.01 s 1.88 s
phases2 – 0.16 s 1.20 s 2.15 s 1.15 s 12.87 s 7 3.67 s 0.16 s 0.16 s
phases2t – 7 7 56.39 s 7 7 0.75 s 0.70 s 0.75 s 0.70 s
simple1∗ X 7 7 7 7 7 7.56 s 4.36 s 7.56 s 4.36 s
simple1t X 7 7 58.31 s 0.21 s 28.12 s 1.56 s 1.52 s 1.56 s 1.52 s
simple2 – 0.15 s 1.15 s 2.13 s 1.11 s 12.52 s 8.12 s 0.88 s 0.15 s 0.15 s
simple2t – 7 11.55 s 1.45 s 0.21 s 11.51 s 0.51 s 0.41 s 0.51 s 0.41 s
simple3 – 0.15 s 1.12 s 2.21 s 1.03 s 7 13.6 s 2.59 s 0.15 s 0.15 s
simple3t – 7 7 57.32 s 0.22 s 7 1.10 s 1.15 s 1.10 s 1.15 s
simple4∗ X 7 7 7 7 11.77 s 1.56 s 0.63 s 1.56 s 0.63 s
simple4t X 7 7 58.24 s 0.21 s 7 0.50 s 0.48 s 0.50 s 0.48 s
terminator – 0.18 s 3.02 s 7 1.13 s 12.52 s 3.93 s 0.85 s 0.18 s 0.18 s
terminator† X 0.18 s 0.97 s 7 12.48 s 1.49 s 0.98 s 0.98 s 0.18 s 0.18 s
underapprox1∗ – 0.38 s 3.27 s 2.83 s 1.07 s 7 7 7 0.38 s 0.38 s
underapprox1t – 1.41 s 11.98 1.46 s 0.16 s 14.02 s 7 7 1.41 s 1.41 s
underapprox2∗ – 0.37 s 3.08 s 2.59 s 0.84 s 7 1.63 s 0.76 s 0.37 s 0.37 s
underapprox2t – 1.36 s 12.39 s 1.44 s 0.16 s 12.32 s 0.76 s 0.73 s 0.76 s 0.73 s
loop1∗ X 46.59 s 7 7 7 12.05 s 1.62 s 0.91 s 1.62 s 0.91 s
loop2∗† X 7 7 7 7 7 88.83 s 8.36 s 88.83 s 8.36 s
loop3† X 7 7 7 7 7 7 7 7 7
loop4 – 0.54 s 0.15 s 7 7 7 7 7 0.54 s 0.54 s
loop5† X 292.64 s 7 7 7 7 170.94 s 3.05 s 170.94 s 3.05 s
loop6 – 0.16 s 1.16 s 2.23 s 0.42 s 13.25 s 15.87 s 1.22 s 0.16 s 0.16 s
loop7 – 0.97 s 1.33 s 12.92 s 0.89 s 13.26 s 0.59 s 0.52 s 0.59 s 0.52 s
loop8† X 7 7 7 7 7 2.67 s 0.83 s 1.92 s 0.96 s
loop9† X 7 7 7 7 7 5.41 s 1.69 s 5.41 s 1.69 s
loop10† X 7 7 7 7 7 3.86 s 1.14 s 3.86 s 1.14 s
loop11 – 0.18 s 1.15 s 2.18 s 0.42 s 12.39 s 0.48 s 0.68 s 0.48 s 0.58 s
sum01 – 0.40 s 1.23 s 7 0.30 s 7 7 7 0.40 s 0.40 s
sum01b – 0.29 s 1.13 s 7 0.27 s 7 7 7 0.29 s 0.29 s
sum04 – 0.43 s 3.19 s 7 0.31 s 7 7 7 0.43 s 0.43 s
trex02 – 0.16 s 1.15 s 7 0.23 s 7 37.17 s 19.59 s 0.16 s 0.16 s
trex03 – 0.17 s 1.19 s 7 0.27 s 10.30 s 7 2.47 s 0.17 s 0.17 s

Solved 28 24 26 31 21 37 40 46 46
Avg. Time 21.57 s 4.04 s 20.75 s 2.02 s 12.89 s 13.52 s 4.60 s 8.46 s 1.11 s

Key: 7= no result/time-out, * = contains doomed loop head, †= extended loop guard

Table 5.1: Results of safety and danger experiments.

72

for rolling friction, aerodynamic drag, and the gravitational disturbance force [5]. The

second set of benchmarks considers a simple spring-mass damper [98]. A third set

uses a physical plant for satellite applications [35]. Satellites require attitude (pose)

control for orientation of antennas and sensors with respect to earth. The satellite

attitude control is typically used for three-axis attitude tracking, but here we consider

only one axis at a time. The final set of benchmarks considers a generic plant typically

used for evaluating stability margins [59, 60].

We list the runtimes required to synthesise a stable controller for each benchmark

in Table 5.2. Here, Plant is the discrete or continuous plant model, Benchmark is

the name of the employed benchmark, I and F represent the number of integer and

fractional bits of the stable controller, respectively, and Gen and No-Gen denote the

time (in seconds) required to synthesise a stable controller for the given plant with

and without generalisation (generalisation was described in Sec 5.3.6), respectively.

Plant Benchmark I F Gen No-Gen

1 G1a CruiseControl02 4 16 12 s 67 s
2 G1b CruiseControl02† 4 16 14600 s 52 s
3 G2a SpgMsDamper 15 16 52 s 318 s
4 G2b SpgMsDamper† 15 16 7 7

5 G3a SatelliteB2 3 7 36 s 7

6 G3b SatelliteB2† 3 7 7 4111 s
7 G3c SatelliteC2 3 5 3 s 205 s
8 G3d SatelliteC2† 3 5 50 s 1315 s
9 G4 Cruise 3 7 1 s 1 s

10 G5 DCMotor 3 7 1 s 10 s
11 G6 DCServomotor 4 11 46 s 7

12 G7 Doyleetal 4 11 8769 s 7

13 G8 Helicopter 3 7 44 s 7

14 G9 Pendulum 3 7 1 s 14826 s
15 G10 Suspension 3 7 1 s 5 s
16 G11 Tapedriver 3 7 1 s 1 s
17 G12a a ST1 IMPL1 16 4 11748 s 7

18 G12a a ST1 IMPL2 16 8 351 s 7

19 G12a a ST1 IMPL3 16 12 8772 s 7

20 G12b a ST2 IMPL1 16 4 1128 s 7

21 G12b a ST2 IMPL2 16 8 7 7

22 G12b a ST2 IMPL3 16 12 15183 s 7

23 G12c a ST3 IMPL1 16 4 7 7

Table 5.2: Results of the controller synthesis experiment.

The generalisation is based on word-width and model features. For the latter,

the generalisation-based configuration abstracts away fixed point errors, which may

occur in the model of the plant during the synthesis stage and only considers them

during generalisation to verify whether a candidate solution holds for plants with error

73

models. The No-Gen configuration does not apply generalisation and models fixed

point errors directly in the synthesis phase. For the majority of our benchmarks, the

generalising configuration is much faster than the non-generalising one, with the latter

timing-out in 12 out of 23 cases (with a time-out of 8 hours).

The median runtime for our benchmark set is 48 s, implying that DSSynth can

synthesise half of the controllers in less than one minute. Overall, the average synthesis

time amounts to approximately 42 minutes. The synthesised controllers were confirmed

to be stable outside of our model representation using MATLAB. A link to the full

experimental environment, including scripts to reproduce the results, all benchmarks,

and the DSSynth tool, is provided in the footnote.3

5.5.4 Discussion of synthesis process

To help understand the role of the different solvers involved in the synthesis process,

we provide a breakdown of how often each solver “won”, i.e., was the first to return

an answer, as outlined in Table 5.3a. We see that GP provides about 80% of the

candidates, whereas CBMC provides 20%. The benchmark analysis suggests that

GP progresses along the counterexample trajectory more quickly, but CBMC is very

effective at pushing GP out of local minima.

CBMC GP
19.74% 80.26%

(a) Found candidates per back-end

synth verif
98.40% 1.60%

(b) Runtime per phase

Table 5.3: Breakdown of successful candidate generation and runtime per phase.

Table 5.3b provides a breakdown of where the CEGIS runtime is spent with over

98% of the time in the synthesis phase, leaving less than 2% for the verification

phase. This suggests that the task of verifying an existing solution is negligible when

compared to generating a candidate solution satisfying a set of given counterexamples.

5.5.5 Comparison to SyGuS

To compare our CEGIS engine to other synthesis engines, we translated the 20 safety

benchmarks into the SyGuS format [4] for the bit-vector theory. We then ran the

following solvers:

3http://www.cprover.org/DSSynth/experiment.tar.gz

74

http://www.cprover.org/DSSynth/experiment.tar.gz

#Solved #TO #Crashes Avg. time
CBMC CEGIS 18 2 0 19.6 s
eSolver 7 5 8 13.6 s
CVC4 5 13 2 32.3 s

Table 5.4: Comparison of CBMC CEGIS engine, eSolver, and CVC4 on a subset of
the safety benchmarks.

• The enumerative CEGIS solver eSolver, winner of the SyGuS 2014 competition,

based on the version from the SyGuS GitHub repository on 5/7/2015.

• The program synthesiser in CVC4 by [83], winner of the SyGuS 2015 competition,

based on the version for the SyGuS 2015 competition on the StarExec platform.

We could not compare against ICE-DT [40], the winner of the invariant generation

category in the SyGuS 2015 competition, as it does not offer support for bit-vectors.

Our comparison only uses 20 of the 96 benchmarks as we had to manually convert

from our specification format (a subset of C) into the SyGuS format.

The results of these experiments are given in Table 5.4, which contains the number

of benchmarks solved correctly, the number of timeouts, the number of crashes

(exceptions thrown by the solver), the mean time to successfully solve, and the total

number of lines in the 20 specifications.

Since the eSolver tool crashed on many of the instances, we reran the experi-

ments on the StarExec platform to verify we had not made mistakes setting up our

environment. However, the same instances also caused exceptions on StarExec.

Overall, we can see that our CEGIS engine performs better on these benchmarks

than eSolver and CVC4, which validates our claim that CBMC CEGIS is suitable

for program synthesis problems.

We noticed that for many cases in which eSolver and CVC4 timed out, CBMC

CEGIS found a solution that involved non-trivial constants. Since the SyGuS format

represents constants in unary (as chains of additions), finding programs containing

constants or finding existentially quantified first order variables is expensive. Our

engine’s strategies for finding and generalising constants make it much more efficient

at this subtask.

75

Chapter 6

Refactoring Synthesis

In Sec. 1.2, we illustrated the difference between syntax- and semantics-driven refactor-

ings and highlighted the shortcomings of syntax-driven approaches. The introduction

of our program synthesis engine in Chapter 5 provides a powerful tool to model fully

automated, semantics-driven refactorings. There exists an expansive space of methods

that can reason about program semantics. The desire to perform refactorings safely

suggests the use of techniques that overapproximate program behaviours. As one

possible embodiment of semantics-driven refactoring, we leverage software verification

technologies with the goal of reliably automating refactoring decisions based on pro-

gram semantics, as in the case of the Substitute Algorithm refactoring. Our research

hypothesis is that semantics-driven refactorings are more precise and can handle more

complex code scenarios in comparison with syntax-driven refactorings.

Demonstrator: Refactoring Iteration over Collections. We use the Replace

Loop by Java 8 Stream query, introduced in Sec. 1.3, as a demonstrator for our idea.

The refactoring falls into the Substitute Algorithm category as defined by Fowler [34].

To compare the original and refactored state of refactoring explicitly, we distinguish

external from internal iteration.

To enable external iteration, a Collection provides the means to enumerate its

elements by implementing I t e r a b l e . Clients using an external iterator must advance

the traversal and request the next element explicitly from the iterator. External

iteration has a few shortcomings:

• It is inherently sequential and must process the elements in the order speci-

fied by the collection. This bars the code from using concurrency to increase

performance.

76

• It does not describe the intended functionality, only that each element is vis-

ited. Readers must deduce the actual semantics, such as finding an element or

transforming each item, from the loop body.

The alternative to external iteration is internal iteration where, instead of con-

trolling the iteration, the client passes an operator to be performed to an iteration

procedure implemented in the C o l l e c t i o n type. This procedure then applies the

operation to the elements in the collection based on the algorithm the procedure

implements. Examples of internal iteration patterns include finding an element by

a user-provided predicate or transforming each element in a list using a provided

transformer. To enable internal iteration, Java SE 8 introduces a new abstraction

called Stream that lets users process data in a declarative way. The Stream package

provides implementations of common internal iteration algorithms, such as foreach,

find, and sort using optimised iteration orders and even concurrency where applicable.

Users can leverage multi-core architectures transparently without having to write

multi-threaded code. Internal iterations using Stream also explicitly declare the in-

tended functionality through domain-specific algorithms. A call to Java 8 find using a

predicate immediately conveys the code’s intent, whereas an externally iterating f o r

loop implementing the same semantics is more difficult to understand. Additionally,

external iteration using a f o r loop violates Thomas’ DRY principle (“Don’t repeat

yourself” [52]) if the intended functionality is available as a Stream template. Internal

iteration through Stream thus eliminates code duplication.

For illustration, consider a further example in Fig. 6.1 (a). This example uses

external iteration to create a new list by multiplying all the positive values in the list

l i s t by 2. In this variant of the code, we use a whi l e loop to sequentially process

the elements in the list.

In Fig. 6.1 (b), we re-write the code using streams, which does not use a loop state-

ment to iterate through the list. Instead, the iteration is done internally by the stream.

Essentially, we create a stream of Integer objects via C o l l e c t i o n . stream () , filter

it to produce a stream containing only positive values, and then transform it into a

stream representing the doubled values of the filtered list.

Goal: In this section, we are interested in refactoring Java code handling collections

through external iteration to use streams. Our refactoring procedure is based on the

program semantics and makes use of program synthesis.

77

I t e r a t o r<Integer> i t = l . i t e r a t o r () ;
L i s t<Integer> l 2 = new ArrayList <>();
whi l e (i t . hasNext ()) {

i n t e l = i t . next () . intValue () ;
i f (e l > 0)

newList . add (2 ∗ e l) ;
}

(a) External iteration.

List<Integer> newList =
l . stream ()

. f i l t e r (e l −> e l >0)

. map(e l −> 2 ∗ e l) ;

. c o l l e c t (t o L i s t ()) ;

(b) Internal iteration.

Figure 6.1: Filtering and mapping examples with external (a) vs. internal (b) iteration.

void removeNeg (ArrayList<Integer> l) {
I t e r a t o r<Integer> i t = l . i t e r a t o r () ;
whi l e (i t . hasNext ())

i f (i t . next () < 0) i t . remove () ;
}
List<Integer> data = new ArrayList <>();
C o l l e c t i o n s . addAll (data , 1 , 2 , 3) ;
removeNeg (data) ;

Figure 6.2: Filter example.

Contributions:

• We present a program synthesis-based refactoring procedure for Java code that

handles collections through external iteration, which is a direct implementation

of the refactoring introduced in Sec. 1.3.

• We present an abstraction for the Java Collection and Java Stream interfaces

tailored for refactorings.

• We implement our refactoring method in the tool Kayak, and our experimental

results support our conjecture that semantics-driven refactorings are more precise

and can handle more complex code scenarios than syntax-driven refactorings.

General refactorings: Since our goal is to preserve generality, we are interested in

refactorings that are correct independent of context. To motivate our decision, we

look at the example in Fig. 6.2 where we define a method removeNeg that removes

the negative values in the list received as an argument, which we later call for the list

data. However, given that data contains only positive values, applying removeNeg

does not have any effect.

78

Thus, for this particular calling context, we could refactor the body of removeNeg

to a NO-OP. While this refactoring is correct for the code given in Fig. 6.2, it may

cause problems during future evolution of the code, as it might eventually be used for

its originally intended functionality (i.e., removing negative values). As we envision

our refactoring procedure will be used during the development process, we choose not

to perform such strict refactorings.

6.1 Our approach

Given an original code Orig in , we want to infer the refactored code Stream such

that, for any initial program state Si, Or ig in and Stream produce the same final

state, i.e., they are observationally equivalent. We consider a program state to consist

of assignments to all the scalar variables plus a heap representation mapping all the

Java reference variables to their corresponding heap addresses. Then,

∀Si.Sf=Orig in(Si) ∧ S ′f=Stream(Si)⇒ Sf=S
′
f (6.1)

This equivalence check can be reduced to checking the partial correctness of the

triple

{Si=∗} Origin {Stream(Si)=Sf}

where Si=∗ means we non-deterministically select a valid initial state (i.e., we non-

deterministically assign all the variables and the contents of collections). This precon-

dition is different from true since it excludes heap configurations which may exist in

our abstract model but are not valid in the Java runtime library. Essentially, this says

that, starting with a nondeterministic state Si, every terminating trace ends up in a

state where Stream(Si)=Sf holds (we discuss non-terminating behaviours in the last

paragraph of Sec. 6.4).

Note that this overapproximates the context of the initial code in the sense that

it may require us to consider more initial states than those reachable at the start of

Or ig in in the user code. As a consequence, we obtain general refactorings as explained

in the previous section. In the rest of the thesis, we use the notation equivState to

refer to the equivalence postcondition Stream(Si)=Sf . Next, we explain the main

steps of our refactoring procedure.

(i) Given the original code and a nondeterministic initial state as inputs, we

generate the constraint Post(Si, Orig in) ⇒ equivState encoding the observational

equivalence check. Here, Post computes the postcondition of Or ig in starting from

the initial program state Si. We compute Post by symbolically executing the code [22].

79

For programs with loops, we assume the existence of safety invariants and generate

constraints as shown in Sec. 2.2. These safety invariants, Inv, are synthesised together

with equivState in the next step.

(ii) We provide the equivalence constraints to our program synthesiser (see Sec. 6.4),

which generates an equivalence proof in the form of equivState and the necessary safety

invariants. As equivState captures the semantics of the refactored code, Stream can

be generated directly from it. Moreover, given that equivState is a postcondition of

the original code, the refactored code is guaranteed to be equivalent to the original

one by construction.

Logical encoding: To generate the constraints described in (i), we must identify

a logical encoding for our analysis, which we use to express Inv and equivState. As

equivState must capture the semantics of the stream refactoring as well as equivalence

between program states, our logic must have the ability to express: (1) operations

supported by the Java Collection interface, (2) operations supported by the Java

Stream interface, as well as (3) equality between collections (for lists, this implies we

must be able to reason about both content of lists and the order of elements).

For this purpose, we define the Java Stream Theory (JST), which is informally

presented in Fig. 6.3 (the formal description is provided in Sec. 6.3). For brevity,

we omit some of the operations with the same semantics as their direct counterpart

provided by the Java Collection or Stream API. Additionally, we use the notion of an

incomplete collection/list represented by a list segment x→∗y, i.e., the list starting at

the node pointed by x and ending at the node pointed to by y.

Throughout the thesis, we take the liberty of referring to collections as lists (we

will explain in Sec. 6.3 why, for our analysis, lists can also be used as a representation

for other types of collections, e.g., sets). Also, we capture side-effects by explicitly

naming the current heap – heap variables h, h′ etc. are introduced (as a front end

transformation), denoting the heap in which each function is to be interpreted. The

mutation operators (e.g., get, add, set, and remove) then become pure functions

mapping heaps to heaps.

We illustrate JST through the graphical representation given in Fig. 6.4 where the

circles denote the nodes in the list with their associated values. We use the dashed

arrows to represent the list references. Note that heap H2 returned by the filter

method contains both the list received as argument and the result list l.

80

alias(h, x, y): do x and y point to the same node in heap
h?

size(h, x, y): what is the length of the list segment from x
to y in h?

get(h, x, i): what is the value stored in the i-th node of
the list pointed by x in heap h?

h′ = add(h, x, i, v): obtain h′ from h by inserting value v at posi-
tion i in the list pointed by x.

h′ = add last(h, x, v): equivalent to add(h, x, size(h, x,null), v)
h′ = set(h, x, i, v): obtain h′ from h by setting the value of the

i-th element in the list pointed by x to v.
h′ = remove(h, x): obtain h′ from h by removing the node

pointed by x. In h′, x and all its aliases will
point to the successor of the removed node.

h′ = removeV al(h, x, y, v): obtain h′ from h by removing the node with
value v from the list segment x→∗y.

exists(h, x, y, λv.P (v)): is there any value v in the list segment x→∗y
such that P (v) holds?

forall(h, x, y, λv.P (v)): is it the case that for all values v1 . . . vn in the
list segment x→∗y, P (v1) . . . P (vn) hold?

h′ = sorted(h, x, y, ret): obtain h′ from h by sorting the elements
stored in the list segment x→∗y in the list ret
(h′ will contain both the list segment x→∗y
and the list ret).

h′ = filter(h, x, y, λv.P (v), ret): obtain h′ from h by creating a new list ret
containing all the elements in the list segment
x→∗y that match the predicate P .

max(h, x, y): what is the maximum value stored in the list
segment x→∗y?

Figure 6.3: Informal description of JST.

81

min(h, x, y): what is the minimum value stored in the list
segment x→∗y?

h′ = map(h, x, y, λv.f(v), ret): obtain h′ from h by applying the mapping
function f to each value in the list segment
x→∗y and storing the result in the list pointed
by ret.

h′ = skip(h, x, y, done, n, ret): obtain h′ by creating a new list ret containing
the remaining elements of the list segment
x→∗y after discarding the first n elements
(done denotes the number of elements that
were already skipped).

h′ = limit(h, x, y, done, n, ret): obtain h′ by creating a new list ret containing
the elements of the list segment x→∗y, after
its length was truncated to n (done denotes
the number of elements that were dropped).

reduce(h, x, y, v, λa b.f(a, b)): performs a reduction on the elements of the
list segment x→∗y using the identity value v
and the accumulation function f , and returns
the reduced value.

h′ = concat(h, x, y, a, b, ret): obtain h′ from h by creating a new list ret
containing all the elements in the list segment
x→∗y followed by all the elements in the list
segment a→∗b.

h′ = copy(h, x, y, ret): obtain h′ by creating a new list ret that con-
tains the elements of the list segment x→∗y.

h′ = new(h, x) obtain h′ from h by assigning x to point to
null.

equalLists(h, x, y, h′, a, b) is list segment x→∗y in heap h equal to list
segment a→∗b in heap h′ (i.e., do they contain
the same elements in the same order)?

h′ = getIterator(h, x, i, it) obtain heap h′ by creating a new iterator it
that points to the i-th element in the list
pointed-to by x.

Figure 6.3: Informal description of JST.

82

H1 :

3 −1 5 9 �x

y

H2 :

3 5 9

3 �

�x

y

l

alias(H1, x, y) = false

forall(H1, x, y, λv.v≤4) = false

exists(H1, x,null, λv.v=− 1) = true

size(H1, x,null) = 4

min(H1, x, y) = −1

max(H1, x, y) = 9

H2 = filter(H1, x, y, λv.v > 0, l)

forall(H2, l,null, λv.v>0) = true

Figure 6.4: JST Example.

Discussion on aliasing: In the overview of our approach (Sec. 6.1), when expressing

equivalence between program states, we only consider the variables (and collections)

accessed by Orig in (as opposed to all the live program variables). Thus, one might

wonder if there are any side-effects due to aliasing that we are not considering. The

answer is no, as our approach is safe for reference variables as well as the only two

potential aliasing scenarios involving a reference variable p that is not directly used

by Orig in , which are the following:

1. p points to a collection that is modified by Orig in . As the Stream refactoring

is going to perform an equivalent transformation in-place, the refactoring will

be transparent to p.

2. p is an iterator over a collection accessed by Orig in . Then, if Or ig in modifies

the collection, so will Stream, which results in p being invalidated in both

scenarios. Contrary, if Or ig in does not modify the collection, neither will

Stream, and p will not be affected in either case.

Next, we illustrate scenario 1 by considering again the method removeNeg in

Fig. 6.2 with the following calling context, where we assume p points to some list and

we create an alias p′ of p:

ArrayList<Integer> p ’ = p ;
removeNeg (p) ;

At first glance, a potential refactoring for removeNeg is:

l = l . stream () . f i l t e r (e l −> e l>=0)
. c o l l e c t (t o L i s t ()) ;

83

However, this is incorrect when using the refactored function in the calling context

mentioned above. While the list p points to is correct, the list pointed to by p′ is not

updated. Thus, after the call to removeNeg, p will correctly point to the filtered list,

whereas p′ will continue pointing to the old, unfiltered list. To avoid such situations,

we perform refactorings of code that mutates collections in-place. Thus, a correct

refactoring for method removeNeg is:

ArrayList<Integer> copy = new ArrayList<>(l) ;
l . c l e a r () ;
copy . stream () . f i l t e r (e l −> e l>=0)

. forEachOrdered (l : : add) ;

Here, we first create a copy copy of l. After performing the filtering on copy , we use

forEachOrdered , provided by the Stream API, to add each element of the temporary

stream back to the list pointed to by l (in the order encountered in the stream). Thus,

we are not creating a new list with a new reference, but using the original one, which

makes the refactoring transparent to the rest of the program, regardless of potential

aliases.

6.2 Motivating Examples

In this section, we illustrate our refactoring procedure on three examples.

First example: We start with Fig. 6.1, where we create a new list by multiplying

each positive value by 2 in the list l i s t . As described, we must first introduce global

heap variables that capture the side-effects. For this purpose, we use the following

naming convention: the heap before executing the code (i.e. the initial heap for both

the original and the refactored code) is called hi. All the other heaps manipulated

by the original program have subscript o, and those manipulated by the stream in

equivState have subscript s.

I t e r a t o r<Integer> i t = i t e r a t o r (h i , l i s t) ;
L i s t<Integer> newList ;
h o = new ArrayList<Integer >(h i , newList) ;
whi l e (hasNext (h o , i t)) {

i n t (e l , h o) = next (h o , i t) . intValue () ;
i f (e l > 0) {

h o = a d d l a s t (h o , newl i s t , 2 ∗ e l) ;}}

As mentioned in Sec. 6.1, equivState must capture the fact that the program config-

urations reached by executing the original code and the refactored code, respectively,

are the same. We check this by verifying the following:

84

• the heap states reached by executing the original code and the refactored code,

respectively, are equivalent (denoted as ho=h
′
s below). We formally define heap

equivalence as graph isomorphism in the next section (Def. 11). Informally, this

means all the lists reachable from reference variables used by the original code

(except for local variables not visible outside the original code), must be equal.

• all the scalar program variables accessed by the original code must have equal

values after the execution of the original and refactored code, respectively. Again,

we do not consider local variables that are not visible (e.g., e l in the original

code in Fig. 6.1).

For this example, as there are no scalar variables handled by the code and visible

outside, we only check heap equivalence. Thus, we find the following equivState:

equivState(hi, ho, list) = (ho=h
′
s ∧

hs=filter(hi, list ,null, λv.v > 0, list ′) ∧

h′s=map(hs, list ′,null, λv.2×v, list ′′))

The above states that the heap ho generated by the original code is equivalent to the

heap h′s generated by applying filter and map directly. Then, the safety invariant

required to prove equivState is identical with equivState with the exception that it

considers that the list pointed to by list has only been partially processed (up to the

iterator it):

Inv(hi, ho, list , it) = (ho=h
′
s ∧

hs=filter(hi, list, it, λv.v > 0, list′) ∧

h′s=map(hs, list
′,null, λv.2×v, list ′′))

The invariant states that, given the iterator it over the list list , after processing the

list up until it, both the original code and the stream postcondition generate the same

heaps.

As JST directly models the Java Streams semantics, from an equivState postcondi-

tion we generate stream code (see Fig. 6.1 (b)).

85

Second example: Next, we provide a more involved example where the original

code includes nested loops. For this purpose, we use the code for selection sort in

Fig. 6.5 (a). First, we introduce the heap variable as shown in Fig. 6.5 (b). If Invout

and Inv in are the safety invariants for the outer and inner loops, respectively, then

the constraints for the outer loop are there following, where we omit the inner loop as

it follows directly from the equations (5.1), (5.2), and (5.3) in Sec. 5.1.1:

∀hi, ho, l, j.∃min.Invout(hi, ho, l, 0) ∧ (6.2)

(Invout(hi, ho, l, j) ∧ j<(size(ho, l)−1) ∧ (6.3)

Invin(hi, ho, l, size(ho, l), j,min) ∧ (6.4)

temp=get(ho, l, j) ∧ h′o=set(ho, l, j, get(ho, l,min)) ∧ (6.5)

ho=set(h
′
o, l,min, temp))⇒ Invout(hi, ho, l, j+1) ∧ (6.6)

Invout(hi, ho, l, j) ∧ j≥(size(ho, l)−1)⇒ equivState(hi, ho, l) (6.7)

Constraint (6.2) says that the outer loop’s invariant must hold in the initial state,
constraints (6.3), (6.4), (6.5), and (6.6) check that Invout is re-established by the
outer loop’s body (by making use of Inv in), whereas (6.7) asserts that the equivState
postcondition must hold on exit from the outer loop. For this example, we find the
solution

Invout(hi, ho, l, j) = equalLists(h′o, l, itlj , h
′
s, ls, itlsj) ∧

hs = sorted(hi, l,null, ls) ∧
h′o = getIterator(ho, l, j, itlj) ∧
h′s = getIterator(hs, ls, j, itlsj) ∧
max(h′o, l, itlj)≤min(h′o, itlj ,null)

Invin(hi, h,l, i, j,min) = (min(h′′o , itlj , itli)=min ∧
h′o=getIterator(ho, l, j, itlj) ∧ h′′o=getIterator(ho, l, i, itli))
equivState(hi, ho, l) = (ho=hs ∧
hs=sorted(hi, l,null, l))

The invariant of the outer loop expresses the fact that the lists sorted through external

iteration and via the stream operation, respectively, are equal up until element j.

As our theory JST supports iterator-based equality between lists (rather than index-

based), we need to create iterators itls and itlsj to the j-th element in the lists l and

ls, respectively. Additionally, the invariant of the outer loop captures the fact that

the maximum element in the already sorted portion of list l is at most equal to the

minimum element from the portion still to be sorted.

The inner loop’s invariant captures the fact that the minimum element in the

list segment between the j-th and the i-th element is min (program variable). The

86

void s o r t i n g (Lis t<Integer> l) {
i n t min , temp ;
f o r (i n t j = 0 ; j < l . s i z e ()−1; j++) {

min = j ;
f o r (i n t i = j +1; i < l . s i z e () ; i++)

i f (l . get (i)< l . get (min)) min = i ;

temp = l . get (j) ;
l . s e t (j , l . get (min)) ;
l . s e t (min , temp) ;}}

(a)

void s o r t i n g (Lis t<Integer> l) {
i n t min , temp ;
h o = copyHeap (h i) ;
f o r (i n t j = 0 ; j < s i z e (h o , l)−1; j++) {

min = j ;
f o r (i n t i = j +1; i < s i z e (h o , l) ; i++)

i f (get (h i , l , i)< l . get (h o , l , min)) min = i ;

temp = get (h o , l , j) ;
h o ’ = s e t (h o , l , j , get (h o , l , min)) ;
h o = s e t (h o ’ , l , min , temp) ;}}

(b)

Figure 6.5: Selection sort: (a) original code, (b) constraint.

postcondition equivState captures the equality between the final heap in the original

program, ho, and the final heap in the refactored code, hs.

From postcondition equivState, we generate the following refactored code, where

we modify l in-place by using a local copy.

List<Integer> s o r t i n g (Lis t<Integer> l){
List<Integer> copy = new List<>(l) ;
l . c l e a r () ;
copy . stream () . s o r t ed ()

. forEachOrdered (l : : add) ; }

87

Third example: In this example, we illustrate an aggregate refactoring as well as

the importance of checking equivalence between heap states. For this purpose, we use

the code below where we compute the sum of all the elements in the list pointed to by

l while, at the same time, removing from the list pointed to by p some elements equal

to the size of l.

I t e r a t o r<Integer> i t = p . i t e r a t o r () ;
i n t sum = 0 ;
f o r (i = 0 ; i<l . s i z e () ; i++) {

sum += l . get (i) ;
i f (i t . hasNext ()) {

i t . next () ;
i t . remove () ;

}}

If we were only to verify that the scalar variables after executing the original and

the refactored code, respectively, are equal and omit checking heap equivalence, then

the following refactoring would be considered correct:

sum = l . stream () . reduce (0 , (a b)−>a+b) ;

This refactoring ignores the modifications performed to list p and only computes

the sum of elements in the list pointed to by l. In our case, we correctly find this

refactoring to be unsound as the heap state reached after executing the original code

(where p points to a modified list) is not equivalent to the one reached after executing

this refactoring (where p points to the unmodified list). Instead, we find the following

refactoring, where we correctly capture the mutation of p:

sum = l . stream () . reduce (0 , (a b)−>a+b) ;
ArrayList<Integer> copy = new ArrayList<>(p) ;
p . c l e a r () ;
copy . stream () . sk ip (l . s i z e ())

. forEachOrdered (p : : add) ;

6.3 Java Stream Theory

We designed JST such that it meets the following criteria:

1. Express operations allowed by the Java Collection interface, operations allowed

by the Java Stream interface as well as equality between collections (for lists,

this implies we must be able to reason about both content of lists and the order

of elements).

88

2. JST must be able to reason about the content and size of partially constructed

lists (i.e., list segments), which are required when expressing safety invariants.

For illustration, in Fig. 6.1, the safety invariant captures the fact that hs is

obtained from hi by filtering the list segment list→∗it.

3. JST must enable concise equivState postconditions and invariants as we use

program synthesis to infer these. Thus, the smaller they are, the easier to

synthesise.

To the best of our knowledge, no logic exists that meets all the criteria above. The

majority of recently developed decidable heap logics are not expressive enough (fail

points 1 and 2) [55, 81, 14, 71, 12, 32], whereas very expressive logics, such as FOL

with transitive closure, are not concise and easily translatable to stream code (fail

point 3).

While our theory is undecidable, we found it works well for our particular use case.

Semantics: We define the model used to interpret JST formulae. The set of reference

variables is denoted by PV , which are those accessed in the code to be refactored (as

opposed to all the reference variables in the program).

Definition 8 (Heap). A heap over reference variables PV is a tuple H = 〈G,LP , LD〉.
G is a graph with vertices V (G) and edges E(G), LP : PV → V (G) is a labelling

function mapping each reference variable to a vertex of G, and LD : V (G)→ D is a

labelling function associating each vertex to its data value (where D is the domain of

the data values).

Given that we are interested in heaps managed by Java Collections, we restrict

the class of models to those where each vertex has outdegree 0 or 1 (i.e., we cannot

have multiple edges coming out of a node). We assume that the reference variables

include a special name null.

Function val(h, x) returns the value stored in the node pointed to by x, next(h, x) re-

turns a reference to the next node after the one pointed to by x and it is defined as

the unique vertex such that (x, next(x)) ∈ E(h), and add0(h, e, x) returns the heap

obtained by appending element e at the beginning of the list pointed to by x. For the

latter, we provide the pointwise definition:

add0V (h, e, x)
def
= V (h) ∪ {q} where q is a fresh vertex

add0LD
(h, e, x)

def
= LD(h)[q 7→ e]

add0E(h, e, x)
def
= E(h) ∪ {(q, LP (h)(x))}

89

The semantics of JST is defined recursively in Fig. 6.6. Note that functions

minimum and maximum return the minimum and maximum between the values

received as arguments, respectively. While in Fig. 6.6 we provide the semantics for

index-based operations (e.g., set(x, y, i, v)), we also support iterator-based ones (e.g.,

h′=set(h, it, v) returns the heap obtained by setting the value of the node pointed to

by it to v in heap h).

One important check that we must perform to prove equivalence between program

states is that of heap equivalence. To define this notion, we first assign PV∩ to be

the set of reference variables used by both the original and refactored code (excluding

local variables, such as iterators used by only one of the codes). Then,

Definition 9. Heap h and h′ are equivalent, written as h=h′, iff the underlying graphs

reachable from PV∩ are isomorphic.

Intuitively, this means that all the lists in h and h′ pointed to by the same variable

from PV∩, respectively, are equal.

Set collections: For our refactoring procedure, we use lists as the internal represen-

tation for collections denoting sets, meaning that we impose an order on the elements

of sets. While we may miss some refactorings, this procedure is sound because if two

collections are equal with respect to some order, then they are also equal when no

order is imposed.

6.3.1 Decision procedure

Given a JST formula φ, we wish to determine whether φ is a tautology or whether there

exists an assignment to the free variables in φ, usually representing a counterexample

heap, which satisfies ¬φ. The difficulty when searching for such an assignment is

that heaps may be unbounded in size and there may be an unbounded number of

heap models which need to be explored. We demonstrate that our encoding of JST

has a small model property as introduced in [30], such that it is sufficient to look for

counterexample heaps up to a fixed size. We first define abstract heaps as implemented

in our decision procedure, then illustrate why this representation enjoys this property.

6.3.1.1 Abstract heaps

An abstract heap in our model is a heap where some of the nodes are collapsed

into single abstract nodes. These abstract nodes do not maintain the values of the

collapsed nodes, but instead, indicate whether a finite set of predicates holds for

90

val(h, x) = LD(h)(x) (6.8)

alias(h, x, y)⇔ LP (h)(x)=LP (h)(y) (6.9)

i = 0

get(h, x, i)=val(h, x)
(6.10)

i > 0

get(h, x, i)=get(h, next(h, x), i−1)
(6.11)

alias(h, x, y)

size(h, x, y) = 0
(6.12)

¬alias(h, x, y)

size(h, x, y) = 1+size(h, next(h, x), y)
(6.13)

alias(h, x, y)

max (h, x, y) = −∞
(6.14)

alias(h, x, y)

min(h, x, y) =∞
(6.15)

alias(h, x, y)

exists(h, x, y, λv.P (v)) = false
(6.16)

alias(h, x, y)

forall(h, x, y, λv.P (v)) = true
(6.17)

h′ = copy(h, x,null, l)

add(h, x, 0, v)=add0(h′, v, l)
(6.18)

h′ = copy(h, next(h, x),null, l)

set(h, x, 0, v)=add0(h′, v, l)
(6.19)

halias(h1, x, y) ∧ alias(h2, a, b)

equalLists(h1, x, y, h2, a, b) = true
(6.20)

alias(h1, x, y) ∧ ¬alias(h2, a, b)

equalLists(h1, x, y, h2, a, b) = false
(6.21)

¬halias(h1, x, y) ∧ alias(h2, a, b)

equalLists(h1, x, y, h2, a, b) = false
(6.22)

Figure 6.6: Inference rules for Java Collection Theory.

91

alias(h, x, y) ∧ h′=h[Lp(h
′)=LP (h) ∪ {ret 7→ null}]

copy(h, x, y, ret)=h′
(6.23)

¬alias(h, x, y) ∧ h′ = copy(h, next(h, x), y, ret)

copy(h, x, y, ret)=add0(h′, val(h, x), ret)
(6.24)

i > 0 ∧ h′ = add(h, next(h, x), i−1, v)

add(h, x, i, v)=add0(h′, val(h, x), next(h′, x))
(6.25)

i > 0 ∧ h′ = set(h, next(h, x), i−1, v)

set(h, x, i, v)=add0(h′, val(h, x), next(h′, x))
(6.26)

alias(h, x, y) ∧ h′=h[Lp(h
′)=LP (h)∪{ret 7→null}]

map(h, x, y, λv.f(v), ret)=h′
(6.27)

¬alias(h, x, y) ∧ h′=map(h, next(h, x), y, λv.f(v), ret)

map(h, x, y, λv.f(v), ret) = add0(h′, f(val(h, x)), ret)
(6.28)

alias(h, x, y)∧h′=h[Lp(h
′)=LP (h)∪{ret 7→null}]

skip(h, x, y, done, n, ret)=h′
(6.29)

¬alias(h, x, y) ∧ n>0

skip(h, x, y, done, n, ret)=skip(h, next(h, x), y, done+1, n−1, ret)
(6.30)

¬alias(h, x, y) ∧ n=0 ∧ h′=h[Lp(h
′)=LP (h)∪{ret 7→LP (h)(x)}]

skip(h, x, y, done, n, ret)=h′
(6.31)

alias(h, x, y) ∧ h′=h[Lp(h
′)=LP (h)∪{ret 7→null}]

filter(h, x, y, λv.P (v), ret)=h′
(6.32)

¬alias(h, x, y) ∧ ¬P (val(h, x))

filter(h, x, y, λv.P (v), ret)=filter(h, next(h, x), y, λv.P (v), ret)
(6.33)

¬alias(h, x, y) ∧ P (val(h, x)) ∧ h′=filter(h, next(h, x), y, λv.P (v), ret)

filter(h, x, y, λv.P (v), ret) = add0(h′, val(h, x), ret)
(6.34)

(alias(h, x, y) ∨ n=0) ∧ h′=h[Lp(h
′)=LP (h)∪{ret 7→null}]

limit(h, x, y, done, n, ret)=h′
(6.35)

¬alias(h, x, y) ∧ n>0 ∧ h′=limit(h, next(h, x), y, done+1, n−1, ret)

limit(h, x, y, done, n, ret)=add0(h′, val(h, x), ret)
(6.36)

Figure 6.6: Inference rules for Java Collection Theory.

92

alias(h, x, y) ∧ h′=h[Lp(h
′)=LP (h)∪{ret 7→null}]

sorted(h, x, y, ret) = h′
(6.37)

¬alias(h′, x, y) ∧ h′=sorted(removeV al(h, x, y,min(h, x, y)), x, y, ret)

sorted(h, x, y, ret) = add0(h′,min(h, x, y), ret)
(6.38)

¬alias(h, x, y)

max (h, x, y) = maximum(P (val(h, x)),max (h, next(h, x), y))
(6.39)

¬alias(h, x, y)

min(h, x, y) = minimum(P (val(h, x)),min(h, next(h, x), y))
(6.40)

¬alias(h, x, y)

exists(h, x, y, λv.P (v))⇔ P (val(h, x)) ∨ exists(h, next(h, x), y, λv.P (v))
(6.41)

¬alias(h, x, y)

forall(h, x, y, λv.P (v))⇔ P (val(h, x)) ∧ forall(h, next(h, x), y, λv.P (v))
(6.42)

alias(h, x, y)

reduce(h, x, y, v, λa b.f(a, b)) = v
(6.43)

¬alias(h, x, y)

reduce(h, x, y, v, λa b.f(a, b)) = f(v, reduce(h, next(h, x), y, v, λa b.f(a, b)))
(6.44)

¬alias(h1, x, y) ∧ ¬alias(h2, a, b)

val(h1, x) == val(h2, a) ∧ equalLists(h1, next(h1, x), y, h2, next(h2, a), b)
(6.45)

Figure 6.6: Inference rules for Java Collection Theory.

93

each collapsed node. While the abstract node data structure theoretically allows

for arbitrary predicates, our refactoring use case focuses on predicates which are

conducive to proving formulas over the operations listed in Fig. 6.6. Nodes which are

not collapsed are referred to as concrete and retain their original information. This

abstraction enables us to represent potentially unbounded heaps as finite abstract

ones. Fig. 6.7 provides an example of an original heap H and a resulting abstract

heap H ′ when collapsing all nodes not directly reachable from PV by the predicate

P (v) = v > 0. P does not hold for all nodes collapsed into the first abstract node.

Hence it is labelled with F . The second abstract node is marked with T since the only

node collapsed into it satisfies P .

H :

3 −1 7 5 9 �x

y

H ′ :

3 F 5 T �x

y

Figure 6.7: Abstract heap example.

Next, we provide a formal definition of abstract heaps in Def. 10.

Definition 10 (Abstract heap). A heap over reference variables PV is a tuple H =

〈G,LP , LD, LS〉. G is a graph with concrete vertices Vc(G), abstract vertices Va(G)

and edges E(G), LP : PV → Vc(G) is a labelling function mapping each reference

variable to a concrete vertex of G, LD : Vc(G)→ D is a labelling function associating

each concrete vertex to its data value (where D is the domain of the data values),

LS : Va(G)→ N is a labelling function associating each abstract vertex to its length,

and L∀ : Va → P is a labelling function mapping each abstract vertex to the set of

predicates all its nodes satisfy.

6.3.1.2 Small model property

The heaps H and H ′ presented in Fig. 6.7 are equivalent with respect to the observation

functions in Fig .6.6. Furthermore, the transformers in JST preserve equivalence

classes, as defined in Def. 11.

Definition 11 (Equivalent Heaps). Two heaps H,H ′ are equivalent (written H ∼ H ′)

iff they are indistinguishable with respect to the JST observation functions.

We define minimal elements of heap equivalence classes as kernels in Def. 12.

94

Definition 12 (Kernel). A kernel is a heap where every concrete node v ∈ VC(G) is

labelled by LP .

Based on the definition of LP , Def. 12 implies that a vertex v is concrete iff it is

directly reachable from PV . Such a kernel heap contains at most |PV | concrete nodes

and at most |PV |+ 1 abstract nodes, which represents a maximally collapsed heap.

In our refactoring use case, we determine the necessary maximum heap model size by

counting the transformers in the original code that access concrete value nodes.

Before stating the small model property of our logic, we define the notion of

an interpretation, Γ, which is a function mapping free variables to elements of the

appropriate sort. If a JST formula φ holds in some interpretation Γ, we say that Γ

models φ and write Γ |= φ.

Theorem 6.3.1 (JST has Small Model). For any JST formula φ, if there is a

counterexample Γ |= ¬φ, then there exists Γ′ such that Γ′ |= ¬φ with every heap-sorted

variable in Γ′ being interpreted by a kernel.

Proof. We assume there exists a heap H such that every heap-sorted variable in Γ is

interpreted by H. Then, there also exists a kernel heap H ′ such that H ∼ H ′. Let Γ′

be an interpretation identical with Γ with the difference that the heap-sorted variables

are interpreted by H ′. Given that H ∼ H ′, we must have Γ′ |= ¬φ.

6.3.2 Implementation

In CBMC, we model the Java Stream Theory explicitly as a set of transformer functions

manipulating an explicit graph data structure. The model contains C structs for heaps,

lists and list nodes, where we bound the maximum number of nodes per list explicitly

according to Sec. 6.3.1.2. CBMC provides an API to include C models as part of its

executable and load its implementations dynamically if an input program references

them. The JST models and transformer functions are implemented using this API

and are available in the CBMC source code at https://github.com/diffblue/cbmc/

blob/cbmc-5.7/src/ansi-c/library/jsa.h. Fig. 6.8 illustrates the implementation

of a doubly-linked list node in the JST model. Linked nodes are not identified by C

pointers, but by a node identifier which represents their index in the heap’s global

node array. As shown in Fig. 6.9, the heap maintains an array of both concrete and

abstract nodes as well as list head nodes and iterator variables.

Abstract and concrete nodes are stored in separate data structures and arrays.

Each abstract node stores the length of the segment that it represents. This allows

95

https://github.com/diffblue/cbmc/blob/cbmc-5.7/src/ansi-c/library/jsa.h
https://github.com/diffblue/cbmc/blob/cbmc-5.7/src/ansi-c/library/jsa.h
https://github.com/diffblue/cbmc/blob/cbmc-5.7/src/ansi-c/library/jsa.h
https://github.com/diffblue/cbmc/blob/cbmc-5.7/src/ansi-c/library/jsa.h

typede f s t r u c t CPROVER jsa concrete node
{

CPROVER jsa node id t next ;
CPROVER jsa node id t prev ious ;
CPROVER jsa l i s t id t l i s t ;
CPROVER jsa data t va lue ;

} CPROVER jsa concrete nodet ;

Figure 6.8: C struct representing JST doubly-linked list nodes.

the model to represent lists of arbitrary length, positioning concrete nodes with values

at arbitrary positions inside the list. Since the JST decision procedure is guaranteed

only to access a limited number of concrete values in the list, this implementation is

sufficient to model all required heaps for the JST logic.

typede f s t r u c t CPROVER jsa abstract heap
{

// Concrete nodes s t o r e e x p l i c i t e lement va l u e s and can be
// po s i t i on ed anywhere w i th in a doubly−l i n k e d l i s t .

CPROVER jsa concrete nodet
conc r e t e node s [CPROVER JSA MAX CONCRETE NODES] ;

// One a b s t r a c t l i s t node rep re s en t mu l t i p l e a b s t r a c t l i s t e lements .
// Abs t rac t nodes do not model e lement va lues , on ly the number
// e lements they r ep re s en t . This a l l ow s to model l i s t s o f a r b i t r a r y
// l en g t h wi th a l im i t e d number o f concre te e lement va l u e s .

CPROVER jsa abstract nodet
abs t ra c t node s [CPROVER JSA MAX ABSTRACT NODES] ;

// A l l a c t i v e Java i t e r a t o r in s t ance s on the heap .
CPROVER jsa iteratort i t e r a t o r s [CPROVER JSA MAX ITERATORS] ;

// Number o f a c t i v e i t e r a t o r in s t ance s on the heap .
CPROVER jsa index t i t e r a t o r c o u n t ;

// L i s t head nodes , s t o r i n g a l l a c t i v e l i s t s on the heap .
CPROVER jsa l i s t id t l i s t h e a d n o d e s [CPROVER JSA MAX LISTS] ;

// Number o f a c t i v e l i s t i n s t ance s on the heap .
CPROVER jsa index t l i s t c o u n t ;

} CPROVER jsa abstract heapt ;

Figure 6.9: C struct for full abstract heap.

Since we eliminate loops by invariants in our decision procedure, we can determine

the necessary maximum size of our heap model by counting the transformer invocations

which access information from concrete nodes, such as retrieving the value from a Java

96

Done

Synthesise Verify

Program Search BMC-based Verifier

Candidate solution

Counter-ex

Candidate P
UNSAT/

model
InputsUNSAT/

candidate

Figure 6.10: The refactoring refinement loop.

iterator variable, and bound our heap counterexamples with the necessary number of

concrete nodes. For each implemented transformer matching a Java 8 Stream method,

we provide a pre-configured property P for abstract nodes, which enable us to prove

equivalence of the query and original loop as illustrated in Sec. 6.1. The properties used

in this context establish that an abstract node is the result of a successful application

of the synthesised query over the collapsed nodes. The incremental step of the proof

can then be applied to the remaining concrete nodes by verifying that the original

loop body transforms concrete nodes equivalently to the synthesised Java 8 Stream

query.

6.4 Synthesising Refactorings

We compute the postcondition equivState and safety invariants by using a program

synthesis engine. Such engines are used increasingly in program verification [86, 32].

Our program synthesiser makes use of Counter-Example Guided Inductive Synthesis

(CEGIS) [88] for stream refactoring. We present its general architecture followed by a

description of the parts specific to refactoring.

General architecture of the program synthesiser: The design of our synthe-

siser is illustrated in Fig. 6.10 and consists of two phases, Synthesise and Verify

(cf. Sec. 5.2.1). We illustrate each of these phases by using as a running example

the first motivational example in Sec. 6.2 with the goal of synthesising a solution

(equivState, Inv).

97

We start with a vacuous synthesise phase, where we generate a random candidate

solution, which we pass to the verify phase. For this example, let us assume that the

random solution says that the stream manipulated heap is the same as the initial one

(i.e., the stream code does not affect the heap), such that equivState(hi, ho, list, it) =

ho=h
′
s ∧ h′s=hs=hi.

In the verify phase, we check whether the candidate solution is indeed a true

solution for our synthesis problem (then we are “Done”), or compute a counterexample.

We find such a counterexample by building a program Pverif on which we run Bounded

Model Checking [11]. BMC employs symbolic execution to map program semantics

to an SAT instance [22], which verifies our equivalence constraints. If we manage

to prove partial correctness of Pverif , then we are done. Otherwise, we provide the

counterexample returned by BMC to the synthesise phase. Note that it is sound to

use BMC because the program Pverif does not contain loops as it uses loop invariants.

For the running example, BMC returns a counterexample with initial heap h′ce where the

candidate equivState is not a true postcondition when list contains a value 1 (added at

position 0 through add(hce, list , 0, 1)): hce = new(hi, list) ∧ h′ce = add(hce, list, 0, 1).

Next, in the synthesise phase, we add the counterexample from the previous

phase to Inputs and search for a new candidate solution by constructing a program

Psynth on which we run BMC and a genetic algorithm (GA) in parallel to find a new

candidate solution that holds for all the Inputs. GA simulates an evolutionary process

using selection, mutation, and crossover operators. Its fitness function is determined

by the number of passed tests. GA maintains a large population of programs that

are paired using crossover operation, combining successful program features into

new solutions. To avoid local minima, the mutation operator replaces instructions

by random values at a comparatively low probability. Moreover, we use a biased

crossover operation by selecting parents that solve distinct counterexample sets for

reproduction. We use the result of either BMC or GA, depending on which returns

first. Again, it is sound to use BMC as the program Psynth does not contain loops.

For the running example, BMC returns first with a candidate solution saying that

the heap h′s after the stream code is the following (for brevity, we omit the general

equivState as, similar to before, it only denotes the fact that the original and the stream

heaps are equivalent; we also omit the invariant, which is very similar to equivState):

hs = filter(hi, list ,null, λv.true, list ′) ∧ h′s = map(hs, list ,null, λv.2×v, list ′′)

This solution is almost correct, apart from the filter predicate, which does no

actual filtering as the predicate is true. Returning to the verify phase, we find one

98

further counterexample denoting a list with value 0 (which should haven been filtered

out, but is not): hce=new(hi, list) ∧ h′ce=add(hce, list, 0, 0).

Back in the synthesise phase, this counterexample refines the filter predicate,

leading to the next solution:

hs = filter(hi, list ,null, λv.v 6= 0, list ′) ∧
h′s = map(hs, list ,null, λv.2×v, list ′′)

As this still does not match the original algorithm, the verify phase provides one

final counterexample (a list containing value −2 that should have been filtered out,

but is not):

hce=new(hi, list) ∧ h′ce=add(hce, list, 0,−2)

In the final synthesise phase, we get the solution provided in Sec. 6.2.

Elements specific to stream refactoring: To use program synthesis for stream

refactoring, we required the following:

(i) The target instruction set is JST, which requires both the verify and synthe-

sise phases in the program synthesiser to support the JST transformers. JST directly

models Java Streams such that once the synthesiser finds a solution equivState, we

only require very light processing to generate valid Java Stream code. In particular,

this processing involves the stream generation (see examples below).

Some examples of the generated stream code are provided below, where the LHS

denotes either the stream heap hs or some other scalar variable r captured by equivState

(expressed in JST), and the RHS represents the corresponding stream refactoring. For

illustration, in the first example, after the synthesiser finds that hs in equivState is

hs=filter(hi, l,null, λv.P (v), l′), we generate the stream refactoring by adding the

stream generation l.stream() before the stream filtering filter(λv.P (v)).

Note that ≡ stands for reference equality meaning that, as shown in Sec. 6.1, we

must generate Java code that modifies the original collection in place.

hs=filter(hi, l,null, λv.P (v), l′)⇒ l′ ≡ l.stream().filter(λv.P (v))

hs=sorted(hi, l,null, l
′)⇒ l′ ≡ l.stream().sorted()

hs=skip(hi, l,null, k, 0, l
′)⇒ l′ ≡ l.stream().skip(k)

r=forall(hi, l,null, λv.P (v))⇒ r=l.stream().allMatch(v → P (v))

r=max(h, l,null)⇒ r=l.stream().max()

99

(ii) The search strategy is to parametrise the solution language, where the main

parameter is the length of the solution program, denoted by l. At each iteration, we

synthesise programs of length exactly l. We start with l = 1 and increment l whenever

we determine that no program of length l can satisfy the specification. When we do

successfully synthesise a program, we are guaranteed that it is of minimal length since

we have previously established that no shorter program is correct. This is useful for

our setting where we are biased towards short refactorings (see Sec. 6.6).

Terminating and exceptional behaviour: Next, we discuss how our refactoring

interacts with non-terminating and exceptional behaviours of the original code.

If the original code throws an exception, then the same happens for our modelling,

and we fail to find a suitable refactoring. The non-terminating behaviour can be due

to either iterating over a collection with an unbounded number of elements or to a

bug in the code that does not properly advance the iteration through the collection.

Regarding the former, we assume the code to be refactored handles only collections

with a bounded number of elements. With respect to the second reason for non-

termination, if such a bug exists in the original code, then it will also exist in our

modelling. Thus, we will fail to find a suitable refactoring.

6.5 Experiments

Benchmark Selection: We provide an implementation of our refactoring decision

procedure, which we have named Kayak. We employed the GitHub Code Search to

find relevant Java classes that contain integer collections with refactoring opportunities

to streams. Kayak currently supports refactorings from Java external iterators to

Streams for integer collections only. This limitation is not conceptual, but due to

our Java front end based on CBMC [22], which will be extended in future work. The

queries were specified conservatively as not to exceed the CBMC front end capabilities

and we manually ruled out search results which cannot be implemented using the

Java 8 Stream specification. We used the following search queries on 8/8/2016:

• List<Integer>+f o r+i f+break++language%3AJava&type=Code

• List<Integer>+whi le+i t+remove&type=Code

• List<Integer>+whi le+add

We found 50 code snippets with loops from the results that fit these restrictions.

100

Experimental Setup: To validate our hypothesis that semantics-driven refactorings

are more precise than syntax-driven ones, we compare Kayak against the Integrated

Development Environments IntelliJ IDEA 2016.11 and NetBeans 8.22 as well as against

LambdaFicator by Franklin et al. [36]. These tools all provide a “Replace with collect”

refactoring, which matches Java code against pre-configured external iteration patterns

and transforms the code to a stream expression if they concur. We manually inspect

each transformation for both tools to confirm correctness. Since Kayak’s software

synthesis can be a time-consuming process, we impose a time limit of 300 s for each

benchmark. All experiments were run on a 12-core 2.40 GHz Intel Xeon E5-2440 with

96 GB of RAM.

Genetic algorithm configuration: We implemented a steady state genetic algo-

rithm implementation in CEGIS with a fitness function determined by the number of

passed tests. We employ a biased crossover operation, selecting parents which solve

distinct counterexamples in the CEGIS counterexample set for reproduction. The

intent is to combine parent refactorings that work for distinct intput sets, and thus

produce offspring which behave correctly for both input sets. The population size,

replacement, and mutation rates are configurable and were set to 2000, 15%, and 1%,

respectively, for our experimental evaluation.

Results: Our results show that Kayak outperforms IntelliJ, NetBeans 8.2, and

LambdaFicator by a significant margin. Kayak finds 39 out of 50 (78%) possible

refactorings, whereas IntelliJ only transforms 10 (20%) and both NetBeans 8.2 and

LambdaFicator transform 11 benchmarks (22%) successfully. IntelliJ, NetBeans, and

LambdaFicator combined find 15 (30%) refactorings. This is due to the fact that there

are many common Java paradigms, such as L i s t I t e r a t o r or I t e r a t o r : : remove,

for which none of the tools contain pre-configured patterns and have no way of

refactoring. The fact that none of the pattern-based tools account for these cases

suggests that it is impractical to try to enumerate every possible refactoring pattern

in IDEs.

If the pattern-based tools find a solution, then they transform the program safely

and instantaneously, even in cases where Kayak fails to synthesise a refactoring within

the allotted time limit. Where Kayak synthesised a valid refactoring, it did so within

an average of 8.5 s. The syntax-driven tools and Kayak complement each other well

1https://www.jetbrains.com/idea/
2https://netbeans.org/

101

in our experiments, which is illustrated by the fact that both approaches combined

would have solved 44 out of the 50 refactorings (88%) correctly. Loops matching

the expected patterns of syntax-driven tools are handled with ease by such tools,

regardless of semantic complexity. Kayak, on the other hand, abstracts away stark

syntactical differences and recognises equivalent semantics instead, but is limited by

the computational complexity of its static analysis engine.

Kayak’s maximum memory usage (heap+stack) was 125MB over all benchmarks

according to valgrind massif. We found that most timeouts for Kayak are due to an

incomplete instruction set in the synthesis process. We plan to implement missing

instructions as the program progresses beyond its research prototype phase and into

an industrial refactoring tool set. We provide a link to the benchmarks used in our

experiment in the footnote3.

Benchmark IntelliJ NetBeans LambdaFicator JST

Npeople 7 7 7 X
TestStack 7 7 7 X
RemoveDuplicates 7 7 7 X
TreeSetIteratorRemoveTest 7 7 7 X
ListRemove 7 7 7 X
Sort 7 7 7 7

Chympara 7 7 7 X
SimpleArrayListTest 7 7 7 X
Esai 7 7 7 X
RemoveDuringIteration 7 7 7 X
Solution (1) 7 7 7 X
Solution (2) 7 7 7 X
ExerciseTwo 7 7 7 X
CutSticks 7 7 7 7

A 1 7 7 7 X
ExerciseThree X 7 7 X
Solution X 7 7 X
CollectionFilter 7 7 7 X
CutSticks (1) 7 X X X
CutSticks (2) 7 X X 7

Question3 5 7 7 7 X
CutSticks (3) 7 7 7 X
CollectionTest 7 7 7 X
ListIteration 7 7 7 X
ListSetIteratorTest 7 7 7 X
TestIterator (1) X 7 7 7

TestIterator (2) 7 X X X

3http://www.cprover.org/refactoring/cbmc-trunk-diffblue-jst-fse-2017.tar.gz

102

http://www.cprover.org/refactoring/cbmc-trunk-diffblue-jst-fse-2017.tar.gz

Benchmark IntelliJ NetBeans LambdaFicator JST

IteratorMain 7 7 7 X
FilterUneven 7 7 7 X
CheckedListBash X 7 7 X
DataPacking 7 7 7 X
TestArrayList 7 7 7 X
ArrayUtils 7 X X X
GenPrime 7 7 7 7

T1E3R (1) 7 7 7 X
T1E3R (2) 7 7 7 X
Solution (3) 7 7 7 7

Euler68m 7 7 7 7

CombinationSum (1) X X X X
CombinationSum (2) X X X X
Euler2 X X X 7

Sets X X X X
Filter X X X 7

Ex8 7 7 7 X
Test 7 7 7 X
Gray Code 7 7 7 7

Problem3 7 7 7 X
Distance X X X X
DistributedNumberOfInboundEdges 7 X X 7

Eratosthenes 7 7 7 X

Total 10 11 11 39

Table 6.1: Results of the refactoring experiments.

6.6 Threats to Validity

We have provided exemplary evidence for our hypothesis that semantics-based refac-

torings can be soundly applied, are more precise, and enable more complex refactoring

schemata. As we use program analysis technology, all standard threats to validity in

this domain apply here as well, which we summarise briefly.

Selection of benchmarks: Our claim relates to “usual” programs written by human

programmers, and our results may be skewed by the choice of benchmarks. We address

this concern by collecting our benchmarks from GitHub, which hosts a representative

and exceptionally large set of open-source software packages. Commercial software

may have different characteristics not covered by our benchmarks, so our claim may

not extend to commercial, closed-source software. Furthermore, all our benchmarks

103

are Java programs and our claim may not extend to other programming languages. We

focused our experimental work on the exemplar of refactoring iteration over collections,

and our technique may not be more widely applicable. Finally, our Java front end is

still incomplete, only supporting lists of integers and lacking models for many Java

system classes. This restricts our selection to a subset of the benchmarks in our

GitHub search results, which may be biased in favour of our tool. We will address

this issue by extending the front end to accept additional Java input.

Not supported: We exclude transformers, such as peek and foreach, which are

included in the Stream API. The reason is that these transformers enable an equivalent

transformation for virtually any loop processing a collection in iteration order. Fig. 6.11

illustrates such a transformation.

f o r (i n t e : c) { f oo (e) ; } (a)
c . stream () . f o r each (e −> { f oo (e) ; }) ; (b)

Figure 6.11: Foreach example with original (a) and stream (b).

Transformations as illustrated in Fig. 6.11 do not improve expressiveness and

readability of the program, and are, at best, a matter of pure foreach transformations.

We do use them, however, to perform in-place transformations of the collections (as

shown in Sec. 6.1), but they are introduced only after the actual synthesis when we

generate code using streams.

Quality of refactorings: Refactorings need to generate code that remains under-

standable and maintainable. Syntax-driven refactoring has good control over the

resulting code. The code generated by our semantic method stems from a complex

search procedure, and may be challenging to read or maintain.

It is difficult to assess how well our technique does with respect to this subjective

goal. First, we conjecture that small refactorings are preferable to larger ones (measured

by the number of operations). Our method guarantees that we find the shortest possible

refactoring due to the way we parametrise and search the space of candidate programs

(as described in Sec. 6.4). It is unclear if human programmers prefer the shortest

possible refactoring.

Second, our method can exclude refactorings that do not improve readability of

the program. For instance, as mentioned in Sec. 6.1, we exclude transformations that

include only peek and foreach, which are offered by the Stream API. A refactoring

104

that uses these transformers (Fig. 6.11) can be applied to virtually any loop processing

a collection in iteration order but is generally undesirable.

Finally, we manually inspected the refactorings obtained with our tool and found

them to represent sensible transformations.

Efficiency and scalability of the program synthesiser: We apply computa-

tionally complex program analysis techniques, implying that our broader claim is

threatened by scalability limits for these techniques. The scalability of our refactoring

procedure is restricted by the program synthesiser. While for most of our experiments

the synthesiser could find a solution quickly, there were a few cases where it failed to

find any. The problem was that the synthesise portion of the CEGIS loop failed to

return with a candidate solution. Different instruction sets for the synthesis process

can help mitigate this effect.

Better syntax-driven refactoring: Our hypothesis relates semantics-driven refac-

toring to syntax-driven refactoring. While we have undertaken every effort to identify

and benchmark the existing syntax-driven refactoring methods, there may be means

to achieve comparable or better results by improving syntax-driven refactoring.

105

Chapter 7

Conclusion

We explained in Sec. 1.2 the challenge of refactoring decisions that depend on a

program’s semantical properties, rather than purely syntactical features. An exemplar

of such a semantics-driven refactoring was presented in Chapter 4, and we illustrated

how bounded model checking can be used to establish the preconditions necessary for

the respective refactoring decisions. A key characteristic of the presented refactoring

was that once the preconditions were established, the actual refactoring was a well-

defined code mutation. This, however, is not the case for many of the refactorings

introduced in Chapter 1. Most refactoring decisions require the selection of an

appropriate code mutation out of an exponential set of possible transformations.

To address this challenge, we introduced in Chapter 5 our Counterexample-Guided

Inductive Synthesis engine for the construction of structured programs satisfying

requested semantic properties. Several applications of this engine are presented in

Sec. 5.4.1 to Sec. 5.4.2, including safety proofs and bug finding [28, 2]. Our experi-

mental evaluation of this engine against state-of-the-art program synthesisers draws a

favourable comparison for our algorithm and highlights the industrial applicability of

our approach. To enable our synthesis engine to reason about programs relevant to

refactorings, we introduced our Java Stream Theory JST in Sec. 6.3. JST is expressive

enough to reason over the Java 8 Stream refactoring use cases described in Sec. 1.3.

Based on these two individual contributions, our final research work presents a fully

automated refactoring procedure for the Java 8 Stream refactoring in Sec. 6. The

presented algorithm generates equivalence constraints over the JST theory and uses

our synthesis engine to construct provably equivalent refactorings. When compared

to industrial refactoring tools implementing the same Java 8 Stream refactoring, our

algorithm implementation significantly outperformed all competitors.

Industrial applications of program synthesis algorithms are mainly limited by

excessive computational complexity. However, our research highlights that our semantic

106

refactorings decision procedure scales well in the context of industrial benchmarks due

to the abstractions inherent to the Java Stream Theory. Our research contributions

thus have a palpable impact on industrial software engineering applications and have

significantly advanced the state of the art in computer-assisted refactorings.

107

Appendix A

Example: Non-existential second
order synthesis problem

Fig. A.1 provides a C representation, which can be solved by our program synthesis

engine for the following second order formula: ∃P.∀ ~Pin, ~x.σ(~P , ~x). Our algorithm thus

synthesises a program P which for every ground term ~x and every combination of

well-formed programs ~Pin satisfies the constraint σ(~P , ~x).

void synth () {
prog t p = nondet () ;
int in [N] , out [M] ;
p rog t in p [N p] ;

assume (wel l formed (p)) ;

in = t e s t 1 ;
exec (p , in , out) ;
assumecheck (in , in p , out)) ;
. . .
in = testN ;
exec (p , in , out) ;
assume (check (in , in p , out)) ;

a s s e r t (fa l se) ;
}

void v e r i f (p rog t p) {
int in [N] = nondet () ;
int out [M] ;

int i n p [N p] = nondet () ;
for (int i =0; i<N p ; ++i)

assume (
wel l formed (in p [i])) ;

exec (p , in , out) ;
a s s e r t (check (in , out)) ;

}

Figure A.1: Second order constraint expressed as a C− program.

While such constraints are expressible in our synthesis algorithm, none of the

108

applications presented in this thesis require such semantics.

109

Appendix B

Example: C goto to Java
transformations

Fig. B.1 and Fig. B.2 provide extended examples of our C goto to Java switch

transformations. For better readability, we extract each label section into a separate

function, as illustrated in Fig. B.1. C goto statements further allow jumps into

other control structures, such as loops or if statements. This does not hold for Java

switch-case statements. Wherever Jitsune observes this behaviour, it translates the

respective control structure into a series of goto statements and labels, which is a

feature provided by CBMC [22]. Fig. B.2 illustrates this approach.

110

void jmp () {
i n i t :
int i = 0 ;
goto middle ;

s t a r t :
i = 2 ;
goto end ;

middle :
i = 1 ;
goto s t a r t ;

end :
i = 3 ;
}

(a) Native JNI/C.

class jmp conta iner {
int i ;

private int i n i t (){
i =0;
return 2 ; // goto middle ;
}
private int s t a r t (){

i =2;
return 3 ; // goto end ;
}
private int middle (){

i =1;
return 1 ; // goto s t a r t ;
}
private int end (){

i=3
return −1; // e x i t f u n c t i o n
}

private int r u n l a b e l (int l a b e l){
switch (l a b e l){
case 0 : return i n i t () ;
case 1 : return s t a r t () ;
case 2 : return middle () ;
case 3 : return end () ;
default : return −1;
}
}

// Function entry p o i n t
public void run (){
int l a b e l =0;
while (l a b e l >= 0)

l a b e l = r u n l a b e l (l a b e l) ;
}
}

(b) Java

Figure B.1: Goto translation to Java.

111

void jmp () {
int i = 0 ;
goto f i r s t ;
for (; i < 10 ; ++i) {

p r i n t f (” , ”) ;
f i r s t :
p r i n t f (”%d” , i) ;

}
}

(a) Native JNI/C.

class jmp conta iner {
int i ;

private int i n i t (){
i = 0 ;
return 1 ;
}
private int l oop guard (){

i f (i < 10) { return 3 ; }
return −1;
}
private int body entry (){

Std io . p r i n t f (” , ”) ;
return 1 ;
}
private int f i r s t (){

Std io . p r i n t f (”%d” , i) ;
i=i +1;
return 2 ;
}

private int r u n l a b e l (int l b l){
switch (l b l){
case 0 : return i n i t () ;
case 1 : return f i r s t () ;
case 2 : return l oop guard () ;
case 3 : return body entry () ;
default : return −1;
}
}

// Function entry p o i n t
public void run (){
int l a b e l =0;
while (l a b e l >= 0)

l a b e l = r u n l a b e l (l a b e l) ;
}
}

(b) Java.

Figure B.2: Goto into control structure and translation to Java.

112

Appendix C

C to Jitsune expression
translations

This section lists all categories of translations performed by Jitsune, starting from

CBMC’s internal type representation, such as CPROVER bitvector [n] for an

integer bit-vector of length n [22].

113

CPROVER bitvector [1 6] x ; → shor t x ; (C.1)

CPROVER bitvector [3 2] x ; → i n t x ; (C.2)

CPROVER bitvector [6 4] x ; → long x ; (C.3)

CPROVER floatbv [3 2] [2 3] x ; → f l o a t x ; (C.4)

CPROVER floatbv [6 4] [5 2] x ; → double x ; (C.5)

Figure C.1: Primitive type declarations.

CPROVER bitvector [1 6] x ; →

IntegerPo intee<Short> x=new IntegerPo intee <>();
(C.6)

CPROVER bitvector [1 6] ∗p = &x ; →

Pointer<IntegerPo intee<Short>> p=Po inte r s . r e f e r e n c e (x) ;

(C.7)

Figure C.2: Type declarations with pointer access.

mal loc (s) → S t d l i b . mal loc (s) (C.8)

f r e e (p) → S t d l i b . f r e e (p) (C.9)

p r i n t f (s , o) → Std io . p r i n t f (s , o) (C.10)

Figure C.3: Standard library calls.

114

x + y → Operators . p lus (x , y) (C.11)

x − y → Operators . minus (x , y) (C.12)

x ∗ y → Operators . mul t ip ly (x , y) (C.13)

x / y → Operators . d i v i d e (x , y) (C.14)

++x → Operators . preIncrement (x) (C.15)

− −x → Operators . preDecrement (x) (C.16)

x++→ Operators . postIncrement (x) (C.17)

x− −→ Operators . postDecrement (x) (C.18)

Figure C.4: Operators on wrapped types.

&x → Pointe r s . r e f e r e n c e (x) (C.19)

∗p→ Pointe r s . d e r e f e r e n c e (p) (C.20)

Figure C.5: Pointer arithmetic.

i f (c) { } → i f (c) { } (C.21)

i f (c) { } e l s e { } → i f (c) { } e l s e { } (C.22)

Figure C.6: Branches.

115

whi le (c) { } → whi le (c) { } (C.23)

do { } whi le (c) ; → do { } whi le (c) ; (C.24)

f o r (i ; c ; s) { } → f o r (i ; c ; s) { } (C.25)

Figure C.7: Loops.

116

Appendix D

Jitsune instructions

Our Jitsune tool is available for download at http://www.cprover.org/refactoring/

jitsune.html. The program is intended to be compiled and run on a Linux-based

system with a bash shell. After downloading, the following instructions will execute

the standard Jitsune demo benchmarks:

ta r −xz f j i t s u n e . ta r . gz
. / bu i ld . sh
. / run−demos . sh

117

http://www.cprover.org/refactoring/jitsune.html
http://www.cprover.org/refactoring/jitsune.html
http://www.cprover.org/refactoring/jitsune.html
http://www.cprover.org/refactoring/jitsune.html

Appendix E

Kayak instructions

The Kayak executable and other resources are available for download at http://www.

cprover.org/refactoring/kayak.html. On a Linux-based system, the program can

be compiled and executed for the pre-configured benchmarks using the following

commands:

ta r −xz f cbmc−trunk−d i f f b l u e−j s t−f s e −2017. ta r . gz
export PATH=<j i t s u n e d i r >/s r c /cbmc:< j i t s u n e d i r >/s r c / c e g i s : ${PATH}
cd < j i t s u n e d i r >/r e g r e s s i o n
. / test . p l −c c e g i s c e g i s / c eg i s j s a benchmark ∗

118

http://www.cprover.org/refactoring/kayak.html
http://www.cprover.org/refactoring/kayak.html
http://www.cprover.org/refactoring/kayak.html
http://www.cprover.org/refactoring/kayak.html

Bibliography

[1] BS ISO/IEC 9899:2011 - Information technology. Programming languages. C

(2012)

[2] Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L., David, C., Kesseli, P.,

Kroening, D.: Sound and automated synthesis of digital stabilizing controllers

for continuous plants. In: Proceedings of the 20th International Conference on

Hybrid Systems: Computation and Control, HSCC ’17, pp. 197–206. ACM, New

York, NY, USA (2017). DOI 10.1145/3049797.3049802. URL http://doi.acm.

org/10.1145/3049797.3049802

[3] Abate, A., Bessa, I., Cattaruzza, D., Cordeiro, L., David, C., Kesseli, P.,

Kroening, D., Polgreen, E.: Automated Formal Synthesis of Digital Controllers

for State-Space Physical Plants, pp. 462–482. Springer International Publishing,

Cham (2017). DOI 10.1007/978-3-319-63387-9 23. URL https://doi.org/10.

1007/978-3-319-63387-9_23

[4] Alur, R., et al.: Syntax-guided synthesis. In: FMCAD (2013)

[5] Astrom, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists

and Engineers. Princeton University Press, Princeton, NJ, USA (2008)

[6] Ball, T., Bounimova, E., Levin, V., Kumar, R., Lichtenberg, J.: Computer Aided

Verification: 22nd International Conference, CAV 2010, Edinburgh, UK, July

15-19, 2010. Proceedings, chap. The Static Driver Verifier Research Platform, pp.

119–122. Springer, Berlin, Heidelberg (2010). DOI 10.1007/978-3-642-14295-6 11.

URL http://dx.doi.org/10.1007/978-3-642-14295-6_11

[7] Bavota, G., De Lucia, A., Oliveto, R.: Identifying extract class refactoring

opportunities using structural and semantic cohesion measures. J. Syst. Softw.

84(3), 397–414 (2011)

119

http://doi.acm.org/10.1145/3049797.3049802
http://doi.acm.org/10.1145/3049797.3049802
https://doi.org/10.1007/978-3-319-63387-9_23
https://doi.org/10.1007/978-3-319-63387-9_23
http://dx.doi.org/10.1007/978-3-642-14295-6_11

[8] Beyene, T.A., Brockschmidt, M., Rybalchenko, A.: Ctl+fo verification as

constraint solving. In: Proceedings of the 2014 International SPIN Symposium

on Model Checking of Software, SPIN 2014, pp. 101–104. ACM, New York, NY,

USA (2014). DOI 10.1145/2632362.2632364. URL http://doi.acm.org/10.

1145/2632362.2632364

[9] Beyene, T.A., Popeea, C., Rybalchenko, A.: Solving existentially quantified

Horn clauses. In: CAV, LNCS, pp. 869–882. Springer (2013)

[10] Beyer, D., Keremoglu, M.: CPAchecker: A tool for configurable software ver-

ification. In: G. Gopalakrishnan, S. Qadeer (eds.) Computer Aided Verifica-

tion, Lecture Notes in Computer Science, vol. 6806, pp. 184–190. Springer

(2011). DOI 10.1007/978-3-642-22110-1 16. URL http://dx.doi.org/10.

1007/978-3-642-22110-1_16

[11] Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model

checking. Advances in Computers 58, 117–148 (2003)

[12] Bouajjani, A., Dragoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking

for programs manipulating lists and arrays with infinite data. In: Automated

Technology for Verification and Analysis (ATVA), LNCS. Springer (2012)

[13] Brain, M., Crick, T., De Vos, M., Fitch, J.: TOAST: Applying Answer Set

Programming to Superoptimisation, pp. 270–284. Springer Berlin Heidelberg,

Berlin, Heidelberg (2006). DOI 10.1007/11799573 21. URL http://dx.doi.

org/10.1007/11799573_21

[14] Brain, M., David, C., Kroening, D., Schrammel, P.: Model and proof generation

for heap-manipulating programs. In: European Symposium on Programming

(ESOP), LNCS, pp. 432–452. Springer (2014)

[15] Brameier, M., Banzhaf, W.: Linear Genetic Programming. Springer (2007)

[16] Chapman, M., Chockler, H., Kesseli, P., Kroening, D., Strichman, O., Tautschnig,

M.: Learning the Language of Error, pp. 114–130. Springer International

Publishing, Cham (2015). DOI 10.1007/978-3-319-24953-7 9. URL http://dx.

doi.org/10.1007/978-3-319-24953-7_9

[17] Cheung, A., Solar-Lezama, A., Madden, S.: Optimizing database-backed appli-

cations with query synthesis. In: Conference on Programming Language Design

and Implementation, PLDI, pp. 3–14 (2013)

120

http://doi.acm.org/10.1145/2632362.2632364
http://doi.acm.org/10.1145/2632362.2632364
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/978-3-642-22110-1_16
http://dx.doi.org/10.1007/11799573_21
http://dx.doi.org/10.1007/11799573_21
http://dx.doi.org/10.1007/978-3-319-24953-7_9
http://dx.doi.org/10.1007/978-3-319-24953-7_9

[18] Christopoulou, A., Giakoumakis, E., Zafeiris, V.E., Vasiliki, S.: Automated

refactoring to the strategy design pattern. Information and Software Technology

54(11), 1202 – 1214 (2012)

[19] Church, A.: Logic, arithmetic, automata. In: Proc. Internat. Congr. Mathemati-

cians, pp. 23–35. Inst. Mittag-Leffler, Djursholm (1962)

[20] Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using

satisfiability solving. Formal Methods in System Design 19(1), 7–34 (2001)

[21] Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM

Trans. Program. Lang. Syst. pp. 1512–1542 (1994)

[22] Clarke, E.M., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs.

In: TACAS, LNCS, vol. 2988, pp. 168–176. SPRINGER (2004)

[23] Cook, B., See, A., Zuleger, F.: Ramsey vs. Lexicographic Termina-

tion Proving, pp. 47–61. Springer Berlin Heidelberg, Berlin, Heidelberg

(2013). DOI 10.1007/978-3-642-36742-7 4. URL http://dx.doi.org/10.1007/

978-3-642-36742-7_4

[24] Cordy, J.R., Dean, T.R., Malton, A.J., Schneider, K.A.: Source transformation

in software engineering using the TXL transformation system. Information and

Software Technology 44(13), 827 – 837 (2002)

[25] Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of neces-

sary preconditions. In: R. Giacobazzi, J. Berdine, I. Mastroeni (eds.) Verification,

Model Checking, and Abstract Interpretation, Lecture Notes in Computer Sci-

ence, vol. 7737, pp. 128–148. Springer (2013). DOI 10.1007/978-3-642-35873-9 10.

URL http://dx.doi.org/10.1007/978-3-642-35873-9_10

[26] Cristina, D., Pascal, K., Matt, L., Daniel, K.: Program synthesis for program

analysis. ACM Transactions on Programming Languages and Systems p. to

appear (2018)

[27] David, C., Kesseli, P., Kroening, D.: Kayak: Safe semantic refactoring to java

streams. Technical Report (2016)

[28] David, C., Kesseli, P., Kroening, D., Lewis, M.: Danger Invari-

ants, pp. 182–198. Springer International Publishing, Cham (2016).

121

http://dx.doi.org/10.1007/978-3-642-36742-7_4
http://dx.doi.org/10.1007/978-3-642-36742-7_4
http://dx.doi.org/10.1007/978-3-642-35873-9_10

DOI 10.1007/978-3-319-48989-6 12. URL http://dx.doi.org/10.1007/

978-3-319-48989-6_12

[29] David, C., Kroening, D., Lewis, M.: Danger invariants. CoRR abs/1503.05445

(2015). URL http://arxiv.org/abs/1503.05445

[30] David, C., Kroening, D., Lewis, M.: Propositional reasoning about safety and

termination of heap-manipulating programs. In: J. Vitek (ed.) Programming

Languages and Systems, pp. 661–684. Springer Berlin Heidelberg, Berlin, Hei-

delberg (2015)

[31] David, C., Kroening, D., Lewis, M.: Unrestricted termination and non-

termination proofs for bit-vector programs. In: ESOP (2015)

[32] David, C., Kroening, D., Lewis, M.: Using program synthesis for program

analysis. In: Logic for Programming, Artificial Intelligence, and Reasoning

(LPAR-20), LNCS, pp. 483–498. Springer (2015)

[33] Fagin, R.: Generalized first-order spectra, and polynomial. time rec-

ognizable sets. SIAM-AMS Proceedings 7, 43–73 (1974). URL

http://www.researchgate.net/publication/242608657_Generalized_

first-order_spectra_and_polynomial._time_recognizable_sets

[34] Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-

Wesley (1999)

[35] Franklin, G.F., Powell, D.J., Emami-Naeini, A.: Feedback Control of Dynamic

Systems, 4th edn. Prentice Hall PTR, Upper Saddle River, NJ, USA (2001)

[36] Franklin, L., Gyori, A., Lahoda, J., Dig, D.: LAMBDAFICATOR: from im-

perative to functional programming through automated refactoring. In: 35th

International Conference on Software Engineering, ICSE ’13, San Francisco, CA,

USA, May 18-26, 2013, pp. 1287–1290 (2013). DOI 10.1109/ICSE.2013.6606699.

URL http://dx.doi.org/10.1109/ICSE.2013.6606699

[37] Fraser, G., Arcuri, A.: Evosuite: automatic test suite generation for object-

oriented software. In: Proceedings of the 19th ACM SIGSOFT Symposium

and the 13th European Conference on Foundations of Software Engineering,

ESEC/FSE ’11, pp. 416–419. ACM (2011). DOI 10.1145/2025113.2025179. URL

http://doi.acm.org/10.1145/2025113.2025179

122

http://dx.doi.org/10.1007/978-3-319-48989-6_12
http://dx.doi.org/10.1007/978-3-319-48989-6_12
http://arxiv.org/abs/1503.05445
http://www.researchgate.net/publication/242608657_Generalized_first-order_spectra_and_polynomial._time_recognizable_sets
http://www.researchgate.net/publication/242608657_Generalized_first-order_spectra_and_polynomial._time_recognizable_sets
http://dx.doi.org/10.1109/ICSE.2013.6606699
http://doi.acm.org/10.1145/2025113.2025179

[38] Fuhrer, R.M., Tip, F., Kiezun, A., Dolby, J., Keller, M.: Efficiently refactoring

java applications to use generic libraries. In: ECOOP 2005 - Object-Oriented

Programming, 19th European Conference, Glasgow, UK, July 25-29, 2005,

Proceedings, pp. 71–96 (2005). DOI 10.1007/11531142 4. URL http://dx.doi.

org/10.1007/11531142_4

[39] Galeotti, J.P., Fraser, G., Arcuri, A.: Extending a search-based test generator

with adaptive dynamic symbolic execution. In: International Symposium on

Software Testing and Analysis (ISSTA), pp. 421–424. ACM (2014)

[40] Garg, P., Löding, C., Madhusudan, P., Neider, D.: ICE: A Robust Framework

for Learning Invariants, pp. 69–87. Springer International Publishing, Cham

(2014). DOI 10.1007/978-3-319-08867-9 5. URL http://dx.doi.org/10.1007/

978-3-319-08867-9_5

[41] Godlin, B., Strichman, O.: Inference rules for proving the equivalence of recursive

procedures. In: Time for Verification, Essays in Memory of Amir Pnueli, pp.

167–184 (2010)

[42] Gomez, F., Mikkulainen, R.: Incremental evolution of complex general behavior.

Adapt. Behav. 5(3-4), 317–342 (1997). DOI 10.1177/105971239700500305. URL

http://dx.doi.org/10.1177/105971239700500305

[43] Gopan, D., Reps, T.: Low-level library analysis and summarization.

In: W. Damm, H. Hermanns (eds.) Computer Aided Verification, Lec-

ture Notes in Computer Science, vol. 4590, pp. 68–81. Springer (2007).

DOI 10.1007/978-3-540-73368-3 10. URL http://dx.doi.org/10.1007/

978-3-540-73368-3_10

[44] Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing

software verifiers from proof rules. In: PLDI, pp. 405–416 (2012)

[45] Gulwani, S.: Dimensions in program synthesis. In: Proceedings of the 12th

International ACM SIGPLAN Symposium on Principles and Practice of Declar-

ative Programming, PPDP ’10, pp. 13–24. ACM, New York, NY, USA (2010).

DOI 10.1145/1836089.1836091. URL http://doi.acm.org/10.1145/1836089.

1836091

[46] Gulwani, S., Jha, S., Tiwari, A., Venkatesan, R.: Synthesis of loop-free programs.

In: PLDI, pp. 62–73 (2011)

123

http://dx.doi.org/10.1007/11531142_4
http://dx.doi.org/10.1007/11531142_4
http://dx.doi.org/10.1007/978-3-319-08867-9_5
http://dx.doi.org/10.1007/978-3-319-08867-9_5
http://dx.doi.org/10.1177/105971239700500305
http://dx.doi.org/10.1007/978-3-540-73368-3_10
http://dx.doi.org/10.1007/978-3-540-73368-3_10
http://doi.acm.org/10.1145/1836089.1836091
http://doi.acm.org/10.1145/1836089.1836091

[47] Gulwani, S., Srivastava, S., Venkatesan, R.: Program analysis as constraint

solving. SIGPLAN Not. 43(6), 281–292 (2008). DOI 10.1145/1379022.1375616.

URL http://doi.acm.org/10.1145/1379022.1375616

[48] Gurfinkel, A., Kahsai, T., Navas, J.: SeaHorn: A framework for veri-

fying C programs (competition contribution). In: C. Baier, C. Tinelli

(eds.) Tools and Algorithms for the Construction and Analysis of Sys-

tems, Lecture Notes in Computer Science, vol. 9035, pp. 447–450. Springer

(2015). DOI 10.1007/978-3-662-46681-0 41. URL http://dx.doi.org/10.

1007/978-3-662-46681-0_41

[49] Gyori, A., Franklin, L., Dig, D., Lahoda, J.: Crossing the gap from imperative

to functional programming through refactoring. In: Proceedings of the 2013 9th

Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2013, pp.

543–553. ACM, New York, NY, USA (2013). DOI 10.1145/2491411.2491461.

URL http://doi.acm.org/10.1145/2491411.2491461

[50] Haran, A., Carter, M., Emmi, M., Lal, A., Qadeer, S., Rakamarić, Z.:

SMACK+Corral: A modular verifier (competition contribution). In: C. Baier,

C. Tinelli (eds.) Proceedings of the 21st International Conference on Tools and

Algorithms for the Construction and Analysis of Systems (TACAS), Lecture

Notes in Computer Science, vol. 9035, pp. 450–453. Springer (2015)

[51] Hofferek, G., Gupta, A., Könighofer, B., Jiang, J.H.R., Bloem, R.: Synthesiz-

ing multiple boolean functions using interpolation on a single proof. CoRR

abs/1308.4767 (2013)

[52] Hunt, A., Thomas, D.: The Pragmatic Programmer: From Journeyman to

Master. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

(1999)

[53] Inozemtseva, L., Holmes, R.: Coverage is not strongly correlated with test

suite effectiveness. In: P. Jalote, L.C. Briand, A. van der Hoek (eds.) 36th

International Conference on Software Engineering (ICSE), pp. 435–445. ACM

(2014)

[54] International Standards Organization, International Electrotechnical Commis-

sion: ISO/IEC 9899:2011, Programming Languages – C, first edn. American

National Standards Institute (ANSI), 11 West 42nd Street, New York, New York

1O036 (2011). URL http://www.open-std.org/jtc1/sc22/wg14/

124

http://doi.acm.org/10.1145/1379022.1375616
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://dx.doi.org/10.1007/978-3-662-46681-0_41
http://doi.acm.org/10.1145/2491411.2491461
http://www.open-std.org/jtc1/sc22/wg14/

[55] Itzhaky, S., Banerjee, A., Immerman, N., Nanevski, A., Sagiv, M.: Effectively-

propositional reasoning about reachability in linked data structures. In: Com-

puter Aided Verification (CAV), LNCS, pp. 756–772. Springer (2013)

[56] Iu, M., Cecchet, E., Zwaenepoel, W.: JReq: Database queries in imperative

languages. In: Compiler Construction (CC), pp. 84–103 (2010)

[57] Jeon, S.U., Lee, J.S., Bae, D.H.: An automated refactoring approach to design

pattern-based program transformations in Java programs. In: Asia-Pacific

Software Engineering Conference (APSEC), pp. 337–345 (2002)

[58] Kataoka, Y., Notkin, D., Ernst, M.D., Griswold, W.G.: Automated support for

program refactoring using invariants. In: Proceedings of the IEEE International

Conference on Software Maintenance (ICSM’01), ICSM ’01. IEEE Computer

Society (2001)

[59] Keel, L., Bhattacharyya, S.: Robust, fragile, or optimal? IEEE Trans. on

Automatic Control 42(8), 1098–1105 (1997). DOI 10.1109/9.618239

[60] Keel, L., Bhattacharyya, S.: Stability margins and digital implementation of

controllers. In: Proc. American Control Conference, vol. 5, pp. 2852–2856 (1998).

DOI 10.1109/ACC.1998.688377

[61] Kerievsky, J.: Refactoring to patterns. In: Extreme Programming and Agile

Methods, LNCS, vol. 3134, p. 232. Springer (2004)

[62] Khatchadourian, R., Sawin, J., Rountev, A.: Automated refactoring of legacy

java software to enumerated types. In: Software Maintenance, 2007. ICSM 2007.

IEEE International Conference on, pp. 224–233 (2007)

[63] Kiezun, A., Ernst, M.D., Tip, F., Fuhrer, R.M.: Refactoring for parameterizing

java classes. In: 29th International Conference on Software Engineering (ICSE

2007), Minneapolis, MN, USA, May 20-26, 2007, pp. 437–446 (2007). DOI

10.1109/ICSE.2007.70. URL http://dx.doi.org/10.1109/ICSE.2007.70

[64] King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7),

385–394 (1976). DOI 10.1145/360248.360252. URL http://doi.acm.org/10.

1145/360248.360252

125

http://dx.doi.org/10.1109/ICSE.2007.70
http://doi.acm.org/10.1145/360248.360252
http://doi.acm.org/10.1145/360248.360252

[65] Kong, S., Jung, Y., David, C., Wang, B.Y., Yi, K.: Automatically In-

ferring Quantified Loop Invariants by Algorithmic Learning from Simple

Templates, pp. 328–343. Springer Berlin Heidelberg, Berlin, Heidelberg

(2010). DOI 10.1007/978-3-642-17164-2 23. URL http://dx.doi.org/10.

1007/978-3-642-17164-2_23

[66] Kraan, I., Basin, D., Bundy, A.: Logic program synthesis via proof

planning. In: Logic Program Synthesis and Transformation, pp. 1–14

(1993). DOI 10.1007/978-1-4471-3560-9 1. URL http://dx.doi.org/10.1007/

978-1-4471-3560-9_1

[67] Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in

c programs for fast counterexample detection. In: Proceedings of the 25th

International Conference on Computer Aided Verification, CAV’13, pp. 381–396.

Springer-Verlag, Berlin, Heidelberg (2013). DOI 10.1007/978-3-642-39799-8 26.

URL http://dx.doi.org/10.1007/978-3-642-39799-8_26

[68] Kroening, D., Lewis, M., Weissenbacher, G.: Proving Safety with Trace

Automata and Bounded Model Checking, pp. 325–341. Springer Interna-

tional Publishing, Cham (2015). DOI 10.1007/978-3-319-19249-9 21. URL

http://dx.doi.org/10.1007/978-3-319-19249-9_21

[69] Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer (2002)

[70] Li, S., Tan, G.: Exception analysis in the java native interface. Science of

Computer Programming 89, Part C, 273 – 297 (2014). DOI http://dx.doi.org/

10.1016/j.scico.2014.01.018. URL http://www.sciencedirect.com/science/

article/pii/S0167642314000446

[71] Madhusudan, P., Parlato, G., Qiu, X.: Decidable logics combining heap struc-

tures and data. In: Principles of Programming Languages (POPL), pp. 611–622

(2011)

[72] Manna, Z., Waldinger, R.J.: Toward automatic program synthesis. Commun.

ACM 14(3), 151–165 (1971). DOI 10.1145/362566.362568. URL http://doi.

acm.org/10.1145/362566.362568

[73] Mariani, L., Marchetto, A., Nguyen, C., Tonella, P., Baars, A.: Revolution:

Automatic evolution of mined specifications. In: Software Reliability Engineering

(ISSRE), pp. 241–250. IEEE (2012). DOI 10.1109/ISSRE.2012.14

126

http://dx.doi.org/10.1007/978-3-642-17164-2_23
http://dx.doi.org/10.1007/978-3-642-17164-2_23
http://dx.doi.org/10.1007/978-1-4471-3560-9_1
http://dx.doi.org/10.1007/978-1-4471-3560-9_1
http://dx.doi.org/10.1007/978-3-642-39799-8_26
http://dx.doi.org/10.1007/978-3-319-19249-9_21
http://www.sciencedirect.com/science/article/pii/S0167642314000446
http://www.sciencedirect.com/science/article/pii/S0167642314000446
http://doi.acm.org/10.1145/362566.362568
http://doi.acm.org/10.1145/362566.362568

[74] Mariani, L., Pezzè, M.: A technique for verifying component-based software. Elec-

tronic Notes in Theoretical Computer Science 116(0), 17 – 30 (2005). DOI http:

//dx.doi.org/10.1016/j.entcs.2004.02.089. URL http://www.sciencedirect.

com/science/article/pii/S1571066104052740. Proceedings of the Interna-

tional Workshop on Test and Analysis of Component Based Systems (TACoS)

[75] McMillan, K.L.: Lazy abstraction with interpolants. In: Computer Aided

Verification (CAV), LNCS, pp. 123–136. Springer (2006)

[76] de Moura, L., Bjørner, N.: Deciding Effectively Propositional Logic Using

DPLL and Substitution Sets, pp. 410–425. Springer Berlin Heidelberg, Berlin,

Heidelberg (2008). DOI 10.1007/978-3-540-71070-7 35. URL http://dx.doi.

org/10.1007/978-3-540-71070-7_35

[77] Nellis, A., Kesseli, P., Conmy, P.R., Kroening, D., Schrammel, P., Tautschnig,

M.: Assisted Coverage Closure, pp. 49–64. Springer International Publishing,

Cham (2016). DOI 10.1007/978-3-319-40648-0 5. URL http://dx.doi.org/

10.1007/978-3-319-40648-0_5

[78] Nori, A.V., Rajamani, S.K.: An empirical study of optimizations in Yogi.

In: International Conference on Software Engineering (ICSE). Association for

Computing Machinery, Inc. (2010). URL http://research.microsoft.com/

apps/pubs/default.aspx?id=117670

[79] O’Keeffe, M., Cinnéide, M.: Search-based refactoring: an empirical study.

Journal of Software Maintenance and Evolution: Research and Practice 20(5),

345–364 (2008)

[80] O’Keeffe, M., Cinnéide, M.: Search-based refactoring for software maintenance.

Journal of Systems and Software 81(4), 502 – 516 (2008)

[81] Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:

Computer Aided Verification (CAV), LNCS, pp. 773–789. Springer (2013)

[82] Raychev, V., Schäfer, M., Sridharan, M., Vechev, M.T.: Refactoring with

synthesis. In: Proceedings of the 2013 ACM SIGPLAN International Conference

on Object Oriented Programming Systems Languages & Applications, OOPSLA

2013, part of SPLASH 2013, Indianapolis, IN, USA, October 26-31, 2013, pp.

339–354 (2013). DOI 10.1145/2509136.2509544. URL http://doi.acm.org/10.

1145/2509136.2509544

127

http://www.sciencedirect.com/science/article/pii/S1571066104052740
http://www.sciencedirect.com/science/article/pii/S1571066104052740
http://dx.doi.org/10.1007/978-3-540-71070-7_35
http://dx.doi.org/10.1007/978-3-540-71070-7_35
http://dx.doi.org/10.1007/978-3-319-40648-0_5
http://dx.doi.org/10.1007/978-3-319-40648-0_5
http://research.microsoft.com/apps/pubs/default.aspx?id=117670
http://research.microsoft.com/apps/pubs/default.aspx?id=117670
http://doi.acm.org/10.1145/2509136.2509544
http://doi.acm.org/10.1145/2509136.2509544

[83] Reynolds, A., Deters, M., Kuncak, V., Tinelli, C., Barrett, C.: Counterexample-

Guided Quantifier Instantiation for Synthesis in SMT, pp. 198–216. Springer

International Publishing, Cham (2015). DOI 10.1007/978-3-319-21668-3 12.

URL http://dx.doi.org/10.1007/978-3-319-21668-3_12

[84] Shafiei, N., Breugel, F.v.: Automatic handling of native methods in Java

PathFinder. In: Proceedings of the 21st International SPIN Workshop. ACM

(2014)

[85] Shams, Z., Edwards, S.H.: Reflection support: Java reflection made

easy. The Open Software Engineering Journal 7, 38–52 (2013).

DOI 10.2174/1874107X20130422001. URL http://dx.doi.org/10.2174/

1874107X20130422001

[86] Sharma, R., Aiken, A.: From invariant checking to invariant inference using

randomized search. In: Computer Aided Verification (CAV), pp. 88–105 (2014)

[87] Siefers, J., Tan, G., Morrisett, G.: Robusta: Taming the native beast of the jvm.

In: Proceedings of the 17th ACM Conference on Computer and Communications

Security, CCS ’10, pp. 201–211. ACM, New York, NY, USA (2010). DOI 10.1145/

1866307.1866331. URL http://doi.acm.org/10.1145/1866307.1866331

[88] Solar-Lezama, A.: Program sketching. STTT 15(5-6), 475–495 (2013)

[89] Steimann, F.: Constraint-Based Model Refactoring, pp. 440–454. Springer Berlin

Heidelberg, Berlin, Heidelberg (2011). DOI 10.1007/978-3-642-24485-8 32. URL

http://dx.doi.org/10.1007/978-3-642-24485-8_32

[90] Steimann, F., Kollee, C., von Pilgrim, J.: A Refactoring Constraint Language

and Its Application to Eiffel, pp. 255–280. Springer Berlin Heidelberg, Berlin,

Heidelberg (2011). DOI 10.1007/978-3-642-22655-7 13. URL http://dx.doi.

org/10.1007/978-3-642-22655-7_13

[91] Steimann, F., von Pilgrim, J.: Constraint-Based Refactoring with Fore-

sight, pp. 535–559. Springer Berlin Heidelberg, Berlin, Heidelberg (2012).

DOI 10.1007/978-3-642-31057-7 24. URL http://dx.doi.org/10.1007/

978-3-642-31057-7_24

128

http://dx.doi.org/10.1007/978-3-319-21668-3_12
http://dx.doi.org/10.2174/1874107X20130422001
http://dx.doi.org/10.2174/1874107X20130422001
http://doi.acm.org/10.1145/1866307.1866331
http://dx.doi.org/10.1007/978-3-642-24485-8_32
http://dx.doi.org/10.1007/978-3-642-22655-7_13
http://dx.doi.org/10.1007/978-3-642-22655-7_13
http://dx.doi.org/10.1007/978-3-642-31057-7_24
http://dx.doi.org/10.1007/978-3-642-31057-7_24

[92] Sun, M., Tan, G.: Computer Security – ESORICS 2012: 17th Euro-

pean Symposium on Research in Computer Security, Pisa, Italy, Septem-

ber 10-12, 2012. Proceedings, chap. JVM-Portable Sandboxing of Java’s Na-

tive Libraries, pp. 842–858. Springer Berlin Heidelberg, Berlin, Heidelberg

(2012). DOI 10.1007/978-3-642-33167-1 48. URL http://dx.doi.org/10.

1007/978-3-642-33167-1_48

[93] SV-COMP 2016: http://sv-comp.sosy-lab.org/2016/

[94] Tan, G.: Programming Languages and Systems: 8th Asian Symposium, APLAS

2010, Shanghai, China, November 28 - December 1, 2010. Proceedings, chap.

JNI Light: An Operational Model for the Core JNI, pp. 114–130. Springer

Berlin Heidelberg, Berlin, Heidelberg (2010). DOI 10.1007/978-3-642-17164-2 9.

URL http://dx.doi.org/10.1007/978-3-642-17164-2_9

[95] Trudel, M., Furia, C.A., Nordio, M., Meyer, B., Oriol, M.: C to O-O translation:

Beyond the easy stuff. 2013 20th Working Conference on Reverse Engineering

(WCRE) 0, 19–28 (2012). DOI http://doi.ieeecomputersociety.org/10.1109/

WCRE.2012.12

[96] Visser, E.: Program transformation with Stratego/XT. Rules, strategies, tools,

and systems in Stratego/XT 0.9. Tech. Rep. UU-CS-2004-011, Department of

Information and Computing Sciences, Utrecht University (2004)

[97] Visser, W., Havelund, K., Brat, G.P., Park, S., Lerda, F.: Model check-

ing programs. Autom. Softw. Eng. 10(2), 203–232 (2003). DOI 10.1023/A:

1022920129859. URL http://dx.doi.org/10.1023/A:1022920129859

[98] Wang, T.E., Garoche, P., Roux, P., Jobredeaux, R., Feron, E.: Formal analysis

of robustness at model and code level. In: Proceedings of the 19th International

Conference on Hybrid Systems: Computation and Control, HSCC, pp. 125–134

(2016)

[99] Weissgerber, P., Diehl, S.: Identifying refactorings from source-code changes. In:

Automated Software Engineering (ASE), pp. 231–240 (2006)

[100] Wintersteiger, C.M., Hamadi, Y., Moura, L.: Efficiently solving quantified

bit-vector formulas. Form. Methods Syst. Des. 42(1), 3–23 (2013). DOI 10.1007/

s10703-012-0156-2. URL http://dx.doi.org/10.1007/s10703-012-0156-2

129

http://dx.doi.org/10.1007/978-3-642-33167-1_48
http://dx.doi.org/10.1007/978-3-642-33167-1_48
http://sv-comp.sosy-lab.org/2016/
http://dx.doi.org/10.1007/978-3-642-17164-2_9
http://dx.doi.org/10.1023/A:1022920129859
http://dx.doi.org/10.1007/s10703-012-0156-2

	Introduction
	Motivation
	State of the art
	Research goal
	Outline
	Contributions

	Preliminaries
	CBMC and Symbolic Execution
	Loop Safety Invariants
	Java Native Interface
	CEGIS paradigm

	Related Work
	Opaque library modelling
	Bug finding
	Inductive program synthesis
	Refactoring

	Exemplar: Remove unnecessary reflection
	Background
	Model Extraction for JNI/C
	Experimental Evaluation
	Threats to validity

	Inductive Program Synthesis
	Program Analysis using the Synthesis Fragment of Second-Order Logic
	Solving the Synthesis Fragment using Program Synthesis
	Synthesis for Program Variables with Bit-Vector Domains
	Instances of Program Synthesis Problems
	Implementation and Experimental Results

	Refactoring Synthesis
	Our approach
	Motivating Examples
	Java Stream Theory
	Synthesising Refactorings
	Experiments
	Threats to Validity

	Conclusion
	Example: Non-existential second order synthesis problem
	Example: C [columns=fixed]goto to Java transformations
	C to Jitsune expression translations
	Jitsune instructions
	Kayak instructions

