JunGL: a Scripting Language for Refactoring

Mathieu Verbaere, Ran Ettinger and Oege de Moor

Programming Tools Group
University of Oxford
United Kingdom

{Mathieu.Verbaere,Ran.Ettinger, Oege.de.Moor}@comlab.ox.ac.uk

ABSTRACT

Refactorings are behaviour-preserving program transforma-
tions, typically for improving the structure of existing code.
A few of these transformations have been mechanised in
interactive development environments. Many more refac-
torings have been proposed, and it would be desirable for
programmers to script their own refactorings. Implement-
ing such source-to-source transformations, however, is quite
complex: even the most sophisticated development environ-
ments contain significant bugs in their refactoring tools.

We present a domain-specific language for refactoring,
named JunGL. It manipulates a graph representation of
the program: all information about the program, includ-
ing ASTs for its compilation units, variable binding, control
flow and so on is represented in a uniform graph format.
The language is a hybrid of a functional language (in the
style of ML) and a logic query language (akin to Datalog).
JunGL furthermore has a notion of demand-driven evalu-
ation for constructing computed information in the graph,
such as control flow edges. Borrowing from earlier work on
the specification of compiler optimisations, JunGL uses so-
called ‘path queries’ to express dataflow properties.

We motivate the design of JunGL via a number of non-
trivial refactorings, and describe its implementation on the
.NET platform.

Categories and Subject Descriptors

D.2.3 [Software Engineering]: Coding Tools and Techni-
ques; D.3.4 [Programming Languages|: Processors; D.2.6
[Software Engineering): Programming Environments

General Terms

Languages, Design

Keywords

Refactoring, scripting language, source code transformation,
language workbenches

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

ICSE’06,May 20-28, 2006, Shanghai, China.

Copyright 2006 ACM 1-59593-085-X/06/0005$5.00.

1. INTRODUCTION

A refactoring is a program transformation that improves
the design of a program while preserving its behaviour. Of-
ten the purpose is to correct existing design flaws, to prepare
a program for the introduction of new functionality, or to
take advantage of a new programming language feature such
as generic types. A remarkable number of refactorings have
been proposed, and a wealth of examples can be found in
e.g. [11,12,17].

Most refactorings require tedious, error-prone manipula-
tion of the codebase, and it is therefore desirable to provide
automated support for applying them. Indeed, most inter-
active development environments now provide such support,
in the form of a fixed menu of transformations that may be
applied, for instance for renaming, extracting a method, ex-
tracting an interface, and so on.

In view of the large number of refactorings that have been
proposed, it is natural that developers wish to author their
own refactorings. Support for doing that is however ex-
tremely rudimentary in existing systems. In Eclipse, it re-
quires writing a new plugin, and mastery of a number of
complex APIs. In IntelliJ IDEA, there is a facility called
Structural Search and Replace that enables limited transfor-
mations by pattern matching on the syntax tree.

The reasons for this paucity of features to build new refac-
torings lies in the inherent complexity of implementing cor-
rect program transformations. To illustrate, consider the
FExtract Method refactoring, where the programmer selects
a contiguous block of code, which is then extracted into a
new method. The tool needs to determine what parame-
ters are passed. Eclipse, IntelliJ IDEA and Visual Studio
provide this refactoring, and all three implementations are
incorrect.

An example of such a flaw in Visual Studio 2005 is shown
in Figure 1. On the left is the original program, and the
region to be extracted is indicated by the ‘from’ and ‘to’
comments. On the right is the resulting code: note that in
the new method, the variable ¢ is returned without neces-
sarily being assigned. This kind of bug goes to the heart
of the difficulty of implementing new refactorings: it re-
quires dataflow analysis (in particular variable liveness), of
the same kind as in compiler optimisations. From this and
similar examples, we conclude that a framework for refactor-
ing must provide dataflow analysis facilities as well as other,
perhaps more obvious, features such as pattern matching,
rewrite rules and mechanisms for variable binding. We shall
show the correct way to refactor this example in Section 3.
More examples of faulty refactorings are documented in [10].

public void F(bool b)
{
int i;
// from
if (b)
{
i =0;
Console.WriteLine(i);

}

// to

i=1;
Console.WriteLine(i);

public void F(bool b)

int i;
i = NewMethod(b);
i=1;

Console.WriteLine(i);

private static int NewMethod(bool b)

int i;

if (b)
i =0;
Console.WriteLine(i);

}

return i;

Figure 1: Extract Method bug in Visual Studio.

Over the past fifteen years, there has been an upsurge
of activity in the formal specification of compiler optimi-
sations, and in generating program transformers from such
specifications e.g. [2,6,8,13,18-22,28,29,34,40]. All these
works contrast with research that seeks to express trans-
formations in purely syntactic terms, without recourse to
dataflow analysis. As illustrated above, such an approach is
not feasible when scripting refactoring transformations.

In this paper, we wish to suggest that the techniques
which have proven successful in specifying compiler opti-
misations form an appropriate basis for scripting refactor-
ing transformations — with the important difference that in
refactoring one transforms source code, and not some con-
venient intermediate representation. The principal contri-
butions of this paper are:

e The identification of the need for a scripting language
for refactoring transformations.

e The formulation of requirements for such a language,
in particular:

— functional features (borrowed from ML, such as
higher order functions and pattern matching) for
manipulating ASTs and graphs more generally,

— logical queries (akin to Datalog) for expressing
complex relationships between program elements,
and

— path queries as a convenient shorthand for Data-
log queries that capture, for instance, dataflow
properties.

e The integration of all these features in a clean, coher-
ent design.

e The validation of that design via a number of non-
trivial examples.

e An implementation of the language on the .NET plat-
form.

The remainder of this paper is organised as follows. In
Section 2, we identify the requirements for a language to

script refactorings, and introduce the basic ideas of our de-
sign. That design is then put to the test in Section 3, where
we discuss a number of example refactorings, including Ez-
tract Method. We proceed to discuss the implementation in
Section 4. As already indicated above, there is a great deal
of related work, and we explore that in Section 5. Finally, we
evaluate our results in Section 6, and we map out directions
for future research.

2. JUNGL

Our scripting language for refactoring is called JunGL —
short for Jungle Graph Language. JunGL is primarily a func-
tional language in the tradition of ML. Like ML, it has im-
portant features such as pattern matching and higher-order
functions, while allowing the use of updatable references.
The advantages of this type of programming language in
compiler-like tools is well-known [1]. To illustrate the style
of definition, here is the ‘map’ function that applies a func-
tion f to all elements of a list I:

let rec Map(f,]) =
match | with

| 0— 1
| x:xs — f(x):: Map(f,xs) ;;

That is, Map is recursively defined: in the body, we examine
whether 1 is empty or whether [consists of an element x
followed by the remaining list zs. In the latter case, we
apply f to x and recurse on xs.

Program graph.The main data structure manipulated by
functions is a graph that represents the program we wish
to transform. Each node and edge in the graph can have
a kind, indicated by a string. So for example, edges that
indicate the control flow from one statement to another are
labelled “cfsucc”, for Control Flow Successor.

Lazy edQESInitially the graph will just consist of a forest
of ASTs for all the compilation units, where edges indicate
children and parents. Additional computed information is
then added via “lazy” edge definitions, which will only be
evaluated when their value is required. To illustrate, we
describe how some control flow edges may be added to the

graph. The following function in JunGL computes the con-
trol flow edges emanating from a conditional statement:

let IfStmtCFSucc(node) =
match (node.thenBranch,node.elseBranch) with
| (null,null) — [DefaultCFSucc(node)]
| (t,null) — [t; DefaultCFSucc(node)]
| (null,e) — [DefaultCFSucc(node); €]
| (t,e) —[t;e] s

Here DefaultCFSucc is another user-defined function, which
computes the control flow successors of ordinary statements
such as assignments. Note how in the above definition, we
can cope with missing (null) branches of the conditional in
order to handle incomplete programs. We can now declare
that IfStmtCFSucc is the way to add control flow edges to
conditional statements:

AddLazyEdge("IfStmt","cfsucc", IfStmtCFSucc) ;;

The operation AddLazyEdge is a primitive of JunGL. Its
effect is to add new edges labelled “cfsucc” from every node
n labelled “IfStmt” to each node in IfStmtCFSucc(n). The
edges will however only be constructed when we try to access
the successor edges of n.

As we shall see later in the discussion of Extract Method,
this mechanism of lazy edge construction is very convenient
when introducing new graph nodes, as it often relieves us of
the burden to laboriously construct all the auxiliary informa-
tion on new nodes. Once again, all computed information on
the AST is handled in this way, so for example edges that
link a variable use to the declaration of that variable are
also represented as lazy edges. In that instance, the func-
tion we pass to AddLazyFEdge stipulates how one finds the
declaration corresponding to a variable use. We shall fur-
ther elaborate on this example when discussing the Rename
Variable refactoring.

Streams.Demand-driven evaluation is very important in
scripting refactorings: without it, scripts would quickly be-
come prohibitively complex (because we have to remember
to construct all relevant edges when creating new graph
nodes), and also inefficient. Besides lazy edges, JunGL also
provides streams, which are lazily evaluated lists. The main
use of these is via predicates, which we discuss next. The use
of streams often allows us to specify a search problem in a
nice, compositional way: generate a stream of successes, and
pick the first one — no further elements will be computed.

Predicates.Typically we manipulate the object program
graph by running a number of queries to find out specific
information, and then we make some destructive updates to
the graph. A functional language is not very suitable for
querying a graph structure; logic languages (in the Datalog
tradition) are much better suited to that task. We there-
fore add the notion of predicates to our language, effectively
making JunGL a hybrid functional-logic language.

When integrating a functional and a logic language, the
key question is how we use predicates in functions, and vice
versa. In JunGL, one can use predicates in functions via a
stream comprehension.

{7x | P(?x) }
will return a stream of all x that satisfy the predicate P.

Note that logical variables such as x are prefixed by a query
mark to distinguish them from normal variable names. One

can use expressions as arguments in predicates — but ob-
viously all logical variables in such an expression must be
bound.

Interestingly, we have not found it necessary to import
the full power of a logic language such as Prolog, and in
particular there is no use of unification in the implemen-
tation. Datalog (essentially Prolog minus data structures)
provides just the right balance of expressive power with an
efficient implementation. JunGL is somewhat akin to early
attempts at integrating logic features into functional lan-
guages, such as LogLisp [32], but to our knowledge it is the
first attempt at integrating a variant of Datalog rather than
full logic programming in a functional language.

Path queries.The most common way of constructing pred-
icates is via path queries: regular expressions that identify
paths in the program graph. For example, here is a predi-
cate that describes a path from a variable occurrence var to
its declaration as a method parameter:

[var]

parent7L

[?m:Kind("MethodDecl")]

child

[?dec:Kind("ParamDecl")]
&

?dec.name == var.name

The path components between square brackets are condi-
tions on nodes, whereas parent and child match edge labels.
The above predicate thus says that we can reach a method
declaration by following one or more parent edges from the
var node. Furthermore, that method declaration (named
?m) has a child that is a parameter declaration (named
?dec). Finally, the last conjunct checks that the parame-
ter’s name coincides with the name of the variable node we
started out with. The key is that the variable occurrence
var is known, so the predicate above can be used to find
instantiations of the logical variables ?m and ?dec so that
the above predicate is true.

Predicates can be named just like functions, by using the
keyword predicate in a let binding:

let predicate ParamDecl(?m,?dec) = ... ;;

3. REFACTORING EXAMPLES

We illustrate the design of JunGL by implementing two
of the most frequently used refactorings: Rename Variable
and Extract Method. JunGL allows us to manipulate any
program graphs and add all semantics information required
for the transformations by defining lazy edges.

Our object language will be a modest but non-trivial sub-
set of the C* language [33]. Notably, we ignore two major
features of the object-oriented paradigm, inheritance and
visibility, since they do not present any particular difficulty
in the mechanisation of our example refactorings. We also
leave aside arrays, exceptions, generics, structs, enums, del-
egates, open-ended namespaces and adapt the full specifi-
cations of C* to our subset. Thus, the JunGL code below
for computing additional information about the program is
merely an illustration: we do not claim to express here the
complete variable binding rules of C#, but we do wish to
convey a taste of how one can fully accomplish it.

3.1 Rename Variable

The automation of Rename Variable is far beyond a simple
search-and-replace mechanism, because it requires variable
binding information and the ability to detect potential con-
flicting declarations of variables with a similar name. For
that reason, we first briefly discuss how variable bindings
are manipulated in JunGL.

Variable binding.In JunGL, we define a function that
looks for the first declaration match of a given name starting
from a specific point in the program, by means of carefully
ordered disjunctions of path queries:

let FindFirstDeclarationMatch (from,name) =
let matches = { ?dec |
// Local variable
([from]pred*[?s:Kind("VariableDeclStmt")]
child [?dec:Kind("Declarator")] &
?dec.name == name)
| // Parameter
([from]parent T [?m:Kind("MethodDec1")]
child [?dec:Kind("ParamDecl")] &
?dec.name == name)

| // Field
([from]parent T [?c:Kind("ClassDecl")]
child [?f:Kind("FieldDecl")]
child [?dec:Kind("Declarator")] &
?dec.name == name)
} in FindFirst(matches) ;;

Here the path queries follow three different kinds of edges:
child and parent are the only built-in edges of the graph; pred
is defined as the left sibling of a node if non null and as its
parent otherwise. The function FindFirst is simply a con-
venient primitive that yields the first element of a stream.
Note that the order of the three alternatives is significant:
the stream will first have results for locals, then for parame-
ters, and then for fields.

The lazy edge for simple name lookup can now be defined
as follows:

let SimpleNameLookup(ref) =
FindFirstDeclarationMatch (ref,ref.name) ;;
AddLazyEdge("SimpleName","lookup",
SimpleNameLookup) ;;

As a first illustration of the use of the lookup edges, assume
we want the Rename Variable refactoring to be applicable
either on a variable reference or on a declaration. The skele-
ton JunGL code would then be as follows:

let RenameVariable(var,newName) =
let dec = FindFirst({ ?dec |
[var]lookup[?dec:VariableDecl ()]
| [?dec:Equals(var)] }) in
if !Is(dec,"VariableDecl") then
Error("Please select a variable");
if dec.name != newName then
begin
// ... Further checks...
// ... Transformation...
end ;;

We look up the declaration of var, or assume the node var
to be the declaration itself if it has no outgoing lookup edge.
Then, if the desired new name actually differs from the pre-
vious one, we may perform further checks and eventually
perform the transformation.

Conflicting declarationsTo understand more precisely
the intricacies of renaming, let us consider the following
code:

class A

{
int i;
public int getI()

int j = 0;
return i;

}
}

One may want to rename the local variable j to ¢, although
the instance member 7 is used in the same context. In Eclipse
or Visual Studio, post-transformation checks are performed
to ensure that variable bindings have not changed, and in
particular no inadvertant variable capture occurred. In the
example, the transformation would be rejected a posteriori
— in Visual Studio, after the tool has offered a view of how
the transformation applied.

IntelliJ IDEA 5.0 however seems to overcome the problem
of conflicting declarations beforehand and would normally
cope with variable hiding. Yet, the above refactoring results,
without any warning, in code where the occurrence of j has
simply been changed to i. The code still compiles but ¢ in the
second statement of the method is no longer bound to the
instance member, but to the freshly renamed local variable *.
This situation is certainly the worst in a refactoring process
since your code remains compilable, but now has a different
meaning. Using JunGL, we correctly remove the ambiguity
by changing i in the return statement to this.i in order to
refer to the instance member, even in the presence of a new
local variable 3.

Let us detail the JunGL code we omitted before in the Re-
name Variable function, that deals with potential conflicts.
We first check that there is no former declaration of a vari-
able that would inevitably conflict with our renamed vari-
able declaration. By inevitable conflict, we mean that vari-
able hiding is not even allowed. Here is the part of the
function to check for conflicts:

let conflictFormerDec =
FindFirstDeclarationMatch(dec,newName) in
if conflictFormerDec != null then
begin
if !IsHidingAllowed(dec,conflictFormerDec) then
Error(newName + " already exists")
end;

If we ignore type references and other members than fields,
the function IsHidingAllowed can simply be defined as:

let IsHidingAllowed(x,y) =
IsField (x) &&IsField(y) ;;

We then need to check all other declarations which may
conflict with our renamed variable. At this point, it is con-
venient to call another user-defined function Scope that re-
turns the scope of a declaration. Scope is easy to define with
JunGL, even in the presence of derived classes, although we
have chosen to ignore these here for expository reasons. For
the scoping rules of our C# subset, we also need a predi-
cate InCurrentOrLocalParentScope(?x,?s) that holds when-
ever the element x is in s or a local parent scope of s if s is
a nested block of a method. The code then reads:

! JetBrains informed us this bug is now fixed in IntelliJ IDEA
5.1.

let scope = Scope(dec) in
let predicate InCurrentOrLocalParentScope(?x,7s) =
[?s] child * [?x]
| [?s]parent*[?b:Block()]
(local ?z: child [?z:!Block()])*
[?x] in
let conflictDecs = { ?otherDec |
InCurrentOrLocalParentScope(?otherDec,scope)
& VariableDecl(?otherDec)

& ?otherDec.name == newName } in
foreach otherDec in conflictDecs do
begin

if !IsHidingAllowed(otherDec,dec) then
Error(newName 1" already exists")
end;

Transforming.Now that we have checked that there are
no conflicting declarations that would require us to reject
the refactoring, we can proceed with the transformation. If
there exists a field declaration that would be hidden by the
newly renamed variable, we need to remove the ambiguity
of all its references by introducing an explicit this target or
a reference to its declaring type in the case of a static field.
We define the function RemoveAmbiguity as follows:

let RemoveAmbiguity(ref,dec) =
if ref.kind == "SimpleName" then
begin
let access = CreateNode("MemberAccess") in
if IsStaticField (dec) then
access . target «— CreateReference(DeclaringType(dec))
else
access. target <« CreateNode("ThisRef");
access.name <« ref.name;
Replace(ref, access)
end ;;

CreateNode and Replace are primitive operations in JunGL.
Then, in the RenameVariable function, we add:

if conflictFormerDec != null then
begin
let needDisambiguity = { ?ref |
InCurrentOrLocalParentScope (?ref,scope)
& [? ref]lookup[conflictFormerDec| } in
foreach ref in needDisambiguity do
RemoveAmbiguity (ref,conflictFormerDec)
end;

Note how we use the lookup edges in reverse here, to find all
references to a declaration of interest.

Next, we find all references needRename of the variable
to be renamed. If it happens that this variable is hidden at
some points of the program due to nested declarations with
the same name, we also remove the ambiguity in addition
to the proper renaming process. Last, we update the name
of the variable in the declaration itself:

let needRename = { ?ref | [?ref]llookup[dec] } in
let ambiguityScopes = { Scope(?dec) |
In(?dec, conflictDecs) } in
let needDisambiguityRename = { ?ref |
In(?ref ,needRename)
& In(?scope,ambiguityScopes)
& InCurrentOrLocalParentScope(?ref,?scope) } in
foreach ref in needRename do
ref .name < newName;
foreach ref in needDisambiguityRename do
RemoveAmbiguity (ref,dec);
dec.name <« newName;

We have exposed almost all the JunGL code required for
the mechanisation of Rename Variable with careful checks
and minimal rejection. Of course, one could argue that the
way we deal with variable hiding is undesirable because the
resulting code might be sometimes less readable. In our view
this objection comes more under coding style and best prac-
tices, and such concerns could also be checked with JunGL.

At this point some readers may be concerned about the
efficiency of our variable binding mechanism. It would be
obviously much more efficient to compute bindings in a sin-
gle pass, like in classical compiler construction. Neverthe-
less, it is very convenient to declaratively specify the binding
rules like we did, by translating the specifications of the lan-
guage to concise predicates. Our prototype implementation
is quite workable as it stands, and yet vast improvements
are possible, for instance by selectively caching the results
of the lazy edge evaluation, or by specifying additional edges
for storing binding information in intermediate nodes such
as blocks.

3.2 Extract Method

Let us now return to the Extract Method refactoring men-
tioned in the introduction. Here the user selects a region
of code. Below we shall identify that region by two nodes
(statements) in the graph, namely the start of the region
to be extracted, and the end of the region to be extracted.
There are four major phases in the implementation of this
refactoring, and we shall consider each in turn: checking va-
lidity of the selection, determining what parameters must
be passed, where declarations should be moved, and finally
doing the transformation itself.

Checking validity.The refactoring will first need to check
that it is a valid selection: for instance, one can only extract
a block of code into a method if it is single-entry single-exit.
These are the usual conditions: the start node dominates
the end node, the end node post-dominates the start node,
and the set of cycles containing the start node is equal to
the set of cycles containing the end node. These conditions
are easily expressed in terms of path patterns. For example,
here is the definition of Dominates:

let Dominates(entryNode,startNode,endNode) =
IsEmpty({ () | [entryNode]
(local ?z: cfsucc [?z] &
?z != startNode)*
[endNode] }) 3;

It takes three parameters: the entry node of the method that
contains the block, the start node of the block, and the end
node of the block. By definition, the start node dominates
the end node if all paths from the entry node to the end
node pass through the start node. To express that in our
language, first note that the predicate

[entryNode]
(local ?z: cfsucc [?z] & 7z != startNode)*
[endNode]

signifies a path all of whose elements are not equal to the
start node. We therefore require that no such path exists,
by testing that the above set is empty.

Other checks, simpler ones, are required. The control flow
graph lacks indeed some scoping information, and therefore,
we also need to check that the selection doesn’t straddle
different scopes.

Parameters.When we have verified that the selection is
indeed amenable to method extraction, our next task is to
determine what the parameters of the method should be,
and what results must be returned. We shall consider three
different sets of parameters, namely those passed by value,
those passed by reference, and the output parameters whose
only function is to return a result.

A variable z in variables, the set of local variables or
parameters that may be used or defined in the selection,
will become a value parameter if the following conditions
are satisfied:

e z is live upon entry in the extracted block, that is it
may be used in the selection, and it is not redefined
before it is used. The condition that x may be used
is obvious; if x is always redefined before such a use,
there is no need to pass it as a parameter, as its value
can be computed locally in the extracted method.

e It is not the case that x may both be redefined in the
selection, and it may be used before it is redefined after
the selection. If x is live at the end of the selection,
but not redefined in the selection, it is fine to pass it
by value.

We can thus compute the set of value parameters as follows:

let value =
{7 |
In(?x, variables) &
MayUseBeforeDefInSelection(?x) &
!(MayDefInSelection(?x) &
MayUseBeforeDefAfterSelection(?x))
}

Each of the predicates used here has an elegant definition
in JunGL. To illustrate, consider MayUseBeforeDefAfterSe-
lection(?z). This predicate holds if there is a path from the
end node to a use of x with no intervening definition of x.
A node u uses z if it has a user-defined lazy edge labelled
use to x. Similarly, an intervening node z does not define =
if it has no lazy edge labelled def to x.

let predicate MayUseBeforeDefAfterSelection(?x) =
[endNode]
(local ?z: cfsucc[?z] & ![?z]def[?x])T
[?u]use[?x]

Note that this definition can also deal with the possibility
for a ‘use’ outside the method where the extraction occurs,
namely when z is a non-value parameter. Indeed, use lazy
edges are defined from the exit node of the method to all
non-value parameters.

We now consider when a variable x should become an
output parameter of the extracted method. Here the speci-
fication consists of three conjuncts:

e First, there exists a potential use without prior defi-
nition of the variable x after the selected statements:
without such a potential use, there is no point in re-
turning x as a result of the method.

e Second, there should be no use of & before a definition
of x in the selection itself. If there was such a use, it
would not be sufficient to pass x merely as an output
parameter: its initial value is important too.

e Third, x must actually be defined in the selection. If it
were not, then the result of the refactoring would not

be compilable, because C# requires all output vari-
ables to be definitely assigned.

In summary, we can define the set of output parameters as
follows:

let out =
{7 |
In(?x, variables) &
MayUseBeforeDefAfterSelection(?x) &
!MayUseBeforeDefInSelection(7x) &
MustDefInSelection(7x)

}

Again, the definitions of these predicates are all straightfor-
ward in JunGL, and we do not spell out the details.

At this point, we have precisely defined what should be
the value and output parameters of the extracted method. It
remains to define the reference parameters. At first glance,
one might say that any variable in the selected block that
is not a value or output parameter is a reference parameter.
Such a criterion would however be much too crude. Some
variables will just be local to the selection, and such variables
do not need to be passed as parameters at all. They will
become local variables of the extracted method body. A
more accurate definition of the set of reference parameters
is therefore as follows:

let ref =
{7 |
In(?x, variables) &
(MayUseBeforeDefInSelection(?x) |
(MayDefInSelection(?x) &
!MustDefInSelection(?x))) &
MayUseBeforeDefAfterSelection(?x) &
In(?x,value) &
'In(?x,0ut)

}

That is, x may be used before it is redefined in the selection
or it is only potentially defined in the selection, x may be
used before it is redefined after the selection, and it is not a
value or output parameter.

It is interesting to work out the effect of these definitions
on an example such as Figure 1. Clearly b is classified as a
value parameter. But what about i? As explained in the
introduction, the bug in Visual Studio was that ¢ became an
output parameter (and being the only such parameter, in
fact the method result). In our definition, that is prevented
by the final conjunct in the definition of out because we have

IMustDefInSelection (i)

Note that we also don’t get i as a value parameter because
there is a definition before its use in the selection. Finally, it
does not become a reference parameter because it is defined
before being used after the selection. We conclude that ac-
cording to our definition, i does not become a parameter at
all.

Placing declarations Having decided on the parameters
of the extracted method, we now turn to placing declara-
tions for its local variables. In doing so, we consider three
cases: declarations that must be moved out of the selection,
declarations that must be moved into the selection, and fi-
nally those that need to be duplicated. We discuss each of
these in turn.

A declaration needs to be moved out of the selected block
if it is declared there, and if it is used or defined outside the
selection:

let needDecMoveOut =
{7 |
DecInSelection(?7x) &
MayUseOrDefOutOfSelection(?x)

}

Conversely, if a declaration doesn’t occur in the selected
block, it is defined or used in that block, and it is not a
parameter, then the declaration should be moved into the
extracted method’s body:
let needDecMoveln =
{ox |
In(?x, variables) &
! DecInSelection(?x) &
In(7x,value) &
In(?x,0out) &
'In(7x, ref)
}
Finally, there are the declarations that must be duplicated.
This can happen because the use of a variable in the selec-
tion is in fact independent of the use of the variable outside
the selection: effectively, we can split the variable into two
independent ones. The declarations in question are defined
by
let needDecDuplication =
{ox |
In(?x,needDecMoveln) &
MayUseOrDefOutOfSelection(?x)

}

To wit, the declaration of z needs to be moved into the
existing declaration (as we have just defined it), but there
are also uses and/or definitions outside the selection.

Again, let us return to Figure 1 and see what happens to
the variable i. Because it is not a parameter of any kind,
but it occurs in the selection and it is not declared in the
selection, i will be a member of needDecMoveln. However,
note that because it also occurs after the selection, it will
in fact be classified as a declaration that needs duplication:
the two uses of 4, inside and outside the selection, have been
correctly separated.

Tral’leOI’ming.Armed with all the necessary information,
we can now actually perform the required transformation of
creating a new method. This is, in fact, the least interesting
part of the code: all that needs to be done is to reconstruct
the relevant portions of the graph.
As a small example fragment, consider the operation of
inserting a new statement before an existing one:
let InsertStatementBefore(n,s) =
if IsInList (n) then
InsertBefore(n,s)
else
let block = CreateNode("BlockStmt") in
Replace(n,block);
block.statements « [s;n] ;;

First we check whether n is itself in fact part of a sequence
in the AST. If so, we simply add s as the left-hand sibling
of m. If not, however, we first need to create a new block
statement, which replaces n in the AST; both s and n be-
come descendants of this new block statement. Note that
it is not necessary to define control flow edges (cfsucc) on
the new block statement, because we defined these to be
lazy, so they will be automatically constructed when neces-
sary. Like CreateNode and Replace, the functions IsInList
and InsertBefore are also primitive operations in JunGL.

We return once again to the example of Figure 1. Figure
2 shows the result of applying this refactoring in our own
tool. Note that at present, we do not detect that the selected
block did not contain any instance references, so as yet we
do not make it static — it would however be easy to add
that improvement.

The complete specification for Eztract Method is only 135
lines in JunGL, so about two A4 pages. We find this very en-
couraging, and a strong indication that even complex refac-
torings can be concisely defined.

In the exposition above we have assumed that the origi-
nal program compiles without errors. Of course in practice
it is very common to apply refactorings to programs that
cannot be compiled for subtle reasons such as the definite
assignment rule of C# (which states that every local must
be initialised before it is used). In such cases, the refactoring
should preserve the compilation errors in the result of the
transformation. We have found it easy to amend the JunGL
code to transform such slightly faulty input programs.

Of course we are not the first to attempt a precise ac-
count of extract method. Indeed, Martin Fowler’s book [11]
contains quite detailed recipes. However, the big advantage
of having a precise, formal description such as the para-
meter definitions above is that they provide a sound basis
for rigorous reasoning. For example, an important property
is that no variable will be classified as two different kinds
of parameter. It is easy to check that this requirement is
indeed satisfied, using the above definitions. Another desir-
able property, which is again quite easy to check, is that no
variable use will become orphaned, with no declaration to
match it.

3.3 Further Examples

The above example refactorings were chosen for exposi-
tory reasons, and space restrictions prevent us from includ-
ing further examples. Yet, an exciting experiment that we
have done is to code the Untangling refactoring we proposed
earlier in [9]. It is like Extract Method, but instead of select-
ing a contiguous region of code, the programmer selects a
single expression; the tool then extracts the backward slice
(statements that may have contributed to the value of that
expression) [39]. Slicing can be expressed quite elegantly
in JunGL. More generally, one can define the Program De-
pendence Graph [15] via path queries. That in turn allows
the correct mechanisation of many different transformations
that require reordering of statements.

There are other refactorings that alter the type structure
of a program, by extracting an interface from a class [36],
introducing generic types [5,38], or supporting class library
migration [3]. These refactorings involve an analysis of the
class hierarchy and usually require solving type constraints.
The next step in the validation of our language design is to
code these advanced refactorings. Although additional data
structures can be handled in JunGL, it is likely that efficient
constraint solving will only be achieved by providing a solver
as a built-in feature of JunGL.

4. IMPLEMENTATION

JunGL is implemented on the .NET platform. The sys-
tem consists of three components: a graph data structure, an
interpreter for the scripts that manipulate this data struc-
ture, and a structure editor (for the object language, not the
scripts) that facilitates interactive development of scripts.

public void F(bool b)

{
public void F(bool b) int i;
{ NewMethod(b);
int i; i=1
// from Console.WriteLine(i);
if (b) }
{
i =0; private void NewMethod(bool b)
Console.WriteLine(i); {
} int i;
// to if (b)
=1 {
Console.WriteLine(i); i =0;
} Console.WriteLine(i);
}
}

Figure 2: Correct refactoring of Figure 1.

Currently, JunGL does not fully deal with user-interface is-
sues. User inputs are passed to the refactoring scripts as
parameters. Yet, for a rich interactive experience, refactor-
ing tools commonly guide users through ‘wizards’ and we
plan to soon support these via calls to external code.

Jungle graph.JunGL manipulates a graph through basic
operations defined in a small interface. We provide a de-
fault implementation of this interface in C#. Furthermore,
we provide a facility for defining the type graph that stip-
ulates certain syntactic requirements on the links that are
allowed (say, the fact that an if-statement can only have
three children, the first an expression and the others state-
ments). These constraints are enforced through run-time
checks. Given the default graph implementation and the
type graph definition, a parser is required to build the AST
as a particular jungle graph. To work with a different object
language, one simply provides another type graph definition,
along with the new parser. Furthermore, the architecture
makes it easy to leverage an existing strong-typed AST im-
plementation. All one needs to do is to make the AST classes
implement our jungle graph interface.

As we explained in Section 2, once the AST has been
represented as the initial jungle graph, this can be further
decorated by connecting nodes via lazy edges. For now we
have found that a naive implementation yields adequate effi-
ciency, but obviously in a production system one would need
to make careful use of caching. We are confident that the
same techniques that have proved effective in the demand-
driven evaluation of rewritable reference attribute gram-
mars [7] will also apply here.

Interpreter. The JunGL interpreter follows the usual pat-
tern of an interpreter for a functional language in a func-
tional language. Indeed, JunGL is implemented in F# [35],
a variant of ML that runs on top of the .NET framework.
Because F# is fully integrated in .NET it allows us to work
across languages. In particular, we can use the C# imple-
mentation of the jungle graph in our F'# programs and vice
versa. For now, JunGL does not support user-defined types
and, like most other scripting languages, it is only dynami-
cally typed.

There exists a simple translation from path queries to

Datalog, and we use the same scheme as in e.g. [24]. The
most interesting part of the interpreter, therefore, is its
treatment of Datalog queries. Here we employ a technique
originally due to Mycroft and Jones, who were the first to
model the operational semantics of logic programs in terms
of streams [16]. As said earlier, however, it is key to our
design that we do not require the full power of Prolog; just
Datalog queries, augmented with expression evaluation, suf-
fices. The C'# 2.0 coroutines feature makes the implemen-
tation of the pipeline pattern of streams, and therefore of
Datalog queries, very neat. We support all operations of
the relational algebra, plus transitive closure and filtering
with expression evaluation.

We are hopeful that in future, certain analyses that are
conveniently expressed via Datalog queries can be given a
more efficient implementation, in particular via BDDs. A
good starting point for such work would be the generation
of efficient analyses from relational queries in [23].

Structure editor.In addition to the interpreter itself, we
have implemented a structure editor to visualize and edit,
in limited ways, the graph that is manipulated by JunGL.
The editor uses some pretty-printing annotations of the type
graph definition to render the AST. By selecting blocks or
nodes, we can visualize the connections to other nodes in the
graph, that we have added by defining lazy edges in JunGL.
We have found this tool indispensable in the interactive de-
velopment of new refactoring scripts.

5. RELATED WORK

Rigorous refactoring.We are by no means the first to re-
alise the need for a formal, precise approach to refactoring.
In their PhD theses, Opdyke then Roberts insisted on the
importance of preconditions and postconditions for refac-
toring transformations [30,31]. More recently, several works
that focus on refactorings that change the type structure
of a program precisely define how to automate these refac-
torings [3, 5, 36,38]. While there is no attempt to define a
scripting language for expressing them, we share their aim
of pinning down the relevant transformations that were pre-
viously only loosely defined.

Optimisation specificationgn the introduction, we al-
ready indicated that the design of JunGL heavily borrows
from the literature on declarative specifications of compiler
optimisations. In particular, our use of path queries can be
traced back to the design of Gospel by Whitfield and Soffa
[40]. Gospel has a similar feature, but the dataflow facts are
hard-coded in the implementation, whereas in JunGL they
are user-definable. The idea to achieve that flexibility via
a form of logic programming augmented with path expres-
sions originated in our own work [6,20]. A separate branch
of research, instigated by Lacey, is the formal verification of
compiler optimisations that are specified in this style [19].
Indeed, Lerner et al. have demonstrated how to automate
such proofs [21,22].

A completely different approach to scripting compiler opti-
misations was proposed by Olmos and Visser in [29]. There,
the optimisations are rewrites of the syntax tree. Dataflow
information is obtained by dynamically introducing new re-
write rules. As a consequence, the specification of dataflow
facts is much less declarative than in JunGL, but for the
description of the transformation itself (the change to the
object program) the situation is reversed. We are currently
investigating the use of Stratego’s rewriting primitives to
streamline that part of our specifications.

Graph transformations for refactoringrhe idea of decl-
arative specifications of refactorings via graph transforma-
tions was first put forward by Tom Mens in [26]. The refac-
torings considered there are renaming and numerous vari-
ants of moving class members. Their specification is purely
declarative, as a graph rewrite system. A big advantage of
using graph rewrite systems is that it becomes possible, for
example, to detect conflicting refactorings [27].

The main difference with our work is that none of the
refactorings require dataflow analysis. It would be interest-
ing to see whether Mens’s techniques scale up to the full-
blown refactorings of [36].

An earlier attempt to use graph rewrite systems for spec-
ifying program transformations was the Optimix system by
Afmann [2]. Optimix does not have a mechanism for di-
rectly expressing properties of program paths, however.

Path queries.The idea of path queries in the context of
program transformations is due to ourselves [6,28,34]. For
the particular version used here, we drew inspiration from
the syntax in [24], which followed on from our own design
in the above citations. A similar style of queries is of course
very common in the literature on semi-structured databases

e.g. [4].

6. CONCLUSION

In this paper, we identified the need for a scripting lan-
guage to author new refactorings. New refactorings are pro-
posed all the time, and yet even very basic examples like
Rename Variable or Eztract Method are incorrectly imple-
mented in leading development environments.

We also exposed the requirements for such a scripting
language: easy manipulation of graph structures, demand-
driven evaluation under the programmer’s control, a query
language for concise expression of program analysis prob-
lems (in particular through the use of path queries). We pro-
posed a concrete design for such a language, named JunGL.

One missing feature that we intend to add in the near future
is quotation for object programs [37].

The design of JunGL was validated through a number of
non-trivial refactoring scripts on a substantial subset of the
C* language. In particular we demonstrated how some bugs
in IntelliJ IDEA and Visual Studio are easily discussed (and
avoided) by expressing the refactoring in JunGL.

We then presented the implementation of JunGL on the
NET platform. A notable feature is the use of streams
to achieve the desired integration of logic elements into the
predominantly functional nature of JunGL. There is much
scope for further work here, however, for instance by imple-
menting certain program analysis queries via BDDs [23,25],
and others (that manipulate very large portions of the code
base) via database queries [14].

Acknowledgementsve would like to thank Microsoft Re-
search, and in particular Dr. Fabien Petitcolas, for their
generous support of this project. Bill Gates provided help-
ful feedback at the planning stage, by emphasising the im-
portance of a scriptable refactoring engine. Members of the
Programming Tools Group at Oxford, in particular Damien
Sereni, provided helpful advice and inspiration throughout.

7. REFERENCES

[1] Andrew W. Appel. Modern Compiler Implementation
in ML. Cambridge University Press, 1998.

[2] Uwe ABmann. OPTIMIX — a tool for rewriting and
optimizing programs. In H. Ehrig, G. Engels, H. J.
Kreowski, and G. Rozenberg, editors, Handbook of
Graph Grammars and Computing by Graph
Transformation. Volume 2: Applications, Languages
and Tools, pages 307-318. World Scientific, 1998.

[3] Ittai Balaban, Frank Tip, and Robert Fuhrer.
Refactoring support for class library migration. In
Proceedings of the 20th ACM conference on
Object-Oriented Programming, Systems, Languages
and Applications, pages 265-279, 2005.

[4] Peter Buneman, Mary Fernandez, and Dan Suciu.
UnQL: A query language and algebra for
semistructured data based on structural recursion.
VLDB Journal, 9(1):76-110, 2000.

[5] Alan Donovan, Adam Kiezun, Matthew S. Tschantz,
and Michael D. Ernst. Converting java programs to
use generic libraries. In Proceedings of the 19th ACM
conference on Object-Oriented Programming, Systems,
Languages and Applications, pages 15-34, 2004.

[6] Stephen J. Drape, Oege de Moor, and Ganesh
Sittampalam. Transforming the .NET intermediate
language using path logic programming. In Principles
and Practice of Declarative Programming, pages
133-144, 2002.

[7] Torbjérn Ekman and Gérel Hedin. Rewritable
reference attributed grammars. In Martin Odersky,
editor, European Conference on Object-Oriented
Programming, pages 144-169, 2004.

[8] Dawson R. Engler. Interface compilation: Steps
toward compiling program interfaces as languages.
IEEE Transactions on Software Engineering,
25(3):387-400, 1999.

[9] Ran Ettinger and Mathieu Verbaere. Untangling: a
slice extraction refactoring. In Gail C. Murphy and

Karl J. Lieberherr, editors, Aspect-Oriented Software
Development, pages 93—101, 2004.

Ran Ettinger and Mathieu Verbaere. Refactoring bugs
in Eclipse, IntelliJ IDEA and Visual Studio.
http://progtools.comlab.ox.ac.uk/projects/
refactoring/bugreports, 2005.

Martin Fowler. Refactoring: Improving the Design of
Existing Code. Addison Wesley, 1999.

Martin Fowler. Refactoring home page.
http://www.refactoring.com, 2005.

Sam Z. Guyer and Calvin Lin. An annotation
language for optimizing software libraries. In Second
conference on Domain-Specific Languages, pages
39-52. USENIX, 1999.

Elnar Hajiyev, Mathieu Verbaere, Oege de Moor, and
Kris de Volder. Codequest with datalog. In OOPSLA
Companion, 2005.

Susan Horwitz and Thomas Reps. The use of program
dependence graphs in software engineering. In
International Conference on Software Engineering,
pages 392-411, 1992.

Neil D. Jones and Alan Mycroft. Stepwise
development of operational and denotational
semantics for prolog. In Symposium on Logic
Programming, pages 281-288, 1984.

Joshua Kerievsky. Refactoring to Patterns. Addison
Wesley, 2005.

Marion Klein, Jens Knoop, Dirk Koschiitzki, and
Bernhard Steffen. DFA & OPT-METAFrame: a
toolkit for program analysis and optimization. In
Tools and Algorithms for the Construction and
Analysis of Systems, volume 1055 of Lecture Notes in
Computer Science, pages 418-421. Springer, 1996.
David Lacey, Neil D. Jones, Eric Van Wyk, and

Carl Christian Frederiksen. Proving correctness of
compiler optimizations by temporal logic. In
Proceedings of the 29th ACM symposium on Principles
of Programming Languages, pages 283-294, 2002.
David Lacey and Oege de Moor. Imperative program
transformation by rewriting. In R. Wilhelm, editor,
Proceedings of the 10th International Conference on
Compiler Construction, volume 2027 of Lecture Notes
in Computer Science, pages 52—-68. Springer Verlag,
2001.

Sorin Lerner, Todd Millstein, and Craig Chambers.
Automatically proving the correctness of compiler
optimizations. In Programming Language Design and
Implementation, pages 220-231, 2003.

Sorin Lerner, Todd Millstein, Erika Rice, and Craig
Chambers. Automated soundness proofs for dataflow
and analyses via local rules. In Proceedings of the 32nd
ACM symposium on Principles of Programming
Languages, pages 364-377, 2005.

Ondrej Lhotak and Laurie Hendren. Jedd: A
BDD-based relational extension of java. In
Programming Language Design and Implementation,
pages 158-169, 2004.

Yanhong Annie Liu and Scott D. Stoller. Querying
complex graphs. In P. Van Hentenryck, editor,
Proceedings of the 8th International Symposium on
Practical Aspects of Declarative Languages, pages
16-30, 2006.

[25] Michael Martin, Benjamin Livshits, and Monica S.

Lam. Finding application errors and security flaws
using PQL: a program query language. In Proceedings
of the 20th ACM conference on Object-Oriented
Programming, Systems, Languages and Applications,
pages 365383, 2005.

Tom Mens, Serge Demeyer, and Dirk Janssens.
Formalising behaviour preserving program
transformations. In Graph Transformation, volume
2505 of Lecture Notes in Computer Science, pages
286-301, 2002.

Tom Mens, Gabriele Taentzer, and Olga Runge.
Detecting structural refactoring conflicts using critical
pair analysis. Electronic Notes in Theoretical
Computer Science, 127(3):113-128, 2005.

Oege de Moor, David Lacey, and Eric Van Wyk.
Universal regular path queries. Higher-order and
symbolic computation, 16(1-2):15-35, 2003.

Karina Olmos and Eelco Visser. Strategies for
source-to-source constant propagation. In B. Gramlich
and S. Lucas, editors, Workshop on Reduction
Strategies in Rewriting and Programming, volume 70
of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, May 2002.

William F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

Donald F. Roberts. Practical Analysis for Refactoring.
PhD thesis, University of Illinois at
Urbana-Champaign, 1999.

J. Alan Robinson and Ernest E. Sibert. LOGLISP:
Motivation, design and implementation. In K. L.
Clark and S. A. Téanlund, editors, Logic Programming,
pages 299-313. Academic Press, 1982.

Peter Sestoft and Henrik I. Hansen. C# Precisely.
MIT Press, 2004.

Ganesh Sittampalam, Oege de Moor, and Ken Friis
Larsen. Incremental execution of transformation
specifications. In Proceedings of the 31st ACM
symposium on Principles of Programming Languages,
pages 26-38, 2004.

Don Syme. F#home page. http://research.
microsoft.com/projects/ilx/fsharp.aspx, 2005.
Frank Tip, Adam Kiezun, and Dirk Baumer.
Refactoring for generalization using type constraints.
In Proceedings of the 18th ACM conference on
Object-Oriented Programming, Systems, Languages
and Applications, pages 13-26, 2003.

Eelco Visser. Meta-programming with concrete object
syntax. In Generative programming and component
engineering, pages 299-315, 2002.

Daniel von Dincklage and Amer Diwan. Converting
java classes to use generics. In Proceedings of the 19th
ACM conference on Object-Oriented Programming,
Systems, Languages and Applications, pages 1-14,
2004.

Mark Weiser. Program slicing. IEEE Transactions on
Software Engineering, 10:352-357, 1984.

Deborah Whitfield and Mary Lou Soffa. An approach
for exploring code-improving transformations. ACM
Transactions on Programming Languages and
Systems, 19(6):1053-1084, 1997.

