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ABSTRACT

Refactoring engines are standard tools in today’s Integrated
Development Environments (IDEs). They allow program-
mers to perform one refactoring at a time, but programmers
need more. Most design patterns in the Gang-of-Four text
can be written as a refactoring script — a programmatic se-
quence of refactorings. In this paper, we present R3, a new
Java refactoring engine that supports refactoring scripts.
It builds a main-memory, non-persistent database to en-
code Java entity declarations (e.g., packages, classes, meth-
ods), their containment relationships, and language features
such as inheritance and modifiers. Unlike classical refac-
toring engines that modify Abstract Syntaxr Trees (ASTs),
R3 refactorings modify only the database; refactored code
is produced only when pretty-printing AST's that reference
database changes. R3 performs comparable precondition
checks to those of the Eclipse Java Development Tools (JDT)
but R3’s codebase is about half the size of the JDT refactor-
ing engine and runs an order of magnitude faster. Further,
a user study shows that R3 improved the success rate of
retrofitting design patterns by 25% up to 50%.

1. INTRODUCTION

Refactoring is a core technology in software development.
All major IDEs today offer some form of refactoring sup-
port; refactoring is central to popular software design move-
ments, such as Agile [38] and Extreme Programming [10].
In the last decade, refactoring tools have revolutionized how
software is developed. They enable programmers to con-
tinuously explore the design space of large codebases, while
preserving existing behavior. Modern IDEs such as Eclipse,
NetBeans, IntelliJ IDEA, and Visual Studio incorporate refac-
torings in their top menu and often compete on the basis of
refactoring support.

Despite vast interest and progress, a key functionality that
many have recognized to be missing in IDEs is scripting [11,
28, 51]. Most design patterns in the Gang-of-Four text [25]
can be expressed as a refactoring script — a programmatic
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sequence of refactorings [33, 52]. Adding and removing de-
sign patterns manually is laborious, repetitious, error prone,
and often too difficult to do — try creating a Visitor with over
10 methods; the benefits of scripting become clear.

We recently [35] added scripting to Eclipse JDT, exposing
the core declarations of a Java program (packages, classes,
methods, etc.) as objects whose methods are JDT refactor-
ings. Refactoring scripts that add or remove design patterns
are short Java methods. Our tool, called R2, is detailed in
the next section. Experiments revealed JDT Refactoring
Engine (JDTRE) is ill-suited for scripting for three reasons:

e Reliability. JDTRE is buggy [21, 26, 48]. We filed 31
new bugs to date, but only a fraction has been fixed in
the latest version of Eclipse. Prior to the current release,
one R2 script executed 6 JDT refactorings producing a
program with 27 compilation errors. Another script in-
voked 96 refactorings, producing a program with 100 com-
pilation errors. These errors are not due to R2, but are
egregious bugs in JDTRE. We are constantly discovering
more. Worse is waiting months or years for a repair [21].
We rediscovered a bug that took 5 years to be fixed [19].
Note: We are not in a position to repair JDTRE. There is
no reason for us to believe our patches would be accepted.
We report bugs as others do.

e Expressivity. We found the need for additional primitive
refactorings and to repair existing refactorings. JDTRE
refuses to move methods that include the super keyword;
moving methods with super reference(s) is really useful.
We also had to turn off parameter optimization, for ex-
ample, to make JDT refactorings produce design patterns
correctly [35].

e Speed. JDTRE’s Achilles heel is its speed: it is surpris-
ingly slow. While a single JDT refactoring is fast, exe-
cuting many is not. R2 scripts that invoke 20 refactorings
take over 10 seconds. One script invoked 554 refactor-
ings and took 5 minutes to execute. Programmers expect
refactorings to be instantaneous.

We concluded that a radically different approach to build
refactoring engines for scripting was needed to remove these
problems. Our novel solution, called R3, creates a database
of program elements (such as classes, methods, fields), their
containment relationships, and Java language features such
as inheritance and modifiers. Precondition checks consult
harvested values in database tuples; refactorings alter the
database. ASTs are never changed; refactored code is pro-
duced only when pretty-printing AST's that reference data-
base changes. This strategy yields a 10X increase in refac-
toring speed and a 50% smaller codebase.
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The contributions of this paper are:

e A novel foundation (R3) of database+pretty printing
for designing a new generation of refactoring engines
that support scripting,

e R3’s codebase is a mere 4K LOC and does not use
Eclipse Language Toolkit (LTK) [24] utilities,

e Efficient ways to evaluate refactoring preconditions:
boolean properties of ASTs are harvested during data-
base creation where precondition checks consult their
values and the database supports fast searches,

e An empirical evaluation of R3 on 6 case studies exe-
cuted 52 scripts. R3 runs at least 10x faster on average,
in two cases 285x faster than JDTRE, and

e A user study involving 2 classes (44 undergraduates
and 10 graduates) showed R3 improved the success rate
of retrofitting design patterns by 25% up to 50%.

2. A RECAP OF R2

Most classical design patterns can be expressed by a series
of refactorings [33, 52]. In [35], we leveraged the JDTRE to
provide a practical way to write such scripts.

R2 is a Java package.
Its objects correspond to

class Graphic {

Java entity declarations void draw { .. }
}
such as packages, classes,
methods. etc. The pro- class Square extends Graphic {
. ’ . void draw() { .. }
gram in Figure 1 has )
seven R2 objects. There

. class Picture extends Graphic {
are 3 classes: Graphic, void add(Graphic g) { .. }

Square, Picture and 4 void draw() { ..}

thods: three draws and !
me ’ Figure 1: A Java Program.
one add.

Methods of R2 objects are JDT refactorings or database
retrievals. Representative methods are listed in Table 1.

[ R2 Type [ Method Name | Semantics
RPackage newClass add a new class to the
package
addSingleton apply Singleton pattern to
the class
return a list of R2 objects
getAllMethods that are all methods of the
class
L return the R2 object of its
RClass getPackage own package
ass a new constructor to the
newConstructor
class
newMethod add a new method stub to
the class
newField add a new field to the class
setInterface set to implement an interface
return a list of R2 objects
RMethod getRelatives of methods with the same
signature
add a parameter with its
addParameter default value to all methods
RRelativeList moveAndDelegate move methods to a class,
leaving behind a delegate
rename rename all methods

Table 1: Methods of R2.

R2 refactoring scripts are short Java methods. Here are
two examples. Figure 2 is an R2 script that creates an
Adapter. A programmer uses the Eclipse GUI to identify
a Java class c that is to be adapted to Java interface i. The
programmer then invokes R2’s makeAdapter refactoring (just
like a built-in Eclipse refactoring), which in turn invokes
i.makeAdapter(c,N) where N is the name of the Adapter
class to be created. Class N is created in the same pack-

age as interface i (Line 3), to which is added a field named
adaptee of type ¢ and a constructor to initialize adaptee
(Lines 5-6). A stub is generated for each method in inter-
face i (Line 9). The created class N implements interface i
(Line 11). The R2 object for N is returned as the result of
makeAdapter.

1 // member of RInterface class

2 RClass makeAdapter (RClass c, String N) {

3 RClass adapter = this.getPackage().newClass(N);
4

5 RField f = adapter.newField(c, "adaptee");
6 adapter.newConstructor (f);

7

8 for (RMethod m : this.getAllMethods ())

9 adapter .newMethod (m) ;

10

11 adapter.setInterface(this);

12

13 return adapter;

14 ¥

Figure 2: R2 makeAdapter Method.

Figure 3 is an R2 script to create a Visitor design pattern.
Using the Eclipse GUI, a programmer identifies a method,
called a seed, in a class hierarchy that s/he wants to create a
Visitor; s/he then invokes R2’s makeVisitor refactoring from
the Eclipse GUIL Doing so invokes seed.makeVisitor(N),
where seed is R2 object of the seed and N is the name of
the Visitor class to be created. makeVisitor gets the seed’s
package, creates a Visitor class v with name N in that pack-
age, and makes v a Singleton (Lines 3-5). Next, all methods
with the same signature as the seed are collected onto a list.
Every method on the list is renamed to accept (Line 8),
and then a parameter of type v is added whose default value
is the Singleton field of N (Line 10). The index value that
is returned is the index number of the Visitor parameter.
Only movable methods (e.g., abstract or interface meth-
ods cannot be moved) are relocated to class N, leaving behind
delegates, respectively (Line 11). All methods in the Visitor
class are renamed to visit. makeVisitor returns v, the R2
Visitor class object.

1 // member of RMethod class

2 RClass makeVisitor (String N) {

3 RPackage pkg = this.getPackage();

4 RClass v = pkg.newClass(N);

5 RField singleton = v.addSingleton();

6

7 RRelativelList relatives = this.getRelatives();
8 relatives.rename ("accept");

9

10 int index = relatives.addparameter(singleton);
11 relatives.moveAndDelegate (index);

12

13 v.getAllMethods () .rename ("visit");

14

15 return v;

16}

Figure 3: R2 makeVisitor Method.

These examples of ~15 LOC are typical of R2 scripts;
they are very short. We implemented 18 of the 23 design
patterns in the Gang-of-Four text [25] using R2. Eight pat-
terns (including Visitor) are fully automatable as there are
no programmer T0-DOs. Another ten are partially automat-
able. This includes Adapter, where only stubs are generated.
Some of the remaining patterns are automatable, such as
State and Mediator,! while others, Facade and Iterator, are

1State is a typical MDE application [5]. Mediator is the essence of



so application-specific that little or nothing is reusable [35].

Java is a practical scripting language — writing R2 scripts is
like writing regular Java code. Programmers do not need to
learn a Domain Specific Language (DSL) for program trans-
formations. R2 scripts invoke JDT refactorings and create
new program elements. Although using Java as a scripting
language is great, JDTRE is not, as mentioned in the Intro-
duction (reliability and speed being the biggest detractors).
JDTRE was never designed for scripting refactorings. Hence
the motivation for R3.

3. R3 CONCEPTS

3.1 Modularity Perspectives

Elementary physics inspired R3. A physical object looks
different depending upon an observer’s location. Silhouette
portraits of people are different from frontal portraits. Just
as viewpoints of a physical object are created by rotations
and translations, called coordinate transformations that pre-
serve object properties, R3 does the same for programs: it
refactors programs by pretty-printing without changing the
program’s ASTs or behavior.

To see how, we strip away Object-Oriented (OO) notation.
A method implements an absolute function (the reason for
‘absolute’ is explained shortly) where all method parameters
are explicit as they would be in a C-language declaration.
Figure 4a is the signature of an absolute function foo with
three parameters whose types are B, C, D.

.

() [ foo(B b, D d) |

(a)[A foo(B b, C e, D ) |

(d)‘static A foo(B b, Cc, Dd) \

Figure 4: An Absolute Function and its Relative Methods.

If foo is displayed as a member of class B, Figure 4b is its
signature: the B parameter becomes this and is otherwise
implicit. If foo is displayed as a member of class ¢, Figure 4c
is its signature, where the C parameter is this. We say
the natural homes of an absolute function are its parameter
types. The natural homes for method foo are B, C, D. If
foo is displayed as a member of class E, not a natural home,
it appears as the static method of Figure 4d which has no
implicit this parameter.

A modularity perspective assigns absolute functions to class
declarations. The idea generalizes to other entity declara-
tions (e.g., packages, classes, fields) and their containment
relationships. To illustrate, nested classes generalize abso-
lute functions in an interesting way. Figure 5a shows class
B nested inside class A. Method m of class B has the absolute
function:

void m(A a, Bb) { a.i = a.i + b.j; }

Although m() displays without parameters inside B, it re-
ally has two implicit parameters: this (of type B) and A.this
(of outer type A). We see that m() can be displayed as a mem-
ber of class A using our modularity perspective techniques
by making the B parameter explicit. See Figure 5b.

A ‘coordinate transformation’ interpretation also explains
why refactoring engines do not move methods of anony-
mous classes. Consider Figure 5c. The absolute function
of method p has signature p(A a,? b), where ? denotes an

GUI builders. Neither are appropriate for a refactoring engine.

class A {
class A { int i = 5;
class A { int i = 5;
int i = 5; void t() {
void m(B b) { new B() {
class B { i=1i+b.j; int j = 4;
int j = 4; } void p() {
void m() { i=1i+3;
i=1i+3; class B { }
} int j = 4; }i
} } }
} (a) } (b) } (c)

Figure 5: Nested Classes.

anonymous subclass of B. Since 7 has no name to display,
refactoring engines refuse to move p.

In R3, by creating a database of program elements and
their containment relationships, classical refactorings become
simple database modifications and never alter the ASTs of
the target program. The AST is ‘absolute’ or immutable; it
appears different relative to the modularity perspective from
which it is displayed. The move-instance-method refactor-
ing, which is what Figure 4 is about, is a coordinate transfor-
mation for software; it preserves the semantic properties of
a program. The same holds for other primitive refactorings.

3.2 The R3 Database

R3 maintains an internal, non-persistent database to re-
cord changes in perspective. When R3 parses compilation
units of a program, it creates relational database tables for
all declaration types in a program. Each tuple of the RClass
table represents a unique class declaration in the program.
Among RClass attributes is a pointer to the AST of that
class. Each tuple of the RMethod table represents a unique
method (or absolute function) declaration in the program.
Fach RMethod tuple points to the AST of its method and to
the RClass tuple in which that method is a member. Sim-
ilarly, there are tables for package declarations (RPackage),
field (RField), etc. There are no tables for Java executable
statements or expressions; only classes, interfaces, fields,
methods, and parameters, as these are the focus of Gang-of-
Four design patterns and almost all classical refactorings.

Program source is compiled into AST's which are traversed
to populate R3 tables. Figure 6 shows the basic set-up.
Three RClass tuples (Graphic, Square, Picture) are created.
So too are four RMethod tuples (Graphic.draw, Square.draw,
Picture.add, Picture.draw) that are linked to the RClass tu-
ple for which each is a member.

Refactorings update this database. Renaming a method
updates the name field of that method’s R3 tuple. Moving
a method to another class updates the method’s R3 tuple
to point to its new class. Only when an AST is rendered
(displayed) is the information in the R3 database revealed.
When a method’s AST is displayed, the name of the method
is extracted from the method’s R3 tuple.

When a class is displayed, the tuples of the fields, meth-
ods, constructors, etc. that belong to it are extracted from
the database. The ASTs of these tuples are then displayed,
relative to their current class. Figure 7 sketches the RClass
display method: it prints the class keyword, the current
class name, extends clause with its superclass name, and
implements clause with interface name(s); all names obtained
from the database. Then each member that is assigned to
that class is displayed, following by the display of the closing
brace ‘}’. R3 reproduces the original order in which members
appeared for ease of subsequent reference by programmers
and preserves all source code comments.

Rendering is fast and less involved than updating ASTs



Source

class Graphic {
void draw() { .. }
}

RClass
Database

l--- cl Graphic

class Square extends Graphic { compiler,

void draw() { .. }
}

class Picture extends Graphic {

Graphic Square

Abstract Syntax Tree ~___-- --T
-7 - 2 Square cl
-- c3 Picture cl
traversal  RMethod
Picture -= ml draw {} —
-= m2 add {c1} —

void add(Graphic g) { }
void draw() { .. }

/\ /X\ 7 B e e
draw draw
} - {}

m4 draw

Figure 6: R3 Database.

and moving AST subtrees from one parent to another. Con-
sider the changes that are needed when absolute method foo
(Figure 4a) is moved from class B to ¢. All invocations of
foo, such as b.foo(c,d), are altered to c.foo(b,d). A rendering
simply changes the order in which arguments are displayed;
it is more work to consistently update pointers when making
this change to an AST.

void display() {
ast.displayHeader() ;-

Pclass A extends B

List<RMember> implements I {

mlist = getMemberList(); _].--»memberl;
for (RMember m : mlis_g)_.a—' - member2 ;
m.display(); -~~~ member3;

-}

}

(a) Method to display an RClass tuple (b) Code that is displayed

Figure 7: RClass Display Method.

Typical refactoring engines modify ASTs. In contrast,
R3 eliminates AST manipulation. R3 still needs to create
ASTs when new program elements are needed, but other
than that, R3 does not manipulate ASTs. As we report
later, a consequence of the above is that the codebase for R3
is much smaller and simpler than JDTRE.

3.3 Primitive Refactorings

We now explain some representative primitive refactorings
to see how they are implemented in R3. In the refactoring
community, behavior preservation is determined by stati-
cally analyzing whether the input code passes the refactor-
ing’s preconditions [43]. If all preconditions are met, the
refactoring engine is allowed to change the program code.
We partition our discussion on refactorings into two seg-
ments: database changes corresponding to code transforma-
tions in conventional refactorings (considered in this section)
and precondition checks (discussed in the next section).

3.3.1 Rename Method

Rename-instance-method modifies the name field of the
method’s RMethod tuple. This refactoring, like most, have
a database-transaction quality. Consider a class hierarchy
where all classes have their own method foo. To rename foo
to bar can be expressed as a loop, where getRelatives() finds
all overriding/overridden methods with the same signature
as foo:

for (RMethod m : foo.getRelatives()) {
m.rename ("bar") ;

}

Until the loop completes, not all methods are renamed
and preserving program semantics is not guaranteed. R3
performs renames on sets of overriding/overridden methods

with identical signatures, and by being a set operation, does
not expose an inconsistent database to users:

RRelativelList relatives = foo.getRelatives();
relatives.rename("bar");

3.3.2 Change Method Signature

Change-method-signature adds, removes, and reorders me-
thod parameters. Encoded in the R3 database is a list of
formal parameters for every method. Adding a parameter
to a method simply adds the parameter and its default value
to the database. When the method is displayed, it is shown
with its new parameter; method calls are displayed with its
default argument.

Prior work [41, 54] found that highly-parameterized refac-
torings with options (name, parameter add/delete/reorder,
exception, delegate) discourage the use of refactorings and
make them harder to understand. Accordingly, R3 has sepa-
rate methods to add, remove, and reorder parameters. Line 1
below finds the R3 tuple for a field with name £ in class C
of package p. The field’s type serves as the type of the new
parameter and a reference to that field is the parameter’s
default value (Line 2). The new parameter, by default, be-
comes the last formal parameter of method m. Line 3 makes
it the first parameter of method m:

1 RField v = RField.find("p", "C", "f");
2 RParameter newParam = m.addParameter (v);
3 newParam.setIndex (0);

Like rename, addParameter has a set-based version.

3.3.3 Move Method via Parameter

The move-instance-method refactoring in R3 changes the
home class of a method m. Recall that a home parameter is
any parameter of m, and a home class is the class of a home
parameter. Moving m to a home class simply updates m’s R3
tuple to point to the tuple of its home class. Presuming c is
a home class, the code below moves method m to the class c:

m.move(c);

3.3.4 Move Method via Field

The move-via-field refactoring is illustrated in Figure 8.
Method m in class A, whose absolute signature is C m(A a,B b),
is moved to class D via field d. A local invocation, m(b),
becomes d.m(this,b). Here is where scripting comes in handy:
move-via-field is the following R3 script:

// member of RMethod class

void moveViaField(RField f) {
RParameter newHome = addParameter (f);
move (newHome) ;



class A { class A {
D d; D d;
Cm(B b) {.}

.. m(b) .. // a call || MOV
} via
field

.. d.m(this, b) .. // a call

class D { class D {
Cm(Aa, Bb) {.}

} }

Figure 8: Move via Field Refactoring.

3.3.5 Introducing New Program Elements

R3 introduces complex new code declarations (classes, meth-

ods, fields, etc.) into an existing program by creating a com-
pilation unit with these declarations. The file is compiled
and the database is updated with new declarations which are
then embedded into the existing program via move refactor-
ings. The code below shows how to create a custom method
mul(), whose R3 object is mth:

String s = "package pkg; \n"+
"class C { \n"+
" int mul() { return 7#57; }\n"+
H}II;

RPackage p = RProject.getPackage("Prj", "pkg");
RCompilationUnit cu = p.createCU(s);

RClass cls = p.getClass("C");

RMethod mth = cls.getMethod("mul");

Once the needed methods and fields are removed from com-
pilation unit cu, the unit can be marked deleted in the
database using the R3 remove refactoring. The AST of cu re-
mains, but at pretty-printing time no text of its (now empty)
compilation unit is produced.

3.3.6 Scripting Refactorings

R3 supports all refactorings that are essential to introduce
or remove design patterns from existing programs. R3’s in-
terface is compatible with R2. That is, R2 scripts port to
R3. This gives us the ability to script refactorings to retrofit
design patterns into Java programs and we can build com-
pound refactorings as compositions of primitive refactor-
ings. We already saw scripts for makeAdapter (Figure 2),
makeVisitor (Figure 3), and moveViaField in Section 3.3.4.

3.4 Preconditions

Precondition checks are the major performance drain in
refactoring engines. JDTRE is typical: it checks precondi-
tions as needed. Every refactoring call r() on an R3 object
obj requires a conjunction of precondition checks obj.p1()A
obj.p2()A... Aobj.pn() where p;i() is a primitive precondi-
tion. For example, the JDT move-instance-method refactor-
ing has 19 distinct checks (which are also present in R3); if
any one fails, the move is disallowed. Since JDTRE does not
know if a programmer will invoke obj.r(), JDTRE does the
obvious thing by evaluating obj.p1()Aobj.p2()A. .. Aobj.pa()
only when needed.

R3 is different. We too do not know what refactorings
a programmer will invoke. But we can precompute the
value of many — not all — p; () for all R3 objects at database
build time, even though we may never use these values. For
each pi(), we add a boolean attribute to R3 tables to indi-
cate whether a tuple’s AST satisfies p;(). The checks for
a refactoring then become a conjunction of these boolean
attributes.

The R3 database is created by traversing the ASTs of
a program and collecting semantic information. Doing so

populates the R3 database with tuples and assigns boolean
values to these checks. Further, in cases where harvested
boolean values are insufficient, we optimized the R3 database
to facilitate fast searches, e.g., R3 collects all references of a
declaration to reduce search overhead. We will see in Sec-
tion 5 these techniques improve performance significantly.

3.4.1 Boolean Checks Made by a Single Tuple Lookup

In R3, fifteen preconditions (which JDT move-instance-
method uses and are shared by other refactorings) are AST-
harvestable at database build time as boolean values. Here
is a representative sample:

Abstract — is the method abstract?

Native — is the method native?

Constructor — is the method a constructor?

Interface Declaring Type — is the enclosing type of the
method an interface?

e Non-Local Type Reference — if the method references
a non-local type parameter (e.g., a type parameter of
a generic class), it cannot be moved. Figure 9a illus-
trates a non-local type parameter which prevents a move
of method m. In contrast, method m in Figure 9b can be
moved as its parameter is local.

class A<T> { class A { class A {

void m(B b) { <T> void m(B b) { <T> void m(T t) {
T t = null; T t = null; }

} } }

} }

(a) Can’t move with
non-local type T

(b) Can move with
local type T

(c) Generic entity target

Figure 9: Generic Constraints.

e Generic Entity Target — moving a method via a type
parameter is disallowed (Figure 9c).

e Unqualified Target — a natural home of a method can-
not be an interface. A natural home is disqualified if its
argument is assigned a value as in Figure 10a.

e Null Home Value — if a method call has a null home
parameter as in Figure 10b, a move to that home is dis-
allowed as it will dereference null.

(a) | void m(D d) { (b) | void m(D d) {...}
d = new D();

} ... m(null) . //call

Figure 10: Target Constraints.

e Polymorphic Method — when the target method is poly-
morphic, it cannot be moved unless a delegate is left be-
hind. Our makeVisitor script satisfies this constraint.

e Super Reference — JDTRE refuses to move any method
that uses the super keyword. To write general purpose
refactoring scripts, we removed this precondition in R2 and
R3 by replacing each super.x() call with a call to a super
delegate, a manufactured method super x() [35]. Other
IDEs, such as IntelliJ] IDEA [30] and NetBeans [42], do
move such methods, but do so erroneously (Figure 11).

class A extends B { class C {

void m(C c) { void m() {

super.n() ; m super.n() ;
} } }
} } }
(b) Intelli) IDEA

Figure 11: Super Call Bugs.

class C {
void m(A a) {
a.super.n() ;

(a) Method with super call (c) NetBeans

The remaining boolean checks are more of the same [34].



3.4.2  Checks that Require Database Search

Not all primitive preconditions are reducible to boolean
attributes; these outliers require a database search, which R3
performs efficiently. Here are some for the move-instance-
method:

e Accessibility — after a method is moved, it must still

be visible to all of its references. Symmetrically, every
declaration that is referenced inside the method’s body
should be accessible after the move. JDTRE promotes
access modifiers of the moved method and/or referenced
declarations to satisfy all visibility requirements. R3 does
the same.
Associated with each RMethod object m is a list of its refer-
ences (this list is collected at database creation time). R3
traverses this list to ensure that m is still visible to each
reference. Similarly, R3 maintains a second list of tuples
(again collected at database creation time) that are refer-
enced in m’s body. R3 traverses this list to ensure that all
referenced declarations remain visible to m. R3 makes the
same adjustments in modifiers as JDTRE.

e Conflicting Method — a method can be moved only
when it does not change bindings of existing method ref-
erences. Consider the 3-class program of Figure 12. A
method call m(...) inside B.n() invokes A.m(C). When JDTRE
moves method C.m(B) to class B, the method call changes
its binding to the newly moved method B.m(C).

class A { class B extends A { ||class C {
void m(C c) { } void n() { void m(B b) { }
} m(...); }

}} " binding change

Figure 12: Method Binding Change.

Clearly this is wrong. JDTRE determines if a conflict
exists in the destination class but not its superclasses, an
error that we have reported [20]. R3 does better by travers-
ing the class hierarchy and evaluating access modifiers to
find conflicts [47].

e Duplicate Type Parameter — JDTRE moves method
m in Figure 13 to class B only when type parameter T is
removed from m since T already exists in class B. After the
move, however, T inside method m changes binding to the
existing T in class B.

class A { class A { }

<T> void m(B<T> b) {
class B<T> {

T t = null;
) m void m() {
T t = null;

}

}

‘class B<T> { } ‘ }

Figure 13: Duplicate Type Parameter.

R3 harvests type parameter names and stores them in the
database tuple where they are declared. R3 searches the
type parameter collections to find a match.

4. CURRENT R3 IMPLEMENTATION

JDTRE does not use a standard pretty-print AST method.
To minimize R3 coding, we used a pipeline of tools, relying on
Eclipse minimally and using AHEAD [6], which has pretty-
print methods ideal for R3. Figure 14 shows the R3 pipeline:
it is a series of stages (A)-(G) that map a target Java pro-
gram (JDT project) on the left to a refactored program on
the right.

( g/\.
R3D

N ( R3 DB with R3 DB with
> A
e / | (C links to AHEAD AsTs | refactoring updates
LYY Eclipse
= ASTs +
) av: Symbol
program table /} 5|
Lj (D) =
AHEAD Refactored
Java ASTs program

program’

Figure 14: R3 Pipeline.

(A) Eclipse parses a Java program into ASTs. Below is a
target program with a generic method that prints its
array argument of different types:
package p;
class C {

// generic method
static <E> void print(E[] array) {
for(E e : array)
System.out.printf("\%s ", e);
¥
¥

(B) JDT ASTs are traversed to harvest a major part of the
R3 database. Later, step (E) completes the database.
(C) AHEAD requires a context-free parser. To satisfy this
constraint, a version of the original program is output
(shown below) where white space and comments are
preserved and all identifiers are replaced with manufac-
tured and unique identifiers ID_#; symbols “<” and “>”
that indicate generics are replaced with unambiguous
symbols “<:” and “:>”. AHEAD can parse the revised
compilation unit:
package ID_O;
class ID_1 {
// generic method
static <:ID_2:> void ID_3(ID_4[] ID_5) {
for(ID_6 ID_7 : ID_8)
ID_9.ID_10.ID_11("\%s ", ID_12);

}
}

and with the database of (B) can reconstruct the iden-
tical text of the original program.

(D) AHEAD parses the manufactured-identifier program.

(E) R3 database tuples are doubly-linked to their AHEAD
AST nodes so each pretty-printer of an AST node can
reference the corresponding R3 tuple and vice versa.

(F) R3 refactorings are executed. They modify only the R3
database, not AHEAD parse trees.

(G) The source code of the refactored program is pretty-
printed as described earlier.

S. EVALUATION OF R3

To evaluate the usefulness of R3, we answer the following
research questions:

e RQ1 (Performance): How fast is R3 compared to JDTRE?

e RQ2 (Correctness): Does R3 improve the correctness of
the result when retrofitting a design pattern?

e RQ3 (Productivity): Does R3 reduce the required time to
retrofit a design pattern?

Previously, in [35], we evaluated the expressiveness of the
R3’s predecessor, R2, by demonstrating that its scripts can
retrofit design patterns into real-world programs. We fo-
cused on patterns that (a) were the hardest to manually
create and (b) executed the most JDT refactorings. We
used the same R2 tests for R3, not only to show that R3 is



Application Seed # of JDTRE time (seconds) R3 time (seconds) Speed
(Ver#, LOC, #Tests) 1D Refacs Precon Perform Total Build Link Precon DB Proj | Total Up
Check Change DB (B) AST (E) Check (F1) Update (F2) (G)
Al 104 16.58 2.31 18.89 0.000 0.028 0.21 0.24 79
AHEAD A2 68 18.49 2.67 21.16 0.010 0.010 0.11 0.13 163
jak2java [6] A3 554 260.85 37.48 298.33 1.66 0.06 0.017 0.230 1.87 2.12 141
(130320, 26K, 75) A4 60 14.69 3.70 18.39 0.001 0.032 0.54 0.57 32
A5 96 35.46 7.19 42.64 0.003 0.047 0.96 1.01 42
C1 6 1.80 1.39 3.19 0.000 0.007 0.41 0.42 8
Commons Cc2 16 4.26 0.70 4.96 0.000 0.007 0.30 0.31 16
Codec [2] C3 16 3.60 0.30 3.90 1.18 0.03 0.000 0.007 0.24 0.24 16
(1.8, 16K, 6103) C4 12 3.91 0.68 4.59 0.000 0.007 0.21 0.22 21
Cs5 6 1.51 0.50 2.00 0.000 0.005 0.37 0.37 5
I1 4 1.20 0.19 1.40 0.000 0.000 0.05 0.05 28
Commons 12 4 2.21 0.20 2.40 0.000 0.002 0.08 0.08 31
10 [3] 13 6 1.80 0.50 2.31 1.75 0.04 0.000 0.004 0.35 0.35 7
(2.4, 24K, 810) 14 4 2.70 0.30 3.00 0.000 0.002 0.07 0.07 42
15 6 1.68 0.20 1.88 0.000 0.004 0.32 0.32 6
J1 16 4.49 0.70 5.20 0.000 0.011 0.17 0.18 29
JUnit [32] J2 4 0.31 0.09 0.40 0.000 0.004 0.05 0.05 8
(4.11, 23K, 2807) J3 18 30.22 3.37 33.60 2.01 0.04 0.000 0.008 0.32 0.33 103
’ ’ J4 20 8.10 1.40 9.49 0.000 0.011 0.44 0.45 21
J5 4 1.41 0.20 1.61 0.000 0.003 0.09 0.10 17
Quark [6]
(1.0, 575, 9) Q 16 3.40 0.40 3.80 0.24 0.01 0.000 0.009 0.09 0.10 40
w1 28 6.99 0.90 7.90 0.000 0.016 0.33 0.35 23
Refactoring w2 4 1.80 0.30 2.10 0.000 0.004 0.12 0.12 17
Crawler [18] W3 26 11.82 1.01 12.82 0.79 0.02 0.000 0.013 0.32 0.34 38
(1.0.0, 7K, 15) W4 10 4.11 1.10 5.21 0.000 0.007 0.19 0.20 26
W5 28 9.69 1.40 11.08 0.000 0.015 0.33 0.34 33

Table 2: Applications and

similarly expressive and can handle the complexities of real-

world programs, but also to measure R3’s performance w.r.t.

JDTRE — noting that JDTRE is representative of the state
of the practice in refactoring engines. In addition, in this pa-
per we also focus on practicality. Namely, can programmers
use R3 effectively?

To answer these questions, we use a combination of two
empirical methods: a case study using 6 Java real-world
programs and user studies (with 44 undergraduates and 10
graduate students) that complement each other. The user
study allows us to quantify programmer time and program-
mer errors, while the case studies give more confidence that
R3 generalizes to real-world situations.

5.1 Performance

The first column of Table 2 lists the programs of the R3
evaluation, along with their version, LOC, and number of
regression tests. We performed two sets of experiments.

The first set of experiments retrofitted a Visitor pattern
into six Java applications. The second set removed a Vis-
itor by executing an Inverse-Visitor script that exercises a
different set of refactorings. Inverse-Visitor does not simply
undo existing changes, but is a script that removes an in-
stance of a Visitor design pattern by moving visit methods
back to their original classes.? These experiments engage the
primitive refactorings that are used the most often in design
patterns. We ran the regression tests on each application
after script execution to confirm there was no difference in
their behavior. We used an Intel CPU i7-2600 3.40GHz, 16
GB main memory, Windows 7 64-bit OS, and Eclipse JDT
4.4.2 (Luna) in our work.

Table 2 shows the performance results of the first set of
experiments. Each program (with the exception of Quark)
has five methods that serve as a Visitor seed. The com-
plexity of a refactoring task is measured by (1) the number
of JDT refactorings executed; this number is given in the
# of Refacs column® and (2) the CPU time listed in the

2Imagine the scenario that a programmer creates a Visitor to view
all declarations of a method m in class hierarchy. S/he then edits
the methods of this Visitor. Simply “undoing” this Visitor rolls back
both the Visitor and her/his changes. An Inverse-Visitor refactoring
removes the Visitor and preserves programmer changes [35].

30ur makeVisitor and inverseVisitor scripts create and delete pro-

gram elements but these operations are not counted as JDT refactor-
ings.

omparison with JDTRE and R3

Total column.?

JDTRE execution time has two parts, precondition checks
and code changes, whose sum equals column Total. Column
Precon Check is the time for all precondition checks discussed
in Section 3.4 and a check/parse to see if the compilation
units (Java files) involved in the refactoring are ‘broken’ —
meaning that the file has syntax errors. Code change (col-
umn Perform Change) is the sum of times for calculating the
code changes to make, updating the Eclipse workspace, and
writing updated files to disk. Note: precondition checks in
JDTRE consume about 87% of refactoring execution time.

R3 execution time covers six steps (B)-(G) in Figure 15.
Steps (C)-(D) are due to our use of AHEAD for coding con-
venience and would be unnecessary if JDTRE had usable
pretty-print methods. We exclude times for (C)-(D) as they
have nothing do with R3 performance.

B (F1) + (F2)
© .S o . 8——S
R3 DB R3 DB with R3 DB with
links to AHEAD AsTs | "efactoring updates
Eclipse
ASTs + N
symbol (€)™ \ =N
table LL — o Q) €
LLE] (D) -+
AHEAD Refactored
Java ) ASTs program
program

Figure 15: Performance Pipeline of R3.

A cost of R3 is (B) creating the database and (E) linking
database tuples to AST nodes, shown as columns in Build DB
and Link AST in Table 2. These execution times are minus-
cule. During the brief interval that it takes to display the
R3 GUI refactoring menu, a database can be created+linked
with an unnoticeable delay.

The true execution time for R3 is (F1) checking precon-
ditions, (F2) updating databse, and (G) at the end of the
script execution pretty-printing the compilation units that
have changed. The sum of these numbers, the Total column,
is R3’s run-time.

We compute the ratio of the JDTRE and R3 Total columns,
listed in the Speed Up column. R3 ranges from 5x to 163x
faster than JDTRE. The longest JDTRE execution time was

We used profiling tool VisualVM (ver. 1.3.8) [57] to measure CPU
times in running the JDTRE and R3 scripts. We repeated each ex-
periment five times and report the average execution time.



seed A3 to create a Visitor of 276 methods, taking 298 sec-
onds of CPU time. In contrast, R3’s execution time was
2.2 seconds. Interestingly, even if the number of refactor-
ings executed in a makeVisitor script are small (4 —6), R3
was 17x faster on average; for larger numbers of refactorings
(> 50), the speed-up was 91x faster. On average for these
experiments, R3 was 38x faster than JDTRE.®

Table 3 shows the corresponding run-times for our sec-
ond set of experiments that removed a Visitor. Although a
different set of refactorings are exercised, we reach similar
conclusions. R3 ranges from 5x to 291x faster than JDTRE.
On average, R3 was 55x faster than JDTRE.®

Scod] # |[JDTRE time (seconds) || B3 time (seconds) [ speca
D of I Prec [ Porf Tot Prec [ DB T~ [ Tot “ o
Refa Chk Chg Chk | Udt
AT 104 50.80 .47 59.27 0.003 | 0.005 | 0.20 | 0.21 286
A2 68 27.19 5.10 32.29 0.001 0.006 0.10 0.11 291
A3 554 167.27 46.59 213.86 0.023 0.021 1.75 1.79 119
A4 60 9.98 5.78 15.76 0.008 | 0.006 | 0.53 | 0.55 29
A5 96 19.23 8.97 28.21 0.010 | 0.008 | 0.99 | 1.01 28
C1 6 1.59 0.70 2.29 0.001 | 0.001 | 0.43 | 0.43 5
c2 16 6.61 0.68 7.28 0.000 | 0.001 | 0.28 | 0.28 26
c3 16 7.10 0.40 7.50 0.000 | 0.001 | 0.23 | 0.23 33
C4 12 4.61 0.59 5.20 0.000 0.001 0.20 0.20 26
C5 6 1.70 0.59 2.29 0.000 0.001 0.35 0.35 6
I1 4 2.20 0.21 2.40 0.000 0.000 0.05 0.05 51
12 4 2.22 0.30 2.52 0.000 0.000 0.07 0.07 35
13 6 2.21 0.50 2.71 0.000 | 0.001 | 0.33 | 0.33 8
14 4 1.99 0.20 2.19 0.000 | 0.000 | 0.06 | 0.06 34
15 6 1.51 0.49 2.00 0.000 | 0.001 | 0.30 | 0.30 7
JT 6 175 0.99 574 0.000 | 0.002 | 0.26 | 0.27 22
J2 4 1.90 0.20 2.10 0.000 | 0.000 | 0.04 | 0.04 51
J3 18 11.60 0.69 12.28 0.001 0.001 0.31 0.31 39
J4 20 5.81 1.10 6.91 0.001 0.002 0.45 0.46 15
Js 4 2.78 0.21 2.98 0.000 | 0.000 | 0.09 | 0.09 34
Q 6 2.58 0.80 3.38 0.000 | 0.001 | 0.08 | 0.08 41
W1 28 628 .79 8.07 0.002 | 0.002 | 0.33 | 0.33 25
W2 4 5.01 0.40 5.41 0.000 0.001 0.11 0.11 49
w3 26 21.19 1.52 22.71 0.000 | 0.002 | 0.31 | 0.31 74
w4 10 7.92 0.87 8.79 0.000 | 0.001 | 0.20 | 0.20 44
w5 28 15.74 1.68 17.42 0.001 | 0.002 | 0.33 | 0.33 53

Table 3: Inverse-Visitor Results.

There are three basic reasons for the huge difference in
performance. First, as mentioned earlier, JDTRE evaluates
preconditions by searching ASTs, and piggy-backs the col-
lection of information to know what text changes to make
to perform an actual refactoring, such as creating a method
delegate, adjusting declaration visibility, etc. Profiling ex-
periments indicate that the vast majority of time (avg: 60%,
sd: 15%) of the Precon Check column for JDTRE is simply
due to AST searching. R3 reduces the overhead by collect-
ing all program elements and values needed for precondition
checks or code transformation in advance.

Second, the R3 database has been optimized to make nor-
mally slow operations lightning fast. One such operation is
the rebinding of all references to one declaration to those
of another (Figure 16a). The move-and-delegate refactoring
is an example. Following the ‘one-fact-in-one-place’ mantra
of database normalization, R3 introduced an RBinding table
where declaration bindings are represented once and with
one update, all references are rebound (Figure 16b).

ref1 dec,

ref; dec1
refZ dec, % ref, decZ
ref; ref;
ref, bind, — dec, bind, \ dec,
ref, dec, u:::te decz
ref,

Figure 16: Reference Bmdlng in R3.

Third, JDTRE parses all files involved in a refactoring
and writes out changed files after each refactoring. In con-

5Had we included database creation time for steps (B) and (E) in our
calculations, the average speed-up ratio drops to 11X.
SHad we included database build time for steps (B) and (E) in our
calculations, the average speed-up ratio drops to 10X.

trast, R3 refactorings are virtually instantaneous database
updates. Projection (i.e., writing out changed files) is per-
formed only once after the script execution is finished.

In short, JDTRE was not designed for efficient scripting.

5.2 Practicality

We conducted an evaluation of R3’s practicality. We de-
signed two controlled experiments (the Adapter experiment
and the Visitor experiment) to assess how users worked with
R3. We ran the experiments with 44 students in Spring 2015
at the undergraduate CS373S Software Design [49] course at
the University of Texas at Austin. The course exposes stu-
dents to fundamental structures and concepts in software de-
velopment, with an emphasis on automation. Two lectures
were devoted to refactoring and seven more were dedicated
to design patterns.

We ran another Visitor experiment with 10 students in Fall
2014 at the graduate CS561 Advanced Software Engineer-
ing [1] course at the Oregon State University. This course
exposes students to seminal topics and recent trends in soft-
ware evolution; in particular automating common changes
to improve software quality. Results from both executions
were consistent.

5.2.1 Experimental Design

We had two dependent variables: correctness and time.
Correctness was first measured as a boolean metric: either
the result was correct or not. We also used a score that
measured the degree of correctness (0 meant nothing had
been done to the existing code, and 100 meant the pattern
had been correctly introduced). Time was measured in min-
utes. The only independent variable was the method used to
retrofit the pattern (i.e., R3 scripts vs. using available JDT
refactorings or manual edits).

As an approximation, the complexity of a pattern instance
is the number of refactorings that must be applied to pro-
duce the instance. There is clearly more: programmers must
order refactorings in a proper sequence to achieve the de-
sired result. In any case, creating and removing Visitor
and Adapter pattern instances require sequences of refac-
torings of different length using different sets of primitive
refactorings. We believe both are representative of refactor-
ing scripts that programmers can (or would like to) apply.

Based on these patterns, we designed two separate exper-
iments: one for Visitor and another for Adapter. To coun-
teract the impact of the order of the method participants
used, we counterbalanced it. Each experiment consisted of
two tasks. Group A performed the first task using R3 and
the second using the available JDT refactorings; Group B
did in the opposite order. Further, we balanced Group A
and Group B w.r.t. their backgrounds, using information
that students provided in a survey at the beginning of the
course.

To ensure uniform knowledge among participants, each
participant read and practiced online tutorials to:

e make and remove a Visitor and Adapter manually [35],

e write and run R3 scripts, and

e apply JDT refactorings such as rename, move, and change-
method-signature, with an explanation of their options.

Students submitted practice assignments (code and scripts);
only when they passed the tutorial assignments could they
proceed to the real experiment.



Visitor Adapter
Metric Baseline R3 z | p [ r Baseline R3 z | p [ r
Success 39.5% 78.0% 3.441 [ 0.001 | 0.519 54.5% 81.8% 3.207 | 0.001 [ 0.483
Mean | SD | Mean | SD Mean | SD | Mean | SD
Score 73.5 24.8 93.5 13.6 [ 3.629 [ 0.000 [ 0.547 96.0 5.2 97.9 5.1 2.315 [ 0.021 | 0.349
Time 37.2 [ 29.7 [ 91.8 [46.9 [ 4.918 | 0.000 [ 0.741 19.9 9.2 43.7 [ 27.2 [ 5.152 [ 0.000 | 0.777

Table 4: Experimental Results from UT (44 undergrad students)

In the Visitor experiment, each student received a target
program, RefactoringCrawler [18], an open-source Eclipse
plugin. RefactoringCrawler has 119 Java classes, 17 inter-
faces and 7K LOC, including a suite of JUnit tests.

In the first task, Group A wrote a general R3 script to
make a Visitor, and applied this script to create a Visitor
with 13 methods given seed Wi. Group B applied Eclipse
refactorings manually to make the same Visitor. In the sec-
ond task, (1) participants removed an existing Visitor with
12 methods from the target program, but from a different
class hierarchy and (2) we flipped the control group: Group
A applied Eclipse refactorings manually and Group B wrote
and applied a general R3 script.

In the Adapter experiment, Group A was required to write
a general R3 script to make an Adapter that implements 35
methods, Group B created the same Adapter by hand as
JTDRE offers no useful refactorings for this task. In the
second task, we flipped the control group and targeted a
different Adapter of the same size.

We capped each task to 2 hours, although some partici-
pants extended this limit. Participants were not allowed to
take extended breaks but were free to abort after spending
the maximum time. Participants had to verify their work by
running the regression tests that came with RefactoringCraw-
ler.

Tasks were homework assignments. Participants had ac-
cess to classroom material and tool tutorials. To determine
participant success or failure, we analyzed their refactored
programs and R3 scripts, ran the regression tests, and man-
ually inspected their code. Students also reported the time
they spent on each task and completed a follow-up survey.

5.2.2 Results

Tables 4 and 5 summarize the results we obtained from the
UT and OSU executions respectively. As Shapiro-Wilk tests
showed a significant deviance from normality for score and
time, we resorted to non-parametric Wilcoxon signed-rank
tests for all the analyses. Both tables present the percentage
of successful submissions, means and standard deviations for
the score they obtained, and time spent. Tables also show
the test result (z), its corresponding p value and the effect
size (r) in the cases where statistically significant differences
were found between both methods (p < 0.05).

Results are consistent in both executions. For RQ2 (Cor-
rectness), we found statistically significant differences that
favor R3 in both success and score in both UT and OSU.
Moreover, the effect size introduced by R3 was large (r >
0.5) for the Visitor experiment and medium (r > 0.3) for
the Adapter experiment, showing that R3 has a significant
impact on success and score rates. We hypothesize that even
greater benefits for R3 accrue when the complexity of a pat-
tern (i.e., the types and numbers of required refactorings)
increases. More on RQ2 in Section 5.3.

For RQ3 (Productivity), results show statistically signif-
icant differences that favor using JDT refactorings in the
required time to apply the design pattern. Effect sizes are

Visitor
Metric Baseline R3 z | P | r
Success 20.0% 70.0% 2.236 [ 0.025 | 0.707
Mean SD Mean SD
Score 56.0 39.2 91.0 12.9 2.176 [ 0.030 | 0.688
Time 66.6 38.3 92.1 37.7 | 2.075 | 0.038 [ 0.656

Table 5: Experimental Results from OSU (10 grad students

large in all cases. In other words, for this experiment and
design pattern instances, it was faster to manually invoke
JDT refactorings than to write an R3 script from scratch
(however, once a script is written, it can be reused many
times). More on RQ3 in Section 5.3.

Clearly students can write R3 scripts. In a follow-up poll,
91% of them said that writing (R3) refactoring scripts would
be a useful addition to their IDE and 79.5% said that writ-
ing scripts improved their understanding of the Visitor and
Adapter patterns. Their response was gratifying as it sup-
ported primary motivation for our research.

R3 and more details about our empirical evaluation can
be downloaded at [45].

5.2.3 Threats to Validity

Every user study has limitations. First, although our re-
sults were comparable with undergraduate and graduate stu-
dents, the results might not be translatable to more experi-
enced programmers. Second, there might have been control
loss due to the tasks being homework assignments. This was
unavoidable considering the course design. The problem of
reconciling classroom objectives and experimental designs
has been largely recorded in the literature [7, 23]. Lastly,
students were aware that R3 was developed by their instruc-
tors and, while we asked for their honest answers and were
careful not to influence them on this point, this might have
impacted the results.

5.3 Perspective

There are at least
two dimensions that 1.0
are not captured
by our user study.
There is a non-zero
probability e that
each manually per-
formed refactoring
will be erroneous.
Assuming Bernoulli i
trials, Figure 17 0 10 20 30 40 50
shows the probabil-
ityP=(1—(1—e)")
that one or more er-
rors will occur in a manual retrofit of a design pattern re-
quiring n refactorings. From Table 2 row W1, the value of
n is 28. From Table 4, the value of P is 1 — 0.395 = 0.605.
Solving 0.605 = (1 — (1 — e)*®) yields e = 1/30.6. That is,
our students made an error, on average, every 30.6 manual
refactorings. The dashed vertical lines in Figure 17 and Fig-
ure 18 indicate the point on this graph that corresponds to

# of Refactorings Performed

Figure 17: Probability of Failure.



our user study. Figure 17 predicts the results of additional
future user studies on RQ2. As refactoring tasks become
more complicated, R3 wins easily; it can perform tasks cor-
rectly that humans can not.

A second dimen-

sion is time spent 400 .

per refactoring task/ 5 350 N N P
script. We gave 5 300 N ///
students only 1 man- S2s0 i 7

ual refactoring task é 200 //,

in our evaluation 2150 i ot

of RQ3. The £ 100 ’,f ~ — —
real benefit is when = 50 e

a design pattern 0o i
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SCI‘lpt is reused. Flg_ # of Different Applications of Script

ure 18 shows that
the break-even point
of writing a script
rather than manual
pattern construction is on its third use. R3 wins easily on
further reuse.

5.4 Other Relevant Observations on R3

R3 uses the same or improved precondition definitions
as JDTRE; these definitions are well-documented in the
JDTRE code base. We extracted from the JDTRE regres-
sion suite (org.eclipse.jdt.ui.tests.refactoring [44]) tests that
are relevant to R3 refactorings. We excluded tests on Java
8 features (e.g., lambda expressions), as R3 presently works
on Java Runtime Environment (JRE) 7. There were 122
tests for change-method-signature, 72 for move-method, 73
for pull-up, 59 for push-down, and 138 for rename. R3 sat-
isfies all 464 extracted tests; they are now part of the R3
regression suite.” Further, in building R2 and R3, we discov-
ered and reported 31 bugs in the JDTRE, 7 of which have
now been corrected [21].

Comparing the size of R3 to JDTRE in LOC is misleading,
as JDTRE relies on layers of Eclipse functionality, whereas
R3 is self-contained. To level the playing field, we used the
EcLEmma code coverage tool [29] to see what volume of code
was executed by JDTRE and R3 when the makeVisitor script
runs — this gives us an estimate of the number of Unique
LOC (ULOC) executed for equivalent functionalities.

R3 executes 1,782 ULOC for makeVisitor. But these ULOC
are self-contained, meaning that print, file open and close
methods are its only external calls. In contrast, JDTRE
executes 1,050 ULOC, which in turn calls 1,691 ULOC in
ltk.core.refactoring (the primary package for JDTRE) and
975 ULOC in 1tk.ui.refactoring where other core refactor-
ing functionality resides.® We conservatively estimate R3’s
codebase to be 2x simpler than JDTRE.

Figure 18: Error Expended with
Script Reuse.

6. RELATED WORK

We said earlier that R3 was inspired by elementary physics.
Another inspiration was Intentional Programming (IP) [14].
IP is a structure editor whose ASTs could be adorned with
different pretty-print methods, allowing the contents of an

7R3 does not produce exactly the same refactored source as JDTRE.

For example, R3 keeps track of moved methods. All type declarations
in these methods are displayed with fully qualified names so that
additional import declarations do not need to be added.

8Example: see checklInitialConditions, checkFinalConditions, and
createChange methods in MoveInstanceMethodProcessor.java [40]

AST to be printed textually or graphically. R3 is not a
structure editor or a small tweak on IP. IP displays entire
trees; R3 integrates a database of program facts and the
display of disconnected ASTs to yield a rendering that gives
the appearance of a single refactored program.

In developing R2 [35], we found 13 prior works [4, 9, 11, 12,
13, 15, 28, 37, 39, 50, 53, 55, 56] that could be used to im-
plement refactoring scripts. We classified them as program
transformation systems, DSLs, and refactoring engines built
atop of IDEs. Notably none reported performance of refac-
toring engines; all were demonstrations that their particular
infrastructure or tool could be used to implement refactor-
ings or transformation scripts. Most research on refactoring
engines mentions the importance of refactoring reliability
or error detection [16, 26, 31, 36, 48]. See [35] for further
details.

A critical property of R2 and R3 is that refactorings and
refactoring scripts are written in the same language as the
programs to be transformed (e.g., Java). We feel this prop-
erty is crucial because programmers do not have to learn yet
another language or programming paradigm to write refac-
toring scripts. Surprisingly, only one prior tool had this
property: Wrangler [36]. Wrangler refactorings and refac-
toring scripts were written in Erlang to modify Erlang pro-
grams.

7. CONCLUSIONS AND FUTURE WORK

OO refactoring technology is now 25 years old [27, 46].
Most researchers, ourselves included, tacitly assume that
few significant advances in tooling classical Java refactorings
are possible after this time. But looking closer, motivated
by new needs and applications for refactoring, reveals that
significant practical advances are not only possible but are
necessary.

We showed how classical Java refactorings (e.g., move,
rename, change-method-signature) and refactorings that are
essential to script the creation and removal of Gang-of-Four
design patterns, can be implemented by a novel combination
of databases and AST pretty-printing. Our tool R3:

1. does not rely on a huge codebase required by general-
purpose program transformation systems,

2. has a much smaller code footprint than JDTRE,

supports the writing and execution of refactoring scripts,

4. executes refactoring scripts 10x faster than JDTRE,
and

5. significantly improves correctness when retrofitting de-
sign patterns in a user study.

et

Having said the above, R3 in no way eliminates the need
for general-purpose program transformation systems. There
are many refactorings that are not used in scripting design
patterns [8, 22| and there are many refactorings that can-
not simply be “pretty-printed”, such as refactoring sequential
legacy code into parallel code [17]. Never-the-less, standard
OO refactoring engines leave a lot to be desired — slow speed,
no support for scripting, and overly complex code bases. Our
response is: let’s do the basics better and to provide script-
ing for the vast majority of programmers, which we believe
is critical to next-generation OO refactoring engines. For
these reasons, R3 offers a promising way forward.
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