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Abstract—Most design patterns in the Gang-of-Four text can
be written as a refactoring script – a programmatic sequence of
refactorings.R3 is a new Java refactoring engine based on pretty-
printing. It builds a main-memory, non-persistent database to
encode containment relationships among Java entity declarations
(e.g., packages, classes, methods), language features such as
inheritance and modifiers, and precondition checks for each
declaration. R3 design pattern scripts modify the database and
do not modify Abstract Syntax Trees (ASTs). While classical
refactoring engines transform source code or ASTs directly,
R3 produces refactored code by displaying the contents of
the modified database when pretty-printing ASTs. R3 performs
comparable precondition checks and code changes to that of
the Eclipse Java Development Tools (JDT) refactorings but R3’s
codebase is about half the size of JDT refactorings and runs
an order of magnitude faster. R3 refactorings pass relevant
regression tests in JDT and fix JDT refactoring bugs that we
found.

I. INTRODUCTION

Refactoring is a core technology in software development.
All major Integrated Development Environments (IDEs) offer
some form of refactoring support and refactoring is central
to popular software design movements, such as Agile [1] and
Extreme Programming [2]. In the last decade, refactoring tools
have revolutionized how programmers design software. They
have enabled programmers to continuously explore the design
space of large codebases, while preserving existing behavior.
Modern IDEs such as Eclipse, NetBeans, IntelliJ IDEA, and
Visual Studio incorporate refactoring in their top menu and
often compete on the basis of refactoring support.

Despite vast interest and progress, a key functionality that
many researchers have recognized to be missing in IDEs is
scripting [3–5]. Most design patterns in the Gang-of-Four text
[6] can be expressed as a refactoring script – a programmatic
sequence of refactorings [7], [8]. Adding and removing design
patterns manually is tedious, repetitious, error prone, and often
too difficult to do – try creating a Visitor with over 20 methods;
the benefits of scripting become clear.

We recently added scripting to Eclipse JDT [9], exposing
the core declarations of a Java program (packages, classes,
methods, etc.) as objects whose methods are JDT refactorings.
Refactoring scripts that add or remove design patterns are short
Java methods. Our tool, called R2, is detailed in the next
section. R2 is a plug-in that uses the JDT Refactoring Engine
(JDTRE) as it represents state-of-the-practice in refactoring.

Experiments with R2 revealed JDTRE is ill-suited for
scripting for three reasons:

• Reliability. JDTRE is buggy [10–12]. We found over 25
new bugs to date, but only a fraction have been fixed in the
latest version of JDT. Prior to the current release, one R2

script executed 6 JDT refactorings; the resulting program
had 27 compilation errors. Another script invoked 96
refactorings, producing a program with 100 compilation
errors. These particular errors are now fixed, but we are
constantly discovering more. Worse is waiting months or
years for a repair [12]. We rediscovered an old bug that
took 5 years to be fixed [13].

Note. We are not in the position to repair JDTRE.
There is no reason for us to believe our patches
would be accepted. We report bugs as others do.

• Expressivity. We found the need for additional primitive
refactorings and to repair existing refactorings. Examples:
JDTRE refuses to move methods that include super
keyword(s); collecting methods that reference super into
a Visitor class is really useful. We also had to turn-off
parameter optimization in order for JDT refactorings to
produce correct design patterns [9].

• Speed. JDTRE is slow. While a single JDT refactor-
ing has acceptable speed, executing many is not. R2

scripts execute a series of JDT refactorings, thus exposing
JDTRE’s Achilles heel. R2 scripts that invoke about 20
refactorings take over 10 seconds. One case invoked 554
refactorings and took 9 minutes to execute. Programmers
expect refactorings to be instantaneous.

We concluded that a radically different approach to build
refactoring engines for scripting was needed to remove these
problems. Our novel solution, calledR3, computes a “view” of
a program. Refactorings do not modify ASTs in R3. We create
a database of program elements (classes, methods, fields, etc.),
their associations, and primitive properties for precondition
checks. Precondition checks consult this database; refactorings
alter the database. Pretty-printing ASTs to display the contents
of the database produces refactored code. Doing this yields
a significant increase in refactoring speed, a much smaller
codebase, and comparable reliability to JDTRE.

The contributions of this paper are:

• A novel foundation using database+pretty printing for
designing a new generation of refactoring engines that
allows scripting,

• An efficient way to evaluate refactoring preconditions.
We harvest boolean properties of ASTs during database
creation and let precondition checks consult their values,

• Implementation. R3’s codebase is a mere 4K LOC and
does not use Eclipse program transformation utilities,
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• An empirical evaluation of R3 on 6 case studies executed
52 scripts. R3 runs at least 10× faster, in two cases 290×
faster than JDTRE. Further, R3 is at least as reliable as
JDTRE. R3 passes all relevant JDTRE regression tests
and fixes problems still latent in the latest release of JDT.

II. A RECAP OF R2

It is well-known that many, but not all, classical design
patterns can be expressed by a series of refactorings [7], [8].
In prior work, we leveraged the JDTRE to provide a practical
means to implement such scripts [9].

class Graphic { 

void draw { … }

}

class Square extends Graphic {

void draw() { … }

}

class Picture extends Graphic {

void add(Graphic g) { … }

void draw() { … }

}

package

Square

draw

Picture

drawadd

Graphic

draw

𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟

Source Abstract Syntax Tree (AST)

AST methID name args clsID

m1 draw { }

m2 add { c1 }

m3 draw { }

m4 draw { }

AST clsID name parent

c1 Graphic

c2 Square c1

c3 Picture c1

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙

RClass

RMethod

R3 Database

class Graphic { 

void draw { … }

}

class Square extends Graphic {

void draw() { … }

}

class Picture extends Graphic {

void add(Graphic g) { … }

void draw() { … }

}

Fig. 1: A Java Program

R2 is a Java package. Its
objects correspond to Java
entity declarations such as
packages, classes, methods,
etc. in a JDT project. The
program in Figure 1 has 7 R2

objects: 3 classes Graphic,
Square, Picture and 4
methods Graphic.draw,
Square.draw, Picture.add,
Picture.draw.

Methods of R2 objects are JDT refactorings or object
searches. Table I lists a few methods that can be performed on
R2 class and method objects.

R2 Type Method Name Semantics

RClass

rename rename class
move move class to another package

getSuperClass return the R2 object that is the superclass
of the class

getName return the name of the class

getAllMethods return a list of R2 objects that are all
methods of the class

newMethod add a new method to the class
newField add a new field to the class

RMethod

rename rename method
move move method to new class
addParameter add a parameter with default value

getRelatives return a list of R2 objects of methods with
same signature

getName return the name of the method
moveAndDelegate move a method and leave behind a delegate

TABLE I. Methods of R2.

R2 refactoring scripts are short Java methods; writing R2

scripts is just like writing regular Java code. Here are two
examples.

Figure 2 is an R2 script that creates an adapter class N.
Here is how it works: a programmer identifies an interface
declaration that is to be implemented. Let this be its R2

object (which is provided by the Eclipse GUI). Let c be an
R2 class object (the class to adapt), and let N be the name of
adapter class. makeAdapter works by creating a class N in the
package of class c that implements interface this (Line 5). A
field named adaptee of type c is created and a constructor is
added to initialize this field (Line 8). A stub is generated for
each method in interface this (Line 11). The created class N
is returned as the result of makeAdapter.

Figure 3 shows an R2 script for creating a Visitor design
pattern. Here is how it works: A programmer identifies a
method (called a seed) in a class hierarchy that s/he wants to

1 // member of RInterface class
2 RClass makeAdapter(RClass c, String N)
3 {
4 RClass adapter = c.getPackage().newClass(N);
5 adapter.setInterface(this);
6
7 RField f = adapter.newField(c, "adaptee");
8 adapter.newConstructor(f);
9

10 for(RMethod m : this.getMethods())
11 adapter.makeMethod(m);
12
13 return adapter;
14 }

Fig. 2: R2 makeAdapter Method.

create a Visitor. Let this be its R2 object. A Visitor is created
by invoking this.makeVisitor(N) where N is the name of the
Visitor class to be created. makeVisitor gets the package of
this, creates a class with name N in that package, and makes
that class a singleton (Line 6). Next, all methods with the same
signature as this are collected onto a list. To every method
on the list, a parameter of type N is added whose default value
is the singleton field of class N (Line 9), and then they are
renamed to accept. Only movable methods (abstract or
interface methods cannot be moved) are relocated to class
N, leaving behind a delegate. All methods in the Visitor class
are renamed to visit (Line 15). makevisitor returns the
RClass object for class N.

1 // member of RMethod class
2 RClass makeVisitor(String N)
3 {
4 RPackage pkg = this.getPackage();
5 RClass vc = pkg.newClass(N);
6 RField singleton = vc.addSingleton();
7
8 RMethodList methodList = this.getRelatives();
9 int index = methodList.addparameter(singleton);

10 methodList.rename("accept");
11
12 for(RMethod m : this.methodList)
13 m.moveAndDelegate(index);
14
15 vc.getAllMethods().rename("visit");
16
17 return vc;
18 }

Fig. 3: R2 makeVisitor Method.

We implemented 18 of the 23 design patterns in the Gang-
of-Four text [6] using R2. Eight patterns (including Visitor)
are fully automatable. Another ten are partially automatable.
This includes Adapter, where only stubs are generated. The
bodies of stub methods must be provided manually as they
require semantic knowledge. Some of the remaining patterns
are automatable, such as State and Mediator,1 while others,
such as Façade and Iterator, seem to be so application-specific
that little or nothing is reusable [9].

A good idea about R2 was using Java as a scripting
language for refactorings. Writing R2 scripts is like writ-
ing regular Java code (as our examples suggest). Thus, a

1State is a typical MDE application [14]. Mediator is the essence of GUI
builders. Neither seem appropriate to include in a refactoring engine.
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programmer does not need to learn a new Domain Specific
Language (DSL) for program transformations. In retrospect, a
bad idea was using JDT as R2’s refactoring engine. As said
in the Introduction: JDTRE has serious issues on reliability,
expressivity, and speed. It is clear that JDTRE was never
designed for scripting refactorings. R3, discussed next, keeps
the good idea of R2 and is our replacement for JDTRE.

III. R3 CONCEPTS

A. Relativistic Displays

Elementary physics inspired R3. A physical object ap-
pears different depending on the perspective from which it is
viewed. Silhouette portraits of people are different from frontal
portraits. Changing perspectives in physics is a coordinate
transformation that preserves object properties.

To see the relevance to Object-Oriented (OO) languages,
we strip away OO notation. A method implements an absolute
function (the reason for ‘absolute’ is explained shortly) where
all method parameters are explicit as they would be in a C-
language declaration. Figure 5a is the signature of an absolute
function foo with three parameters whose types are B, C, D.

If we were to ‘view’ foo as a member of class B, its
signature would appear as in Figure 5b; the B parameter
becomes this and is otherwise not shown. If foo were a
member of class C, its signature would appear as Figure 5c,
where the C parameter becomes this and is otherwise not
shown. We say the natural homes of an absolute function are
its parameter types. The natural homes for method foo are B,
C, D. If we were to view foo as a member of class E, not
a natural home, it would appear as the static method of
Figure 5d with no implicit parameters.

A foo(C c, D d)

A foo(B b, D d)

static A foo(B b, C c, D d)

A foo(B b, C c, D d)(a)

(b)

(c)

(d)

if

expr stmt

(a)

if expr

then stmt;

if (expr)

{ stmt }
(b)

(c)

expr

stmt

yes no

(d)

Fig. 5: An Absolute Function and its Relative Methods.

Connecting these ideas to refactoring, recall Intentional
Programming (IP) [15]. IP is a structure editor whose ASTs
could be adorned with different pretty-print methods. Figure 6a
depicts an AST of an if statement. This AST could be pretty-
printed in C-programming language syntax (Figure 6b), in
Pascal syntax (Figure 6c), or even as a flowchart (Figure 6d).
How an AST is displayed is under the control of a programmer
[16]. For every distinct display, each AST node has a distinct
rendering (pretty-print) method for it.

A foo(C c, D d)

A foo(B b, D d)

static A foo(B b, C c, D d)

A foo(B b, C c, D d)(a)

(b)

(c)

(d)

if

expr stmt

(a)

if expr

then stmt;

if (expr)

{ stmt }
(b)

(c)

expr

stmt

yes no

(d)

if

expr stmt

(a)

if expr

then stmt;

if (expr)

{ stmt }
(b)

(c)

expr

stmt

yes no

(d)

Fig. 6: IP Tree and its Different Views.

Observe that an AST is never altered by a display. The AST
is ‘absolute’ or immutable; it appears different relative to the

language or modularity perspective from which it is displayed.
The move-method refactoring, which is what Figure 5 is about,
is a coordinate transformation for software; it should preserve
the semantic properties of a program. The same holds for other
primitive refactorings in R3.

Similar ideas apply to comments and annotations in source
code; they should be preserved and transformed too.

Note. R3 presently does not transform comments
or support annotation refactorings. R3 does preserve
comments in refactored source code.

B. R3 Database

R3 maintains an internal, non-persistent database to re-
member changes in perspective. While R3 parses compilation
units in a program, it creates relational database tables for all
declaration types in a program. Each tuple of the RClass table
represents a distinct class declaration in the program. Among
RClass attributes is a pointer to the AST of that class. Each
tuple of the RMethod table represents a distinct method (or
rather, an absolute function) declaration in the program. Each
RMethod tuple points to the AST of its method and to the
RClass tuple in which that method is a member. Similarly,
there are tables for package declarations (RPackage), field
(RField), etc. There are no tables for Java executable state-
ments or expressions; only classes, interfaces, fields, methods,
and parameters, as these are the focus of design patterns and
almost all classical refactorings.

Program source is compiled into ASTs which are traversed
to populate R3 tables. Figure 4 shows the basic set-up with
a few attributes per table. Three RClass tuples (Graphic,
Square, Picture) and four RMethod tuples (Graphic.draw,
Square.draw, Picture.add, Picture.draw) are created and
linked to the RClass tuple for which it is a member. Each tuple
has these attributes: an AST pointer, a database-wide unique
key (e.g., clsID of RClass),2 a simple (unqualified) name,
a containment relationship, a class and interface inheritance
relationship, and so on.

Basic refactorings are elementary updates to this database.
Renaming a method updates the name field of that method’s
R3 tuple. Moving a method to another class updates the
attribute of that method’sR3 tuple to point to its new class. It is
only when an AST is rendered (displayed) that the information
in theR3 database is used. When a method’s AST is displayed,
the name of the method is extracted from the method’s R3

tuple.

When a class is displayed, the tuples of the fields, methods,
constructors, etc. that belong to it are extracted from the
database. The ASTs of these tuples are then displayed, relative
to their new class home. Figure 7 sketches the RClass display
method: it first prints the current name of the class, its
superclass, and implements clause, all names obtained from
the database. Then each member that is assigned to that class
is displayed, following by the display of the closing brace ‘}’.
R3 preserves the original order in which members appeared,
and reproduces this order for ease of subsequent reference by
programmers.

2R3 keys are conceptually similar to locked bindings in [17] but are used
in other ways; see Section IV-B.
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class Graphic { 

void draw() { … }

}

class Square extends Graphic {

void draw() { … }

}

class Picture extends Graphic {

void add(Graphic g) { … }

void draw() { … }

}

package

Square

draw

Picture

drawadd

Graphic

draw

𝑐𝑜𝑚𝑝𝑖𝑙𝑒𝑟

Source Abstract Syntax Tree (AST)

AST methID name args clsID

m1 draw { }

m2 add { c1 }

m3 draw { }

m4 draw { }

AST clsID name parent

c1 Graphic

c2 Square c1

c3 Picture c1

𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑎𝑙

RClass

RMethod

R3 Database

class Graphic { 

void draw { … }

}

class Square extends Graphic {

void draw() { … }

}

class Picture extends Graphic {

void add(Graphic g) { … }

void draw() { … }
}

Fig. 4: R3 Database.

void display() {

ast.displayHeader();

List<RMembers> 

mlist = getMemberList();

for (RMember m : mlist)

m.display();

ast.displayFooter();

}

class A extends B 

implements I {

member1;

member2;

member3;

}

code that is displayedmethod to display an RClass tuple

class A<T> {

void m(B b) {    

T t = null;

}

} 

(a) Can’t move non-local type T

class A {

<T> void m(B b) { 

T t = null;

}

}

(b) Can move with local type T (c) Generic entity target

class A {

<T> void m(B<T> b) {

}

}

class B<T> {

}

Fig. 7: RClass Display Method.

R3 is not a mere reimplementation of IP. IP displays
entire trees; R3 integrates a database of program facts and
the display of disconnected ASTs to yield a rendering that
gives the appearance of a single refactored program.

Rendering displays is fast and less involved than updating
ASTs and moving AST subtrees from one parent to another.
Consider the changes that are needed when absolute method
foo (Figure 5a) is moved from class B to C. All invocations
of foo, say b.foo(c,d), must be altered to c.foo(b,d). A
rendering simply changes the order in which arguments are
displayed; it is more work to consistently update pointers when
making this change to an AST.

In program transformation systems, refactorings modify
ASTs. Only when all changes have been made are ASTs pretty-
printed to code. R3 eliminates AST manipulation. R3 still
needs to create trees, say when new program elements are
created, but other than that, R3 does not manipulate ASTs.
As we report later, a consequence is that the codebase for
R3 is substantially smaller and simpler than that for program
transformation systems.

C. Primitive Refactorings

We now explain some representative primitive refactorings
to see how they are handled in R3. We partition our discussion
refactorings into two segments: changes to the database (con-
sidered in this section) and checking preconditions (discussed
in the next section).

1) Rename Method: Rename-method modifies the name
field of the method’s RMethod tuple. This refactoring, like
others discussed shortly, have a database-transaction quality.
Consider a class hierarchy where all classes have their own
method n. To rename n to r can be expressed as a loop, where
getRelatives() finds all overriding/overridden methods with
the same signature as n:

for (RMethod m : n.getRelatives()) {
m.rename("r");

}

Until the loop is finished, not all methods will be renamed and
preserving program semantics is not guaranteed. We have not
yet decided on a final interface for R3 (currently it looks much
like R2), but we do have in place an alternative that performs
renames on sets of methods with identical signatures, and by
being a set operation, does not expose a database to users that
alters program semantics:

RMethodList list = n.getRelatives();
list.rename("r");

2) Change Method Signature: Change-method-signature
adds, removes, and reorders method parameters. Encoded in
theR3 database is a list of formal parameters for every method
and for each parameter there may be a default value. Adding a
parameter to a method simply adds the new parameter and its
default value to the database. When the method is displayed,
it is shown with its new parameter; method calls are displayed
with its default argument.

Prior work [18], [19] found that highly-parameterized
refactorings (name, parameter add/delete/reorder, exception,
delegate) discourage the use of refactorings and make it harder
to understand refactoring functionality. Accordingly, R3 has
separate methods to add, remove, and reorder parameters. The
code below finds the R3 tuple for a field (variable) with
name f in class C of package p. The field’s name serves
as the name of the new parameter and a reference to that
field is the parameter’s default value. The new parameter,
by default, becomes the last formal parameter of method m.
Method setIndex makes it the first parameter of m, and
remove removes the parameter:
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RField v = RField.find("p", "C", "f");
RParameter newParam = m.addParameter(v);
newParam.setIndex(0);
m.remove(newParam);
// m is unchanged by the above code

Like method rename, there is an RMethodList version of
these methods.

3) Move Method via Parameter: The core move-method
of R3 changes the home class of a method m. Recall a home
parameter is any parameter of m, and a home class is the class
of a home parameter. Moving m to a home class simply updates
m’s R3 tuple to point to the tuple of its home class. The code
below moves method m to class c (presuming c is a home
class):

m.move(c);

4) Move Method via Field: The move-via-field refactoring
is illustrated in Figure 8. Method m in class A is moved to class
D via field δ. A local invocation, m(b), becomes δ.m(this,b).

class A  { 

D δ;
C m(B b) {…}

… m(b)… // a call

}

class D  { 

}

class A  { 

D δ;

… δ.m(this,b) // a call
}

class D  { 

C m(A a,B b) {…}

}

move
via 

field

void MoveViaField(RClass parameterType, RField? defaultValue) {

addParameter(parameterType, defaultValue);

moveToClass(parameterType);

}

Fig. 8: Move via Field Refactoring.

Move-via-field is a composition of the R3 add-parameter
and move-via-parameter refactorings. Let a be the A-type
parameter of m. Parameter d of type D with default value a.δ
is added to the absolute function of m, changing its signature
from m(A a,B b) to m(A a,B b,D d) where the default value of
parameter d is a.δ. When displayed in class D, the D argument
becomes this; the display of a call exposes the new (default)
argument. An R3 script that implements move-via-field is:

// member of RMethod class
void moveViaField(RField f) {

RParameter newHome = addParameter(f);
move(newHome.getType());

}

5) Introduce New Program Elements: R3 introduces com-
plex new code declarations (classes, methods, fields, etc.) into
an existing program by creating a compilation unit that has
these declarations. The file is compiled and the database is
updated with new declarations. These new declarations are
embedded into the existing program via move refactorings or
referenced by R3 refactorings. For example, if a new class C
with a method mul is to be created in package pkg of JDT
project Prj, a String of the class source is constructed and
the method createCU(String) is invoked. createCU creates
a Java file of its String input, the file is compiled, and its
entries are added to the R3 database. Assuming package pkg
exists and class C does not, the code below inserts two new

tuples (one for class C and another for method mul) into the
database:

String s = "package pkg; \n"+
"class C { \n"+
" int mul() { return 7*57; }\n"+
"}";

RPackage p = RProject.getPackage("Prj", "pkg");
RCompilationUnit cu = p.createCU(s);
RClass cls = p.getClass("C");
RMethod mth = cls.getMethod("mul");

Once the needed methods and fields are removed from a
generated compilation unit, the unit can be marked deleted
in the database. Its AST remains, but at pretty-printing time
no text of the compilation unit is produced.

6) Other Refactorings: The current version of R3 supports
the above refactorings, among others (e.g., pull-up and push-
down), that are essential to refactoring scripts that introduce
or remove design patterns from existing programs. R3 does
not yet support all primitive refactorings in JDTRE. We see
no limitation to add a full complement of refactorings.

To illustrate, nested classes generalize absolute functions
in an interesting way. Figure 9a shows class B nested inside
class A. Method m of class B has the absolute function:

void m(A a, B b) { a.i = a.i + b.j; }

Although m() displays without parameters inside B, it really
has two implicit parameters: this (of type B) and A.this (of
outer type A). In general, a method in a class that is nested n
deep will have n + 1 implicit parameters: this and one for
each of its n outer classes. We see that m can be displayed as a
member of class A using our standard pretty-print techniques
by making the B parameter explicit. See Figure 9b.

class A {

int i = 5;

class B {

int j = 4;

void m() {

i = i + j;

}

}

} (a) (b)

class A {

int i = 5;

void m(B b) {

i = i + b.j;

}

class B {

int j = 4;

}

}

void k(C c, A a) {

c.i = c.i + a.j;

}

class A {

int i = 5;

void t() {

new B() {

int j = 4;

void p() {

i = i + j;

}

};

}

} (c)

Fig. 9: Nested Classes.

A ‘coordinate transformation’ interpretation is consistent
with why refactoring engines typically cannot move methods
of anonymous classes. Consider Figure 9c. The absolute func-
tion of method p has signature p(A a, ? b), where ? denotes
an anonymous subclass of B. Since ? has no name to display,
refactoring engines refuse to move p. (Of course, looking at
the problem this way, creating a convert-anonymous-to-nested-
class refactoring can remove this restriction).

D. Scripting Refactorings

R3’s interface is compatible with R2. That is, R2 scripts
port to R3. This gives us the ability to script refactorings
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to retrofit design patterns into Java programs and we can
build compound refactorings as compositions of primitive
refactorings. We already saw scripts for makeAdapter (Fig-
ure 2), makeVisitor (Figure 3), and moveViaField in
Section III-C4.

E. Preconditions

It is well-known that precondition checks are the major
performance drain in refactoring engines. JDTRE may be
typical of other refactoring engines: it checks preconditions
as needed.

We take a different approach in R3. We know the refac-
torings that R3 is to support and thus we know all the
precondition checks that are required. Some refactorings share
checks; other checks are specific to a refactoring. Here is the
key: many (not all) checks can be determined at database build
time: they are simple properties of an AST. For them, we add
a boolean attribute to R3 tables to indicate whether a tuple’s
AST satisfies that check. The checks for a refactoring then
become a conjunction of these boolean attributes. The R3

database is created by AST traversal and semantic analysis:
the first traversal populates the R3 database with tuples; the
second assigns boolean values to these checks. We will see
later how this approach improves performance.

The JDTRE move-instance-method refactoring is typical.
19 distinct checks for this refactoring are shared by JDTRE
and R3; if any one is satisfied, the move is disallowed.

1) Boolean Checks Made by a Single Tuple Lookup: In
R3, 15 preconditions are AST-harvestable at database build
time as boolean values. Here is a sample:

• Abstract – is the method abstract?
• Native – is the method native?
• Constructor – is the method a constructor?
• Interface Declaring Type – is the enclosing type of the

method an interface?
• Non-Local Type Reference – if the method references

a non-local type parameter (e.g., a type parameter of a
generic class), it cannot be moved. Figure 10a illustrates
a non-local type parameter which prevents method m to
be moved. In contrast, method m in Figure 10b can be
moved as its parameter is local.

void display() {

ast.displayHeader();

List<RMembers> 

mlist = getMemberList();

for (RMember m : mlist)

m.display();

ast.displayFooter();

}

class A extends B 

implements I {

member1;

member2;

member3;

}

code that is displayedmethod to display an RClass tuple

class A<T> {

void m(B b) {

T t = null;

}

} 

(a) Can’t move with
non-local type T

class A {

<T> void m(B b) { 

T t = null;

}

}

(b) Can move with 
local type T

(c) Generic entity target

class A {

<T> void m(T t) {

}

}

Fig. 10: Generic Constraints.

• Generic Entity Target – moving a method via a type
parameter is disallowed (Figure 10c).

• Unqualified Target – a natural home of a method cannot
be an interface. A natural home is disqualified if its
argument is assigned a value as in Figure 11a.

• Null Home Value – if a method call has a null home
parameter as in Figure 11b, a move to that home is

disallowed as it would dereference null. More on this
in Section VI.

void m(D d) {

d = new D();

}

void m(D d) {...}

... m(null) ... //call

(a) (b)

TargetConstraints

class A {

<T> void m(B<T> b) {

T t = null;

}

}

class B<T> { }

Duplicate type parameter

class A { }

class B<T> {

void m() {

T t = null;

}

}

move

Fig. 11: Target Constraints.

• Polymorphic Method - when the target method is poly-
morphic, it cannot be moved unless a delegate is left
behind. Our makeVisitor script satisfies this constraint.

• Synchronized – is the method synchronized?
Note. We know how to move synchronized meth-
ods correctly; this will in the next R3 release.

• Recursion – if method m invokes itself, the move is
disallowed by JDTRE.

Note. We are unaware of a good reason to prevent
such moves; we plan to eliminate this constraint in
the next R3 release.

• Super Reference – JDTRE refuses to move any method
that uses the super keyword. To write general purpose
refactoring scripts, we removed this precondition in R2

and R3 by replacing each super.x() call with a call to a
manufactured method super x() called super delegate
[9]. Other IDEs, such as IntelliJ IDEA [20] and Net-
Beans [21], do move such methods, but do so erroneously
(Figure 12).

class C {

void m(A a) {

a.super.n();

}

}

class A extends B {

void m(C c) {

super.n();

}

} NetBeans

class C {

void m() {

super.n();

}

} IntelliJ IDEA

move

Method with super call

before after

Fig. 12: Super Call Bugs.

The remaining boolean checks are more of the same [22].

2) Checks that Require Database Search: There are several
precondition checks in the JDTRE move-instance-method that
require a database search. Here is a sample:

• Accessibility – after a method is moved, it must still
be visible to all of its references. Symmetrically, every
declaration that is referenced inside the method’s body
should be accessible after the move. JDTRE promotes
access modifiers of the moved method and/or referenced
declarations to satisfy all visibility requirements but this
can result in changes to program semantics [23], [24].
Associated with each RMethod object m is a list of its
references (this list is collected at database creation time).
R3 traverses this list to ensure that m is still visible to
each reference. Similarly, R3 maintains a second list of
tuples (again collected at database creation time) that are
referenced in m’s body. R3 traverses this list to ensure
that all referenced declarations remain visible to m. R3

now makes the same adjustments in modifiers as JDTRE.
Note. Prior work [17], [23] identified important
issues on setting access modifiers in Java which
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JDTRE handles incorrectly. R3 supports these im-
proved algorithms in its next release.

• Conflicting Method – a method can be moved only when
it does not change bindings of existing method references.
Consider the 3-class program of Figure 13. A method
call m(null) inside B.n() invokes C.m(A). When JDTRE
moves method A.m(B) to class B, the method call changes
its binding to the moved method B.m(A).

(a)

A

(b)

A

B

(c)

A

C
B

(d) (e)

class C {

void m(A a) { }

}

class A {

void m(B b) { }

}

class B extends C {

void n() {

m(null);

}

}
binding change

Fig. 13: Method Binding Change.

Clearly this is wrong. JDTRE determines if a conflict
exists in the destination class but not its superclasses,
an error that we have reported [25]. R3 does better
by traversing the class hierarchy and evaluating access
modifiers to find conflicts.

Note. Schäfer et al’s work on visibility refactoring
[17] can be used to find conflicting methods in Java.
We have adapted it for the next release of R3.

• Duplicate Type Parameter – JDTRE moves method m
in Figure 14 to class B only when type parameter T is
removed from m since T already exists in class B. After
the move, however, T inside method m changes binding
to the existing T in class B.
R3 harvests type parameter names and stores them in the
database tuple where they are declared. R3 searches the
type parameter collections to find a match.

void m(D d) {

d = new D();

}

void m(D d) {...}

... m(null) ... //call

(a) (b)

TargetConstraints

class A {

<T> void m(B<T> b) {

T t = null;

}

}

class B<T> { }

Duplicate type parameter

class A { }

class B<T> {

void m() {

T t = null;

}

}

move

Fig. 14: Duplicate Type Parameter.

• Conflicting Target Name – the move-instance-method
refactoring introduces an extra parameter to reference
members of the original class. JDTRE goes further by
allowing a user-supplied name for the parameter to be
created, and this name may conflict with existing names.
In R3, existing names are found via a database search of
name collection in each tuple.

Note. By adding underscore+numbers to names,
R3 guarantees that user-supplied names are (made)
unique, and thus will not conflict with any visible
names in the destination. This is called R3’s name
resolution rule. It eliminates what would otherwise
be a complicating problem; users can perform an
explicit rename refactoring if this is inadequate.

IV. CURRENT R3 IMPLEMENTATION

A. R3 Pipeline

JDTRE does not use a standard pretty-print AST method.
To minimizeR3 coding, we used a pipeline of tools, relying on
Eclipse minimally and using AHEAD [26], which has pretty-
print methods ideal for R3. Figure 15 shows the R3 pipeline:
it is a series of stages (A)-(G) that map a target Java program
(JDT project) on the left to a refactored program on the right.

Java 
program

Eclipse 
ASTs + 
Symbol 

table

AHEAD
ASTs

Java 
program’

Refactored
program

(A)

(C)

(B)

(D)

(E)
(F)

(G)

R3 DB R3 DB with 
links to AHEAD ASTs

R3 DB with 
refactoring updates

Java 
program

Eclipse
ASTs + data

(A)

(B)
(E)

(F)

(G)

R3 DB R3 DB with 
links to ASTs

R3 DB with 
refactoring updates

Fig. 15: R3 Pipeline.

(A) Eclipse parses a Java program into ASTs. Below is a
target program with a generic method that prints the array
argument of different types:
package p;
class C {

// generic method
static <E> void print(E[] array) {
for(E e : array)

System.out.printf("\%s ", e);
}

}

(B) JDT ASTs are traversed to harvest a major part of the R3

database. Later, step (E) completes the database.
(C) A limitation of AHEAD is that it requires a context-free

parser. To satisfy this constraint, a version of the original
program is output (shown below) where all identifiers
are replaced with manufactured and unique identifiers
ID #; symbols “<” and “>” that indicate generics are
replaced with unambiguous symbols “<:” and “:>”; and
all white space and comments are preserved. AHEAD can
parse this revised file, and with the database of (B) can
reconstruct the text of the original program:
package ID_0;
class ID_1 {

// generic method
static <:ID_2:> void ID_3(ID_4[] ID_5) {
for(ID_6 ID_7 : ID_8)

ID_9.ID_10.ID_11("\%s ", ID_12);
}

}

(D) AHEAD parses the manufactured-identifier program.
(E) R3 database tuples are doubly-linked to their AHEAD

AST nodes so each pretty-printer of an AST node can
reference the corresponding R3 tuple and vice versa.

(F) Refactor. R3 refactorings are executed. They modify
only the R3 database, not AHEAD parse trees.

(G) Pretty-Print. The source of the refactored program is
pretty-printed as described earlier.
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Application
(Ver#, LOC, #Tests)

Seed
ID

# of
Refacs

R2 time (seconds) R3 time (seconds) Speed
UpPrecon Perform Total Build Link Precon DB Proj TotalCheck Change DB AST Check Update

AHEAD
jak2java [26]
(130320, 26K, 75)

A1 104 16.58 2.31 18.89 0.000 0.028 0.21 0.24 79
A2 68 18.49 2.67 21.16 0.010 0.010 0.11 0.13 163
A3 554 260.85 37.48 298.33 0.39 0.16 0.017 0.230 1.87 2.12 141
A4 60 14.69 3.70 18.39 0.001 0.032 0.54 0.57 32
A5 96 35.46 7.19 42.64 0.003 0.047 0.96 1.01 42

Commons
Codec [27]
(1.8, 16K, 6103)

C1 6 1.80 1.39 3.19 0.000 0.007 0.41 0.42 8
C2 16 4.26 0.70 4.96 0.000 0.007 0.30 0.31 16
C3 16 3.60 0.30 3.90 0.29 0.14 0.000 0.007 0.24 0.24 16
C4 12 3.91 0.68 4.59 0.000 0.007 0.21 0.22 21
C5 6 1.51 0.50 2.00 0.000 0.005 0.37 0.37 5

Commons
IO [28]
(2.4, 24K, 810)

I1 4 1.20 0.19 1.40 0.000 0.000 0.05 0.05 28
I2 4 2.21 0.20 2.40 0.000 0.002 0.08 0.08 31
I3 6 1.80 0.50 2.31 0.44 0.17 0.000 0.004 0.35 0.35 7
I4 4 2.70 0.30 3.00 0.000 0.002 0.07 0.07 42
I5 6 1.68 0.20 1.88 0.000 0.004 0.32 0.32 6

JUnit [29]
(4.11, 23K, 2807)

J1 16 4.49 0.70 5.20 0.000 0.011 0.17 0.18 29
J2 4 0.31 0.09 0.40 0.000 0.004 0.05 0.05 8
J3 18 30.22 3.37 33.60 0.39 0.15 0.000 0.008 0.32 0.33 103
J4 20 8.10 1.40 9.49 0.000 0.011 0.44 0.45 21
J5 4 1.41 0.20 1.61 0.000 0.003 0.09 0.10 17

Quark [26]
(1.0, 575, 9) Q 16 3.40 0.40 3.80 0.10 0.01 0.000 0.009 0.09 0.10 40

Refactoring
Crawler [30]
(1.0.0, 7K, 15)

W1 28 6.99 0.90 7.90 0.000 0.016 0.33 0.35 23
W2 4 1.80 0.30 2.10 0.000 0.004 0.12 0.12 17
W3 26 11.82 1.01 12.82 0.24 0.08 0.000 0.013 0.32 0.34 38
W4 10 4.11 1.10 5.21 0.000 0.007 0.19 0.20 26
W5 28 9.69 1.40 11.08 0.000 0.015 0.33 0.34 33

TABLE II. Applications and Comparison with R2 and R3; Time is in Seconds.

B. Database Relocation and Rebinding

It is common for there to be many references to each
declaration (Figure 16a). An expensive operation is to re-
bind/update all references to one declaration to those of
another (Figure 16b). The move-and-delegate refactoring is an
example.

𝒓𝒆𝒇

𝒓𝒆𝒇

𝒓𝒆𝒇

𝒅𝒆𝒇𝟏

𝒅𝒆𝒇𝟐

𝒓𝒆𝒇

𝒓𝒆𝒇

𝒓𝒆𝒇

𝒅𝒆𝒇𝟏

𝒅𝒆𝒇𝟐

𝒓𝒆𝒇

𝒓𝒆𝒇

𝒓𝒆𝒇

𝒃𝒊𝒏𝒅𝟏 𝒅𝒆𝒇𝟏

𝒅𝒆𝒇𝟐

𝒓𝒆𝒇

𝒓𝒆𝒇

𝒓𝒆𝒇

𝒃𝒊𝒏𝒅𝟏 𝒅𝒆𝒇𝟏

𝒅𝒆𝒇𝟐

(a) (b)

(c) (d)

Fig. 16: Rebinding Definitions.

Following the ‘one-fact-in-one-place’ mantra of database nor-
malization, we introduced an RBinding table where declara-
tion bindings are represented once (Figure 16c) and with one
update, all references can be rebound (Figure 16d).

V. EVALUATION

R2 calls JDTRE refactorings; R3 is our replace-
ment for JDTRE. Henceforth we use “Eclipse” to refer-
ence R2+JDTRE. Comparing R3 with Eclipse (now read:
R2+JDTRE) is comparing R3 to the state of the practice.

We evaluate R3 in four ways:

• Performance: How fast is R3 compared to Eclipse?
• Reliability: Is R3 as reliable as Eclipse?
• Generality: How general is R3 compared to Eclipse?
• Simplicity: Is R3 simpler than Eclipse?

We answer each question in the following subsections.

A. Performance

We evaluated R2 by demonstrating that its scripts could
retrofit design patterns into existing programs [9]. Here we
compare the performance of R2 and R3 on the same programs
and scripts. The first column of Table II lists these programs,
along with their version, size, and number of regression tests.

The first set of experiments introduces a Visitor pattern
into six Java applications. A second set removes a Visitor by
executing an inverse Visitor script that exercises a different
set of refactorings. Inverse Visitor is not simply performing an
undo of existing changes, but is a new script which replaces
an instance of a Visitor design pattern in existing code by
distributing the visit methods among the constituent visited
classes.3 These experiments engage the core refactorings used
in virtually all design patterns. We ran the regression tests
on each application after refactoring to confirm there was
no difference in their behavior. The experiment environment
that we used is an Intel CPU i7-2600 3.40GHz, 16 GB main
memory, Windows 7 64-bit OS, and Eclipse JDT 4.4.2 (Luna).

Table II shows the performance results of the first set of
experiments. Each program (with the exception of Quark) has
five methods that serve as a Visitor seed. To give an idea of
the complexity of the refactoring task, the number of JDT
refactorings that are executed is given in the # of Refacs

3Imagine the scenario that a programmer creates a Visitor to view all
declarations of a method m in class hierarchy. S/he then edits the methods
of this Visitor. Simply “undoing” this Visitor rolls back both the Visitor and
her/his changes. An inverse Visitor refactoring is needed to remove the Visitor
and preserve her/his changes [9].
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column.4 The Total column lists the CPU time5 for the R2

and R3 makevisitor scripts to execute.

R2 execution time has two parts, precondition checks
and code changes, whose sum equals column Total. Col-
umn Precon Check is the time for all precondition checks
discussed in Section III-E and a check/parse to see if the
compilation units (Java files) involved in the refactoring are
broken. (‘Broken’ means the file has syntax errors). Code
change (column Perform Change) is the sum of times for
calculating the code changes to make, updating the Eclipse
workspace, and writing updated files to disk. Precondition
checks in JDTRE consume about 87% of refactoring execution
time.

R3 execution time covers six steps (B)-(G) in Figure 17.
Steps (C)-(D) are due to our use of AHEAD for coding
convenience (and would be zero if JDTRE had pretty-print
methods), and thus have nothing to do with R3 performance.

Eclipse 
ASTs + 
Symbol 

table

AHEAD
ASTs

Java 
program’

Refactored
program

(C)

(B)

(D)

(E)
(F1) + (F2)

(G)

R3 DB R3 DB with 
links to AHEAD ASTs

R3 DB with 
refactoring updates

Fig. 17: Performance Pipeline of R3.

A cost of R3 is (B) creating the database and (E) linking
database tuples to AST nodes, shown as columns in Build DB
and Link AST in Table II. These are tiny execution times.
During the brief interval that a programmer selects a refac-
toring to execute via the Eclipse GUI, a database could be
created+linked and the delay would be unnoticeable.

The true execution time for R3 is (F1) running the
script, (F2) checking preconditions, and (G) at the end of the
script execution pretty-printing the compilation units that have
changed. The sum of these numbers, the R3 Total column,
is R3’s run-time.

To compare the performance of R2 and R3, we compute
the ratio of their Total columns, listed in the Speed Up
column. R3 ranges from 5× to 163× faster than R2. The
longest R2 execution time was seed A3 to create a Visitor of
276 methods, taking 298 seconds of CPU time. In contrast,
R3’s execution time was only 2.2 seconds. Interestingly, even
if the number of refactorings executed in a script are small
(4−6), R3 was over 18× faster on average; for larger numbers
of refactorings (> 50), the speed-up was 89× faster. On
average for these experiments,R3 was 38× faster than Eclipse.
Had we included database build time for steps (B) and (E) in
our calculations, the average speed-up ratio drops to 15×.

4Our makeVisitor and undoVisitor scripts create and delete pro-
gram elements but these operations are not counted as JDT refactorings.

5We used profiling tool VisualVM (ver. 1.3.8) [31] to measure CPU times
in running R2 and R3.

Table III shows the corresponding run-times for our second
set of experiments that remove a Visitor. Although a different
set of refactorings are used, we reach similar conclusions. R3

ranges from 5× to 291× faster than R2. On average, R3 was
55× faster than Eclipse. Had we included database build time
for steps (B) and (E) in our calculations, the average speed-up
ratio drops to 17×.

Seed
ID

# of
Refacs

R2 time (seconds) R3 time (seconds) Speed
UpPrecon Perform Total Precon DB Proj TotalCheck Change Check Update

A1 104 50.80 8.47 59.27 0.003 0.005 0.20 0.21 286
A2 68 27.19 5.10 32.29 0.001 0.006 0.10 0.11 291
A3 554 167.27 46.59 213.86 0.023 0.021 1.75 1.79 119
A4 60 9.98 5.78 15.76 0.008 0.006 0.53 0.55 29
A5 96 19.23 8.97 28.21 0.010 0.008 0.99 1.01 28
C1 6 1.59 0.70 2.29 0.001 0.001 0.43 0.43 5
C2 16 6.61 0.68 7.28 0.000 0.001 0.28 0.28 26
C3 16 7.10 0.40 7.50 0.000 0.001 0.23 0.23 33
C4 12 4.61 0.59 5.20 0.000 0.001 0.20 0.20 26
C5 6 1.70 0.59 2.29 0.000 0.001 0.35 0.35 6
I1 4 2.20 0.21 2.40 0.000 0.000 0.05 0.05 51
I2 4 2.22 0.30 2.52 0.000 0.000 0.07 0.07 35
I3 6 2.21 0.50 2.71 0.000 0.001 0.33 0.33 8
I4 4 1.99 0.20 2.19 0.000 0.000 0.06 0.06 34
I5 6 1.51 0.49 2.00 0.000 0.001 0.30 0.30 7
J1 16 4.75 0.99 5.74 0.000 0.002 0.26 0.27 22
J2 4 1.90 0.20 2.10 0.000 0.000 0.04 0.04 51
J3 18 11.60 0.69 12.28 0.001 0.001 0.31 0.31 39
J4 20 5.81 1.10 6.91 0.001 0.002 0.45 0.46 15
J5 4 2.78 0.21 2.98 0.000 0.000 0.09 0.09 34
Q 16 2.58 0.80 3.38 0.000 0.001 0.08 0.08 41

W1 28 6.28 1.79 8.07 0.002 0.002 0.33 0.33 25
W2 4 5.01 0.40 5.41 0.000 0.001 0.11 0.11 49
W3 26 21.19 1.52 22.71 0.000 0.002 0.31 0.31 74
W4 10 7.92 0.87 8.79 0.000 0.001 0.20 0.20 44
W5 28 15.74 1.68 17.42 0.001 0.002 0.33 0.33 53

TABLE III. Inverse Visitor Results; Time is in Seconds.

There are two reasons for the huge difference in perfor-
mance. (1) Preconditions are computed with little overhead
at R3 database creation time, in contrast to JDTRE which
computes them on demand. Most R3 preconditions checks are
trivial boolean field lookups as is evidenced by the almost
zero values in the Precon Check column. (2) JDTRE writes
out changed files after each refactoring and parses all files
involved in a refactoring. In contrast, R3 refactorings are
virtually instantaneous database updates. Projection (writing
out changed files) is performed only once after the script
execution is finished. In short, JDTRE was not designed for
efficient scripting.

B. Reliability

R3 uses the same (or improved) precondition definitions
as JDTRE; these definitions are well-documented in the
JDTRE code base. We extracted from the JDTRE regression
suite (org.eclipse.jdt.ui.tests.refactoring) tests that
are relevant to R3 refactorings. We excluded tests on Java 8
features (e.g., lambda expressions), as R3 presently works on
JRE 7. There were 122 tests for change-method-signature, 72
for move-method, 73 for pull-up, 59 for push-down, and 138
for rename. R3 satisfies all 464 extracted tests; they are now
part of the R3 regression suite.6 Further, in building R2 and
R3, we discovered and reported 6 errors in the JDTRE, which
have now been corrected [9]. We have found others that are
not yet fixed and are documented in [12]. In short, R3 is at
least as reliable as JDTRE.

6R3 does not produce exactly the same refactored source as JDTRE. For
example, R3 keeps track of moved methods. All type declarations in these
methods are displayed with fully qualified names so that additional import
declarations do not need to be added.
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C. Generality

R2 leveraged existing JDTRE refactorings to script 18
of 23 design patterns in the Gang-of-Four text [6]. We
reimplemented all 18 of these patterns in R3. There are
refactorings (inline, extract constant, encapsulate field) that
JDTRE supports thatR3 presently does not. These refactorings
were not needed to implement design patterns. This paper
focuses onR3 as a replacement ofR2. Future work will extend
R3 to a full complement of standard IDE refactorings.

D. Simplicity

Comparing the size of R3 to JDTRE in Lines of Code
(LOC) is difficult, as R3 implements a subset of JDTRE
refactorings. To level the playing field, we used the EcLEmma
code coverage tool [32] to see what volume of code was
executed by R2 and R3 when the makeVisitor script was
run – this gives us an estimate of the number of Unique LOC
(ULOC) executed for equivalent functionalities.

R3 executes 1,782 ULOC for makeVisitor. But these
ULOC are self-contained, meaning that print, file open and
close methods are its only external calls. In contrast, R2

executes 1,050 ULOC, which in turn calls 1,691 ULOC in
ltk.core.refactoring (the primary package for JDTRE)
and 975 ULOC in ltk.ui.refactoring where other core
refactoring functionality resides.7 We conservatively estimate
R3 to be 2× simpler than R2. Simplicity matters because R3

does not rely on layers of Eclipse infrastructure, and thus can
be studied, debugged, and maintained in isolation.

VI. RELATED WORK

In developing R2, we found 13 prior works [3], [5], [33–
43] that could be used to implement refactoring scripts [9].
They could be classified as program transformation systems,
domain specific languages, and refactoring engines built atop
of IDEs. Notably none reported performance of refactoring
engines; all were demonstrations that their particular infras-
tructure or tool could be used to implement refactoring or
transformation scripts. Most research on refactoring engines
mentions the importance of refactoring reliability or error
detection [11], [44–47]. We refer readers to [9] for further
details.

A critical property of R2 and R3 is that refactorings and
refactoring scripts are written in the same language as the
programs to be transformed (i.e., Java). We feel this property
is important because programmers do not have to learn yet
another language or programming paradigm to write refactor-
ing scripts. Oddly, only two tools in these 13 papers had this
property: Wrangler [47] and IP [15]. Wrangler refactorings and
refactoring scripts transformed Erlang programs; IP programs
called enzymes transform IP programs.

IP [15] was an inspiration for our work. IP separated ASTs
from their user displays. R3 differs from IP in that R3 weaves
the display of different ASTs together; IP displayed whole
trees. We do not know if IP ever had a refactoring engine;
the philosophy and infrastructure of IP would suggest that
refactorings would have been implemented as AST rewrites.

7 Example: see checkInitialConditions, checkFinalConditions, and create-
Change methods in MoveInstanceMethodProcessor.java.

Standard precondition checks in today’s refactoring engines
to verify that name collisions do not arise (in the rename
and move refactorings) were never part of IP; every IP entity
has a unique internal identifier. This allowed any number
of program elements to have the same display name (e.g.,
multiple variables with the name foo in the same function)
and IP could easily distinguish them.

Finally, JDTRE does a shallow check for dereferenced
null. It searches a project for method calls where a particular
method argument is null, as opposed to analyses [48–53]
which determine whether expressions of particular arguments
could evaluate to null. We do not know if null-analyses have
been used in refactoring engines or if they are fast enough to
be used.

VII. CONCLUSIONS AND FUTURE WORK

OO refactoring technology is now 25 years old [54], [55].
Most researchers, ourselves among them, tacitly assume that
few significant advances in tooling classical Java refactorings
are possible after this time. But looking closer, motivated
by new needs and applications for refactoring, reveals that
significant practical advances are indeed possible.

We have shown how many classical Java refactorings
(move, rename, change-method-signature, etc.), refactorings
that are essential to script the creation and removal of Gang-of-
Four design patterns, can be implemented by a novel combina-
tion of database+AST pretty-printing.R3, our implementation,
1) does not rely on a huge codebase required by gener-
al-purpose program transformation systems; 2) has a much
smaller code footprint than JDTRE; 3) supports the writing
and execution of refactoring scripts; 4) executes refactoring
scripts about 10× faster than JDTRE; and 5) is reliable as
(possibly more so than) JDTRE itself.

Having said the above, R3 in no way dispenses with
the need of program transformation systems. There are many
refactorings that are not used in scripting design patterns (e.g.,
see [56], [57]). There are many refactorings that cannot simply
be “pretty-printed”, such as refactoring sequential legacy code
into parallel code [58]. Our response is: let’s do the basics bet-
ter and to provide scripting for typical programmers. Experts
can learn to use transformation systems for their work.

The next steps in our research are to: 1) show that a
full compliment primitive refactorings comparable to that of
JDTRE can be added to R3 and 2) adapt improved precondi-
tion checks identified by others [17], [23].

We believe that R3 provides a useful advance in creating
next-generation OO refactoring engines.
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