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Abstract. Though modern IDEs have supported refactorings for more
than a decade, recent studies suggest that programmers greatly under-
use such tools, especially for complex refactorings. Complex refactorings
affect several methods or classes and tend to be tedious and error-prone
to perform by hand. To promote the use of refactoring tools for complex
changes, we propose a new paradigm for automating refactorings called
compositional refactoring. The key idea is to perform small, predictable
changes using a tool and manually compose them into complex changes.
This paradigm trades off some level of automation by higher levels of
predictability and control. We show that this paradigm is natural, be-
cause our analysis of programmers’ use of the Eclipse refactoring tool
in the wild shows that they frequently batch and compose automated
refactorings. We then show that programmers are receptive to this new
paradigm through a survey of 100 respondents. Finally, we show that
the compositional paradigm is effective through a controlled study of
13 professional programmers, comparing this paradigm to the existing
wizard-based one.

1 Introduction

Refactoring is defined as changing code without affecting the observable behavior
of the program [5,7,19]. Refactoring is not only recommended by expert practi-
tioners [5, 9], but also commonly practiced by programmers [15, 17, 24, 31]. The
first refactoring tool was invented more than a decade ago to make the refactor-
ing process faster and more reliable [20]. Today, modern Integrated Development
Environments (IDEs), such as Eclipse, IntelliJ IDEA, NetBeans, ReSharper, and
Xcode, support many refactorings that rename, move, split, or join various pro-
gram elements including methods, classes, and packages. In addition, researchers
continue to propose new tools for automating complex changes [4,11,22,26,30].

Despite the expected benefits of automated refactorings, studies have shown
that programmers greatly underuse these tools, especially for complex changes.
Although complex refactorings are more tedious and error-prone than simple
ones to perform manually, programmers use the refactoring tools mostly for
performing simple refactorings such as Rename, Extract Local Variable, and
Extract Method [17,18,24].
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The mainstream refactoring tools follow a wizard-based paradigm. Typically,
a programmer selects a piece of code in the editor and invokes an automated
refactoring from a menu. The programmer may then change some of the config-
uration options on the wizard. These options control the outcome of the refac-
toring by specifying the entities that should be created, copied, or moved. The
tool may also preview the change, e.g., by showing snapshots of the affected files
before and after the refactoring side-by-side.

Prior studies have identified several problems with the wizard-based paradigm
of refactoring [17,24]. For instance, the long list of automated refactorings in the
menu leads to higher learning and invocation costs. The context-switch from a
code editor to a wizard disrupts the programming workflow. The wizard imposes
an upfront configuration cost, making it difficult to control the outcome of the
tool. The preview page of the wizard is often too cluttered, which makes the
refactoring tool less predictable. That is, the programmer cannot easily predict
how the tool is going to affect her code. Even if a programmer makes her way
through all the steps of invocation, configuration, and preview, the wizard may
still notify her at the end that the refactoring is impossible or unsafe to perform.
These problems call for rethinking the design of refactoring tools.

The main contribution of this paper is a new paradigm, called composi-
tional refactoring, for automating complex refactorings. The key idea is to have
the tool automate small, predictable changes and let the programmer manually
compose these changes into complex ones. For instance, rather than performing
a large refactoring such as Extract Superclass in a single step, the compositional
paradigm automates small steps, e.g., Create New Superclass and Move Member
to Immediate Superclass, leaving it to the programmer to compose these steps.

The compositional paradigm offers a lower level of automation than the
wizard-based one by automating small changes. It puts the programmer in con-
trol by letting her compose the small changes. Although it may seem counterin-
tuitive that reducing the level of automation improves an automated tool, this
phenomenon is not new. Other fields such as aviation, health-care, and manufac-
turing have gone through a similar process. Motivated by the perceived benefits
of automation, highly automated systems were invented, often neglecting the
role of the human operators. Further studies showed that often a less automated
system with a human-centered design performs better, concluding that less is
(sometimes) more, when it comes to automation [2, 10,28].

The idea of compositional refactoring is inspired by our studies of the refac-
toring practices in the wild. Even though expert practitioners recommend that
programmers perform refactorings as a composition of smaller ones [5, 9], little
is known about how programmers compose refactorings in practice. Therefore,
we mined two refactoring data sets: the Eclipse foundation and Illinois data
sets. The Eclipse foundation has collected data from hundreds of thousands of
programmers over the years. Our data mining of this large corpus of data shows
that programmers frequently invoke a variety of multiple automated refactor-
ings within a short period of time. Nonetheless, refactorings invoked in close
time proximity may be semantically unrelated. Therefore, we consulted the Illi-
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nois data set, which we collected during a prior field study from 30 programmers
over eight months. The Illinois data set is smaller but contains more contextual
information about refactoring invocations. We manually inspected a sample of its
refactorings that were invoked in a short time span. This analysis reveals some
of the rationales for systematically composing refactorings, providing further
evidence for the naturalness of the compositional paradigm to programmers.

We evaluated the idea of compositional refactoring in two ways. We first dis-
tributed an online survey to get early feedback from hundreds of programmers
on our design (Section 5). The survey presented mockup screenshots of com-
positional and wizard-based refactorings and asked the participants to compare
the two paradigms. The survey results showed that programmers are receptive
to the idea of compositional paradigm and provided improvement suggestions.
This positive response motivated us to implement the compositional paradigm.

We enhanced the design based on the feedback we received from the sur-
vey participants. Then, we implemented it as an Eclipse plug-in. Finally, we
conducted a lab study with 13 professional programmers at a large software
company (Section 6). We instructed the participants to perform a refactoring
on an open-source project using the compositional and wizard-based refactoring
tools in a random order. Like the survey participants, the majority (nine) of the
lab study participants were more satisfied with the compositional paradigm than
the wizard-based one. In addition, the participants were more likely to finish the
task correctly and significantly faster in the compositional paradigm.

Overall, the participants of the survey and lab studies appreciated the compo-
sitional paradigm because of its perceived higher level of control, easier method
of invocation, and interactivity. In addition, they suggested features like abstract
views and multi-selections. These results suggest that compositional refactoring
is a promising paradigm for assisting programmers in performing complex refac-
torings. Our work contributes to the refactoring practice in several ways:

1. We provide empirical evidence for the prevalence and nature of automated
refactorings that are invoked in close time proximity (Section 2).

2. We discuss some of the rationales for composing automated refactorings
based on our manual inspection of the Illinois data set (Section 3).

3. We propose a new paradigm for automating complex refactorings, namely
compositional refactoring (Section 4).

4. We provide an implementation of compositional refactoring as an Eclipse
plug-in (Subsection 6.1).

5. We show the effectiveness of compositional refactoring through a survey
(Section 5) and a lab study (Section 6).

6. We draw implications from our analyses of refactoring usage data, survey
study, and lab study for designing future tools that better support complex
refactoring.

Our tool and study materials are available at http://codingspectator.cs.
illinois.edu/CompositionalRefactoring.
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2 Frequent Refactoring Sets

In this section, we answer the following research questions:

– How frequently do multiple kinds of refactorings occur in a short time span?
– How diverse are the refactorings frequently invoked in a short time span?

Answers to these questions provide a bird’s-eye view of the phenomenon of
invoking several automated refactorings in a short time span.

2.1 Eclipse Foundation Data Set

Usage Data Collector (UDC) is a pre-installed plug-in in Eclipse, which records
uses of Eclipse commands, views, and perspectives. UDC generates a fresh iden-
tifier for the user and persists it in the home folder of the user. For each event or
action performed by the user, UDC captures the timestamp, the event identifier,
the user identifier, and the bundle that generated the event. If a user agrees, UDC
regularly sends the user’s data to the Eclipse foundation’s servers. We analyzed
a subset of the UDC data that contained information about the invocations of
the Eclipse refactoring tool for Java. The Eclipse foundation has released the
data from a total of 195,105 programmers who used the Eclipse refactoring tool
for Java during 20 months from January 2009 until August 2010.

2.2 Data Analysis

We used the large data set of Eclipse foundation to infer the frequent refactoring
sets, the sets of automated refactorings that are frequently invoked in a short
time span. Since the refactorings invoked in temporal proximity may not be
semantically related, this analysis only provides a bird’s-eye view of the frequency
and variety of compositions of automated refactorings in the wild.

Refactoring Batches Intuitively, a refactoring batch is a maximal set of auto-
mated refactorings, such that the consecutive refactorings are invoked within a
close time proximity. A refactoring batch is a nonempty set of refactoring kinds.
For instance, the refactoring batch {Move, Rename} may stand for one or more
invocations of Move and Rename in any order within a close time proximity.

We partitioned the refactoring events into refactoring batches using a heuris-
tic. The heuristic uses the large gaps between the invocation times of consecutive
refactorings as the partition boundaries. This heuristic is based on the assump-
tion that refactorings invoked far apart in time are less likely to be semantically
related. First, the partitioning algorithm sorts the refactoring events of every
UDC user by invocation time. Next, the algorithm creates a new batch for each
user and adds the kind of the first refactoring event of the user to the batch. If
a refactoring event is invoked by the same user within δ minutes of the preced-
ing event, the algorithm will add the kind (Rename, Move, etc.) to the batch
of the preceding event. Otherwise, the algorithm will add the kind to a new
batch. When the batch of every refactoring event is determined, the algorithm
terminates and returns the set of refactoring batches.
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Mining Frequent Refactoring Sets A refactoring set is a nonempty subset
of a refactoring batch. The support of a refactoring set R is the fraction of
refactoring batches that are supersets of R. We applied a frequent itemset mining
algorithm [8, pp. 246–50] on the set of refactoring batches to infer the frequent
refactoring sets—the refactoring sets with the highest supports.

We used an implementation of the frequent itemset mining algorithm in the
statistical computing software R [1]. We provided the algorithm with refactoring
batches (δ = 10) and set the parameter minsup to 0.001. The output of the
algorithm is a list of refactoring sets with a support of at least minsup.

We repeated the analysis for each δ ∈ {5, 10, 20, 40}, and compared the re-
sulting frequent refactoring sets. Due to the negligible effect of such changes of
δ on the most frequent refactoring sets, we present the results for only δ = 10.

refactoring set support
{Rename} 0.591

{Extract Local Variable} 0.270
{Extract Method} 0.154

{Inline} 0.090
{Extract Local Variable, Rename} 0.076

{Move} 0.058
{Extract Method, Rename} 0.057
{Change Method Signature} 0.055

{Extract Constant} 0.043
{Extract Local Variable, Extract Method} 0.042

{Inline, Rename} 0.033
{Extract Local Variable, Inline} 0.031

{Extract Method, Inline} 0.027
{Convert Local Variable to Field} 0.025

{Move, Rename} 0.024
{Change Method Signature, Rename} 0.022

{Extract Local Variable, Extract Method, Rename} 0.020
{Pull Up} 0.016

{Extract Local Variable, Inline, Rename} 0.015
{Extract Constant, Rename} 0.015

Table 1: The 20 most frequent refactoring sets of UDC active users. A refactoring
batch is the kinds of a set of automated refactorings such that the consecutive
refactorings are invoked within 10 minutes. A refactoring set is a subset of a
refactoring batch. For instance, the refactoring set {Pull Up} stands for one or
more invocations of Pull Up in a refactoring batch. The support of a refactoring
set R is the fraction of batches that are supersets of the R.

2.3 Results

The data mining algorithm inferred 47 frequent refactoring sets for all UDC
users. However, the vast majority of UDC users use automated refactorings
rarely. Most (98.6%) users invoked the refactoring tool at most 50 times, and
98.9% invoked at most five kinds of automated refactorings. We consider users
who invoked at least five kinds of automated refactorings for a total of at least
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50 times active and the rest inactive. This leads to 1,188 active users with a
total of 112,885 refactoring events.

We hypothesized that the data of inactive users conceals some of the frequent
refactoring sets of the active ones. Thus, we repeated the data mining algorithm
on the active users alone. This resulted in about three times more frequent refac-
toring sets (N = 150), 44 of which were also inferred for all users. This indicates
that limiting the data set to active users uncovers more frequent refactoring sets.
Table 1 lists the most frequent refactoring sets of active UDC users. This table
shows the following:

1. Programmers invoke a variety of automated refactorings in a short time span.
2. Some refactoring sets with multiple refactoring kinds are more frequent than

those with a single kind. For instance, {Extract Local Variable, Extract
Method} is about 2.5 times more frequent than {Pull Up}. In other words,
a refactoring batch is more likely to contain Extract Local Variable and
Extract Method than at least one Pull Up. This result reveals a limitation
of prior studies [15,17,24], which focused only on individual refactorings.

3 Refactoring Composition Patterns

The frequency and variety of refactoring sets (Section 2.3) led us to the hy-
pothesis that programmers systematically compose certain kinds of automated
refactorings to apply larger changes. This section presents answers to the follow-
ing reseach questions:

– Do programmers compose automated refactorings?
– What are some of the rationales for composing automated refactorings?

The analysis of the Eclipse foundation data set showed that certain kinds
of automated refactorings (e.g., {Extract Local Variable, Extract Method}) are
frequently invoked in a short time span. Although this data set is huge, it does
not capture enough context about each event to infer the rationales for invoking
several automated refactorings in a short time span. Therefore, we analyzed the
smaller but more detailed Illinois data set.

3.1 Illinois Data Set

The Illinois data set comes from two of our Eclipse-based data collectors, namely
CodingSpectator and CodingTracker [24,25]. CodingTracker records applications
of all 33 automated refactorings of Eclipse, and CodingSpectator records more
detailed data (e.g., the piece of code surrounding the refactored program ele-
ment and error messages reported by the refactoring tool) for 23 automated
refactorings.

The Illinois data set contains data from 30 programmers consisting of a total
of 2,296 programming hours over eight months. Fourteen of our participants
were external developers who we recruited by sending invitation messages to

6



individual programmers, mailing lists, and IRC channels of open-source projects.
We also recruited twelve graduate students and four interns from six research
labs at the computer science department of the University of Illinois at Urbana-
Champaign. Based on the results of our demographic survey that 28 participants
took, 1, 5, 15, and 7 participants had 1–2, 2–5, 5–10, and more than 10 years of
programming experience, respectively.

3.2 Data Analysis

The partitioning algorithm (Section 2.2) found 1,633 refactoring batches of 244
kinds in the Illinois data set. We selected 32 kinds of batches, which were frequent
in the Illinois data set or contained the frequent refactoring sets of the Eclipse
foundation data set. Then, we manually analyzed a random sample of at most
ten batches of each kind, leading to a total of 139 batches.

We examined the information captured for each refactoring event in a batch,
e.g., the kind, invocation time, error messages, and the piece of code surrounding
the selection. Based on these data, we decided if the refactorings in the batch were
semantically related, and inferred a rationale for the batch. Next, for each batch
kind, we collected the rationales of the batches of that kind. Finally, we collected
five refactoring composition patterns. A refactoring composition pattern is a
recurring set of automated refactorings that programmers compose for similar
rationales.

3.3 Results

We found that the majority (81%, i.e., 112 of 139) of the analyzed batches con-
tained related refactorings. The following presents the refactoring composition
patterns that we observed in our sample of refactoring batches. Each pattern re-
veals some of the rationales for composing refactorings, providing evidence that
programmers systematically compose automated refactorings. The value of n in
parentheses shows the number of refactoring batches with a particular property.

Refactoring Closely Related Entities (n = 47) We found that program-
mers frequently compose refactorings to refactor closely related entities, which
are not related by binding. For instance, the participants composed several Re-
name refactorings on program entities with similar names (n = 8) or a method
and the variable that gets the return value of the method (n = 2). As another
example, our participants performed the Rename refactoring to rename a field
and the constructor parameter that initialized the field (n = 2).

Refactoring tools only update the entities that are syntactically related. For
instance, the Rename refactoring updates the declaration and all references of
a name. One recommendation for future tools is to support this refactoring
composition pattern by reliably detecting the names that are likely to co-evolve.
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public static void main(String[] args) {
int factorial = 1;

for (int i = 1; i <= 10 ; ++i) {

factorial *= i;
}
System.out.println(factorial);

}

(a) The initial code. The programmer ex-
tracts 10 into a new local variable n.

public static void main(String[] args) {
int factorial = 1;

int n = 10;

for (int i = 1; i <= n; ++i) {
factorial *= i;

}
System.out.println(factorial);

}

(b) The programmer moves the declaration
of n to exclude it from her future selection.

public static void main(String[] args) {
int n = 10;

int factorial = 1;

for (int i = 1; i <= n; ++i) {

factorial *= i;

}

System.out.println(factorial);
}

(c) The programmer extracts the computa-
tion of factorial of n into a new method.

public static void main(String[] args) {

int n = 10;

int factorial = getFactorial(n);
System.out.println(factorial);

}

private static int getFactorial(int n) {
int factorial = 1;
for (int i = 1; i <= n; ++i) {

factorial *= i;
}
return factorial;

}

(d) The programmer inlines local variable
n, which is now used just once.

Fig. 1: Participants composed Extract Local Variable, Extract Method, and In-
line Local Variable to extract methods with their desired signatures.

Adapting Extract Method (n = 34) We found that programmers compose
three kinds of refactorings, Extract Local Variable, Extract Method, and Inline
Local Variable, to adapt the outcome of Extract Method (Figure 1). This refac-
toring composition pattern consists of three steps: preparation, method extrac-
tion, and simplification. First, the programmer performs Extract Local Variable
so that the upcoming Extract Method refactoring infers a method parameter cor-
responding to the extracted local variable. Second, she invokes Extract Method
on a piece of code excluding the declarations of any variables added during the
preparation step. Finally, the programmer invokes Inline Local Variable to sim-
plify the code. A refactoring batch with method extraction may contain only
the preparation step (n = 11), only the simplification step (n = 19), or both (n
= 4). It is impossible to configure the refactoring wizard of Extract Method to
extract the same method in one step.

Instead of composing three refactorings to include certain parameters in the
signature of the extracted method, the programmer could compose just two
refactorings, namely, Extract Method and Introduce Parameter. However, there
were no instances of the latter in the Illinois data set. In general, the automated
Introduce Parameter refactoring is used infrequently and fewer programmers
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know about it [17, 24]. Nonetheless, a programmer can adapt Extract Method
without the need to learn the Introduce Parameter refactoring.

The following are some of the rationales of this composition pattern:

– configuring a refactoring in ways not supported by a wizard
– avoiding the need to learn additional kinds of automated refactorings

If a refactoring tool is aware of composition patterns for adapting a refactor-
ing, it could offer the programmer the opportunity to perform the simplification
actions in one step.

Backtracking Refactorings (n = 12) Not all refactorings in a batch con-
tribute to the overall effect of the batch. For example, a pair of Extract Local
Variable and Inline Local Variable refactorings may cancel the effects of each
other (n = 6). A refactoring batch may also contain a refactoring that is fol-
lowed up by an undo operation (n = 6). For example, we found that the partic-
ipants extracted a piece of code into a local variable, undid the refactoring, and
finally extracted the same piece of code into a constant (n = 2). This indicates
that programmers experiment with refactorings or accidentally invoke the wrong
refactoring.

Composition-over-configuration (n = 8) Composition-over-configuration
is composition pattern that we found programmers employ to avoid the upfront
configuration cost of refactoring wizards. With this pattern, the programmer
composes multiple automated refactorings to perform a refactoring that could
have been done by configuring a refactoring wizard.

For example, it is possible to configure the Pull Up refactoring wizard to
move one or more members (fields or methods) of a class to a superclass in one
step. However, the participants sometimes composed two Pull Up refactorings
to pull up two members of a class one at a time (n = 2).

As another example, the Extract Local Variable refactoring wizard allows
the programmer to set the name of the new variable. Nevertheless, a participant
composed Extract Local Variable by a Rename (n = 1).

Observing the composition-over-configuration pattern, we propose the com-
positional paradigm of automating refactorings (Section 4). We implemented
the compositional paradigm using a feature of Eclipse called Quick Assist (Fig-
ure 2). Quick Assist is a popular method of invoking refactorings that supports
composition-over-configuration [24]. For example, if a programmer invokes Ex-
tract Method through Quick Assist, it would apply Extract Method with a de-
fault name and then initiate a composition with Rename on the method name.

Multiple Refactorings on an Entity (n = 6) A program entity may undergo
multiple refactorings. For instance, the participants composed Extract Method
with Pull Up on the same method to refactor to the Template Method design
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Fig. 2: A screenshot of Eclipse Quick Assist (CTRL+1). In this case, Quick Assist
suggests Extract Method as a refactoring applicable to the selected piece of code.

pattern (n = 2) [6, p. 325]. As another example, a participant composed Push
Down with Encapsulate Field on the same field (n = 1).

4 Design of a Compositional Refactoring Tool

Based on the lessons learned from our data analysis, literature review, and our
prior research studies, we compiled a list of design goals for a new refactoring
tool. These goals inspired the design and implementation of a tool for composi-
tional refactoring. The tool currently supports Extract Superclass and Introduce
Parameter, and can be easily extended to support other refactorings. In this sec-
tion, we first discuss our design goals and then explain the steps involved in
performing the Extract Superclass refactoring using our tool.

4.1 Design Goals

Predictability Our prior study showed that programmers rarely use the au-
tomated refactorings whose outcomes are not easily predictable [24], e.g., the
refactorings that affect several files. Our goal is to make such refactorings more
predictable. One strategy to achieve predictability, employed by the wizard-based
refactorings, is to assist the programmer in reviewing the changes. Another strat-
egy, which we have explored in our compositional paradigm, is to divide a large
refactoring into smaller, predictable refactorings.

Control Programmers prefer to maintain control over the evolution of their
code during a refactoring [24]. One way to control a refactoring is to allow the
programmer to configure it upfront. However, configuration dialogs increase the
cost of using the tool [17,24], and programmers rarely configure the refactoring
tool [17]. An alternative paradigm is to put the programmer in control by as-
sisting her in performing the refactoring in smaller steps. In this paradigm, she
can evaluate the refactoring at each step and intersperse it with manual edits.

Discoverability Researchers and tool vendors continue to automate more re-
curring code transformations [4, 11, 22, 26, 30]. However, programmers discover
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only a subset of the automated refactorings in their IDEs [24]. Quick Assist
makes the refactorings more discoverable by proposing them based on the cur-
rent context. Programmers frequently use Quick Assist to discover and invoke
refactorings [24]. Thus, our tool relies on Quick Assist as its method of invoca-
tion.

Learnability The list of automated refactorings in modern IDEs is long. The
cost of learning so many tools is a barrier to their adoption. Our goal is to
solve this problem by allowing programmers learn a small number of reusable
refactorings and compose them in a variety of ways to perform many kinds of
larger refactorings.

Low Disruptiveness Although configuration dialogs make the refactoring tool
more powerful and customizable, they distract the programmer from the code
and disrupt her flow of programming [17,24]. We aim to design refactoring tools
that are highly interactive and allow the programmer to focus on the code.

Correctness Wizard-based refactorings guarantee correctness by checking a set
of preconditions. Similarly, compositional refactorings check the preconditions of
the individual steps. Because the steps are small, we expect that programmers
can verify them more easily. Moreover, the programmer can run tests after each
step. This allows the programmer to identify the exact step that led to a problem.

4.2 Compositional Extract Superclass Refactoring

Our goals informed the design of a compositional refactoring tool. We use the
Extract Superclass refactoring as an example to demonstrate the compositional
paradigm. This refactoring lets the programmer create a superclass for one or
more classes and move some of the members of the subclasses to the superclass.
We chose Extract Superclass because it is one of the more complex and less
frequently used automated refactorings of Eclipse [17, 24]. Figure 3 shows our
mockup of compositional Extract Superclass. We later improved the mockup and
implemented it as an Eclipse plug-in (Section 6.1). In the following, we briefly
describe how the tool works.

1. The programmer selects the class (Daisy) to extract a superclass from.
2. She selects “Create new superclass in file” from the Quick Assist menu.
3. This creates a new empty superclass and prompts for a new name (Flower).
4. The programmer invokes “Move to immediate superclass” on method water.
5. This moves method water from Daisy to Flower.
6. The programmer invokes “Move type to new file” on class Flower.
7. This moves class Flower to a new file and completes the refactoring.

The outcome of each of the above steps is immediately visible to the pro-
grammer in the code editor. At each step, the Quick Assist menu suggests a set
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of actions that are applicable to the selected element. The steps are independent
of each other. That is, Quick Assist suggests the steps regardless of what step
was previously performed. The programmer does not have to perform every step
using our Quick Assist actions. Rather, she can perform some steps manually.

Fig. 3: Mockup screenshots of compositional Extract Superclass. See Section 4.2
for a description of each screenshot. The survey used similar screenshots (Section
5). We later implemented the mockup as an actual tool (Section 6.1).

5 Survey Study

We distributed a survey to assess our design goals and compare our compositional
prototype of the Extract Superclass refactoring (Figure 3) with the existing
wizard-based user interface of this refactoring in Eclipse. The goal of the survey
study is to answer the following research questions:

– How do programmers compare the compositional and wizard-based paradigms?
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– Are programmers likely to adopt the compositional paradigm?
– What are some opportunities for improving the compositional paradigm?

Answering these questions shows how receptive programmers are to the new
compositional paradigm.

5.1 Method

We recruited 100 programmers by announcing the survey1 on reddit.com2,
twitter.com, and mailing lists of open source projects. The survey was esti-
mated to take 20 minutes, and started with questions about the experience of
the respondent with programming, IDEs, and refactoring. Then, it asked about
the programmer’s strategy in performing the Extract Superclass refactoring. Fi-
nally, the survey presented screenshots of the two user interfaces of the Extract
Superclass refactoring, and asked the respondent to evaluate and compare them.

5.2 Thematic Coding

We employed thematic coding [29], a systematic qualitative method, to analyze
the responses to open-ended questions. The coding was inductive (data-driven)
as opposed to deductive (theory-driven). We extracted the opinions and ideas
associated with each segment of the comments. Through an iterative process, we
defined, merged, and split the themes to better identify the central ideas. The
goal of such a coding is to identify the major ideas not to count the frequencies of
keywords. This coding allowed us to reliably decide if two participants provided
equivalent responses. For each statement that we report, we include the number
of participants that agree with it as an indication of its overall support.

5.3 Participants

The participants were familiar enough with modern programming environments
to evaluate the compositional paradigm. The majority (91%) of the survey re-
spondents had more than five years of programming experience. Of all the par-
ticipants, 76% considered themselves to be experts in at least one programming
language (on a five-point Likert scale ranging from “Unfamiliar” to “Expert”),
and 99% rated themselves as either very familiar with or expert at one or more
languages. The respondents indicated that they were familiar with Eclipse (81%),
Visual Studio (58%), NetBeans (39%), IntelliJ (36%), and Xcode (28%).

5.4 Results

The survey presented screenshots of the steps to perform the Extract Superclass
refactoring using both the compositional and wizard-based paradigm on the same

1 https://illinois.edu/fb/sec/8454746
2 http://www.reddit.com/r/programming
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page. The survey asked the participant how often she would use each interface
on a five-point Likert scale ranging from “Never” to “Nearly every time”. The
majority (66%) of respondents said that if both compositional and wizard-based
paradigms are available, they would use the compositional paradigm at least as
frequently as the wizard-based one. More interestingly, those who did not use
an existing tool for Extract Superclass or used the tool some of the time were
more likely to prefer the compositional paradigm (Table 2). This shows that the
compositional paradigm is a promising technique for increasing the utilization
of automated refactorings.

Table 2: Joint distribution of respondents’ frequency of using the Extract Super-
class refactoring wizard and their preferred paradigm (compositional vs. wizard-
based). Since three respondents did not indicate their frequency of using the
wizard, the last row is slightly different from the sum of the other rows.

Prefe
rs com

posi
tion

Has no pref
eren

ce

Prefe
rs wizard

Does not use the wizard 21% 4% 6%
Sometimes uses the wizard 16% 5% 9%

Uses the wizard 15% 3% 20%

All respondents 52% 14% 34%

Finally, the survey asked the participants to compare and evaluate the paradigms.
We applied a qualitative analysis method (Subsection 5.2) on the comments pro-
vided by 50 participants. The following discusses the result of this analysis, which
reveals the strengths and weaknesses of each paradigm and highlights opportu-
nities for improvement.

Control Three survey respondents indicated that they would prefer the compo-
sitional paradigm, because it provides more control over the evolution of code.
For instance, P5 wrote:

I think the second [compositional] UI [...] gives me the idea of having the
control over what’s happening, and how further can I go with it.

This result is consistent with the findings of a prior study, which showed
that programmers prefer to maintain control over their code and use automated
refactorings whose outcomes are predictable [24].

Invocation Method Two respondents reported that it was difficult to invoke
the wizard-based refactorings from the menu mostly because the menu was too
cluttered. Five said that they would prefer keyboard shortcuts. For instance, P10

suggested the following as a way to improve the wizard-based interface:
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Make refactoring initiated by keyboard short-cut and not buried so deeply in
a menu.

However, as one respondent said, keyboard shortcuts are hard to remember.
Quick Assist is a middle-ground, because it is keyboard navigable and proposes
only the refactorings that are applicable to the current context. Two participants
said that Quick Assist was an easier way of invoking refactorings.

Incrementality and Testability Six respondents mentioned that they do not
want refactoring tools with modal dialogs. Five said that modal dialogs are
distracting, and three said that the dialogs are too complex. On the contrary,
five people indicated that the compositional paradigm is more interactive and
two indicated that it allows running tests after each step. For instance, P7 said:

The second [compositional] one provides a more stepwise view, giving me more
intermediate feedback, as well as an ability to run my tests at each step. This
goes a long way to making sure the refactoring is the right decision.

Nonetheless, one respondent said that the compositional paradigm had too
many steps, and two preferred to perform the refactoring in a single step. For
example, P8 said:

I don’t write Hello World examples. I need control over what gets moved up
and what not, what’s made abstract and so forth. I want to do this in one
pass, not six [four].

We made compositional paradigm incremental to achieve high control and
testability. We decided that compositional refactoring fits programmers’ work-
flow, because it mimics manual refactorings and programmers already compose
refactorings (Section 3).

Abstract View Nine participants were concerned that the compositional paradigm
may not be suitable for large refactorings. For example, P2 said:

[I’m] Not sure I’d want to use that [wizard-based] UI for any refactoring work.
However, [the wizard-based UI is] probably better for very large refactoring
tasks than the second [compositioanal] UI—but if you’re doing that, you’re
doing too much in one go.

Four respondents said that a high-level view of the code would be useful for
performing large refactorings. For instance, P3 said:

[...] However, specifying the methods to be moved one by one rather than
selecting them from a list might cause methods that should be extracted into
a superclass to be missed. In some sense, it is mostly about whether an abstract
view of the methods is preferable to a code level view when choosing whether
to extract them. Sometimes I find myself leaving the extract superclass dialog
to figure out what a method actually does and whether it should be extracted.
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The wizard-based paradigm lets the programmer operate at the level of
classes and methods, but, makes it difficult to switch between the code and
its higher-level view. On the other hand, the compositional paradigm that we
demonstrated on the survey was tightly coupled with the code, which makes it
easy to intersperse low-level code changes with refactorings. To offer the benefits
of both, the tool could make the switch between the two views seamless, e.g., by
making the refactorings available both in the code editor and graphical views.

Multi-selections Five respondents preferred to be able to select multiple pro-
gram entities and manipulate them at the same time. For example, P4 said:

Usually, I’m extracting a common superclass to remove duplication from more
than one similar class, so I’d need to be able to select multiple classes.

Extending the compositional paradigm to support an abstract view will make
it possible to select multiple program elements from the abstract view in one step.

Coding Conventions The mockups of the compositional paradigm showed
how to first create an empty superclass in the same file and move it to a new
file later (Figure 3). Although one could move the superclass to a new file right
after creating the superclass, nine preferred the tool to adhere to the coding
conventions strictly and never introduce two classes in the same file.

6 Lab Study

The survey study showed the overall preference of programmers towards compo-
sitional refactoring based on participants’ evaluations of the mockup screenshots.
The goal of the lab study was to answer the following research questions based
on programmers’ experience with real tools that support refactoring in the two
compositional and wizard-based paradigms.

– Which paradigm of refactoring do programmers prefer?
– Which paradigm is faster?
– Which paradigm is less error-prone?

6.1 Tool

We implemented an Eclipse plug-in to support Extract Superclass and Intro-
duce Parameter in the compositional paradigm. Based on the survey study, we
improved the design of our tool in several ways. First, we replaced the “Cre-
ate new superclass in file” action by “Create a new superclass for T in a new
file”. We made this change to adhere to the coding conventions of Java more
strictly. Second, we added an action to the menu called “Create New Super-
class” to support multi-selections. When the user selects multiple classes, e.g.,
in the Package Explorer view, this action would create an empty superclass for
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the selected classes. Finally, we implemented additional actions such as “Move
type T to a new file”, where T is a type name, and “Add parameter to method
m for expression”, where m is a method name (Introduce Parameter in Quick
Assist). However, the participants did not use these three actions as they were
not applicable to the refactoring task of the lab study.

6.2 Participants

All of our participants were experienced programmers who used Eclipse for Java
development at a large software company. We first ran a pilot study on three
programmers. Then, we conducted the main study on 13 programmers. Of all the
participants, two reported having five to ten years of programming experience
and 11 reported more than ten years. One participant reported that he was
familiar with Java, nine participants considered themselves as being very familiar
with Java, and three indicated that they were experts. One participant reported
that he was somewhat familiar with Eclipse, four participants rated themselves
as familiar, seven said they were very familiar, and one rated himself as expert.

6.3 Study Design

We instructed each participant to finish the task in both compositional and
wizard-based paradigms (within-subject). Each participant tried the paradigms
in a random order (counterbalancing) to overcome the potential carryover effect.
We did not ask each participant to try only one paradigm (between-subject)
for several reasons. First, individual differences would affect the results of such
a study. Second, a between-subject study requires more participants to draw
meaningful conclusions. Third, such a study would only allow a quantitative
comparison (e.g., efficiency and correctness) of the two paradigms. However, we
felt that such measures were not enough to reliably compare the two paradigms.
A participant can offer a qualitative comparison only if she tries both paradigms.

At the beginning of the study, we asked the participants to complete a pre-
questionnaire. Then, we asked them to perform some introductory tasks to famil-
iarize themselves with the code. We then instructed each participant to perform
the task twice in a random order, once using the compositional paradigm and an-
other time using the wizard-based paradigm. Finally, we asked the participants
to rate the two paradigms of refactoring in a postquestionnaire and answer our
follow-up questions during a semi-structured interview. The study took about
an hour for each participant, and we offered a $25 gift card to each participant.

Refactoring Task We used a refactoring that had occurred in the open-source
project HTMLParser as our refactoring task. Kerievsky used this refactoring as
an example of the Extract Composite refactoring [9, p. 214] in his book. Several
classes of an old revision of the code base exhibit some code duplication. These
classes contain a list of elements and a method that iterates over the elements and
computes their string representation. The fields had different names in different
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classes and the methods accessed the elements in slightly different ways. We
asked our participants to remove this code duplication between two classes by
extracting the common field and method into a new common superclass. We
limited the refactoring to two classes to make it feasible to finish the refactoring
in about 20 minutes.

Pilot Study During the pilot study, we noticed that some participants acci-
dentally introduced subtle errors while refactoring the code. So, we asked the
participants of the main study to check that the unit tests passed at the begin-
ning and end of the study. In addition, we instructed the participants to ensure
that the new superclass is only referenced by its subclasses. We decided that
the existing uses of the subclasses should not be replaced by the new superclass,
because of the dynamic type checks and casts that were used to check for the
subtype.

6.4 Data Analysis

We measured the task completion time and checked the correctness of the per-
formed task to compare the two paradigms quantitatively. If a participant fin-
ished the refactoring task, we compared his resulting code with the expected
code in the instructions. If the participant missed some expected changes or
introduced unexpected ones, we considered it an incorrect refactoring.

Similar to the analysis of survey comments (Subsection 5.2), we employed
thematic coding [29] to systematically analyze the retrospective interviews.

6.5 Results

Task Completion Time The medians of the task completion times using the
wizard-based and compositional refactorings were 16.5 and 10.5 minutes, re-
spectively. A Wilcoxon signed-rank test shows that there is a significant effect of
refactoring tool on the task completion time (W = 41, Z = 2.25, p = 0.02 < 0.05,
r = 0.50, two-tailed). Two participants did not finish the refactoring task using
either tools during the allotted time. Another participant could not finish the
task using the wizards. We excluded these three participants from our signifi-
cance test. One participant finished the compositional refactoring faster using
the wizards. The other nine participants finished the task faster using the com-
positional paradigm.

Correctness Participants were more likely to complete the task correctly in
the compositional paradigm than the wizard-based one. Seven participants in-
troduced accidental changes to the code base using the wizard-based refactorings,
while only one participant left the refactoring incomplete using the compositional
paradigm.

The Extract Superclass refactoring wizard has an option called “Use the ex-
tracted class where possible”, which is checked by default. This option causes
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the tool to replace all occurrences of the selected classes by the superclass when-
ever this replacement does not introduce any compilation problems. The Pull Up
refactoring wizard has a similar option. Only three participants unchecked this
option on the wizard and just one participant noticed the unexpected changes
in the preview and deselected them. The other seven participants were surprised
when they discovered unexpected references to the new superclass at the end.
At that point, it was difficult to revert the unexpected changes because the par-
ticipants had already changed the code too much since the application of the
wizard-based refactoring. Two participants failed to finish the task using wizards
because reverting the unwanted changes was too time-consuming for them.

Qualitative The majority of our participants were more satisfied with the
compositional paradigm, found it easier to learn and use, felt more control and
confidence over the refactoring, and expected more opportunities for using it in
their code (Table 3).

Table 3: Number of participants of the lab study who preferred each paradigm
of refactoring (the first two rows) with respect to each quality (columns). The
last row lists the number of participants with no preference.

cont
rol

corr
ectn

ess

ease
of le

arni
ng

ease
of u

se

opp
ortu

nity
to use

satis
facti

on

compositional 9 6 7 7 7 9
wizard-based 3 5 4 2 1 3
no preference 1 2 2 4 5 1

During the interviews, we asked about the advantages and disadvantages of
the two paradigms of refactoring. The following presents the themes that we
extracted from the participants’ responses.

Control Participants felt they had more control in the compositional paradigm,
because the steps are small, predictable, and mimic their manual refactorings.
One participant said:

The wizard gives this illusion of just doing everything for you. [...] The down-
side is that there were a number of options that I read and didn’t quite make
sense of, and said I guess I don’t have to care about that. And, of course, I
found my sorrow that that wasn’t true. It did things that I completely didn’t
expect. [...] And, it doesn’t give control.

On the other hand, one participant attributed his feeling of control in the
wizard-based paradigm to the previews.
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Correctness A participant said:

The thing that I like about it [compositional paradigm] is that you’re taking
actions yourself. So, when you see an error, you usually have an idea of which
action that you took caused the error.

Another participant explained why he did not trust the correctness of com-
positional refactorings as much as the wizard-based ones as follows:

I was not sure if it [the compositional refactoring tool] was seeing the full
picture of the changes. Since it was stepwise [and] I’m doing [each step] one
by one, I’m not sure if each of the steps is going to be integrated correctly.

In practice, participants were more likely to refactor incorrectly using wiz-
ards.

Change Review Seven participants preferred the tool to inform them about the
effects of an automated refactoring on their code. However, we observed that
most participants did not inspect the previews of wizard-based refactorings. As a
result, seven participants did not catch unintended changes of the wizard-based
refactorings in their previews. Four participants mentioned that the previews
were too cluttered. One participant said that previews are good for beginners
who want to learn a new refactoring wizard. Our prior study showed that pro-
grammers rarely preview their refactorings in practice [24].

Multi-selections Four liked the wizard’s ability to refactor multiple entities at the
same time. During the study, five participants tried to use the Extract Superclass
wizard to extract a common superclass from two classes at once. The rest either
found it easier to refactor in smaller steps or did not notice the configuration
option to extract from multiple classes.

Configuration Options and Error Messages Although the wizard-based refactor-
ings provide many options to customize the refactorings, the participants only
used a subset of these options. Because one of the methods that the partici-
pants had to move to the superclass referenced other members of the subclass,
the refactoring wizard reported an error message. The refactoring wizard has
an “Add Required” button that when pressed selects all members that are ref-
erenced by the currently selected members. However, none of the participants
used this configuration option. Instead, they performed the refactoring and fixed
the resulting compilation problem manually. One of the participants said that
he ignored the error message of the wizard because it was not actionable:

It [The refactoring wizard] came up with something like: “Sorry, this method
is referring to this other variable that we can’t change”. I didn’t know what I
could do about that in the window. I was like: “OK. Thanks for the informa-
tion!” [laughter ]

These observations are consistent with the results of prior studies that showed
programmers rarely configure the refactoring wizards [17] and usually apply an
automated refactoring that has reported problems [24].
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Composition Order Three participants mentioned that one has to be careful
with the order in which she composes the refactorings. On the other hand, one
participant indicated that sometimes significant work is required to transform the
code to a state that is amenable to the application of a wizard-based refactoring.

6.6 Design Suggestions

The participants suggested improvements to the compositional and wizard-based
paradigms. For the compositional paradigm, two participants proposed that the
tool suggests the entities that the programmer might want to refactor next.

For the wizard-based paradigm, two participants suggested the ability to
match up similar entities. For instance, the Extract Superclass refactoring could
detect similar members in multiple classes, or let the programmer match up the
related members and pull them up to the superclass in one step. In addition, one
participant proposed that the refactoring wizard provides an incremental pre-
view. An incremental preview gets updated as the programmer manipulates the
configuration options. Finally, one participant suggested that the tool presents
the previews graphically.

7 Limitations

Like any study, each of our prior field study [24], inference of refactoring sets
(Section 2) and composition patterns (Section 3), survey (Section 5) and lab
study (Section 6) has its own limitations. However, their results with respect to
the effectiveness of compositional refactoring corroborate one another. The rest
of this section discusses some of the limitations of our work.

Eclipse Foundation Data Set The Eclipse foundation data we used for mining
frequent refactoring sets, while huge, lacks precision. For instance, it does not
differentiate certain refactorings, e.g., Inline Local Variable and Inline Method.
In addition, this data set does not include the project and workspace in which the
refactoring is invoked. Moreover, it misses refactorings invoked through Quick
Assist. Despite these limitations, the Eclipse foundation data serves as a good
starting point to quantify the prevalence of frequent refactoring sets (Section 2).

Participants The Illinois data set, while more precise, comes from a smaller
pool of participants. We found it challenging to recruit a larger group of expe-
rienced programmers due to issues such as privacy, confidentiality, and lack of
trust in the reliability of research tools. Nonetheless, our demographic survey
shows that our pool of participants come from diverse backgrounds, have vari-
ous levels of experiences, and work on a variety of nontrivial projects. Thus, we
believe that our participants are representative of real-world programmers.

The majority of the lab study participants were very familiar with Eclipse.
Further studies are needed to understand the effect of experience on the preferred
paradigm of refactoring.
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Qualitative Analysis While it is easy to draw conclusions from the qualita-
tive responses of the participants, one must be cautious not to over-interpret.
Therefore, we analyzed the survey responses in light of prior studies, analysis of
refactoring usage data, and our design goals, and implemented the tool that we
used in the lab study based on this holistic view.

Generalizability Due the constraints of the survey and lab studies, we evalu-
ated the compositional paradigm using two refactorings, i.e., Extract Superclass
and Extract Composite. We expect the compositional paradigm to generalize
to other complex refactorings such as Pull Up, Push Down, Extract Interface,
Extract Class, and Encapsulate Field. This is because these refactorings affect
multiple files or change the class hierarchy in similar ways and can be represented
as compositions of several refactorings.

Our data sets were limited to the use of the Eclipse refactoring tool for Java.
However, we expect our results to hold for similar refactoring tools, because they
follow a similar user interaction model, i.e., wizard-based refactoring.

Refactoring Tasks The survey participants did not try the tools and their
evaluations were merely based on the screenshots of the wizard-based and com-
positional refactorings. However, the wizard-based and compositional refactor-
ings are based on familiar features of Eclipse, i.e., wizards and Quick Assist. The
insightful comments of the survey participants indicate that they understood the
two paradigms well.

The survey study demonstrated the two paradigms of refactoring using a
small piece of code. Several features of the wizard-based refactoring such as ex-
tracting from multiple classes, computing the required dependencies, and using
the new superclass wherever possible were not applicable to that refactoring
task. We intentionally kept the survey simple to make it understandable for pro-
grammers who may not be familiar with the intricacies of the wizard. Moreover,
most configuration options of the wizard could be simulated by refactoring com-
positions. We consider some loss of functionality in the compositional design an
acceptable trade-off for gaining simplicity and naturalness.

For the lab study, we selected a single realistic refactoring task that Kerievsky
used in his book to introduce the Extract Composite refactoring [9, p. 214].
As some of our participants speculated, the wizard-based refactoring might be
more appropriate when a refactoring is going to affect hundreds of files. Further
studies are needed to compare the two paradigms of refactoring on a variety of
refactoring tasks.

Participant Response Bias A common limitation of user studies is that par-
ticipants may favor the interface that they think the researcher has developed.
However, we think that our results are less affected by this bias, because most
of our participants could not tell which interface was ours. At the end of the lab
study, most participants asked us which interface was ours. This is because the
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Extract Superclass wizard is rarely used [17,24], and few programmers remember
all Quick Assist actions to identify the actions contributed by our plug-in.

8 Related Work

Composite Refactorings One paradigm of automating composite refactorings
is to build new tools that execute a sequence of smaller refactorings atomically.
Several researchers [3, 12,21] have proposed methods for checking the behavior-
preservation of a composite refactoring based on the pre and post conditions of
its individual refactorings. Others [14,27] have introduced scripting languages for
automating composite refactorings. We introduce a radically different paradigm
for automating composite refactorings. Rather than building a monolithic tool
from several refactorings, we propose that a large refactoring be decomposed into
smaller refactorings. These two paradigms suit different needs. The monolithic
paradigm is suited for toolsmiths who are in charge of applying a refactoring
on a large code base in batch mode. The compositional paradigm is designed
for interactive refactoring in an IDE. In addition, the monolithic paradigm aims
to provide correctness guarantees by inferring preconditions. The compositional
paradigm makes it easy for the programmers to verify the correctness of the
refactoring by making each step easy to predict and verify.

Murphy-Hill et al. [17] showed that developers frequently invoke automated
refactorings in batches, i.e., within 60 seconds of one another. Their work was lim-
ited to batches of repeated invocations of the same kinds of refactoring. Negara
et al. [18] found that more than one third of manual and automated refactor-
ings are performed in batches. Our study goes beyond reporting the frequencies
of refactoring sets (Section 2) and sheds light on the rationales of composing
automated refactorings (Section 3).

Schäfer et al. [23] argued that a very fine-grained decomposition of a refactor-
ing into a composition of micro-refactorings over an extended language makes
the implementation of the refactoring tool more reliable. They used Extract
Method as an example to demonstrate their technique. While their focus was
on reliability, ours was on usability. Generalizing their results, the compositional
paradigm should lead to more reliable implementations of large refactorings.

Usability of Refactoring Tools Murphy et al. [15] reported the first results
about the frequencies of invocations of Eclipse automated refactorings. Subse-
quent empirical studies [17, 24] showed that refactoring tools are underused.
These results prompted research on improving the usability of refactoring tools.

Murphy-Hill and Black [16] developed a prototype tool that visualizes code
selections and error messages. They evaluated their tool on a single refactoring,
namely Extract Method. Similarly, we evaluated compositional refactoring on
two refactorings, Extract Superclass and Extract Composite.

Lee et al. [13] showed that invoking refactorings through drag-and-drop ges-
tures is more intuitive than menus and wizards. Alternative methods of invoca-
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tions are complementary to our work, because they can streamline the invocation
of the individual steps of a composite refactoring.

9 Conclusions

We feel a rush to more automation in the software engineering community, often
through wishful thinking or superficial claims about the impact of additional
automation on the productivity of programmers. Despite the push to automate
more refactorings and other recurring program transformations, studies have
shown that programmers greatly underuse such tools [16,18,24].

Rather than offering more automation, we took the opposite direction, and
proposed the compositional paradigm for refactoring. In this paradigm, the tool
automates the individual steps, and puts the programmer in control by letting
her manually compose the steps into a complex change.

The compositional paradigm was inspired by our analysis of the refactoring
practices of programmers in the wild. Our data mining and manual examination
of two refactoring usage data sets provided evidence for the prevalence, diversity,
rationales, and naturalness of composing automated refactorings. In addition,
our survey and lab studies showed that the compositional paradigm is more
effective than the existing wizard-based paradigm of refactoring.

The compositional paradigm outperforms the wizard-based one by reducing
the automation level. Although this result may seem counterintuitive, it is not
unique to software engineering. Designers of other fields, e.g., aviation, health-
care, and manufacturing, struggle with similar problems. What is an appropriate
level of automation? What should the role of the human operator be? Often,
researchers find that less is more. That is, a modest design, which provides
clear, immediate feedback, outperforms a design with a high level of automation
that does not integrate the human operator well [2, 10,28].
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