
Reconciling Manual and Automatic Refactoring

Xi Ge Quinton L. DuBose Emerson Murphy-Hill

Department of Computer Science, North Carolina State University, Raleigh, NC

{xge, qldubose}@ncsu.edu, emerson@csc.ncsu.edu

Abstract—Although useful and widely available, refactoring
tools are underused. One cause of this underuse is that a
developer sometimes fails to recognize that she is going to
refactor before she begins manually refactoring. To address this
issue, we conducted a formative study of developers’ manual
refactoring process, suggesting that developers’ reliance on
“chasing error messages” when manually refactoring is an
error-prone manual refactoring strategy. Additionally, our
study distilled a set of manual refactoring workflow patterns.
Using these patterns, we designed a novel refactoring tool
called BeneFactor. BeneFactor detects a developer’s manual
refactoring, reminds her that automatic refactoring is available,
and can complete her refactoring automatically. By alleviating
the burden of recognizing manual refactoring, BeneFactor is
designed to help solve the refactoring tool underuse problem.

I. INTRODUCTION

Software is expensive to maintain. As software ages, it

must be maintained to reflect evolving user requirements;

this maintenance accounts for between 40 and 75% of the

total cost of software [7]. One of the primary ways that

software developers maintain software is through refactor-

ing, the process of changing the structure of code without

changing the way that it behaves [8].

Refactoring is both an effective and commonplace way

of improving non-functional requirements. Empirical studies

of refactoring have found that it can improve maintain-

ability [12] and reusability [14]. Not only does existing

work suggest that refactoring is useful, but it also suggests

that refactoring is a frequent practice [17]. Cherubini and

colleagues’ survey indicates that developers rate the im-

portance of refactoring as equal to or greater than that of

understanding code and producing documentation [3].

However, refactoring by hand has long been assumed

to be error-prone. In order to help developers perform

efficient and correct refactoring, various refactoring tools

have been developed. These tools promise to help developers

refactor faster and with a smaller probability of introducing

defects. Refactoring tools have been integrated into most

popular development environments, making them available

in a variety of programming languages to a large population

of developers. Despite the wide availability, our previous

work shows that refactoring tools are underused; according

to two case studies, about 90% of refactorings are performed

by hand [17].

Several solutions have been proposed to solve the un-

deruse problem. For example, tools with improved user

interfaces can make refactoring tools more usable [15].

Other novel tools have supported new, specialized types of

refactoring [1][4]. Other research has proposed automatic

testing to make refactoring tools more reliable [5][6].

Such solutions make one common assumption: That the

software developer recognizes that she is going to refactor

before she even begins. This assumption is false when a

developer has already started a refactoring manually by the

time she realizes that she is refactoring. One developer

outlined this situation in an interview [17] as:

I already know exactly how I want the code to look

like. Because of that, my hands start doing copy-

paste and the simple editing without my active

control. After a few seconds, I realize that this

would have been easier to do with a refactoring

[tool]. But since I already started performing it

manually, I just finish it and continue.

This situation illustrates how refactoring tools do not support

the developer when she does not realize she is refactoring

until after she has already begun. Without that realization, a

software developer will not use any the refactoring tool, no

matter how usable, useful, or reliable that tool is.

In this paper, we investigate how to design a refactoring

tool that is aware of a developer’s refactoring, rather than

relying on the developer’s recognition of it. In Section III

we describe a formative study about developers’ manual

refactoring. Building on the study’s results, in Section IV

we designed a novel refactoring tool. We make the following

major contributions in this paper:

• A formative study of developers’ manual refactoring.

To the best of our knowledge, we are the first to study

developers’ manual refactoring process. Our study sug-

gests that reliance on compiler errors when manually

refactoring is a common and error-prone technique.

• A proof-of-concept refactoring tool called BeneFactor.

In addition to relieving the developer from the burden

of recognizing that she is going to refactor, BeneFactor

also allows implicit refactoring configuration and the

interleaving of refactoring and non-refactoring changes.

978-1-4673-1067-3/12/$31.00 c© 2012 IEEE ICSE 2012, Zurich, Switzerland211

II. MOTIVATION

To use a refactoring tool, a developer must recognize that

she is refactoring and select the appropriate refactoring with

a menu or a hotkey. If she is unaware that she is refactoring

and begins to refactor manually, she may become aware that

she is refactoring part way through the manual refactoring.

In this case, the developer faces the late awareness dilemma:

She must either undo all the code changes that she has

already made and then invoke the refactoring tool, or keep

refactoring manually until the refactoring is complete.

We next illustrate this dilemma using two examples. Sup-

pose Grace is a developer who works on the Apache Tomcat

open source project [2]. To improve understandability, she

wants to change the name of a local variable descs to

descriptors. She starts doing this task manually from the

declaration of descs towards the tenth and last reference to

descs. After changing six names (as shown in Figure 1)

she realizes that she is performing a rename refactoring.

Grace decides it would be easier to just finish the refactoring

manually, even at the risk of introducing a bug.

Figure 1: Rename local variable refactoring example.

Late awareness of refactoring occurs for other refactoring

types as well. Suppose that Glen is a developer who works

on the Vuze project [25]. He notices that the getRequested-

PieceNumbers() method shown in Figure 2 contains three for

loops that are nearly identical. To enhance maintainability,

he intends to extract the loop as a new helper method.

Glen starts by cutting the code in the third loop, and

then declares the helper method getRequestedPieceNum-

bersHelper(). Glen then realizes that he is performing the

extract method refactoring, and that he would like to have

a refactoring tool figure out what variables to pass in to the

method. To do so, he undoes his changes and invokes the

extract method tool, even though he has to configure the

refactoring tool with the name of the helper method, which

he already specified once while manually refactoring.

Figure 2: Extract method refactoring example.

III. FORMATIVE STUDY

In order to resolve the late awareness dilemma, we intend

to build a novel refactoring tool that can complete manual

refactorings. However, three important research questions

must be answered first:

• RQ1. How correctly do developers refactor manually?

If developers mistakenly modify program behavior

when refactoring manually, then refactoring tools can

potentially improve the refactoring process.

• RQ2. How significant is the late awareness problem?

If many developers do not recognize that they are

refactoring before they begin, then the late awareness

is a contributor to refactoring tool underuse.

• RQ3. What are developers’ manual refactoring work-

flows? To create a refactoring tool that can complete

refactorings automatically, the tool must be able to

recognize when a developer is refactoring. Models

of manual refactoring workflows will help our tool

recognize when a developer is refactoring.

We conducted a formative study to answer these questions.

A. Participants and Refactorings

We recruited 12 developers to participate in our study. Six

were graduate students and five were commercial software

developers. We also recruited one refactoring researcher (not

one of the authors) who has current development experience

212

of more than ten years. Although we did not collect all of

the participants’ demographic information, at least 10 of the

12 participants had professional programming experience of

more than four years.

We asked participants to perform refactorings in the

source code of the Vuze [25] project. We chose this project

is for its large size and maturity.

We manually inspected the source code of Vuze, then lo-

cated fourteen locations where refactoring could reasonably

be performed. At each of the fourteen locations, we asked

participants to perform one refactoring without the assistance

of any refactoring tools. Among the fourteen refactorings,

we chose three that were especially complex: A rename

local variable refactoring, an extract method refactoring and

a change method signature refactoring. When performing

these complex refactorings, participants needed to carefully

consider how to avoid changing program behavior. We

describe the complex refactorings in detail in Section III-C1.

The fourteen refactorings spanned 8 refactoring types:

Rename (2), extract constant (1), extract local variable (2),

inline local variable (2), change method signature (2), extract

method (2), introduce parameter (2), and pull up method

(1). We chose these types from the types listed in Fowler’s

catalog [8] according to three criteria. The first is their

frequency in real world. According to our previous research,

using automatic tools to perform rename, extract local vari-

able, inline, extract method, and change method signature

accounts for over 85% of all refactoring tool usage [17]. This

high tool usage suggests that these refactoring types occur

frequently. Simplicity is the second criterion because simple

refactorings would be easier for participants to complete in

a short study session. The third criterion is wide coverage of

a variety of software entities, such as constants, temporary

variables, local variables, fields, and methods. We also chose

pull up method because it involved class inheritance.

B. Data Collected

We collected data using a pre-study questionnaire, videos

of participants’ manual refactorings, and a post-study ques-

tionnaire. To view the participants’ refactoring videos and

their answers to the questionnaires, the reader can refer to

our study material website.1

1) Pre-study Questionnaires: We recruited developers

through email. If they were willing, we sent them a consent

form and pre-study questionnaire. One subject consented,

but did not fill out the remainder of the questionnaire. We

asked the following questions in the questionnaire:

• Coding experience: About what percentage of your job

involves writing code?

• Java proficiency: How proficient are you with the Java

programming language, rating from 1 to 5 (1 for not at

all and 5 for expert)? Participants produced a slightly

1https://sites.google.com/site/refactoringstudy/

skewed distribution of Java experience (median=3.5),

with all participants reporting at least some experience

and two participants considering themselves experts.

• Refactoring familiarity: How familiar are you with the

practice of refactoring, rating from 1 to 5 (1 for “not

at all” and 5 for “I refactor every time I program”)?

Participants produced a fairly normal distribution of

refactoring experience (median=3).

To perform the study, participants connected to a remote

computer running the Eclipse IDE and containing the code

to be refactored. Using the online screen sharing service

join.me [10], participants could easily view and operate

Eclipse. At the same time, we established a Skype [21]

conversation with the participant to give them directions.

2) Observing Manual Refactoring: After setting up

screen sharing, we opened the first code location where we

wanted the participant to perform a refactoring. We told

the participant which refactoring we wanted her to perform

and that no automatic refactoring tools were allowed. If

the participant was unfamiliar with the refactoring, we gave

her an explanation of what the resulting code should look

like. We were careful to avoid telling the participant how to

perform each refactoring. Once we had answered all of the

participants’ questions about the task, we asked her to start.

We repeated this process with all 14 refactorings. While

the participant was performing these refactorings, we used

screen capture software to record the entire process, which

we analyzed after the study session ended.

To analyze each refactoring, we tagged it as either “cor-

rect,” “incorrect,” or “unknown.” “Correct” meant that the

participant’s refactoring resulted in the code structure that

met with Fowler’s definition [8] and did not modify the

software’s behavior. “Incorrect” indicated that the software’s

behavior was modified, but the participant’s refactoring

resulted in a code structure that met with Fowler’s definition.

Refactorings tagged as “unknown” included those that the

participant skipped; those that were finished only with our

detailed guidance (we guided some participants to spare

them the embarrassment of not being able to complete the

task); those that were finished by invoking refactoring tools;

and those that we were not able to tell whether the new code

structure met with Fowler’s definition. Only refactorings

tagged as “correct” and “incorrect” were used in our analysis

of refactoring workflows.

3) Post-study Questionnaire: After the study, we pre-

sented each participant with a questionnaire that asked the

following questions:

• Q1. How often does this situation occur: I get part way

through a code change when I realize there is a refac-

toring tool that can help me do the job. Choose from

one of the following words: Never, rarely, sometimes,

often, and always.

213

Figure 3: Code illustrating a complex refactoring.

• Q2. What would you do after the situation in Q1

happens? Options: (1) I finish the change without a

refactoring tool; (2) Back out of the change and redo

the change using a refactoring tool; or (3) Other.

C. Results

1) RQ1. Refactoring Correctness: Our previous research

suggests that developers may rely on compilation errors

to locate the related code to update [17]. For example, in

Figure 1, Grace is using the compilation errors to determine

what parts of the code needs to be updated. However, this

strategy is sometimes error prone because compilation errors

do not indicate every location that needs to be updated

for certain complex refactorings. We had participants per-

form three of these complex refactorings to determine to

what extent they used this strategy. Overall, participants

inadvertently changed behavior in eleven of the fourteen

refactorings, and very few finished participants completed

complex refactorings them correctly.

Complex Refactoring 1: We asked participants to per-

form the complex extract method refactoring shown in

Figure 2. If a developer extracts the last for loop into a

new method, the new method should return the value of

pos because the extracted for loop modifies the value of

pos and the code in the original method later reads the

value. However, compilation errors do not result if pos is

not returned, so relying on error messages for this part of

the refactoring is not sufficient for a correct refactoring.

Only one participant correctly performed the complex

extract method refactoring, while seven performed it incor-

rectly because of failing to return the value.

Complex Refactoring 2: We asked participants to per-

form a rename local variable refactoring on code that is

summarized in Figure 3. We asked the participants to rename

life hours to original republish interval, which is also the

name of a field of the containing class. If a developer

renames life hours to original republish interval in the dec-

laration, names in checkCacheExpiration(. . .) that originally

bound to the field original republish interval now bind to

Table I: Questionnaire results.

Pre-study questionnaire Post-study questionnaire

Coding Java Refactoring Late Handle late awareness

experience proficiency familiarity awareness Manual Tool Others

80% 4 4 sometimes 100% 0% 0%

90% 4 3 sometimes 100% 0% 0%

40% 3 2 often 80% 20% 0%

75% 5 3 sometimes 65% 35% 0%

100% 4 4 rarely 80% 20% 0%

70% 5 5 often 40% 30% 30%

the local variable. No compilation error is generated when

the rebinding occurs.

No participant correctly performed complex rename local

variable refactoring, while nine performed it incorrectly.

Complex Refactoring 3: We asked participants to per-

form a change a method signature refactoring by swapping

the order of two parameters. More specifically, we asked

them to refactor setUserData(Object key, Object value) to

setUserData(Object value, Object key)). If a developer swaps

these parameters in the method declaration, no compiler

errors are shown because all invocations of this method still

had arguments of correct types.

One participant performed this complex refactoring cor-

rectly, while two performed it incorrectly.

Summary: Across the three complex refactorings, 90%
were performed incorrectly. It appeared that developers

relied on compiler errors for refactoring, even in situations

where that reliance was misplaced. Somewhat surprisingly,

participants also made mistakes in the non-complex refac-

torings. In total, participants completed 96 non-complex

refactorings, and 21 (22%) of them were incorrect. Most

of these incorrect refactorings resulted from participants’

failing to address all compiler errors.

In addition to these results, we also observed another

problematic manual refactoring technique. When performing

the rename field refactoring, four of the eleven participants

invoked the “find and replace all” tool, replacing all of the

occurrences of the original field name in the file. Although

this technique did not happen to modify behavior in the

given code, this technique is generally unsafe because the

original name may also occur in other places not referring

to the field, such as in a method name.

2) RQ2. Late Awareness: How significant is the late

awareness problem? We answer this question by using

participants’ post-study questionnaires.

Among the 12 participants recruited in our formative

study, six returned their post-study questionnaires. Table I

shows the answers of these participants to each question

we asked.2 Five of the six participants indicated that late

awareness of refactoring tools happens to them at least

“sometimes.” Two of these five participants indicated that

2The first row shows the refactoring researcher’s answers.

214

late awareness of refactoring happens to them “often”. This

suggests that the late awareness problem may happen to a

variety of programmers.

Participants reported that when late awareness occurs,

a median of 80% of the time they finish the refactoring

manually. One participant indicated that she handles late

awareness through other means, but did not elaborate.

3) RQ3. Refactoring Workflow Patterns: What are the

developers’ manual refactoring workflows? To investigate

this question, we studied the videos of participants perform-

ing the refactorings. We distilled a set of widely adopted

refactoring workflows for each refactoring type, which we

refer to as refactoring workflow patterns. We modeled these

patterns using finite-state machines (FSMs) over a set of pa-

rameterized elementary operations to facilitate representation

and interpretation.

We use operations on abstract syntax tree (AST) nodes to

model refactoring workflow patterns. ASTs are tree repre-

sentations of the syntactic structure of source code written

in a programming language. Nodes inside an AST represent

software entities at various levels, such as variables, fields,

statements, methods, and classes. We use the following

operations on the AST nodes to model our refactoring

workflow patterns:

• COP (x); copy node x’s source code to the clipboard.

• CUT (x); cut node x’s source code and keep it in the

clipboard.

• INS(x); insert node x into the AST, possibly via a

Paste command.

• UPD(x); update the value of node x.

Inspired by regular expressions, we also define the fol-

lowing quantifiers:

• OP (x∗) indicates performing operation OP on zero or

more nodes x simultaneously.

• OP (x)∗ indicates performing OP on zero or more

nodes x sequentially.

• OP (x+) indicates performing operation OP on one or

more nodes x simultaneously.

• OP (x)+ indicates performing OP on one or more

nodes x sequentially.

Due to space limitations, we present the refactoring work-

flow patterns for only rename field and extract method, two

common refactorings [17]. For refactoring workflow patterns

for other refactoring types, the reader can refer to our study

material website mentioned in Section III-B.

Rename Field: Participants had similar workflows

when manually performing the rename field refactoring.

Eleven rename field refactorings that were considered usable

(that is, correct and incorrect). Each participant used one of

two patterns:

• Seven participants first updated the name of the field in

its declaration, and then iteratively updated the names

of all the references to this field. We modeled this

init

7 UPD(Declaration)

!nal

4 UPD(Name+)

7 UPD(Reference)

7 [All updated]

Figure 4: Refactoring patterns for rename field.

workflow by the upper transitions (red) in Figure 4.

In the Figure, the number on a transition indicates the

number of participants following that transition, while

the square brackets indicate a conditional transition.

• Four participants invoked the “find and replace” tool

to automatically replace all of the occurrences of the

field’s name. We modeled this workflow by the lower

transition (blue) in the Figure 4.

Extract Method: We collected ten usable extract

method refactorings. Participants adopted several workflows

when performing extract method. Three workflows were

common to multiple participants:

• Two participants first copied the statements to extract,

made a new method declaration, pasted the statements

into the new method body, added parameters to the new

method declaration, and finally replaced the statements

to extract with the new method invocation. We modeled

this workflow by the upper transitions (red) in Figure 5.

• Two participants first cut the statements to extract,

made a new method declaration, pasted the statements

into the new method body, added parameters to the

new method declaration, and finally inserted the new

method invocation to the place where the extracted

statements were. We modeled this workflow by the

middle transitions (blue) in Figure 5.

• Two participants first added a new method invocation

near the statements to extract, cut the statements to

extract, made the new method’s declaration, pasted

the statement into the new method body, and finally

added parameters to the new method declaration. We

modeled this workflow by the lower transitions (green)

in Figure 5.

We also observed the other four patterns (not shown in

Figure 5) adopted by one participant each:

• One participant first added a new method declaration

after the method of the statements to extract, copied the

statements to extract, pasted these statements into the

new method body, replaced these statements with the

215

init
2 COP(St+)

2 CUT(St+)

2 INS(MI)

2 INS(MD)

2 INS(MD)

2 CUT(St+)

2 INS(St+)

2 INS(St+)

2 INS(MD)

2 INS(Pa)*

2 INS(Pa)*

2 INS(St+)

2 DEL(St+)

!nal2 INS(MI)

2 INS(Pa)*

Figure 5: Refactoring patterns for extract method.

new method’s invocation, and finally added parameters

to the new method declaration.

• One participant first cut the statements to extract, added

a new method invocation at these statements’ original

place, added a method declaration after the statements’

original method, pasted the statements to extract into

the new method body, and finally add parameters to

the new method declaration.

• One participant first cut the statements to extract, pasted

these statements after their original method, surrounded

these statements by a new method name and brackets,

added parameters to the new method declaration, and

finally inserted the new method invocation at the ex-

tracted statements’ original place.

• One participant first copied the statements to extract,

added a method declaration below these statements

(inside their containing method), pasted the statements

into the new method declaration, cut the new method

declaration, pasted the new method declaration after

the method containing the statements to extract, added

parameters to the new method declaration, and finally

replaced the statements to extract with the invocation

of the new method.

These patterns suggest that developers manually refactor

using only a few different basic actions, but interleave those

actions in a variety of ways.

D. Threats to Validity

Although our formative study provides data on how devel-

opers manually refactor, there are several threats to validity

that should be considered when interpreting our results.

The first threat is the criteria we used to choose refactoring

types. We chose the refactoring types whose tools are used

more frequently, yet these types of refactorings were not

always the most underused refactoring tools. In the future,

we would like to perform the study with refactoring types

for which the corresponding tool is the most underused.

Another threat is the number of participants in our study,

and that not all participants produced usable data for every

refactoring. Thus, we cannot make strong claims about how

our results generalize to other developers. For example,

some additional refactoring patterns may exist that were not

exhibited by our participants. However, we believe that the

results provide a sufficient starting point to begin building a

proof-of-concept refactoring tool, as described in Section IV.

Similarly, the selected refactorings may not be representative

of all refactorings performed in the wild.

Another significant threat is that participants’ attitude

toward refactoring third-party software may be different

than their attitude towards refactoring their own software.

Specifically, because participants have no investment in

the third-party code, they may be less concerned about

introducing behavior-modifying changes, as compared to

their own code. This would cause our study to overestimate

how often refactoring errors are made. It is also possible that

participants exercised more diligence in refactoring correctly

in the study, since they were not distracted by other coding

tasks. This would cause our study to underestimate how

often refactoring errors are made. In either case, a field study

may be able to shed more light onto the frequency of errors

made during manual refactoring.

IV. APPROACH

According to our formative study, manual refactoring

can be an error-prone task (RQ1). Although conventional

refactoring tools are available to assist the developers per-

forming safe and efficient refactoring, they are significantly

underused [17]. This underuse problem partially results from

the developers’ late awareness of refactoring (RQ2). In

order to tackle this problem, we propose a novel refac-

toring tool called BeneFactor that is built on our distilled

refactoring workflow patterns (RQ3). Unlike conventional

refactoring tools, BeneFactor automatically detects an on-

going manual refactoring, reminds the developers that au-

tomatic refactoring is available, and can finish the manual

refactoring after the developer’s explicit invocation with-

out requiring her to undo any code changes. Implemented

as a plug-in for the Eclipse IDE, a prototype of Bene-

Factor can be downloaded here: http://code.google.com/p/

flexible-refactoring-tools/. BeneFactor has two major com-

ponents: Refactoring detection and code modification.

A. Refactoring Detection

In order to assist the developer in recognizing that she

is refactoring, we designed a refactoring detection com-

216

ponent. In contrast to existing refactoring detection tools

(for example, RefacLib [22] and REF-FINDER [18]), our

refactoring detection component detects refactoring while

the developer is programming, rather than in the version

control system. Moreover, BeneFactor detects ongoing and

unfinished refactorings, rather than completed ones.

The refactoring detection component runs in the back-

ground of the IDE and continuously captures the developer’s

operations on the code base. It collects two kinds of opera-

tions:

• Code-change based operations are detected by compar-

ing subsequent snapshots of code base. These snapshots

are captured after certain developer events, such as

adding a statement, deleting a field declaration, and

updating a variable name.

• Action-based operations are detected by monitoring the

commands a developer executes, such as copying a

statement and cutting a method declaration.

The refactoring detection component detects an ongoing

refactoring by matching the operations performed by a

developer against the transitions in the manual refactoring

workflow patterns from our formative study. If a developer’s

operations match with a prefix of refactoring type R’s

workflow pattern, she may be performing a refactoring of

type R. If her operations continue to match the same pattern,

our confidence that she is actually refactoring increases;

otherwise the confidence decreases. When the confidence

exceeds a predefined threshold T , the refactoring detection

component concludes that the developer is manually per-

forming a refactoring of type R and offers a quick-fix to

help her finish it.

We next illustrate our refactoring detection algorithm

through a pseudo code example shown in Program 1. This

example outlines detecting the rename field refactoring by

using the refactoring workflow pattern illustrated in the

upper transitions (red) in Figure 4. The value of confidence

indicates the numbers of consecutive matches between a

developer’s operations and the states of the workflow pattern.

The algorithm detects an ongoing rename refactoring when

the value of confidence is above a predefined Threshold (line

22). We currently use a threshold value of 1, resulting in the

highest sensitivity of the detection algorithm.

If the refactoring detection component detects an ongoing

refactoring, our Eclipse plugin adds a quick-fix button at the

line of code where the developer made the latest change. The

quick-fix button offers a user interface affordance to allow

BeneFactor to finish the refactoring.

B. Code Modification

If the developer invokes BeneFactor to finish her man-

ual refactoring, BeneFactor’s code modification component

makes the requested change. At a high level, the code mod-

ification component captures any information the developer

1 c o n f i d e n c e = 0 ;
2 c u r r e n t s t a t e = i n i t ;
3 whi le (t rue){
4 o p e r a t i o n = W a i t f o r O p e r a t i o n () ;
5 i f (o p e r a t i o n . i s U p d a t e ()
6 && o p e r a t i o n . Node . isName ()
7 && o p e r a t i o n . Node . P a r e n t .
8 i s F i e l d D e c l a r a t i o n ()) {
9 c o n f i d e n c e ++;
10 c u r r e n t s t a t e = two ;
11 d e c l a r a t i o n = o p e r a t i o n . Node ;
12 }
13 e l s e i f (c u r r e n t s t a t e == two
14 && o p e r a t i o n . i s U p d a t e ()
15 && o p e r a t i o n . Node . isName ()
16 && ! o p e r a t i o n . Node . P a r e n t .
17 i s F i e l d D e c l a r a t i o n ()
18 && o p e r a t i o n . b indsTo (d e c l a r a t i o n))
19 c o n f i d e n c e ++;
20 e l s e i f (c o n f i d e n c e > 0)
21 c o n f i d e n c e −−;
22 i f (c o n f i d e n c e > T h r e s h o l d)
23 D e t e c t e d R e f a c t o r i n g s . add (
24 new RenameRefac to r ing (b i n d i n g)) ; }

Program 1: refactoring detection pseudo code example

supplied while manually refactoring, recovers the code to

its original state by rolling back the manual refactoring,

and then re-applies the refactoring automatically. We discuss

each of these steps below.

1) Configuration Information Collection: The configura-

tion information collection step collects the necessary infor-

mation to perform an automatic refactoring. Some examples

of the configuration information include the visibility mod-

ifier of the extracted method and the position of the method

in the containing class. The equivalent step in conventional

refactoring tools is to ask for this information via a dialog

box. But rather than asking for configuration information a

second time using a dialog box, BeneFactor automatically

collects this information from the code changes that the

developer has already made.

While it is convenient to collect configuration information

this way, it is not always possible to collect all information

necessary to complete a refactoring. For example, if a devel-

oper invokes BeneFactor right after she cuts the statements

to be extracted, the new method’s name is not yet known.

In this situation, BeneFactor uses a default value to finish

the refactoring first and then allows the developer to modify

the default afterwards. However, sometimes even this is not

enough. For example, when performing the move static field

refactoring, the tool may not know the developer’s planned

destination class. In those situations, BeneFactor does not

offer to finish a refactoring until this critical information is

supplied. An alternative approach would be to collect the

missing information using a dialog box or wizard.

2) Code Recovery: The code recovery step recovers the

code base to before the manual refactoring was applied.

Undoing a manual refactoring is not a trivial task, because

217

1 void s e l e c t i v e U n d o (
2 Stack<O p e r a t i o n> o p e r a t i o n s t a c k ,
3 R e f a c t o r i n g r e f a c t o r i n g){
4 Stack<Change> u n d o o p e r a t i o n s t a c k ;
5 While (! r e f a c t o r i n g . performedEnoughUndos ()) {
6 O p e r a t i o n o p e r a t i o n = o p e r a t i o n s t a c k . pop () ;
7 o p e r a t i o n . undo () ;
8 u n d o o p e r a t i o n s t a c k . push (o p e r a t i o n) ;
9 }
10 whi le (! u n d o o p e r a t i o n s t a c k . i sEmpty ()) {
11 O p e r a t i o n o p e r a t i o n =
12 u n d o o p e r a t i o n s t a c k . pop () ;
13 i f (r e f a c t o r i n g . i s R e f a c t o r i n g O p e r a t i o n ())
14 o p e r a t i o n . s k i p () ;
15 e l s e

16 o p e r a t i o n . g e t P a t c h . a p p l y P a t c h () ; } }

Program 2: selective undo algorithm pseudo code example

the developer’s manual refactoring effort may interleave with

other kinds of code changes [17]. For example, when a

developer is performing a rename field refactoring, after

renaming the field’s declaration, she may add new statements

to the code. In this situation, arbitrarily undoing all code

changes until the beginning of the manual refactoring causes

the developer’s non-refactoring work to be lost. To tackle this

problem, we designed an algorithm called selective undo.

We illustrate selective undo by using the pseudo code

snippet shown in Program 2. Our selective undo algorithm

takes two parameters as input. The first is the stack of

operations performed by the developer from the starting of

the Eclipse IDE to the moment of the algorithm’s execution,

with the latest code change at the top. The second input is

the refactoring to be completed.

In Program 2, the algorithm first declares a local variable

undo operation stack to store all the operations that have

been undone. After the declaration, performedEnoughUndos

at line 5 checks whether it needs to undo more code changes.

This method returns true if the existing automatic refactoring

infrastructure can be applied to finish the refactoring, oth-

erwise it returns false. The implementation of performedE-

noughUndos depends on the type of refactoring. For exam-

ple, for rename refactoring, performedEnoughUndos returns

true when the name’s declaration has not been renamed;

for extract method refactoring, it returns true when the

statements to be extracted appear in their original method.

When performedEnoughUndos returns false, the selective

undo algorithm enters a loop. From line 6 to line 7, the

algorithm pops the code change at the top of operation stack

and undoes it, regardless of whether or not the operation

is a refactoring operation. For every operation that has

been undone, the algorithm pushes it back to another stack

undo operation stack at line 8. The selective undo algorithm

continuously executes the code from line 6 to line 8 until

performedEnoughUndos returns true.

After arbitrarily undoing all of these operations, the al-

gorithm redoes only the non-refactoring operations among

them. For each undone operation, the algorithm invokes

refactoring.isRefactoringOperation() at line 13 to check

whether or not it belongs to the manual refactoring workflow.

refactoring.isRefactoringOperation() performs this check by

comparing the input operation with the operations in our

collected refactoring workflow patterns.

If refactoring.isRefactoringOperation() returns true, the

algorithm skips the operation because BeneFactor will re-

apply the refactoring later, as shown at line 14. If refac-

toring.isRefactoringOperation() returns false, the algorithm

reapplies this operation. Directly applying this operation

is unsafe because the previously skipped operations may

change the position where this operation should be applied

to. Therefore, we use the patch technique to re-apply this

operation. Widely used in source control systems, patch

allows one version to a file to be applied to the right location

in the modified version of the same file [27]. The algorithm

repeats this process from line 11 to 16 until no operation is

left in undo operation stack.

3) Change Creation: After the code base has been recov-

ered, we perform the last step: automatically finishing the

refactoring. Eclipse ships with a set of automatic refactoring

application programming interfaces (APIs) called the lan-

guage toolkit (LTK) [9]. Feeding the collected configuration

information and the recovered code base as input, LTK

APIs are now able to automatically perform the intended

refactoring.

C. Example

We next illustrate how BeneFactor works by using a real-

world code example. Suppose Grace is using Eclipse with

BeneFactor installed. To enhance maintainability, she intends

to extract the for loop in the code snippet of Figure 6

into a new method. Grace first cuts the statement of the

for loop. BeneFactor captures this operation and detects

that the developer is possibly refactoring, and therefore

adds a marker at the line of code where Grace cuts the

statement, proposing to help her finish this refactoring, as

illustrated in Figure 7. Grace next intends to print a blank

line before the printed information in the for loop, so she

inserts System.out.println(), as illustrated by Figure 8.

Grace continues her extract method refactoring by adding

a new method declaration. She specifies the visibility mod-

ifier, method name, and return type of the new method

declaration, as shown in Figure 9. Although interrupted

by a non-refactoring operation, Grace has performed a

sequence of operations following the refactoring workflow

pattern modeled by the middle transitions (blue) in Figure 5.

Therefore, BeneFactor still detects that Grace is performing

an extract method refactoring. Reminded by the BeneFactor

icon, Grace realizes she can finish her manual refactoring by

invoking the tool. Hence, she chooses the quick-fix item in

Figure 9 to extract the method. Finally, BeneFactor finishes

her refactoring, resulting in the code snippet shown in Figure

218

10. The parameter of the extracted method is inferred by

the refactoring tool, and thus does not need to be explicitly

specified by the developer.

CachePeer[] peers = new CLCacheDiscovery().lookup(torrent);

System.out.println(“peers=” + peers.length);

for (int i = 0; i<peers.length; i++){

 System.out.println(“cache:” +

 peers[i].getAddress() + “:” + peers[i].getPort());}

Figure 6: Code before extracting method.

CachePeer[] peers = new CLCacheDiscovery().lookup(torrent);

System.out.println(“peers=” + peers.length);

Figure 7: Code after cutting the statements to extract.

CachePeer[] peers = new CLCacheDiscovery().lookup(torrent);

System.out.println(“peers=” + peers.length);

System.out.println();

Figure 8: Code after making a non-refactoring change.

CachePeer[] peers = new CLCacheDiscovery().lookup(torrent);

System.out.println(“peers=” + peers.length);

System.out.println();

private static void printPeers

Finish extract method

Rename in �le (Ctrl+2, R)

Figure 9: Code after adding a new method declaration.

CachePeer[] peers = new CLCacheDiscovery().lookup(torrent);

System.out.println(“peers=” + peers.length);

System.out.println();

printPeers(peers);

private static void printPeers(CachePeer[] peers){

 for (int i = 0; i<peers.length; i++){

 System.out.println(“cache:” +

 peers[i].getAddress() + “:” + peers[i].getPort());}}

Figure 10: Code after invoking BeneFactor.

D. Technique Challenges

While implementing BeneFactor, we faced several chal-

lenges. We believe that these challenges must be resolved

before BeneFactor can be evaluated.

False Positives: False positives in refactoring detection

refer to the situations when BeneFactor falsely assumes that

the developer is refactoring manually, but she is actually

not. Too many false positives may annoy the developer

with an overwhelming number of quick-fix items. The false

positives may occur when (1) the developer is performing

code changes that serve partially for restructuring purposes,

but also are intended to modify the code behavior and (2)

the default confidence value is too low, resulting in an overly

sensitive refactoring detection algorithm.

False Negatives: False negatives in refactoring detec-

tion refer to the situations when BeneFactor fails to detect

that a developer is manually refactoring. In this situation,

the developer is not able to invoke BeneFactor to finish her

ongoing refactoring. The false negatives in refactoring detec-

tion may be caused by: (1) A manual refactoring workflow

that greatly deviates from our collected manual refactoring

workflow patterns; (2) A workflow that is dominated by non-

refactoring code changes; (3) A default confidence value

that is too high, resulting in an overly insensitive refactoring

detection algorithm.

Unresolvable Non-Refactoring Operations: As we have

mentioned, a developer’s manual refactoring operations may

be interleaved with operations serving some other purpose,

which we refer to as non-refactoring operations. These

non-refactoring operations are preserved during the code

recovery step. However, BeneFactor may have difficulty in

resolving these non-refactoring operations when they are

dependent on the interleaved refactoring.

One example of the unresolvable non-refactoring op-

eration is illustrated by Grace’s insertion of Sys-

tem.out.println(); in Figure 8. BeneFactor must figure out

the order of the inserted statement and the invocation of

the extracted method. Currently, BeneFactor assumes the

invocation happens after all the inserted statements, resulting

in the code snippet shown in Figure 10. The developer’s

intention may have instead been to put the invocation before

the inserted statements, but BeneFactor currently has no way

of determining the developers’ intention.

Removing Quick-Fix Items: BeneFactor adds a quick-

fix item after detecting a manual refactoring. However, it is

not trivial to decide when to remove the item. If BeneFactor

removes the item too early, the developer is not able to

invoke automatic refactoring when she later wants to. If

BeneFactor keeps the quick-fix item for too long, many

quick fixes may be strewn around the developer’s IDE, long

after code changes have been completed.

Scalability: We plan to enhance BeneFactor to sup-

port more types of refactorings, and as a developer uses

BeneFactor, the developer’s operations may simultaneously

match with workflow patterns of several different refactoring

types. In this case, the developer will face multiple quick fix

options to choose from.

V. RELATED WORK

In this section, we summarize several research areas and

tools that are closely related to our work.

Empirical Studies of Refactoring. Many empirical stud-

ies have investigated refactoring. For instance, Xing and

Stroulia conducted a case study on the structural evolution

219

of Eclipse and concluded that refactoring is frequent [26].

Murphy-Hill and colleagues’ study of how refactoring tools

are used [17]. In contrast to existing studies, our formative

study focused on the process of manual refactoring.

Refactoring Detection. To help developers maintain soft-

ware, researchers proposed several algorithms for detecting

refactorings. For instance, Taneja and colleagues proposed

a technique called RefacLib to detect performed refactor-

ings in different versions of library files [22]. Prete and

colleagues proposed REF-FINDER that identifies complex

refactorings by using template logic rules [18]. Kim and

colleagues proposed an algorithm based on heuristics to

detect rename-method refactorings between two versions of

software [11]. In contrast to these algorithms, our approach

detects ongoing, partially-completed refactorings.

State-of-the-Art Refactoring Tools. Researchers have

proposed novel refactoring tools and guidelines for build-

ing new tools. For instance, Mealy and colleagues [13]

have distilled a list of 38 usability guidelines for building

refactoring tools. Developed in parallel with BeneFactor, the

WitchDoctor tool also can help a developer automatically

finish a refactoring that was started manually [29]. The major

difference is that WitchDoctor uses only code changes when

specifying refactoring patterns; BeneFactor also includes

behavioral patterns, such as copying code. In some cases,

this allows BeneFactor to identify manual refactorings earlier

than WitchDoctor would.

State-of-the-Practice Refactoring Tools. Several com-

mercial refactoring tools bear some resemblance to Bene-

Factor. For example, when you rename a variable declaration

in Eclipse, you can sometimes update all references to

that variable using a quick fix. However, the rename is

purely syntactic; no safety checks are performed because

the refactoring API is not actually used. Both Refactor!

Pro [19] and ReSharper [20] can detect the first step of a

manual refactoring workflow for some types of refactorings.

However, BeneFactor takes the concept further by allowing

a developer to finish her refactoring at any point in her

refactoring workflow.

Recommender Systems. The field of recommender sys-

tems have been used extensively in software engineering;

specific to refactoring, such systems are known as smell

detectors [16][23][24]. They identify code that is in need

of refactoring and recommends that the developer refactor

that code. In contrast, BeneFactor detects actual refactorings,

rather than potential refactorings; it detects refactoring by

human operations, rather than code metrics.

Search-Based Refactoring. Search-based techniques de-

tect refactoring candidates and can refactor them automat-

ically [28]. Unlike BeneFactor, search-based refactoring is

helpful when the developer does not know what she wants

to refactor, but does not help when the developer has already

begun refactoring.

VI. FUTURE WORK

Currently, BeneFactor only supports three refactoring

types: Rename, extract method and move field. In the

future, we plan to support more refactoring types. While

BeneFactor faces several challenges (Section IV-D), we plan

to explore solutions to tackle them. We also plan to conduct

an empirical study to investigate how BeneFactor works in

practice. We also plan to conduct a formative study with a

wider variety of programmers as participants, providing us

more confidence in our refactoring workflow patterns.

According to our observations, sometimes developers

rely on compiler errors to help them refactor. However,

compiler errors do not reflect refactoring errors, making

this practice unreliable. In the future, we plan to design

a set of refactoring-aware warnings that augment compiler

errors. These warnings would warn a developer when she

violates refactoring preconditions, in a manner similar to

compiler errors. This gives developers some of the benefits

of refactoring tools without forcing them to explicitly “use

refactoring tools.”

VII. CONCLUSION

Although refactoring tools are widely available to devel-

opers, a great portion of refactorings are still performed

by hand. Developers avoid refactoring tools partly because

of the late awareness of refactoring, that is, the situations

when a developer recognizes she is refactoring after she has

already begun. In order to address this issue, we conducted

a formative study about developers’ manual refactoring pro-

cess. Our study suggests that manual refactoring can be an

error-prone process and that reliance on compilation errors

can hinder developers from refactoring safely. The results

confirm that the late awareness of refactoring contributes to

the refactoring tool underuse problem in the real world.

Furthermore, our formative study distills a set of manual

refactoring patterns. Building on these patterns, we present

a novel refactoring tool called BeneFactor. Unlike conven-

tional refactoring tools, BeneFactor detects when a developer

is manually refactoring, reminds her that automatic refactor-

ing is available, and can finish her refactoring automatically.

We believe that by alleviating developers from the burden

of recognizing when they are refactoring upfront, developers

will be more likely to use refactoring tools and gain the

benefits that those tools provide.

ACKNOWLEDGMENTS

We thank Moin Ayazifar and Suprit Patankar for their

participation in this project. For their advice and guidance,

we thank Brittany Johnson, Donghoon Kim, Da Young

Lee, Yoonki Song, and Shundan Xiao. We also thank the

participants in our formative study. This research was par-

tially funded by NCSU’s Faculty Research and Professional

Development Grant.

220

REFERENCES

[1] A. Abadi, Y. A. Feldman, and M. Shomrat. Code-Motion for
API Migration: Fixing SQL Injection Vulnerabilities in Java.
In Proceeding of the Workshop on Refactoring Tools, pages
1-7, 2001.

[2] Apache Tomcat Open Source Project, 2011.
http://tomcat.apache.org/.

[3] M. Cherubini, G. Venolia, R. DeLine, and A. J. Ko. Let’s
Go to the Whiteboard: How and Why Software Developers
Use Drawings. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pages 557-566, 2007.

[4] K. Damevski and M. Muralimanohar. A Refactoring Tool to
Extract GPU Kernels. In Proceeding of the Workshop on
Refactoring Tools, pages 29-32, 2011.

[5] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated Test-
ing of Eclipse and NetBeans Refactoring Tools. In Proceedings
of the Workshop on Refactoring Tools in conjunction with the
European Conference on Object-Oriented Programming, pages
42-43, 2007.

[6] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated
Testing of Refactoring Engines. In Proceedings of the Joint
Meeting of the European Software Engineering Conference
and the ACM SIGSOFT Symposium on The Foundations of
Software Engineering, pages 185-194, 2007.

[7] J. R. Foster. Cost Factors in Software Maintenance. PhD thesis,
University of Durham, 1993.

[8] M. Fowler. Refactoring: Improving the Design of Existing
Code. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1999.

[9] L. Frenzel. The Language Toolkit: An API for Automated
Refactorings in Eclipse-based IDEs, 2006.

[10] Join.me Remote Screen Share, 2011.
https://join.me/.

[11] S. Kim, K. Pan, and E. J. Whitehead, Jr. When Functions
Change Their Names: Automatic Detection of Origin Relation-
ships. In Proceedings of the Working Conference on Reverse
Engineering, pages 143-152, 2005.

[12] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A Case
Study in Refactoring a Legacy Component for Reuse in a
Product Line. In Proceedings of the International Conference
on Software Maintenance, pages 369-378, 2005.

[13] E. Mealy, D. Carrington, P. Strooper, and P. Wyeth. Improving
Usability of Software Refactoring Tools. In Proceedings of the
Australian Software Engineering Conference, pages 307-318,
2008.

[14] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi. Does
Refactoring Improve Reusability? In Proceedings of the Inter-
national Conference on Software Reuse, pages 287-297, 2006.

[15] E. Murphy-Hill and A. P. Black. Breaking the Barriers to
Successful Refactoring: Observations and Tools for Extract
Method. In Proceedings of the International Conference on
Software Engineering, pages 421-430, 2008.

[16] E. Murphy-Hill and A. P. Black. An Interactive Ambient Visu-
alization for Code Smells. In Proceedings of the International
Symposium on Software Visualization, pages 5-14, 2010.

[17] E. Murphy-Hill, C. Parnin, and A. P. Black. How We Refactor,
and How We Know It. IEEE Transactions on Software Engi-
neering, 2011.

[18] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-
based Reconstruction of Complex Refactorings. In Proceedings
of the International Conference on Software Maintenance,
pages 1-10, 2010.

[19] Refactor! Pro Add-in for Visual Studio, 2011.
http://devexpress.com.

[20] ReSharper Visual Studio Extension, 2011.
http://www.jetbrains.com/resharper/.

[21] Skype Voice and Video Call, 2011.
http://www.skype.com.

[22] K. Taneja, D. Dig, and T. Xie. Automated Detection of API
Refactorings in Libraries. In Proceedings of the International
Conference on Automated Software Engineering, pages 377-
380, 2007.

[23] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou. JDeodor-
ant: Identification and Removal of Type-Checking Bad Smells.
In European Conference on Software Maintenance and Reengi-
neering, pages 329-331, 2008.

[24] E. Van Emden and L. Moonen. Java Quality Assurance
by Detecting Code Smells. In Proceedings of the Working
Conference on Reverse Engineering, pages 97-106, 2002.

[25] Vuze Open Source Project, 2011.
http://www.vuze.com/.

[26] Z. Xing and E. Stroulia. Refactoring Practice: How it is
and How it Should be Supported-An Eclipse Case Study.
In Proceedings of the International Conference on Software
Maintenance, pages 458-468, 2006.

[27] Diff, Match and Patch libraries for Plain Text, 2011,
http://code.google.com/

p/google-diff-match-patch/

[28] Mark O’Keeffe and Mel Ó Cinnéide, Search-Based Refactor-
ing: an empirical study. In Journal of Software Maintenance
and Evolution: Research and Practice, 20: 345-364, 2008.

[29] S. R. Foster, W. G. Griswold, and S. Lerner, WitchDoctor:
IDE Support for Real-Time Auto-Completion of Refactorings.
In Proceedings of the International Conference on Software
Engineering, 2012. To Appear.

221

