
Università degli Studi di Cagliari

Dipartimento di Matematica e Informatica
Dottorato di Ricerca in Matematica e Informatica

Ciclo XXXIII

PHD DEGREE

A User-Centered Perspective for the
blockchain Development

S.S.D. INF/01

Candidate

Giuseppe Antonio Pierro

Supervisor PhD Coordinator

Prof. Michele Marchesi
Prof. Roberto Tonelli

Dr. Stéphane Ducassse Prof. Michele Marchesi

Final examination academic year 2020/2021
September 1, 2021

2

Acknowledgements

I first wish to thank my supervisors, Proff. Roberto Tonelli and Michele Marchesi, for
their constant encouragement and valuable suggestions when working on the research
presented in my dissertation, and my colleagues Gavina Baralla, Luisanna Cocco,
Giacomo Ibba, Simona Ibba, Ilaria Lunesu, Lodovica Marchesi, Katiuscia Mannaro,
Marco Ortu, Andrea Pinna, Raffaele Porcu and Nicola Uras at the Department of
Mathematics and Computer Science at the University of Cagliari. I warmly thank
the FlossLab team where I spent about nine months of my Phd Program, and
especially Dr. Marco Di Francesco for supervising my work there.

I am especially indebted to Dr. Stéphane Ducasse, for his invaluable critical
thinking and deep insights on my work work, and the RMoD project team at the
INRIA Institute (Lille, France), where I spent part of my PhD program. I especially
thank Nicolas Anquetil, Alexander Bergel, Christopher Fuhrman, Henrique Rocha
and Oleksandr Zaitsev, to dedicate their time in discussing with me some of the main
issues of this dissertation. Many suggestions on software development come from
the pair program activity with Pharo, and especially from Guillermo Polito, Cyril
Ferlicot and Santiago Bragagnolo: they helped me in becoming a better software
developer and to build some of the tools presented in this dissertation. A special
thanks goes to my colleagues Mahugnon Honore, Allex Oliveira and Andy Amoordon
for sharing research time and interests.

Finally, my deep and sincere gratitude goes to my wife for all her love and
support, and my kids, Leonardo for waking up early in the morning on Sunday
saying ”Papà sveglia, c’è il sole!” when I could sleep more and Ilaria for waking up
during the night because she wanted to sleep with her mama.

4

Abstract

Blockchain technology is regarded as one of the most important digital innovations
in the last two decades. Its applicability beyond cryptocurrencies has been a growing
topic of research interest not only in computer science but also in other areas, such
as marketing, finance, law, healthcare, etc. However blockchain is far from reaching
the population on a larger scale. The dissertation evaluates the causes that are
preventing successful implementation and adoption of blockchain technology at a
larger scale, supporting infrastructure for public and private companies.

The latest academic research suggests that the blockchain services are still in
an early stage, and standards for developing blockchain-based applications have not
been defined yet. Moreover the interaction with the blockchain technology is still
complex, especially for non expert users, because it requires many technical skills.
The dissertation focuses on this knowledge gap as a cause for the blockchain missing
reach on society at a larger scale. This work aims to fill the gap by presenting
innovative methodologies and user-centered models that could help the adoption
of the blockchain technology by a larger number of private/public companies and
individuals. Based on these models, specific tools for both expert and non-expert
users are developed and discussed in the dissertation.

First, tools for expert users, i.e., software developers, are proposed to analyze the
smart contracts’ source code, to collect the smart contracts in a reasoned repository,
and to identify code clones and boost the use of open source libraries for a better
collective practice in developing and maintaining the blockchain. Second, tools for
non-expert users, i.e. people with no technical knowledge, are proposed to suggest
them the fairest fees to pay to have their transactions executed according to the price
and waiting times they are willing to spend, and to identify malicious smart contracts
that can deceive them, thus preventing them to trust the blockchain and use it
again. Finally, visualization models for users with expertise in different disciplines
are proposed to provide them with graphical representations that can foster the
understanding of the blockchain underlying mechanisms.

6

Contents

1 Introduction 9

1.1 What is the Blockchain? . 10

1.2 What are the Blockchain Technology Use Cases? 13

1.3 Does Blockchain reach the society? 14

1.4 Research Questions . 15

1.5 Hypotheses . 17

1.6 Structure of the Dissertation . 18

1.7 List of Publications . 20

2 Background 23

2.1 Introduction . 23

2.2 Technologies Connected to Blockchain 24

2.2.1 Hash . 24

2.2.2 Digital Signatures . 25

2.2.3 Merkle Trees . 26

2.2.4 State Machine . 27

2.2.5 Consensus Algorithm . 28

2.3 Blockchain . 30

2.3.1 Transactions and Addresses 30

2.3.2 World State . 32

2.3.3 Miners . 35

2.3.4 Forks and Longest Chains . 36

2.3.5 Ethereum Virtual Machine (EVM) 36

2.3.6 Ether . 37

2.3.7 Memory-Pool . 39

2.4 Smart Contract . 39

2.4.1 Programming Languages for Smart Contracts 40

2.4.2 Solidity Grammar . 40

2.5 Blockchain Oracles . 42

2.5.1 Gas Oracles . 42

8 CHAPTER 0. CONTENTS

3 Blockchain Models to Design Tools for Expert Users 43
3.1 Introduction . 43
3.2 PASO . 44

3.2.1 Introduction . 44
3.2.2 Related Work . 45
3.2.3 Motivation . 45
3.2.4 PASO Components . 46
3.2.5 Limitation . 51
3.2.6 Conclusion and Future Work 53

3.3 Smart-Corpus . 54
3.3.1 Introduction . 54
3.3.2 Research Methodology . 59
3.3.3 Results . 69
3.3.4 Conclusions and Future Works 70

3.4 Code Clones in Solidity . 71
3.4.1 Introduction . 71
3.4.2 Background . 72
3.4.3 Related Work . 73
3.4.4 Research Methodology . 74
3.4.5 Results and Discussion . 76
3.4.6 Conclusion . 82

4 Blockchain Models to Design Tools for Non-Expert Users 83
4.1 Introduction . 83
4.2 The Influence Factors on Ethereum Transaction Fees 84

4.2.1 Related Work . 85
4.2.2 Research question . 86
4.2.3 Background . 86
4.2.4 Methodology . 90
4.2.5 Results and Discussion . 92
4.2.6 Summary and Conclusions . 96

4.3 Are the Gas Prices Oracle Reliable? 97
4.3.1 Introduction . 97
4.3.2 Gas Oracle . 101
4.3.3 Experimental Design . 101
4.3.4 Modelling Data . 104
4.3.5 Analyzing Data . 105
4.3.6 Related Work . 111
4.3.7 Conclusion . 113

4.4 A User-Oriented Model for Oracles’ Gas Price Prediction 113
4.4.1 Introduction . 113
4.4.2 Background . 116
4.4.3 Related Work . 119

0.0. CONTENTS 9

4.4.4 Research Methodology . 121
4.4.5 Results . 128
4.4.6 Evaluation of Oracles’ Prediction 136
4.4.7 Improving the Oracle Prediction 137
4.4.8 Discussion . 138
4.4.9 Conclusions . 140
4.4.10 Related Work . 142

4.5 AI Techniques for Detecting Malicious Smart Contracts 142
4.5.1 Introduction . 142
4.5.2 Related Work . 144
4.5.3 ResearchMethodology . 145
4.5.4 Results and discussion . 150
4.5.5 Future Work . 152

5 Visualization-based models 153
5.1 Introduction . 153
5.2 Smart-Graph . 155

5.2.1 Introduction . 155
5.2.2 Background . 156
5.2.3 Research Questions and Hypothesis 159
5.2.4 Research Methodology . 161
5.2.5 Results and Discussion . 165
5.2.6 Conclusion . 166

5.3 An Interdisciplinary Model for Graphical Representation 167
5.3.1 Introduction . 167
5.3.2 Data-driven and Problem-driven Models 168
5.3.3 Research Questions and Hypotheses 170
5.3.4 Case Studies Evaluation . 170
5.3.5 An Interdisciplinary Model . 174
5.3.6 Conclusion and Future Works 177

6 Conclusion 179

10 CHAPTER 0. CONTENTS

Chapter 1

Introduction

In the last two decades, multiple innovative technologies have substantially impacted
most of the world’s population and its economy. The most notable innovative tech-
nologies of them are: Cloud Computing, Big Data, the Internet of Things (IoT),
Augmented Reality, and, the last in order of time, Blockchain.

The advantages and opportunities for the use of blockchain technology in dif-
ferent industrial and technical areas were clear from the very beginning to the re-
searchers, who wrote that nowadays the blockchain technology could have an im-
pact similar to the World Wide Web (WWW) in the nineties (?????). Indeed, the
blockchain technology was initially introduced as a technology that allowed to track
cryptocurrencies transactions, but then a set of new and promising features were de-
veloped in the Ethereum blockchain to apply its advantages to other fields (?????).

Governments and companies around the world started wondering about the pos-
sible implementation of blockchain technologies in many areas of life, not directly
associated with the use of cryptocurrencies (?). One of the most promising imple-
mentation of the Ethereum blockchain technology is its use to create fully auto-
mated contracts, i.e., agreements that are performed without human involvement.
Such agreements in the information technology environment are frequently referred
to as “Smart” contracts (??).

However, nowadays only few public organization and companies are using this
technology, and it has been estimated that blockchain-based applications will be
available to the wider public only in 10–15 years (?). The blockchain technology
is not yet ready for mass adoption. It is indeed not mature enough for large scale
application and use by a large number of (autonomous) objects, individuals, and
organizations (?).

This dissertation is specifically dedicated to the research and development of
innovative technologies for the Ethereum blockchain, that can foster and empower
its application on a larger scale. To this aim new methodologies, models and user-
centered tools for both expert and non-expert users are proposed to encourage the
adoption of the blockchain technology by a larger number of private and public
companies, institutions and/or individuals. After providing an introductory pre-

12 CHAPTER 1. INTRODUCTION

sentation of the blockchain and possible future scenarios of application, the specific
questions and hypotheses leading this research will be presented and discussed.

1.1 What is the Blockchain?

A blockchain can be described as a public database that is updated and shared
across many computers in a network. “Block” refers to the fact that data are
stored in sequential “blocks”. If a user sends cryptocurrencies to someone else, the
transaction data needs to be added to a block to be successful. “Chain” refers
to the fact that each block cryptographically references its parent. A block’s data
cannot be changed without changing all subsequent blocks, as it would require the
consensus of the entire network (?).

Blockchain owns specific characteristics that make it quite different from classic
centralized systems. First of all, despite its original distributed design, nowadays
Internet is highly centralized. Most of the Internet traffic is routed through a few
centralized services or platforms, managed and controlled by few large corporations,
such as Google, Amazon, Facebook, Microsoft, etc. These centralized platforms
are very useful tools and they provide to the users great comfort and convenience.
Moreover, most users experience the services provided by those private companies as
public goods. However, at the same time, most users do not know that their data are
exploited by the very same private companies for their own commercial aims. Thus,
many researchers in the fields of political science, law, history, philosophy, sociology
pointed out the critical challenges that centralized technology platforms pose to
democracy (???). They pointed out how the centralized technology platforms are
part of a long trend of consolidating power for profit (??). In contrast, blockchain
has provided the users with a radical alternative to the current market economy
managed and influenced by few big players, such as central banking system of few
countries or multinational technology companies. A blockchain platform has the
following key characteristics:

• Decentralize nature. From a technical perspective, the blockchain has no sin-
gle point of failure: the network can still function even if a large proportion of
participants are attacked or taken out. This characteristic is in contrast with
the single point of failure, which is typical of centralized systems, where ma-
licious actors may be able to take down the network by targeting the central
authority. Moreover, from an economic perspective, centralized systems hold
a large amount of sensitive user data. It is not uncommon for online opera-
tors to abuse their dominant position over a centralized platform in order to
promote their own (economic) interests, often at the expenses of their user-
base. On the contrary, applications based on blockchain technology do not
have a central authority. The maintenance of the transactions is performed
by a network of nodes communicating to one another and running particular
softwares (?). Even the blockchain protocol developers do not have control

1.1. WHAT IS THE BLOCKCHAIN? 13

over the users’ transactions. As the relevant code is distributed on the basis
of the MIT open-source license, it is available for inspection by any interested
person and it is subject to the possibility of modifications, that can become
a standard only if accepted by the majority of the community and not by a
central authority represented by few persons (?).

• Anonymous nature. Cryptocurrencies can be used without any special regis-
tration or identification procedure. It is sufficient to install a special wallet
application to enable the users’ transactions with cryptocurrencies. Each wal-
let consists of cryptocurrency units, a public key and a private key. The private
key is used for the transfer of cryptocurrency amount by its owner to another
user’s wallet. Without knowledge of the private key, the transaction cannot
be signed and the cryptocurrencies cannot be spent. The public key is used
by other persons to send cryptocurrencies to the recipient user’s wallet, and is
used by the blockchain network to verify the transactions. The cryptocurren-
cies’ owners are not explicitly identified, but all transactions on the blockchain
are public (?).

• Absence of single administrator of transactions. Electronic money can be
subject to the risk of double-spending (?). Unlike physical coins, electronic
money (like any computer data) can be duplicated and thus be used more than
once. Traditional electronic money systems prevent double-spending by hav-
ing a centralized trusted administrator who follows an established process to
authorize each transaction. The problem with this practice is that the stabil-
ity of the money system depends on the company running the administrative
function, with every transaction having to go through them, just like a bank.
The blockchain technology resolves the double-spending problem by using a
peer-to-peer network. All the transactions are included in a publicly available
database. Information about a new transaction is distributed through the
network, verified by blockchain participants named “miners”, and then fixed
with the indication of the time it was made (the timestamp) and the unique
number of the cryptocurrencies unit. Thus, it is possible to trace the entire
history of transactions (?).

• Resilience to data manipulations from Outside. Cryptography used in the
process of creating records on Bitcoin-related transactions in the blockchain
database prevents tampering with the content of such records and ensures their
perpetual nature. Whenever two people exchange cryptocurrencies, an en-
crypted record of the transaction is sent out to all other nodes in the blockchain
network. The other nodes verify the transaction by performing complex cryp-
tographic calculations on the data in the record (“mining”), and notify one
another each time a new “block” of transactions is confirmed as legitimate.
When a majority of the nodes agree that a block passes review, they all add
it to the blockchain database and use the updated version as a cryptographic

14 CHAPTER 1. INTRODUCTION

basis to encrypt and verify future transactions. Each block is guaranteed to
come after the previous block chronologically because the previous block’s
hash would otherwise not be known. Each block is also computationally im-
practical to modify once it has been in the chain for a while, because every
block after it would also have to be regenerated. Thus, it is not possible to
rewrite information about certain transaction once it has been included in the
blockchain. Such information will be rejected by the blockchain network, un-
less the intruder possessed more than 50% of the overall computational power
of the blockchain network. As a result, all the members of the blockchain com-
munity have a single version of “world-state”, i.e., an irreversible blockchain’s
state of affairs at a given time t. Each participant to a transaction has a copy
of the blockchain database, and this is synchronized with the others’ copies by
the use of a specialized algorithm. All this creates an unprecedented level of
distributed trust among the users of the blockchain network, the blockchain
being the core element facilitating such trust. The participant at each node of
the network can access the blocks shared across that network and can own an
identical copy of theirs. Any changes or additions made to the blockchain are
communicated to all participants in a few seconds or minutes. The decentral-
ized and distributed data processing prevents post factum alteration of data,
for instance, for fraudulent ends. Essentially, blockchain enacts a consensus
mechanism that ensures the accuracy of a transaction without the necessity
to trust single transacting parties (??).

Beyond these general characteristic of all the blockchains, other characteristics are
specific of the Ethereum blockchain. The most important one is the ability to write
programs, i.e. the “smart” contracts, that automatically generate a transaction. The
“smart” contracts have greatly increased the possibility to facilitate and enforce the
execution of agreements among participants. While the very idea of smart contracts
was proposed by Nick Szabo (?), a gradual implementation has only started in 2015
with the launch of the Ethereum blockchain (?).

There is no universally agreed definition of “smart” contracts, both because of
the very novel nature of this phenomena, and of its complex technological basis.
According to the simplest definition, a “smart contract” is an agreement whose per-
formance is automated. A smart contract can be considered as a trusted third party
between non-trusting participants. The ability to automatically execute contracts
at no cost drastically reduces the need for supervision, while allowing an increasing
number of businesses and users to trade more frequently and efficiently.

1.2. WHAT ARE THE BLOCKCHAIN TECHNOLOGY USE CASES? 15

1.2 What are the Blockchain Technology Use

Cases?

The exchange of money, service and goods with high economic value, between per-
sons or companies, are usually controlled and operated by a third party organization.
For instance, a sales-purchase transaction might need to be authenticated by a no-
tary. Making a digital payment or currency transaction requires a bank or credit
card provider as a “middleman” to complete the transaction. The same process
occurs in several other cases, such as government and public sector applications,
including land registration, identity management, taxation, health care, corporate
registration, supply chain traceability, insurance contracts. In addition, a transac-
tion causes a fee from a bank or a notary. The Ethereum blockchain technology has
been developed to better cope with these issues. The aim of blockchain technology
is to create a decentralized environment where no third physical party controls the
transactions and data.

Moreover, the blockchain technology can help to address some challenges in
the industrial sphere, such as trust, transparency, security and reliability of data
processing (?). In different industrial and technical areas, the blockchain technology
can indeed be helpful in overcoming specific problems, such as:

• The authorship. The difficulty in protecting and enforcing Intellectual Prop-
erty (IP) rights has been a major obstacle to share intellectual works in digital
forms. The blockchain technology can be used to confirm and preserve the
authorship of intellectual works and new ideas in digital forms with no third-
party interference (??).

• The electronic voting. Building a secure electronic voting system that offers
the fairness and privacy of current voting schemes, while providing the trans-
parency and flexibility offered by electronic systems has been a challenge for
a long time. The blockchain technology can be used to address some of the
limitations in the existing electronic voting system. In particular, it can be
used to reduce voters’ fraud and increase voters’ access (??).

• Healthcare organizations. The blockchain technology can be used for manag-
ing patient electronic medical records. Health records stored in a blockchain
could allow patients to make their structured data available to many spe-
cialized people. For instance, the data can be made available to medical re-
searchers to better understand diseases and find ways to prevent, treat and
cure them (?????).

• Traceability. The blockchain technology can be used to provide traceability.
Traceability is becoming an increasingly urgent requirement and a key differ-
entiator in many industries in the supply chain (??), including pharmaceutical
and medical products (?), the agri-food sector (?), and high-value goods (??).

16 CHAPTER 1. INTRODUCTION

Traceability is very important in luxury and high-value items whose prove-
nance might otherwise depend on paper certificates and receipts that can be
easily lost or altered (?).

1.3 Does Blockchain reach the society?

Some scientific studies have been conducted to understand whether public and pri-
vate organizations actually use or are anyway ready to use the blockchain tech-
nology (???). These studies show that either for economic reasons or for lack of
(practical) knowledge, the blockchain has not reach the society in its relevant fields
of application (?).

According to Savelyev (?), organizations are not interested in using the
blockchain technology for economic reasons. As the author pointed out, while the
blockchain was expected to reduce the costs of transactions and third-party fees,
“It would not be correct to conclude that smart contracts are cheaper than regular
ones”. The infrastructure necessary to implement the smart contracts are expensive
and the costs associated with the development of application based on the blockchain
architecture are still rather high. Indeed, the company that offers blockchain-based
solutions must consider the following costs: paying people with the expertise to
translate the contracts’ language and legal constraints into the programming lan-
guage of the smart contracts, to develop interoperability standards, to review the
energy and the Information and Communications Technology (ICT) infrastructure,
to support the blockchain infrastructure, etc.

Gatteschi, believes that while blockchain has the potential to be disruptive or
even transformative in the long term, it will not happen before 2023, because it
“needs further technology maturity and hardening, in addition to significant changes
to business models, operating processes, societal constructs, and regulatory and
governance mechanisms” (?). There is a need for a holistic approach to smart
contracts that includes business model transformation and adequate governance.
As Pradhan, Stevens, and Johnson claim, “Full blockchain development could take
five to seven years or longer, or may not occur at all. Early adopters who commit
to testing blockchain across the supply chain must be prepared to accept significant
levels of risk — and be prepared to fail fast and try again” (?).

Confirmation of the fact that the blockchain technology is not ready to be mas-
sively adopted by the society comes also from some studies based on online user
interviews. The University of Cagliari recently carried out an online survey entitled
“Verso un’amministrazione digitale” (Towards a digital administration) within the
AIND project “Amministrazioni e Imprese Native Digitali” (Administrations and
Digital Native Enterprises). In 2018, the Department of Mathematics and Com-
puter Science conducted the project in collaboration with the Department of Social
Sciences (Prof. Paola Piras) and the Department of Economics and Business (Proff.
Michela Loi and Chiara Di Guardo) of the University of Cagliari. The AIND survey

1.4. RESEARCH QUESTIONS 17

aimed to collect the users’ requirements to implement the applications to support
the digitization process of the Italian public administration.Over 70 participants
provided their answers to the survey: 42 of them were expert users having a soft-
ware development background. However, the online survey highlighted the fact that
the blockchain technology is not yet ready for mass adoption (?).

The majority of the users (68 of 70) did not have professional experience in
blockchain technology, 40 of 70 participants admitted that they do not have any
knowledge of blockchain technology. When asked whether they were currently using
blockchain applications, only one of them answered that he used blockchain applica-
tions several times, 2 of them simply plan to use them, while 68 of 70 participants did
not use such applications at all. The questions asked to the participants belonged
to different experiential dimensions of the blockchain technologies use. These highly
contextual dimensions were: 1) Organizational readiness (the readiness of their or-
ganization to accept blockchain as an innovative technology); 2) Change acceptance
(the acceptance of the changes that the new blockchain technologies entail); 3) Tech-
nology knowledge (the knowledge of the existence of such technologies and eventually
their basic features); 4) Business use cases (the knowledge of the use cases where the
new blockchain technologies can be applied); 5) Practical experience (the experience
as both expert and non expert users).

Table 1.1 summarizes the results of the survey carried out in Sardinia in 2018
in some public administrations. The table is based on the analysis of the responses
provided by the participants for each experiential dimension. The total number
of mentions about each experiential dimensions is reported. Interestingly, only one
participant among over 70 participants claimed that his organization would be ready
for the changes entailed by the adoption of the blockchain technology.

Table 1.1: Survey summary to estimate how people perceive blockchain

Experiential dimensions Mentions

Blockchain AI Cloud computing

Organizational readiness 1 20 61
Change acceptance 2 20 62
Technology knowledge 4 19 62
Business use cases 2 10 61
Practical experience 1 50 65

1.4 Research Questions

Notwithstanding all the possibilities that the blockchain offers to private and public
institutions, still its value as a collective good is underestimated and it remains of
limited use in the application to larger-scale targets. It might be argued that it is
just matter of time, even though other technologies such as internet and the cloud
have been adopted in short time at a world scale. Social and economic reasons can

18 CHAPTER 1. INTRODUCTION

be provided to explain why the blockchain struggles to become a fully-fledged and
extensively used technology, also when compared to other technologies in the past.
However, the idea of this dissertation is that this might be due also to a lack of tools
to bring the blockchain to the world. More specifically, one of the reasons why the
blockchain technologies are so slow to spread is that the users are not provided with
tools corresponding to their needs and competences. The need for user-oriented
blockchain tools is not just accidental, but rather it depends on the absence of a
user-centered model, providing the conceptual and the methodological basis for the
implementation of such tools. One of the main objectives of this dissertation is to
present and discuss some alternatives to the existing models, i.e. models specifically
designed to provide the guidelines for the implementation of user-centered tools.

The current blockchains do not consider the specific characteristics, abilities
and interests of the users, which might instead be relevant to make the blockchain
technologies within their reach and thus facilitate its introduction on a larger scale.
A user-centered model for the blockchain development is instead expected to consider
the users’ competences and aims. This dissertation discusses two main categories
of users: expert users and non-expert users. The expert users are the software
developers with a domain-specific knowledge that should be able to develop and
design new applications based on the blockchain technology. Non-expert users are
users who do not necessarily have technical knowledge in the blockchain domain,
but do consume applications based on blockchain technology. Some of these users
may be individuals who transfer cryptocurrency funds such as Ether and Bitcoin
by using online cryptocurrency wallets. Some of these users might also have other
relevant competences in law, economy, finance, etc., and actively participate in the
blockchain. These competences might be crucial multidisciplinary resources for a
more functional use of the blockchain in different application domains.

In this perspective, the dissertation aims to answer the following research ques-
tions:

• From a technical point of view, what are the causes that are preventing suc-
cessful implementation and adoption of blockchain technology at a large scale?

• In what ways can providing better developer tools improve the confidence of
the experts users in the blockchain technology?

• In what ways can improving the existing applications for non-experts users
increase their confidence in the blockchain technology?

• What can be a way to ease the multidisciplinary collaboration on the
blockchain platform?

Answering these questions is also important to better understand whether and
why the blockchain can effectively be a more democratic technology, when designed
to address the specific characteristic of its target users. Finally, the answers could
tell us to what extent it can encounter the favor of a wider audience.

1.5. HYPOTHESES 19

1.5 Hypotheses

To answer the research questions, the dissertation provides the following hypotheses:

• H1: Even though the costs associated with the involvement of an interme-
diary in the process of contract stipulation are removed in smart contracts,
this does not necessarily mean that smart contracts are cheaper than tradi-
tional contracts. Infrastructure necessary for their implementation and costs
associated with the development (“drafting”) of terms of smart contracts are
still rather high. Although several efforts are currently carried out in order
to reduce and hide the complexity behind the blockchain technology, develop-
ers with many technical skills are still needed and the number of professional
blockchain developers is small compared to the market demand.

• H2: The tools for the expert users are still in an early stage, and standards
for developing blockchain-based applications have not been defined yet. Be-
cause smart-contracts’ development is prone to errors (?), productivity tools
for expert users are crucial to improve the developers’ work and to ease the
adoption of the blockchain technology.

• H3: The interaction with the blockchain technology is still complex for non-
expert users. Interacting with the blockchain requires many technical skills
(e.g., mastering the concept of installing a wallet, access the Gas Oracles In-
formation, the Gas Price, etc.). Moreover, many non-expert users associated
the blockchain technology with a fraudulent investment because the cryptocur-
rency are very volatile or because there might be fraudulent smart contracts,
such as the “smart Ponzi schemes”. As a consequence, there is still a lot of
misinformation on blockchain among non-expert users, and people could still
prefer traditional applications rather than applications based on the blockchain
technology. Therefore more user-centered tools should be provided to overcome
these barriers that can limit the use of blockchain-based applications.

• H4: The knowledge about the blockchain technology should not reside only
with the specialists who write smart contracts but should be distributed also
among experts in different areas such as experts in law, finance, digital inno-
vation and so on. There is the need for a holistic approach to the blockchain
technology that includes an interdisciplinary model to connect experts in dif-
ferent domains. However, different research areas have different technical jar-
gon used to communicate scientific knowledge: while computer scientists need
to understand program code, law experts are not expected to understand the
program code. To overcome this problem, graphic representation could be a
means to facilitate the understanding of scientific knowledge between different
disciplines. Figures and diagrams might be a communication medium among
different disciplines’ languages and expertises. Figures and diagrams not only

20 CHAPTER 1. INTRODUCTION

show the relevant data that support key research findings, but also provide
visual information on the interactions among different operations required in
scientific reasoning (??). Being able to adequately and precisely visualize data
is also a pillar on which decisions can be made, as proposed by different dash-
boards in the market.

Overall, the blockchain technology still needs several improvements in different
areas before becoming popular and adopted by many people and companies, both
private and public, as it happened for the WWW. Based on these hypotheses, the
dissertation is focused on the research and development of innovative methodolo-
gies, models and user-centered tools for expert and non-expert users that could help
adopt the blockchain technology by a larger number of private and public compa-
nies. Furthermore, the dissertation proposes a holistic approach that can ease the
interaction and collaboration among experts in different disciplines also around the
blockchain technology.

1.6 Structure of the Dissertation

The dissertation is organized as follows:
Chapter 2 introduces the blockchain in details, presenting the existing technolo-

gies, mathematical techniques and algorithms connected to blockchain such as the
cryptographic and the consensus algorithm (see Section 2.2.5). The formal definition
of the blockchain, and in particular of the Ethereum blockchain, will be provided.
Lastly, the concepts related to smart contracts (see Section 2.4) and the Oracles
(see Section 2.5) will be presented. The purpose of this chapter is to provide the
readers with some concepts useful to better understand the blockchain that might be
unfamiliar to most of them. The readers should indeed be aware of the blockchain’s
ecosystem strengths, as well as its shortcomings to better evaluate the motivations
and the hypotheses that guide the research. Also, in the following chapters, the
blockchain characteristics will be exploited to design a user-center model (?) and
to implement specific tools for both expert (????) and not-expert users (???).

Chapter 3 presents two applications aimed at expert users, i.e. users with spe-
cific technical knowledge in the blockchain, that should meet their demands and
strengthen their abilities in the development of blockchain-based applications. The
first application is named PASO (see Section 3.2), which is a web-based tool sup-
porting static code analysis of the most used programming language to write smart
contracts, i.e., Solidity. PASO differs from the existing applications because, just
using a web browser, it is able to provide the expert users with software metrics
values for smart contracts written in Solidity. The second application is named
Smart-corpus (see Section 3.3), which is an organized repository of the Ethereum
smart contracts’ source codes and metrics. It is aimed at expert users, especially as
academic researchers, who analyze smart contracts’ code to improve the blockchain
security, to find design defects and propose solutions. Based on the Smart-corspus,

1.6. STRUCTURE OF THE DISSERTATION 21

the dissertation also proposes an analysis of code clones in Solidity (see Section 3.4),
aimed to improve expert users’ practices in developing smart contracts. Finally, the
advantages and the disadvantages of code duplication are discussed, and some ”best
practices” are proposed to expert users to develop secure smart contracts.

Chapter 4 presents the most important factors that influence the blockchain
transactions and thus the waiting times and the fees paid by non-expert users.
First, the chapter focuses on the fees prediction provided by the Gas Oracles (see
Sections 4.2 and 4.3), i.e. softwares that are supposed to suggest the best price in
Gas units to pay by the users to execute their transactions. The aim of the chapter
is to provide especially non-expert users with the most convenient fee to pay based
on categories that reflects their needs.To this aim, the Gas Oracles’ predictions are
verified, showing that the Gas Oracles’ predictions is less reliable than advertised by
the Gas Oracles themselves. A new model for the Gas price prediction is proposed to
meet the real needs of the users in terms of fees to pay and waiting time to execute
their blockchain transactions. Second, the chapter analyses malicious smart con-
tracts to provide non-expert users with a means to prevent transaction fraud. The
malicious smart contracts are intended to steal money especially from non-expert
users that have no technical skills to understand that such smart contracts advertise
something other than what they actually do (see Section 4.5). An application is
therefore proposed to automatically recognize malicious smart contracts by using
AI techniques.

Chapter 5 is specifically dedicated to two models (and relative applications)
based on graphical representation that are intended to facilitate the understanding
of the blockchain underlying mechanisms. The first one is named Smart-Graph (see
Section 5.2) and proposes a model that provides a graphical representations for smart
contract on the Ethereum blockchain. The graphical representation provided by
Smart-Graph highlights two relevant aspects for the blockchain software developers
and companies: the costs and the maintainability of the source code. The second one
is named Miró and proposes a comprehensive interdisciplinary model for graphical
representation (see Section 5.3). The model integrates a data-driven approach with
an approach that guides users with an expertise on a specific domain, to achieve
the intended visualization, based on their aims, knowledge and hypotheses. The
application can thus provide users with different expertises a means to collaborate
in the blockchain environment.

Chapter 6 presents the conclusion of the dissertation. The limitations of the
work are discussed, as well as the possibilities opened by the answers provided in
each chapter to the main research questions. Finally, some perspectives for future
research are described, focusing on what still remains needed for both expert and
non-expert users.

22 CHAPTER 1. INTRODUCTION

1.7 List of Publications

This dissertation is an extended, revised, and enhanced version of the papers I au-
thored and/or coauthored during the Phd program, consisting in a research activity
that had some publications as an outcome. The list of the original publications is
provided below.

For the part regarding the blockchain models to design tools for expert users:

• “An Organized Repository of Ethereum Smart Contracts’ Source Codes and
Metrics” (?). The paper has been published on the Journal ”Future Internet”,
in 2020.

• “PASO: A Web-Based Parser for Solidity Language Analysis” (?). The paper
has been published in the Conference Proceedings of 2020 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE 2020)
(https://www.computer.org/csdl/proceedings/iwbose/2020/1iES4LO1CKc).

• “Analysis of Source Code Duplication in Ethreum Smart Contracts” (?). The
paper has been published in the Conference Proceedings of the 2021 IEEE In-
ternational Workshop on Blockchain Oriented Software Engineering (IWBOSE
2021).

For the part concerning the blockchain models to design tools for non-expert
users:

• “A User-Oriented Model for Oracles’ Gas Price Prediction”. The paper has
been submitted on July 2020 to the Journal “Future Generation Computer
Systems” and it is now in revision.

• “The influence factors on ethereum transaction fees” (?). The
paper has been published in the Conference Proceedings of
the 2019 IEEE/ACM 2nd International Workshop on Emerging
Trends in Software Engineering for Blockchain (WETSEB 2019)
(https://www.computer.org/csdl/proceedings/wetseb/2019/1d9UmyDgc6I).

• “Are the Gas Prices Oracle Reliable? A Case Study using the EthGasSta-
tion” (?). The paper has been published in the Conference Proceedings of the
International Workshop on Blockchain Oriented Software Engineering (IW-
BOSE 2020)

• “Evaluating Machine-Learning Techniques for Detecting Smart Ponzi
Schemes”. The paper has been published in the Conference Proceedings of the
2021 IEEE/ACM 4th International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB).

For the part dedicated to the visualization-based models that can be applied to
the blockchain for both expert/non-expert users:

https://www.computer.org/csdl/proceedings/iwbose/2020/1iES4LO1CKc
https://www.computer.org/csdl/proceedings/wetseb/2019/1d9UmyDgc6I

1.7. LIST OF PUBLICATIONS 23

• “An Interdisciplinary Model for Graphical Representation” (?). The paper has
been published in “Lecture Notes in Computer Science”, in the series entitled
“Formal Methods for Software Engineering: Languages, Methods, Application
Domains” (LNCS, volume 12524) (??) and it is also part of the ”Programming
and Software Engineering” book sub-series (LNPSE, volume 12524).

• “Smart-Graph: Graphical Representations for Smart Contract on the
Ethereum Blockchain” (?). The paper has been published in the Conference
Proceedings of the 2021 IEEE International Workshop on Blockchain Oriented
Software Engineering (IWBOSE 2021).

24 CHAPTER 1. INTRODUCTION

Chapter 2

Background

2.1 Introduction

The chapter aims to provide the reader with the relevant information and back-
ground knowledge on blockchain technology required to better understand the top-
ics discussed in this dissertation. Indeed the dissertation is based on the concepts
presented in this chapter. It is therefore important especially for the readers who
are not familiar with blockchain and blockchain technology.

Previous studies (???) have suggested that blockchain technology presents both
strengths and shortcomings. Some of the strengths are considered to be the decen-
tralization, tamper-proof, and smart contract. Anyway, some research (?) warns
that the current blockchain ecosystem is still immature, with known (and possibly
also unknown) flaws. The shortcomings of the blockchain technology will be ad-
dressed to design tools for both expert (see Chapter 3) and non-expert users (see
Chapter 4). Blockchain technology and its use in different areas, such as health-
care (??), finance (?), government (?), and academic research (???), are considered
in this work to design an interdisciplinary model that enables the users to share and
receive knowledge from different sources. The interdisciplinary model is based on
graphical representations aimed to clarify, interpret and analyze data coming from
different sources (see Chapter 5).

Readers should therefore be aware of blockchain’s ecosystem strength and short-
comings to better understand the motivations that guide this research work. The
blockchain is a combination of already existing technologies, mathematical tech-
niques and algorithms, such as hash functions (?), digital signatures (?), cryptog-
raphy (?), Peer-to-Peer (P2P) network (?), consensus mechanism (Proof of Work
and Proof of Stack) (?). First, the technologies connected to blockchain will be pre-
sented 2.2. Second, the basic components of blockchain (transaction, block, block
header, and the chain), its operations (verification, validation, and consensus model),
the underlying algorithms, and essentials of trust (hard fork and soft fork) 2.3 will
be introduced. Third, the concepts of smart contracts and Solidity, which is the

26 CHAPTER 2. BACKGROUND

most widespread programming language used to write smart contracts, will be pre-
sented (see 2.4). Finally, the chapter will present the blockchain oracles, which can
be defined as a third-party service that takes raw data either from external sources,
such as weather service, news, banking systems, or from internal sources, i.e. the
blockchain itself (??). The Oracles process the collected raw data to extract infor-
mation and provide it to smart contracts or the users who execute transactions in
the blockchain. 2.5.

2.2 Technologies Connected to Blockchain

This section presents the basic concepts one must get acquainted with in order to
understand the blockchain technology. Blockchain can be understood as a combi-
nation of already known technologies, including cryptographic components such as
hashing, private and public key infrastructures, consensus processes, and elements
of decentralized systems (?).

2.2.1 Hash

Blockchain technology relies extensively on hash functions.

Definition 2.2.1 (Hash). A hash function is a function h with the following prop-
erties.

• Compression: h maps an input x of arbitrary finite length, to an output h(x)
of fixed length n.

• Easy of computation: Given h and an input x, h(x) is easy to compute.

• Preimage resistance (one-way): for all pre-specified outputs, it is computa-
tionally infeasible to find any input which hashes to that output, i.e., to find
x such that y = h(x) given y for which x is not known.

• Collision resistance (strong collision resistance): it is computationally infeasi-
ble to find any two distinct inputs x, x′ which hash to the same output, i.e.,
such that h(x) = h(x′).

The output of such function is called a hash. In Definition 2.2.1, easy is pur-
posefully left undefined as its meaning is context-dependent. It can be defined with
regards to time, number of operations, or complexity for instance.

A hash is the result of a transformation of the original information that serves as
input. This collision resistance is characterized by the fact that the same hash value
is obtained from the same data and even a slight difference in the original data will
result in a completely different hash value. Taking advantage of such characteristics,
this mechanism is used for the detection of falsification of data. Figure 2.1 illustrates
the compression property of hash functions.

2.2. TECHNOLOGIES CONNECTED TO BLOCKCHAIN 27

Figure 2.1: Hash function.

2.2.2 Digital Signatures

Digital signatures are the equivalent of the handwritten signature one might find at
the bottom of a document. Like their paper-based counterparts, digital signatures
must be:

• Unforgeable: No one must be able to produce a valid signature for an entity
S, except S themselves;

• Verifiable: Anyone with the correct information must be able to associate a
signature with its emitter;

• Non-repudiable: A signer S cannot successfully dispute the origin of their
signature.

A digital signature scheme is composed of three algorithms:

• Key Generation Algorithm: A method for generating a public/private key pair
used for signing.

• Signing Algorithm: A method for producing a digital signature.

• Verification Algorithm: A method for verifying that a digital signature is
authentic (i.e., was indeed created by the specified entity).

Figure 2.2 shows the digital signature composed of two parts: the signature genera-
tion process via the private key and the signature verification process via the public
key.

• Key Generation: A digital signature scheme requires two keys. The first key is
a private key and it is used to sign the message. The second key is public and
it is used to verify the signature. In order to produce a verifiable signature, a
signer S must therefore first generate a key pair (private key, public key) and
make the public key available to those who will later verify their signature.
Anyone that comes into possession of S’s private key can sign in their name.
The security of the scheme then rests on the security of the private key.

28 CHAPTER 2. BACKGROUND

Figure 2.2: Digital signature process.

• Signature: A signing algorithm takes two inputs, the message and the private
key, and outputs a signature. An example of signature scheme is to encrypt
the cryptographic hash of the message with the private key. Anyone with
the public key can decrypt the signature, recompute the message’s hash, and
compare the two.

• Verification: The verification algorithm takes the public key and the signature
as inputs and outputs a boolean. Some schemes enable the retrieval of the
original message from the signature. When it is not the case, the verification
algorithm requires the original message as an additional input. The verification
process confirms that the message has indeed been signed by the private key
associated to the inputted public key. Ownership of these keys however must
be proven through other means.

2.2.3 Merkle Trees

Merkle Tree also known as “hash tree” is a data structure in cryptography in which
each leaf node is a hash of a block of data, and each non-leaf node is a hash of its
child nodes. The benefit of using the Merkle Tree in blockchain is that instead of
downloading every transaction and every block, a “light client” can only download
the chain of block headers.

If a user needs to verify the existence of a specific transaction in a block, then he
does not have to download the entire block. Downloading a set of a branch of this
tree which contains this transaction is enough. We check the hashes which are just

2.2. TECHNOLOGIES CONNECTED TO BLOCKCHAIN 29

Figure 2.3: Merkle Tree.

going up the branch (relevant to my transaction). If these hashes check out good,
then we know that this particular transaction exist in this block.

The tree is then constructed by labelling each non-leaf node with the crypto-
graphic hash of its child nodes. A tree is usually smaller than the data it represents
thanks to the compression property of hash functions. Hash trees also encode data
in a privacy-preserving fashion as no information from the original data can be re-
covered from the tree thanks to the preimage resistance of cryptographic hash func-
tions. Figure 2.3 illustrates the encoding of data into a Merkle tree. The original
data blocks (the transactions) are not part of the tree. A data block can represent
part of a larger file, or be an element in a set.

2.2.4 State Machine

A finite-state machine (FSM) or simply a state machine is used to design both
computer programs and sequential logic circuits. It is conceived as an abstract
machine that can be in one of a finite number of user-defined states. The machine is
in only one state at a time; the state it is in at any given time is called the current
state. It can change from one state to another when initiated by a triggering event
or condition; this is called a transition. A particular FSM is defined by a list of its
states, and the triggering condition for each transition.

Figure 2.4 shows a simple state machine above. It consists of two states, Off and
On. On is the initial state here; it is activated when the state machine is executed.
The arrows between the states denote the possible state transitions. They define for

30 CHAPTER 2. BACKGROUND

Figure 2.4: A simple state machine.

which input a state change occurs. Here, the active state is changed from On to Off
for the input button pressed, and back again to On for the same input.

arrow repersent transitions
Formula 2.1 formally denotes a finite state machine (FSM) represented as a tuple

of six values:

FSM = (I, O, S, s0, δ, λ) (2.1)

• I: finite set of inputs

• O: finite set of outputs

• S: finite set of states

• s0 ∈ S : initial state

• δ : S × I → S: transition function (new state = current state + input value)

• λ: output function

2.2.5 Consensus Algorithm

One of the most important challenges of the blockchain is to keep the different copies
of the blockchain consistent with one another. This is achieved through a consensus
algorithm.

There exist two main types of such protocols currently in use: Proof of Work
(PoW) and Proof of Stake (PoS). All aim at electing a leader that will propose the
next block to the network. Other propositions have some merits such as hybriding
PoW and PoS to mitigate the shortcomings of both, or basing the protocols on social
interactions. All of these protocols are explained below.

2.2. TECHNOLOGIES CONNECTED TO BLOCKCHAIN 31

Proof of Work (PoW)

The proof of work (PoW) consensus mechanism is the widest deployed consensus
mechanism in existing blockchains. PoW was introduced by Bitcoin (?) and assumes
that each peer votes with his “computing power” by solving proof of work instances
and constructing the appropriate blocks. Bitcoin, for example, employs a hash-based
PoW which entails finding a nonce value, such that when hashed with additional
block parameters (e.g., a Merkle hash and the previous block hash), the value of
the hash has to be smaller than the current target value. When such a nonce is
found, the miner creates the block and forwards it on the network layer to its peers.
Other peers in the network can verify the PoW by computing the hash of the block
and checking whether it satisfies the condition to be smaller than the current target
value.

PoW’s security relies on the principle that no entity should gather more than 50%
of the processing power because such an entity can effectively control the system by
sustaining the longest chain. We now briefly outline known attacks on existing PoW-
based blockchains. First, an adversary can attempt to double-spend by using the
same coin(s) to issue two (or more) transactions—thus effectively spending more
coins than he possesses. Recent studies have shown that accepting transactions
without requiring blockchain confirmations is insecure (?).

To date (May, 2021), the security of the Ethereum blockchain relies on this PoW
system, which inherently means that a block cannot be modified without redoing
the work spent on it, including the work spent on blocks chained after it. Therefore,
an attacker will be outpaced by honest miners as long as majority of the overall
computation power participating in the Ethereum network are controlled by honest
miners. In this case, a block recorded in the blockchain is almost impossible to
modify.

Buterin (?) argues that there are some downturns with a PoW consensus pro-
tocol, e.g. the risk of a 51% attack and there are high-energy costs of producing
one block. Courtious argues that the proof-of-work protocol is heading towards
self-destruction. The mining community is getting smaller and more specialized,
where big companies with great resources could outwork the individual miner (?).
This specialization of mining is making the system more centralized to a few big
companies and the risk of a 51% attack increases.

Proof of Stake (PoS)

To reduce the risk of a 51% attack and to reduce energy consumption, a new consen-
sus protocol was introduced within the blockchain community, called proof-of-stake.
Instead of proving that a node solved a computational hard task, like one does in
the proof-of-work protocol, the node could instead proof it has a certain amount
of coins (?). In the case of proof-of-stake it takes coins to create a new block, not
computational power and the node with the most coins, gets the most influence (?).

32 CHAPTER 2. BACKGROUND

In its most basic form, PoS works as a lottery. Each second, each account has
a certain probability to be chosen to mine a new block that is proportional to its
balance. To mine a block, one must simply sign it. Letting a single participant
sign is dangerous as we want a system that a single player cannot dominate. PoS
therefore requires p validators per block. The lottery system selects more than p
winners as some winners may not be online at that moment, or the key associated
to the selected funds may have been lost.

This method has some advantages over PoW. First, it is more eco-friendly. Sec-
ondly, PoS addresses PoW’s centralization concerns evoked above. The block gen-
eration can be much faster in PoS. The scheme can arguably be considered more
secure as a 51% attack (see Section 2.8.4) requires owning 51% of the currency. But
it cannot be used in this simplest form as many issues need to be addressed (?).

2.3 Blockchain

Blockchain technology is a distributed database, which maintains an immutable pub-
lic ledger of all the transactions. Blockchain allows for the time stamped recording
of all the transactions. These finger prints are saved in groups called “block”. The
individual blocks are then linked in a chain of blocks and each subsequent block has
a digital token from the previous block. Thus, it becomes impossible to modify the
information in an old block in the chain without modifying the subsequent blocks.
The main idea behind the blockchain technology is to register, confirm and transfer
all kinds of contracts and properties without the need of any intermediary (?).

2.3.1 Transactions and Addresses

Formula 2.2 formally denotes the transaction as a tuple of seven values.

T = (nonce, gasPrice, gasLimit, to, value, signature, init) (2.2)

The fields have the following meaning:

• nonce: it is a counter that indicates the number of transactions sent from
the account. This ensures transactions are only processed once. In a con-
tract account, this number represents the number of contracts created by the
account.

• gasPrice: it represents the amount in Ether to be paid for one unit of Gas
consumed.

• gasLimit: it is the total amount of “EVM work” that the transactions inside
the block can equate to.

• to: It represents the 160-bit address of the message call’s recipient.

2.3. BLOCKCHAIN 33

Figure 2.5: Ethereum can be viewed as a transaction-based state machine.

• value: it is a scalar value equal to the number of Wei to be transferred to the
message call’s recipient or, in the case of contract creation, as an endowment
to the newly created account.

• signature: the identifier of the sender. This is generated when the sender’s
private key signs the transaction and confirms the sender has authorized this
transaction.

• init: it is an unlimited size byte array specifying the EVM-code for the account
initialisation procedure.

Ethereum can be viewed as a transaction-based state machine. An Ethereum
transaction refers to an action initiated by an account. For example, if Bob sends
Alice 1 ETH, Bob’s account must be debited and Alice’s must be credited. This
state-changing action takes place within a transaction. Figure 2.5 depicts a change
to world state via a transaction. A transaction represents a valid arc between two
states.

In essence, a blockchain is a transaction ordering mechanism. These transactions
can describe a transfer of assets (cryptocurrency or other), or an interaction with
a smart contract. Transactions must always be signed by their emitter. They
can be prepared offline and are then broadcasted to the peer-to-peer network that
composes the blockchain. Miners will verify them, before bundling them into a
block. A transaction is refused if its digital signature is invalid, if it conflicts with
the blockchain history, or if it otherwise breaks blockchain rules. Their specific
format is implementation-dependent.

In order to send or be the recipient of transactions, a user must have a blockchain
address. To create an address, a public/private key pair is generated for the user.
The public key is hashed to create the user’s blockchain address. The private key
is used to sign outgoing transactions. One can create as many addresses as they
want. Each new address acts as a new pseudonym. This increases the user’s privacy

34 CHAPTER 2. BACKGROUND

Figure 2.6: Creation of new accounts with associated code (known infor-
mally as “contract creation”).

Figure 2.7: Message call transaction which can update the storage.

by making it more difficult for people to trace their activity. Smart contracts have
addresses that are used to invoke their functions.

There are two practical types of transaction, contract creation and message call.
The “contract creation” changes the world state by adding a new account. The “mes-
sage call” changes the world state by changing the account state. Figures 2.6, 2.7
illustrates the difference between these two types of transactions.

2.3.2 World State

The Ethereum world state is the state of the overall system. The state of all trans-
actions on the blockchain is represented via the “world state”. The world state can
be thought of as a mapping between address (a 160-bit identifiers) and account state

2.3. BLOCKCHAIN 35

Figure 2.8: “World state” as the mapping view and “world state” as the object view.

or a set of account. By using this view the account is an object in the world state
and a mapping between the address and the account state. Figure 2.8 represents
two views of world state: the mapping view and the object view.

The account state, σ[a], is a tuple holding four information: the balance σ[a]b),
the nonce σ[a]n, the storage hash σ[a]s, and the code hash σ[a]c. Formula 2.3
formally denotes the account state.

σ[a] = (σ[a]n, σ[a]b, σ[a]s, σ[a]c) (2.3)

The balance (σ[a]b) is a scalar value equal to the number of Wei owned by the
address a.

The nonce (σ[a]n) is a scalar value equal to the number of transactions sent
from this address or, in the case of accounts with associated code, the number of
contract-creations made by this account. For account of address “a” in state σ, this
would be formally denoted σ[a]n.

The storage hash (σ[a]s) is a 256-bit hash of the root node of a Merkle Patricia
tree that encodes the storage contents of the account (a mapping between 256-bit
integer values), encoded into the trie as a mapping from the Keccak 256-bit hash
of the 256-bit integer keys to the RLP-encoded 256-bit integer values. The hash is
formally denoted σ[a]s.

The code hash (σ[a]c) is hash of the EVM code of this account. This is the code
that gets executed should this address receive a message call; it is immutable and
thus, unlike all other fields, cannot be changed after construction. All such code
fragments are contained in the state database under their corresponding hashes
for later retrieval. This hash is formally denoted σ[a]c, and thus the code may be
denoted as b, given that KEC(b) = σ[a]c.

The account can be divided in two types: the external owned account (EOA) and
the contract account. Figure 2.9 represent the two type of account for the Ethereum
blockchain. The external owned account (EOA) is controlled by a private key and

36 CHAPTER 2. BACKGROUND

Figure 2.9: The external owned account (EOA) is controlled by a private key and
cannot contain EVM code. In contrast, the account contract contains EVM code.

cannot contain EVM code. In contrast, the account contract contains EVM code.
A block is an assembly of ordered transactions. Transactions are collated into

blocks. A block can be thought of as a package of data. From the viewpoint of
the states, Ethereum can be seen as a state chain. Figure 2.10 display as from the
viewpoint of the implementation, Ethereum can also be seen as a chain of blocks,
so it is “blockchain”.

The blockchain is a linked list of confirmed blocks, such that each block Bt

references its immediate predecessor Bt−1, where the subscript indicates the discrete
time index of block confirmation. The only block that does not have a predecessor
is the “genesis” block B0. Thus we can schematically refer to a blockchain as:

B0 ∪B1 ∪ · · ·Bt ∪Bt+1 ∪ · · ·

A block has a finite capacity for recording transactions. Each Ethereum block
has a maximum size, which limits the amount of data that can be included. The
current maximum block size is set at 12.5M Gas, where a Gas is a special unit for
running a transaction or contract in Ethereum. Currently, the maximum block size
is set to 12, 500, 000 Gas. If we consider only transactions of 21, 000 Gas, a block
can contain at maximum 595 transactions.

It is composed of a header, and a body. The body contains the transactions and
a Merkle tree formed by their hashes. The header contains the block’s meta data,
including the root of the Merkle tree.

Blocks are linked together to form a chain. The first block is called the genesis

2.3. BLOCKCHAIN 37

Figure 2.10: Ethereum can be seen as a chain of blocks.

block or block 0. Blocks are identified either by the hash of their header, or by their
height, i.e. the distance between them and the genesis block. The chain is created
by including the hash of block n − 1 in the header of block n. So in Figure 2.10,
block 11′s header contains the hash of block 10 while block 12 contains the hash of
block 11.

Any modification of the content of a block modifies its hash. If an attacker
modifies the block i, its hash no longer equates the value stored within block i+ 1.
One can therefore notice the modification occurred by comparing the two values. To
hide this, the attacker needs to also modify block i+ 1, which would force them to
modify block i+ 2 to replace the now modified hash, and so on, and so forth, until
they reach the most recent block. Blockchains are set up so that producing a valid
block is hard. For each block stacked on top, the task becomes even harder for an
attacker. This is the heart of the tamper-proof nature of the blockchain, along with
its distributed architecture.

A transaction is considered as verified when it has been included in a block.
Because the last few blocks are subject to modification (see Section 2.8.1), users
should wait until a transaction is buried under several blocks before considering it
as definitively integrated into the blockchain. Each new block added to the chain
on top of a given block diminishes the chances that this block will be removed.

2.3.3 Miners

Some nodes in the network dedicate resources to verifying transactions and main-
taining the security of the blockchain. They are called miners. Miners are paid by
block rewards. For each new block, a block reward is awarded to a single miner
or a small group of them. This reward system is the only way new coins can be
created in the system. Transactions can (and usually do) include a transaction fee.
The sum of all of the block’s transaction fees included in a block are added to that
block’s reward.

The specifics of block rewards are implementation-dependent. In Bitcoin for

38 CHAPTER 2. BACKGROUND

instance, the block reward was originally of 50 BTC per block and halves every 210
000 blocks, which take roughly 4 years to mine. At the moment, it is therefore
down to 12.5 BTC per block. Transactions fees supplement this lost in income.
In Ethereum, miners also have to run smart contracts. Users must include a fee
proportional to the difficulty of the operation. Block rewards are only a few ETH,
but blocks are produced every few seconds rather than every 10 minutes.

Miners compete to receive the reward by participating in the consensus proto-
col. The more miners participate, the more overall resources are poured into the
consensus, the harder it is for an individual to single-handedly match that and gain
too much influence over the blockchain.

2.3.4 Forks and Longest Chains

Since the system is decentralized and all parties have an opportunity to create a
new block on some older pre-existing block, the resultant structure is necessarily a
tree of blocks. In order to form a consensus as to which path, from root (the genesis
block) to leaf (the block containing the most recent transactions) through this tree
structure, known as the blockchain, there must be an agreed-upon scheme.

Sometimes, two miners will find a block at roughly the same time. These two
valid blocks have the same parent block and therefore correspond to the same place in
the chain. There is often no logical reason to prefer one over the other. The network
is therefore presented with two alternate but equally valid versions of history. This
is called a fork.

This is where the notion of longest chain comes into play. Rather than a chain,
a blockchain is effectively a tree with the genesis block as its root. Miners only
work on the longest path (or longest chain) from root to leaf and it is the only valid
version of the blockchain history. The definition of longest chain varies with the
blockchain and the consensus protocol it uses. It can simply be the path with the
most blocks, or, for Proof of Work (see Section 2.6.1), additionally take the puzzle
difficulty of each block into account.

Forks are solved over time. When the next block is created, the block it chooses
as its ancestor becomes part of the longest chain and the concurrent blocks are
dropped. This is illustrated in Figure 2.11. Forks occurrence rate and resolution
time depend on the block rate, network size, and consensus protocol.

2.3.5 Ethereum Virtual Machine (EVM)

The EVM handles the computation and state of contracts and is build on a stack-
based language with a predefined set of instructions (opcodes) and corresponding
arguments. So, in essence, a contract is simply a series of opcode statements, which
are sequentially executed by the EVM. The EVM can be thought of as a global
decentralized computer on which all smart contracts run. Although it behaves like
one giant computer, it is rather a network of smaller discrete machines in constant

2.3. BLOCKCHAIN 39

Figure 2.11: Blockchain Fork.

communication. All transactions, handling the execution of smart contracts, are
local on each node of the network and processed in relative synchrony. Each node
validates and groups the transactions sent from users into blocks, and tries to append
them to the blockchain in order to collect an associated reward. This process is called
mining and the participating nodes are called miners. To ensure a proper resource
handling of the EVM, every instruction the EVM executes has a cost associated
with it, measured in units of gas.

2.3.6 Ether

In order to incentivize computation within the blockchain network, there needs to
be an agreed method for transmitting value. To address this issue, Ethereum has
an intrinsic currency, Ether, known also as ETH. Any participant who broadcasts a
transaction request must also offer some amount of Ether to the network, as a bounty
to be awarded to whoever eventually does the work of verifying the transaction,
executing it, committing it to the blockchain, and broadcasting it to the network.

The amount of Ether paid is a function of the length of the computation. This
also prevents malicious participants from intentionally clogging the network by re-
questing the execution of infinite loops or resource-intensive scripts, as these actors
will be continually charged.

The smallest sub denomination of Ether, and thus the one in which all integer
values of the currency are counted, is the Wei. One Ether is defined as being 1018

Wei. Table 2.1 shows the names of the currency used within Ethereum.

The names of the currency used within Ethereum correspond to famous mathe-
maticians who contributed to the invention of the blockchain.

• Wei Dai is a computer engineer who formulated the concepts of all modern
cryptocurrencies, and is best known as the creator of the predecessor to Bit-
coin, B-money.

40 CHAPTER 2. BACKGROUND

Table 2.1: Names of the currency used within Ethereum

Name Unit Wei Value Wei

Wei wei 1 wei 1
Babbage Kwei 103 wei 1,000
Lovelace Mwei 106 wei 1,000,000
Shannon Gwei 109 wei 1,000,000,000
Szabo microEther 1012 wei 1,000,000,000,000
Finney milliEther 1015 wei 1,000,000,000,000,000
Ether Eher 1018 wei 1,000,000,000,000,000,000

• Charles Babbage was a mathematician, philosopher, inventor, and mechanical
engineer who designed the first automatic computing engines.

• Ada Lovelace was a mathematician, writer, and computer programmer; she
published the first algorithm.

• Claude Shannon was an American mathematician, cryptographer, and crypto-
analysis guru, who is known as “the father of information theory”.

• Nick Szabo computer scientist, legal scholar, and cryptographer known for his
pioneering research in digital contracts and digital currency.

• Hal Finney, a computer scientist, and cryptographer; he was one of the early
developers of Bitcoin, and alleged to be the first human to receive a bitcoin
from Satoshi Nakamoto, the named founder of Bitcoin.

Gas refers to the unit that measures the amount of computational effort required
to execute specific operations on the Ethereum network. Since each Ethereum trans-
action requires computational resources to execute, each transaction requires a fee.
Gas refers to the fee required to successfully conduct a transaction on Ethereum.
The Gas fees are paid in Ethereum’s native currency, ether (ETH). Gas prices are
denoted in GWei, which itself is a denomination of ETH; each Gwei is equal to
0.000000001 ETH (10−9 ETH).

By requiring a fee for every computation executed on the network, the Ethreum
blockchian prevents users from spamming the network. In order to prevent acciden-
tal or hostile infinite loops or other computational wastage in code, each transaction
is required to set a limit to how many computational steps of code execution it
can use. The fundamental unit of computation is “Gas”. Although a transaction
includes a limit, any gas not used in a transaction is returned to the user.

The Gas limit refers to the maximum amount of Gas a user is willing to consume
on a transaction. A higher Gas limit means more computational work can be done
while interacting with smart contracts. A standard ETH transfer requires a gas
limit of 21, 000 units of gas.

For instance if a user set a Gas limit of 91, 000 for a simple ETH transfer, the
EVM would consume 21, 000, and the user would get back the remaining 70, 000.

2.4. SMART CONTRACT 41

However, if a user specifies too little Gas say for example, a gas limit of 20, 000 for a
simple ETH transfer, the EVM will consume 20, 000 Gas units attempting to fulfill
the transaction, but it will not complete. The EVM then reverts any changes, but
since 20, 000 Gas units worth of work has already been done by the miner, that Gas
is lost by the user.

Table 2.2 shows the Gas cost of some smart contract operations in Ethereum
blockchain.

Table 2.2: Gas cost of some smart contract operations in Ethereum blockchain.

Operation Gas Description

ADD/SUB 3
Arithmetic operationMUL/DIV 5

ADDMOD/MULMOD 8

AND/OR/XOR 3 Bitwise logic operation
LT/GT/SLT/SGT/EQ 3 Comparison operation

POP 2
Stack operation

PUSH/DUP/SWAP 3

JUMP 8 Unconditional jump
JUMPI 10 Conditional jump

SLOAD 200
Storage operation

SSTORE 5000 or 20000

2.3.7 Memory-Pool

The Memory-Pool is the name given to the set of valid transactions that the miner
is aware of but that have not yet been included in a block. Valid transactions sent
to an Ethereum node should enter the Memory-Pool. But there’s not actually a
single Memory-Pool. Rather, each node has its own Memory-Pool that attempts to
remain synchronized with other nodes (peers) over the Ethereum network. Since
network communication is not always reliable or timely, each node has a slightly
(or sometimes significantly) different Memory-Pool. Also, nodes have different rules
about which transactions they accept (e.g. minimum gas price and Memory-Pool
size limits).

Ideally transactions leave a node’s mempool because they are included in a block.
But they can also leave because they are replaced via a speedup/cancel, or dropped
due to the node’s mempool configuration.

2.4 Smart Contract

A smart contract is a digitally signed, computable agreement between two or more
parties. A virtual third party, a software agent, can execute and enforce (at least
some of) the terms of such agreements. In the context of the blockchain, where it

42 CHAPTER 2. BACKGROUND

truly takes it sense, a smart-contract is an event-driven program, with state, that
runs on a replicated, shared ledger and which can take custody over assets on that
ledger. smart contracts on the blockchain, created by computer programmers, are
entirely digital and written using programming code languages. This code defines
the rules and consequences in the same way that a traditional legal document would,
stating the obligations, benefits and penalties, which may be due to either party in
various different circumstances. The big difference is that this code is automatically
executed by a distributed ledger system, in a non-repudiable and unbreakable way.
Smart contract code has some unique characteristics:

• Deterministic: Since a smart contract code is executed on multiple distributed
nodes simultaneously, it needs to be deterministic i.e. given an input; all nodes
should produce the same output. That implies the smart contract code should
not have any randomness; it should be independent of time (within a small
time window because the code might get executed a slightly different time
in each of the nodes); and it should be possible to execute the code multiple
times.

• Immutable: smart contract code is immutable. This means that once deployed,
it cannot be changed. This of course is beneficial from the trust perspective
but it also raises some challenges (e.g. how to fix a code bug) and implies that
smart contract code requires additional due diligence/governance.

• Verifiable: Once deployed, smart contract code gets a unique address. Before
using the smart contract, interested parties can and should view or verify the
code.

2.4.1 Programming Languages for Smart Contracts

Although ultimately all Ethereum smart contracts are deployed as EVM bytecode,
the bytecode is rarely directly written. The most popular programming language
Solidity (?) has a rich syntax but no specification. The only definition of Solidity is
the Solidity compiler implementation, which compiles Solidity programs into EVM
bytecode. The Solidity compiler is written in C++.

Because smart contracts work like computer programs, it is very important that
they do exactly what the parties want them to do. This is achieved by inputting
the proper logic when writing a smart contract. The code behaves in predefined
ways and does not have the linguistic nuances of human languages, thus, it has now
automated the “if this happens then do that” part of traditional contracts.

2.4.2 Solidity Grammar

A programming language is a set of commands, strings of characters that is both
readable by programmers and automatically translatable into machine code. It has

2.4. SMART CONTRACT 43

grammar and semantic rules. The grammar is a set of rules that define how the
commands have to be arranged to make sense and to be correctly translated to the
machine code. Semantics is a set of meanings assigned to every command of the
language and it is used to correctly translate the program to machine code (??).

Figure 18 shows a piece of Solidity grammar according to the ANTLR (AN-
other Tool for Language Recognition) rules. Each ANTLR rule consists of a name,
followed by a colon, followed by its definition, and terminated by a semicolon. The
“sourceUnit” symbol is the entry node of the grammar. Nonterminal nodes in
ANTLR have to be lowercase. Terminal nodes have capitalized names, like EOF
(end-of-file). EOF is a special terminal node, defined by ANTLR, meaning the end
of the input. In particular, it stands for the end of the file, even though the input
may also come from a string or a network connection rather than just from a single
file.

The symbol “|” represents the alternation operator, the symbol “*” is the rep-
etition operator, and parentheses are used for grouping, in the same way we have
been using for a natural language grammar reading. Optional parts can be marked
with the symbol “?”. In ANTLR, terminal nodes can be defined using regular ex-
pressions, but fixed strings are not permitted. For example, here are some Terminal
patterns used in the Solidity grammar written in ANTLR syntax and with ANTLR
naming convention: COMMENT → “/*” “.*?” “*/”.

The Solidity grammar definition is available at this web site. 1

1 grammar S o l i d i t y ;
2
3 sourceUnit
4 : (pragmaDirect ive | impor tD i r ec t i ve | c o n t r a c t D e f i n i t i o n) ∗

EOF ;
5
6 . . .
7
8 f u n c t i o n D e f i n i t i o n
9 : natSpec ? ' f unc t i on ' i d e n t i f i e r ? parameterLis t m o d i f i e r L i s t

returnParameters ? (' ; ' | block) ;
10
11 returnParameters
12 : ' r e tu rn s ' parameterLis t ;
13
14 m o d i f i e r L i s t
15 : (mod i f i e r Invoca t i on | s t a t e Mu ta b i l i t y | ExternalKeyword
16 | PublicKeyword | InternalKeyword | PrivateKeyword) ∗ ;

Listing 2.1: This code shows how the Solidity grammar looks like as an ANTLR
source file

1https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4

44 CHAPTER 2. BACKGROUND

2.5 Blockchain Oracles

Blockchain oracles are trusted entities which sign claims about the state of the world.
The general function of a blockchain oracle is similar to those that exist in mythology.
They were the source of information that was beyond peoples’ comprehension. In
the same vein, blockchains do not have direct access to information residing outside
the chain. Because of this, there is no discernible method of validation for the
conditions that smart contracts draw from.

Oracles provide the data that is necessary for triggering smart contracts to ex-
ecute upon the meeting of the original terms. The association of these conditions
with smart contracts can be a variety of things. These include temperature, the
completion of payment, changes in price, and numerous others. Basically, oracles
are what allow smart contracts to interact with external data. This data comes
from software (big-data application) and hardware (Internet-of-Things). As previ-
ously mentioned, the conditions can be any data, however, the smart contract does
not wait for external data to go into the system. Instead, the contract needs to be
enforced, meaning one must spend network resources for calling external data. This
consequently activates network transaction costs. When it comes to Ethereum, this
is “Gas”.

2.5.1 Gas Oracles

Ethereum uses the concept of “Gas” to discourage over-consumption of resources
(e.g., a contract program that causes miners to loop forever). The user who creates
a transaction must spend currency to purchase Gas. During the execution of a
transaction, every program instruction consumes some amount of Gas. If the gas
runs out before the transaction reaches an ordinary stopping point, it is treated as
an exception: the state is reverted as though the transaction had no effect, but the
Ether used to purchase the Gas is not refunded. When one contract sends a message
to another, the sender can offer only a portion of its available gas to the recipient.
If the recipient runs out of Gas, the control returns to the sender, who can use its
remaining Gas to handle the exception.

Chapter 3

Blockchain Models to Design
Tools for Expert Users

3.1 Introduction

In the previous chapter, we presented the background information on the blockchain
technology used to design and develop the models and tools presented in this disser-
tation. This chapter is focused on the design and development of blockchain-based
applications for expert users.

Based on market studies (??) and academic research (???), expert users expect
to develop high-quality, defect-free, and maintainable software, when interacting
with a new technology. Expert users are therefore interested in specific applications
that can fit their interests and foster their work. They indeed need applications
specific for users with an expertise in software development to increase their pro-
ductivity, improve the quality of their application, and make the source code of the
application easier to maintain (?). In other words, the expert users expect applica-
tions that facilitate their tasks and make the software development more accessible
and satisfying. (??).

Among the tools dedicated to expert users, there are those specifically created
to analyze the code and software requirements specification for correctness, per-
formance, complexity and modularity (???). The Ethereum blockchain is quite
recent when compared to other technologies, such as the web. This implies that
there are not so many tools to help the developers to build applications within the
blockchain technology. Furthermore, bugs in deployed smart contracts can cause
severe economic loss (??). For instance, in June 2016, a user exploited a software
vulnerability and drained millions of Ether – with a theoretical value in tens mil-
lions of dollars (?). A wallet identified by the community members as the recipient
of the stolen funds contains over 3.5 million Ether tokens. At an exchange rate of
about 2, 500USD per unit, the economic scam was worth about 50 million dollars.
In an open letter to the Ethereum community, the user claimed that he did nothing

46 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

illegal, he was only “making use of this explicitly coded feature as per the smart
contract terms”. smart contracts are indeed prone to human misuse, and although
they are potentially immune to mistakes in legal terminology and drafting, they are
still vulnerable to coding errors (?). This vulnerability needs to be addressed by
new blockchain-based applications (?).

When considering the World Wide Web (WWW) in the early years (1990-2000),
there were not so many tools to help software developers to build web applica-
tions (?). The integrated development environments (IDE), i.e., the software appli-
cation that provides comprehensive facilities to computer programmers for software
development, were very primitive compared to the one used today. Part of my re-
search work has been devoted to design and develop tools that could help developers
to write better smart contracts. This research allowed me to develop two applica-
tions aimed at expert users, namely PASO 3.2 and Smart-Corpus 3.3. Based on
the Smart-corspus, the dissertation also proposes an empirical study of source code
clone practice in smart contract 3.4.

The chapter is organized as follows. Section 3.2 presents PASO, which is a web-
based tool supporting static code analysis. PASO performs static code analysis of
Solidity, the most used programming language to write smart contracts. PASO dif-
fers from the existing applications because, just using a web browser, it is able to
provide the expert users with software metrics values for smart contracts written
in Solidity. Section 3.3 presents Smart-Corpus, which is an organized repository
of the Ethereum smart contracts’ source codes and metrics (?). It is aimed at ex-
pert users, especially as academic researchers, who analyze smart contracts’ code to
improve the blockchain security, to find design defects and propose solutions. Sec-
tion 3.4 presents an empirical study of code clones in Solidity. The empirical study
of code clones in Solidity is based on the Smart-Corpus and it is aimed to improve
expert users’ practices in developing smart contracts. Finally, the advantages and
the disadvantages of code duplication are discussed, and some “best practices” are
proposed to expert users to develop secure smart contracts.

3.2 PASO

3.2.1 Introduction

The main motivation of this work was to overcome the lack of web based tools
supporting static code analysis of Solidity programming language. On the one hand,
static analysis tools are very important because they can help developers to find
bugs, or software defects, faster and cheaper than manual inspections. On the other
hand, the main challenge is that Solidity is at a very early stage and is changing
very fast. So the tool to analyze Solidity need to be updated very frequently.

The outline of this research work is the following: Section 3.2.2 reviews the
related work on blockchain analysis platforms. Section 3.2.3 presents the hypothesis

3.2. PASO 47

of the work. Section 3.2.4 presents the general components of the online tool PASO
and the approach we embraced to define the metrics. Section 3.2.5 describes the
threats to validity for the research. Finally, in Section 4.4.9, we make our final
remarks and draw some conclusion.

3.2.2 Related Work

At the date hereof, a web-based and updatable tools to measure source code metrics
of Solidity smart contract do not exist yet. For the most popular programming
languages, such as C++, C#, Java, Python, PHP and JavaScript, there are instead
a lot of web-based tools to perform static code analysis (?????). JSHint 1, for
example, is a Static Code Analysis Tool for JavaScript programming langauge that
detects errors and potential problems in JavaScript code.

For what regards Solidity there are only standalone applications. SolHint 2 is
a command-line tool to analyse the Solidity code for potential errors. It also pro-
vides both security and style guide validations. Pharo Solidity Parser uses SmaCC
(Smalltalk Compiler-Compiler) and relies on Solidity grammar specification to build
a parser that can be used to measure metrics for smart contract written in Solid-
ity (?).

Zhang et al. (?) proposed metrics for measuring the Web Ontology Language
(OWL). Although the OWL language is different from Solidity, the underlying con-
cepts are similar. The paper (?) is also inspired by the concept of software metrics.
The proposed metrics were analytically evaluated against Weyuker’s criteria (?). It
also performed empirical analysis on public domain ontologies to show the charac-
teristics and usefulness of the metrics.

3.2.3 Motivation

The Solidity language grammar definition changes very often and, consequently,
the tools to measure the software metrics needs to be updated very frequently.
Every time a new version of the Solidity program language is released, the existing
standalone applications need to be updated accordingly from both the authors’ and
the end users’ perspectives. This extra work, from the end-user point of view,
could be avoided by using a web-based tool, which requires to be updated just by
refreshing the web page. Of course also the engine behind the computation needs
to be updated according to the new Solidity release. The PASO tool, presented in
this section, accomplishes to all these requirements. A practical option, which is
implemented in PASO, is the idea to have all components on the client side with
no need to have a server. This solution has the advantage that there is no need
to have any server to maintain and manage. What is needed to run the program

1https://jshint.com/about/
2https://protofire.github.io/solhint/

48 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

is just a web browser, which is installed in every operating system. In addition,
PASO has offline functionality, i.e. it can work completely offline once all the PASO
components, coded in CSS, HTML and JavaScript, have been downloaded.

3.2.4 PASO Components

PASO is available and can be tested at this link. 3

The main components needed to build and run PASO are:

• Solidity Grammar,

• PASO Parser,

• PASO Metrics,

• PASO GUI (Graphical User Interface).

The following sections give a general definition for each main component for a
better understanding of the work made to realize the tool PASO.

Solidity Grammar

A programming language is a set of commands, strings of characters readable by
programmers but easy to translate to machine code. It has grammar and semantic
rules. The grammar is a set of rules that define how the commands have to be ar-
ranged to make sense and to be correctly translated to the machine code. Semantics
is a set of meanings assigned to every command of the language and it is used to
correctly translate the program to machine code (?).

Figure 18 shows a piece of Solidity grammar according to the ANTLR rules.
Each ANTLR rule consists of a name, followed by a colon, followed by its definition,
and terminated by a semicolon. The “sourceUnit” symbol is the entry node of the
grammar. Nonterminal nodes in ANTLR have to be lowercase. Terminal nodes have
capitalized names, like EOF. EOF is a special terminal node, defined by ANTLR,
meaning the end of the input. In particular, it stands for the end of the file, even
though the input may also come from a string or a network connection rather than
just from a single file.

The symbol “|” represents the alternation operator, the symbol “*” is the rep-
etition operator, and parentheses are used for grouping, in the same way we have
been using for a natural language grammar reading. Optional parts can be marked
with the symbol “?”. In ANTLR, Terminal nodes can be defined using regular ex-
pressions, but fixed strings are not permitted. For example, here are some Terminal
patterns used in the Solidity grammar written in ANTLR syntax and with ANTLR
naming convention: COMMENT → “/*” “.*?” “*/”.

The Solidity grammar definition is available at this web site. 4

3https://aphd.github.io/paso/
4https://github.com/solidityj/solidity-antlr4/blob/master/Solidity.g4

3.2. PASO 49

1 grammar S o l i d i t y ;
2
3 sourceUnit
4 : (pragmaDirect ive | impor tD i r ec t i ve | c o n t r a c t D e f i n i t i o n) ∗

EOF ;
5
6 . . .
7
8 f u n c t i o n D e f i n i t i o n
9 : natSpec ? ' f unc t i on ' i d e n t i f i e r ? parameterLis t m o d i f i e r L i s t

returnParameters ? (' ; ' | block) ;
10
11 returnParameters
12 : ' r e tu rn s ' parameterLis t ;
13
14 m o d i f i e r L i s t
15 : (mod i f i e r Invoca t i on | s t a t e Mu ta b i l i t y | ExternalKeyword
16 | PublicKeyword | InternalKeyword | PrivateKeyword) ∗ ;

Listing 3.1: This code shows how the Solidity grammar looks like as an ANTLR
source file

PASO Parser

The PASO Parser is generated from a Parser Generator. Figure 3.1 shows the
input and the output of a Parser Generator. A parser generator is an application
which generates a parser: it takes the Solidity grammar as input and automatically
generates a source code named Parser. The parser is a function that takes the
sequence of characters of a smart contract as input, attempts to match the sequence
with the grammar and produces a parse tree as output. Figure 3.2 shows the input
and the output of the PASO Parser.

Figure 3.1: The Parser Generator takes a file containing the Solidity grammar rules.
It produces a PASO Parser, i.e. a parser in JavaScript computer language that can
be run in a client browser.

A parse tree or parsing tree is an ordered, rooted tree that represents the syntactic
structure of the source code according to the grammar. The root of the parse tree is

50 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

the starting Nonterminal node of the grammar. In a parse tree, a Nonterminal node
is a node of the parse tree which is either a root or a branch of the tree, whereas a
Terminal node is a node of the parse tree which is a leaf.

There are different parser generator applications for various programming lan-
guages. To the aims of this work, it is necessary to use a Parser Generator that
can generate a Parser in a client-side scripting language, like JavaScript. Among
the different Parser Generators, we chose ANTLR4 (ANother Tool for Language
Recognition), precisely because it can produce a Parser in JavaScript programming
language that can run on the client part together with the GUI part.

Figure 3.2: Example of input and output of the PASO Parser.

PASO Metrics

In software engineering software metrics has been defined and used to measure soft-
ware quality and, more in general, to qualify software under the principle “You
Can’t Manage What You Don’t Measure”. Code metrics can be used to detect any
characteristic in the source code that possibly indicates a major problem of the code.
They therefore act as a useful alert to detect a problem and improve the overall de-
sign of the code. An example of problem to detect is duplicated code, i.e. identical
or very similar code which exists in one or more parts of the program (??). Code
metrics can also be used to identify functions or a smart contracts formed by many
lines of code (LOC), or to measure the Cyclomatic complexity, i.e. the existence of
too many branches or loops. A high value of Cyclomatic complexity metric or/and
the LOC metric may indeed indicate that a function needs to be broken into smaller
functions, or that it can be simplified (??).

Many object-oriented metrics have been proposed over the last decade (?) and
most of the metrics used in the tool are derived from “C&K” metrics. C&K metrics
were proposed by Chidamber and Kemerer in 1991 for object-oriented software (?)
and details of them can be found in (?). The metrics discussed in this work include
C&K metrics and add further metrics. The overall set of metrics displayed in the
PASO tool are therefore divided into two categories: 1) Object oriented metrics

3.2. PASO 51

used to measure properties of object oriented programming languages, such as java,
smalltalk, C++ (?) 2) Solidity metrics, which are specific for Solidity programming
language. PASO displays some of the metrics taken from the two categories 3.3

Figure 3.3: The two ovals respectively represent the set of Object oriented metrics
(on the left) and the set of metrics that are specific to Solidity Language (on the
right).

Object Oriented Metrics

In the previous literature, static code analysis tools generate metrics for OOP (object
oriented programming) languages. Some of the most used metrics are: 1) the number
of code lines, 2) coupling, i.e. the number of connections a file or a class has to other
files or classes, 3) the number of arguments for a function, etc. Table 3.1 lists the
most used metrics in the scientific literature which are implemented in PASO tool.

Solidity Metrics

Solidity programming language has some peculiarities that makes it unique when
compared to other programming languages (?).

Table 3.2 lists the metrics that it is possible to obtain by parsing the smart
contract code with the PASO tool. These metrics are defined only for Solidity
programming languages.

52 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

Table 3.1: Some object oriented metrics

Metric
name

Description

CBO

Coupling between object classes. The coupling between object classes met-
ric in the OO paradigm measures the number of classes that the actual class
is connected to (by using the class as an attribute type, method parameter
or return value, etc.).

CP Comment percentage.

DIT
Depth of inheritance tree. The depth of inheritance metric measures how
deep a class, library or interface is in the inheritance tree.

LOC
It indicates the number of lines in the code. A high number might indicate
that a contract is trying to do too much work and should be split up. It
might also indicate that the contract or method is hard to maintain.

Methods
Number of Methods. Contracts with too many methods may be trying to
do too much, or in any case may be more difficult to maintain.

NA Number of state variables.

NL
The nesting level metric denotes the sum of the deepest nesting level of
the control structures within the functions of a class, library or interface.

NOS
Number of statements. The number of statements metric counts how many
statements there are in a class, library or interface.

NOA
Number of ancestors. The number of ancestors metric counts all the dif-
ferent direct or transitive ancestors of a class, library or interface.

NOD
Number of descendants. The number of descendants metric measures how
many different direct or transitive descendants a class, library or interface
has.

NOI
Number of outgoing invocations (i.e. fan-out). The number of outgoing
invocations metric measures how many different functions are called from
a function in a class or library.

NUMPARNumber of parameters. It counts how many parameters a function has.

WMC
Weighted Methods per Class (WMC) is an object-oriented metric to mea-
sure complexity in a class.

3.2. PASO 53

Table 3.2: Some Solidity Metrics

Metric
name

Description

Payable The number of Payable Functions.

Mappings
The number of Mapping types. Mappings, in Solidity pro-
gramming language, can be seen as hash tables.

Modifiers The number of Function Modifiers.

Addresses The number of addresses.

Events The number of Events.

Contracts The number of Contracts.

ABI The size of the ABI (Application Binary Interface).

Bytecode The size of the Bytecode.

PASO GUI

The PASO GUI is the PASO component that allows users to interact with the PASO
Parser. The GUI (Fig. 3.11) is divided into two sections: 1) a textarea where the
user can write or paste the smart contract or several smart contracts, 2) a section
for results where the user can see the values of the metrics displayed. Figure 3.11
presents the two sections: the textarea is shown on the left (Fig. 3.4), while on the
right some metrics value are shown (Fig. 3.5), corresponding to the smart contract
written in the textarea.

3.2.5 Limitation

Studying the quality of a software might be a difficult, often subjective process.
Having some metrics value that measure an application’s source code provides a
useful starting point to improve the existing code. Static code analysis tools such as
PASO can spot many different kinds of mistakes, but cannot detect if the Solidity
smart contract produces the correct system behavior. A solidity software developer
should always combine tools like PASO with unit and functional tests as well as with
code reviews. Indeed, PASO can check the correctness of the grammar written by the
programmer and compute the associated metrics, but cannot understand whether
the meanings assigned by the programmer are coherent, i.e. actually correspond to

54 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

Figure 3.4: PASO GUI Textarea.

Figure 3.5: PASO GUI Metrics.

Figure 3.6: PASO GUI. Figure 3.4 shows the textarea where the user can write or
paste the smart contract or several smart contracts. Figure 3.5 shows some metrics
value corresponding to the smart contract written in the textarea.

3.2. PASO 55

what the programmer wanted to achieve.
The PASO tool is limited in the interface design. For instance, it displays the

metrics value in numerical form. An improvement of the tool could be the visual-
ization of metrics by using a treemap, as for example in the work by Balzer (?).
PASO is also limited in the number of metrics it computes but is structured to
be easily updated, also accordingly to the eventual future evolution of the Solidity
EVM. Example of missing metrics in the PASO tool are: 1) the coupling metric
that describes the number of connections a file or a contract has to other files or
contracts, and 2) The Cyclomatic Complexity of a function. However, thanks to a
modular design, it can be used as a basis for a richer implementation that gives more
precise information to the developer and a more user-friendly graphical interface to
the user.

3.2.6 Conclusion and Future Work

The work presents a fully web-based tool able to compute the smart contract met-
rics. The goal has been achieved by using the ANTLR (ANother Tool for Language
Recognition) parser generator. We gave the Solidity grammar as an input to the
ANTLR Parser Generator, which has been used to create a JavaScript Parser. Fi-
nally we wrote the Solidity Code in the PASO GUI textarea, thus giving it as an
input to the JavaScript Parser, which calculated and displayed the metrics values
on the screen. Before implementing PASO, there were only standalone applica-
tions, such as Pharo Solidity Parser and SolMet, which have allowed to parse and
to generate metrics for a smart contract written in Solidity program language. The
research assessed the hypothesis that it is possible to build a completely web-based
tool, PASO, able to achieve at least the same results of the previous standalone
applications. The main advantage of having such web-based tool - when compared
to the previous ones - are: 1) users have no need to install a third-party software,
like Java or Smalltalk Pharo, 2) PASO is able to cope in a more efficient way with
the countless updates of Solidity programming language: by using PASO, there is
no need to update the standalone application, it is only needed to update the web
page.

The number of metrics discussed in the work are just a few: a complete list of
metrics to be implemented in the PASO tool would indeed require more in-depth
research that can be developed in future works. The aim of the present research
was indeed limited to test the hypothesis that it is possible to build a fully and
updatable web based tool to compute the metrics value of a smart contract written
in Solidity without installing any tools on users’ local computer. At the time of
writing (December 2019), PASO is the only fully web-based tool that allows to parse
and to generate metrics for a smart contract written in Solidity program language.
It represents a starting point for a future richer implementation, able to give more
relevant information to the developers and a more user-friendly graphical interface
to the user.

56 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

3.3 Smart-Corpus

3.3.1 Introduction

With the advent of blockchain technology as a mainstream technological innova-
tion, many researchers and software developers started investigating the new possi-
bilities for software products relying on such an infrastructure. Second-generation
blockchains offer the possibility to code so-called smart contracts in a Turing com-
plete programming language on which all the main operations of traditional software
systems can be carried out. The paradigmatic reference is the Ethereum blockchain,
which offers the possibility to deploy and execute decentralized applications (dApps)
which are mainly coded in Solidity, presently the most adopted programming lan-
guage (?).

Coding smart contracts which run in a blockchain environment has its peculiari-
ties and constraints and differs from coding in traditional out-of-chain contexts. One
of the major differences is the immutability of deployed code: if bugs or bad smells
are introduced into a smart contract, these cannot be fixed afterwards with patches.
Another contract must be deployed in substitution of the former and users must
be well advised not to use the wrong code. Another main issue is the interaction
with the blockchain by means of transactions where information exchange can occur
only between blockchain internal components. Furthermore, memory occupation on
blockchain typically has a cost that developers want to reduce, and chaining all the
blocks poses limitations to the reasonable space available for each smart contract
imposing practical constraints to source code size.

This new programming paradigm poses major challenges also for expert devel-
opers, and famous failures are commonly found in blockchain software (??). The
novelty of the paradigm largely contributes to these faults, since developers do not
have historical records or examples to learn from previous code, as it happens in
traditional software coding, where software reuse and coding by imitation are ref-
erence practices to help in coding better-quality software. Another issue is the lack
of reference measures, such as quality, complexity or coupling metrics, which are
extensively used in out-of-chain software production to keep software projects under
control (?).

The situation is slowly changing for historical records (even if history is quite
recent) of software code, since the Ethereum blockchain can now count on up to
1.5 million deployed smart contracts, which have been used and run in the last few
years. Access to the source code of this body of smart contracts is still a challenge
since transparency and open access granted by public blockchains regards only data
registered in the blocks, where only contracts’ byte codes are available.

To access the smart contracts’ source codes, the developers must resort to other
means or to code repositories, such as the classical GitHub or similar resources. For-
tunately, in the last few years, EtherScan (https://etherscan.io/) and other web
sites have started providing smart-contract checking as a service, so that Ethereum

https://etherscan.io/

3.3. SMART-CORPUS 57

developers can submit their source code to be analyzed and the source code is made
available afterwards by the website. However, there is an odd side of the medal for
many reasons: access to this body of knowledge is far from easy and far from fast;
it is not structured and organized; and the smart-contract metrics are not available
and must be computed separately. All these tasks can and need to be automatized
to save developers time and work as well as computational resources. Indeed, in
the last few years, a number of research papers have been published reporting find-
ings based on smart contracts’ source codes, mined from GitHub or some Ethereum
block explorer such as EtherScan (????). However, when conducting this kind of
empirical research on smart contracts with data from Ethereum blockchain, the
abovementioned tasks need to be carried out by the developers themselves. The
first task is downloading the smart contracts’ source codes to be analyzed. One way
to download smart contracts’ source code data is to inspect open-source software
(OSS) project repositories such as GitHub (?).

Another way to perform this task is to use an Ethereum block explorer. These
web services allow users to find the desired information by directly accessing the
Ethereum blocks, by using a unique identifier or by sequentially searching several
blocks (?). Some of these Ethereum block explorers provide RESTful Web services,
which allow the users to obtain a JSON format payload containing various data.
These data may be related to a current or past state of the Ethereum blockchain:
an example may be the list of transaction addresses included in a given block of the
Ethereum blockchain. This activity might be tedious and time-consuming (?) when
conducted by a single user/developer/researcher. Furthermore, the obtained smart
contracts’ data set can consist of duplicated smart contracts, i.e., smart contracts
having different addresses but the same code.

In this work, we tackle these problems and propose an organized, easy to use,
large and available software repository for Ethereum smart-contract source codes
and metrics where users, researchers, blockchain startups and developers can take
advantage of the body of knowledge collected during the last few years. This sec-
tion thus proposes Smart Corpus, a repository that provides users with an in-
terface which allows for searching for and downloading smart contracts’ source
codes. The user interface is available at the following online address: https:

//aphd.github.io/smac-corpus/. The main challenge of the implementation lies
in the fact that the Ethereum blockchain stores a massive amount of heterogeneous
data, smart contracts included, which grow enormously in time. For this reason,
Smart Corpus was designed to be scalable by adopting the latest cutting-edge tech-
nology, such as document-oriented database, graph query language and serverless
computing platform (?).

https://aphd.github.io/smac-corpus/
https://aphd.github.io/smac-corpus/

58 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

Related Work

Previous Literature on Software Corpus Analysis

Gabel and Su (?) built and studied a corpus of open-source software written in
three of the most widely used languages: C, C++, and Java. The corpus contains
six thousand software projects corresponding to 430 million lines of source code. The
authors measured the degree to which each project of the corpus can be “assembled”
solely from portions of the corpus, thus providing a precise measure of “uniqueness”.
Their primary contribution is to provide a quantitative answer to the following
question: how unique is software? Our work also aims to answer this question
because many smart contracts written in the Solidity language have code that is a
replication of other smart contracts, although presenting different addresses, as we
will see in Section 3.3.2. Our goal is therefore to answer the question: how unique are
smart contracts written in Solidity? in order to provide a corpus that is composed
of smart contracts which can be distinguished from each other.

Tempero and coauthors (?) presented the “Qualitas Corpus”, a curated col-
lection of open-source Java systems. The corpus reduced the time needed to find,
collect and organize the necessary source code sets to the time needed to download
the corpus. The metadata provided with the corpus explicitly indicate the metrics
calculated to identify the main features of the source code: the number of code lines,
the number of classes, etc. Our work also aims to present a curated collection of
smart contracts equipped with a set of metadata with the aim of allowing experts
in the blockchain field to perform static analysis.

Static Analysis on Smart-Contract Code

There is a number of scientific publications with the objective of analysing smart
contracts’ source codes and testifying to the scientific community’s interest in ad-
vancing the knowledge on the characteristics of smart contracts’ code structure.

Hegedus (?) developed a metric calculator for Solidity code, inspired by the
work by Tonelli and collaborators (?). The metric calculator uses a parser to
generate an abstract syntax tree (AST), on which it computes various software
metrics, such as the number of code lines for each smart contract, the cyclo-
matic complexity, the number of functions and the number of parameters for each
function. This command-line tool is written in Java and is available on GitHub
without license indication since February 2018 (https://github.com/chicxurug/
SolMet-Solidity-parser). By using this tool, he calculated and published soft-
ware metrics results for 10,206 Solidity smart-contract source code files written in
Solidity languages. Our work also aims to calculate a set of metadata on the smart-
contract corpus by using a similar software.

Pinna and colleagues (?) performed a static analysis on 10,174 smart contracts,
deployed in the Ethereum blockchain. The authors showed that some metrics re-
lated to smart contracts, such as the number of transactions and the balances, follow

https://github.com/chicxurug/SolMet-Solidity-parser
https://github.com/chicxurug/SolMet-Solidity-parser

3.3. SMART-CORPUS 59

power-law distributions. Also, they reported that software code metrics in Solidity
have (on average) lower values but higher variance than metrics values in other pro-
gramming languages for standard softwares. Our work is inspired by their research
as Smart Corpus is characterized by (some of) the metrics they defined, as we will
explain in Section 4.3.4.

Pierro and Tonelli (?) pointed out that even the most experienced users, as
software developers of smart contracts are, need to be helped to analyse smart con-
tracts and to write a more reliable and secure code. For this reason, an open-source
platform (https://aphd.github.io/paso/), called PASO, was proposed as an aid
for experts in smart contracts’ static analyses. Their work focused on Ethereum
blockchain and smart contracts written in Solidity. The platform PASO facilitates
debugging of smart contracts by providing software metrics commonly used to com-
ply with coding guidelines.

Related Projects

Other projects similar to Smart Corpus have been previously developed to access
online smart contracts’ codes deployed in the Ethereum blockchain platform. The
projects present specific features and limitations, which are summarized in Table 3.3.

Table 3.3: Project list, main features and limitations.

Project’s Name Home Page REST API URL Limitations

GitHub https://github.com/ https://developer.git... Some repos-
itories have
restricted ac-
cess.

Ethplorer https://ethplorer.io/ https://api.ethplorer... Requests are
limited to
3000/week.

EtherScan https://etherscan.io/ https://ethers... Smart contracts’
addresses are
not immediately
available.

EtherChain https://www.etherch... https://www.ethe... Smart contracts’
source codes are
not available.

BlockScout https://blocksco... https://blockscout... Smart contracts’
source codes are
not available.

https://aphd.github.io/paso/
https://github.com/
https://docs.github.com/en/free-pro-team@latest/graphql
https://ethplorer.io/
https://api.ethplorer.io/getAddressInfo/0xff71cb760666ab06aa73f34995b42dd4b85ea07b?apiKey=freekey
https://etherscan.io/
https://etherscan.io/apis
https://www.etherchain.org/
https://www.etherchain.org/api/gasPriceOracle
https://blockscout.com/
https://blockscout.com/eth/mainnet/api_docs

60 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

GitHub

GitHub is the largest collaborative source code-hosting site built on top of the Git
version control system (?). The availability of a comprehensive Application Pro-
gramming Interface (API) has made GitHub a target for many software engineering
and online collaboration research efforts (?). GitHub offers just open-source soft-
ware to the community. In GitHub, there are many works regarding projects written
in different programming languages, such as Java, Python and Solidity, which is by
far the most commonly used language to write smart contracts.

The repository proposed in this work overcomes the following GitHub limitations:

• The smart-contract source codes collected in GitHub typically do not have
a direct reference to smart contracts deployed on the blockchain through an
Ethereum address; therefore, it is hard to find out whether it has been really
tested or used on the blockchain.

• GitHub does not implement a search engine to filter smart contracts based
on particular software metrics, such as the number of modifiers or payables.
This is due to the fact that some metrics are specific to the type of language
employed to write smart contracts, i.e., Solidity.

• In GitHub, there is no information on smart contracts’ use in a real blockchain
scenario, on the number of transactions invoking smart contracts or on the
number of tokens associated with each smart contract.

• GitHub does not provide smart-contract ABIs or Opcodes.

It is highly probable that the users, especially if they are developers or re-
searchers, want to access smart contracts’ source codes, choosing the features im-
plemented in Smart Corpus, on the basis of its specific software metrics and its real
usage on the blockchain.

Ethereum Block Explorers

Ethereum block explorers are platforms that allow the users to explore and search
the Ethereum blockchain for transactions, addresses, tokens and other activities
taking place on the Ethereum blockchain (?). Unlike GitHub, the Ethereum block
explorers allow access to only Ethereum data used in the Ethereum blockchain and
thus smart contracts’ real use cases. To date, in the market, there are different
Ethereum block explorers:

• Ethplorer (https://ethplorer.io/) provides an API to access many
Ethereum data, such as the balances for a specified token and the de-
scription of a specific address, but it does not allow access to the smart
contracts’ code. The full documentation of the Ethpoler API is available

https://ethplorer.io/

3.3. SMART-CORPUS 61

at the following address (https://github.com/EverexIO/Ethplorer/wiki/
Ethplorer-API). The requests to API are limited to 5 per second, 50/min,
200/h, 2000/24 h and 3000/week.

• EtherChain (https://etherchain.org/) is an explorer for the Ethereum
blockchain. Unlike Ethplorer, it claims to provide smart contract code, even
though it actually displays the contract byte code and the constructor argu-
ments for a specific smart contract’s address. EtherChain provides the API
just to access the Oracle gas price predictions (https://www.etherchain.
org/api/gasPriceOracle), but not the Ethreum data. If the users want to
gather Ethereum data from EtherChain, they need to parse the HTML code.

• BlockScout (https://blockscout.com/poa/xdai/) provides an API to ac-
cess the Ethereum data. It claims to have an API to access only the source
code of a few verified smart contracts. Anyway, the addresses list of the verified
smart contracts is not available in BlockScout.

• EtherScan allows for exploration and searching of the Ethereum blockchain
for smart contracts. However, when downloading the smart contracts’ source
code, the block explorer presents some limitation. First, smart contracts’
data and number are huge (on the Giga scale, based on our estimation),
but there is a limited API rate of 100 submissions per day per user to retrieve
just a smart contract, making the complete download of data an impossible
endeavour (https://etherscan.io/apis#contracts). Second, the Ether-
Scan’s API does not provide facilities to obtain a list of the smart contracts’
addresses, as the existing API calls mainly allow navigation from one block
to another. Third, a researcher cannot directly and easily explore the smart
contract’s source code but, rather, has to first inspect any block in Ethereum
and then look for all the transactions that involve an address associated with
the smart contract.

3.3.2 Research Methodology

Smart Corpus has been designed to provide the users with a reasoned repository,
i.e., a repository which is not just a webspace where to collect them but also mainly
a service to help the researchers filter and analyze the smart contracts’ source codes.
To this aim, Smart Corpus has been planned to perform four main automatic oper-
ations on smart contracts’ source codes (data):

1. data retrieving,

2. data cleaning,

3. data modelling and

https://github.com/EverexIO/Ethplorer/wiki/Ethplorer-API
https://github.com/EverexIO/Ethplorer/wiki/Ethplorer-API
https://etherchain.org/
https://www.etherchain.org/api/gasPriceOracle
https://www.etherchain.org/api/gasPriceOracle
https://blockscout.com/poa/xdai/
https://etherscan.io/apis#contracts

62 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

Figure 3.7: Smart-Corpus’s pipeline model.

4. data querying.

Figure 3.7 shows the Smart Corpus’s pipeline of operations.

Retrieving Data

We collected smart contracts’ source codes, smart contracts’ application binary inter-
faces (ABIs) and smart contracts’ byte codes through the EtherScan website, which
makes available the source code of a subset of verified smart contracts deployed on
the Etehreum blockchain, though in a labourious way. We instead made this task
easier and automatic via a retrieving data script available at the following address
(https://github.com/aphd/solidity-metrics/tree/master/examples). Dur-
ing this phase, the blockchain blocks are automatically inspected. Each block is
formed by a list of transactions between two different blockchain addresses, which
can refer to a wallet or to a smart contract. The script looks for addresses that
refer to a smart contract, and when the source code is available, it downloads the
smart contract’s source code, the ABI and the byte code. The data coming from the
source code are not immediately available as they are embedded in the HTML code
of the webpage provided by EtherScan. Therefore, the script removes the HTML
tags and stores the code cleaned up.

Figure 3.11a shows how Smart Corpus finds the smart contracts’ list in a given
block. Figure 3.11b shows the HTML page where the smart contract code is avail-
able. The HTML page containing the smart-contract code and the HTML tags is
downloaded. Figure 3.11c shows the HTML code that will be processed to remove
the HTML tags and to save just the Solidity source code of the smart-contract.

The smart contracts’ codes are stored in the filesystem of the Smart Corpus
server. Due to the quota limits on queries per second (the EtherScan website allows
a few connections per second), Smart Corpus contains only a portion of all available
smart contracts. However, the retrieving data phase is continuously collecting data,
starting from 10 December 2019. To date, thirty thousand smart contracts (source
code, ABI and byte code) have been downloaded and made available through Smart
Corpus.

https://github.com/aphd/solidity-metrics/tree/master/examples

3.3. SMART-CORPUS 63

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11: Data retrieving pipeline: Figure 3.11a–c shows three different phases
to retrieve the smart contracts. (a) Transactions list in a block, (b) smart contract’s
webpage code and (c) smart contract’s source code.

64 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

Figure 3.12: Smart Corpus’s database schema.

Cleaning Data

Each smart contract in the Ethereum blockchain is distinguished from any other
smart contract as it is identified by a unique address, i.e., a hash of 160 bits, and
its byte code is stored on the blockchain (?). Indeed, each time a smart contract is
deployed in the network, either in the main or in the test network, a unique address
is associated with the smart contract even in the case where the source code of two or
more smart contracts is the same. However, this is a problem for the analysis of the
software metrics because the smart contracts are distinguished only on the basis of
their address and not on their content. Therefore, Smart Corpus eliminates double
contracts in order to provide a clean smart contracts’ corpus on which to perform
the analysis. To this aim, duplicate smart contracts have been defined on the basis
of their content, i.e., having the same code despite presenting different addresses.

Modelling Data

Unlike the tools discussed in the related work of Section 4.4.3, Smart Corpus asso-
ciates different metrics (intrinsic metrics and extrinsic metrics) to the smart con-
tracts, aiming to facilitate the selection of a smart-contract set that meets precise
requirements. The metrics associated with the smart contracts are then stored in a
document-oriented database. Figure 3.12 shows the database schema of a smart con-
tract.

Smart Contracts’ Intrinsic Metrics

The smart contracts’ intrinsic metrics are smart contracts’ software metrics which
depend on internal properties of the smart contracts’ code, such as the number of
lines of code, modifiers, payable, etc. Table 3.4 shows the smart contracts’ intrinsic
software metrics.

3.3. SMART-CORPUS 65

Table 3.4: Smart contracts’ intrinsic metrics.

Name Description

Pragma “Pragma” indicates which version of Solidity compiler is
used to prevent issues with future compiler versions.

SLOC “SLOC” indicates the number of lines in a smart contracts’
source code.

Modifiers “Modifiers” indicates the number of function modifiers in
a smart-contract.

Payable “Payable” indicates the number of payable functions in a
smart-contract.

Mapping “Mapping” indicates the number of variables of mapping
types in a smart-contract.

Address “Address” indicates the number of variables of address
types in a smart-contract.

Smart Contracts’ Extrinsic Metric

The smart contracts’ extrinsic metrics are properties depending on external factors
rather than the code itself, such as the number of transactions executed to the smart
contracts or the number of tokens associated with the smart contracts. Table 3.5
shows the smart contracts’ extrinsic metrics.

Filtered Data

The smart contracts’ source code is stored in a file system and is organized in folders
and subfolders to ease the navigation. Figure 3.13 shows the subdirectory structure.
The first leaf corresponds to the first two letters of the smart-contract address, and
then, each directory contains the file named using the full address of the smart
contract and three different extensions, respectively .sol for the Solidity source code,
.abi for the ABI and .bytecode for the byte code.

The metadata (both the intrinsic and extrinsic metrics) are stored in a document-
oriented database: MongoDB (?). The choice to use a document-oriented database
instead of a relational database such as Mysql is based on the following:

• Relational databases are prone to deterioration when data sets overcome a
size threshold, while a document-oriented database such as MongoDB comes
with an inbuilt load balancer, which makes it a better solution in applications
with high data load (?). We update MongoDB each day to generate the data
archive.

66 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

Table 3.5: Smart contracts’ extrinsic metrics.

Name Description

Transactions “Transactions” represent the total number of transactions
generated by the smart contract (sent or received).

Balance “Balance” is the amount of crypto coins associated with a
smart-contract address.

EtherValue “EtherValue” is the dollar value associated with a smart-
contract address.

Token “Token” is the value for each token associated with a smart-
contract address.

Last seen “Last seen” is the timestamp of the last time that the
smart contract was used (sent or received).

First seen “First seen” is the timestamp of the first time that the
smart contract was used (sent or received).

Figure 3.13: Smart contracts’ directory structure.

3.3. SMART-CORPUS 67

Figure 3.14: Smart Corpus’s user interface.

• Unlike relational databases where data is stored in rows and columns,
document-oriented databases store data in documents. The documents typi-
cally use a structure similar to JSON (JavaScript Object Notation); they in-
deed provide a natural way to model data that is closely aligned with object-
oriented programming. Each document is considered an object in object-
oriented programming; similarly, each document is a JSON in document-
oriented database. The concept of a schema in document databases is dy-
namic: every document might contain a different number of fields. This is
useful when modeling unstructured and polymorphic data. Also, document
databases allow robust queries: any combination of fields in the document can
be combined for querying data (?).

User Interface

Smart Corpus’ graphical user interface (GUI) allows users to access the smart con-
tracts’ repository. There are two ways to access the smart contracts’ repository:
through the “HTML user interface” and through a “GraphiQL application”, both
of them via a web browser.

Smart Corpus HTML User Interface

The Smart Corpus HTML user interface is publicly available since January 2020
(https://aphd.github.io/smac-corpus/). Figure 3.14 shows the different com-
ponents of the GUI.

• At the top, the user can find the form to filter the smart contracts. The form
is made of a number of drop-down lists, each one corresponding to a different
metric and a submit button to perform the research. The GUI form allows the
user to inspect smart contracts based on some metadata, such as the “pragma
version”, and software metrics, such as the numbers of “modifiers” and/or the
numbers of “payable”.

https://aphd.github.io/smac-corpus/

68 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

• Below the form, the smart contracts filtered by the user are displayed. For
readability, only a part of the smart-contract metrics are presented in the
table layout format. Each column header in the table indicates the name of
a metric associated to smart contracts. While the HTML GUI displays just
some metrics, the user can access all the metrics and the smart contracts’
source codes by selecting the checkbox displayed on the right of the smart-
contract address and by clicking on the red button “download”. The user can
also access the original repository where the smart contract was retrieved, i.e.,
the EtherScan service.

Smart Corpus GraphQL Application

Graph Query Language (GQL) is a full data query language to implement web-
based services, centered on high-level abstractions, such as schemas, types, queries
and mutations. GQL is a domain-specific language internally developed in Face-
book from 2012 onward and publicly announced in 2015, with the release of a draft
language specification. The language was conceived with the following goals:

• To reduce possible overload of data transfer relative to Representational State
Transfer (REST)-like web service models in terms of both the amount of data
unnecessarily transferred and the number of separate queries required to do
it.

• To reduce the potential of errors caused by invalid queries on the part of the
client. In particular, with the GQL application, the user can execute “type
introspection”, i.e., the user can examine the type or properties of an object at
runtime. For example, thanks to introspection queries, the user can find out
both the intrinsic and the extrinsic metrics associated with a specific smart-
contract while typing the query.

Figure 3.15 shows an example query and its result.
Smart Corpus GQL application, unlike the Smart Corpus HTML user interface,

is still in the development and testing phase. However, the Smart Corpus GQL
application source code is publicly available and can be downloaded and deployed
on any platform having the software requirements specified in its documentation
(https://github.com/aphd/smac-corpus-api). Appendix 3.3.2 presents all the
queries GraphQL application can perform.

Appendix

Listing A1 displays a GQL query that returns smart contracts’ addresses having
more than 20 methods defined in a contract. Listing A2 displays the query results in
the JSON format. The query output, in addition to the smart contract’s addresses,
contains various information (intrinsic metrics) such as the number of events, the

https://github.com/aphd/smac-corpus-api

3.3. SMART-CORPUS 69

Figure 3.15: Example use of variables to filter a query result with GraphQL.

number of functions, the number of modifiers and the number of payables, as spec-
ified by the query A1,

Listing A1: A Graph Query Language (GQL) query for displaying intrinsic metrics.

1 {
2 metr i c s (query :{ f u n c t i o n s g t : 20}) {
3 adre s s
4 events
5 f u n c t i o n s
6 m o d i f i e r s
7 payable
8 }
9 }

Listing A2: A GQL result displaying intrinsic metrics.

1 {
2 ” data ” : {
3 ” metr i c s ” : [
4 {
5 ” contractAddress ” : ”0

xb7f4c286851cbf0cb f2 fe8eb f40412b196c0e8ad ” ,
6 ” events ” : 7 ,
7 ” f u n c t i o n s ” : 27 ,
8 ” m o d i f i e r s ” : 1 ,
9 ” payable ” : 1

10 } ,
11 {
12 ” contractAddress ” : ”0

x755cebe8cc53c7cb1e1bb641026a17d37d4aea91 ” ,
13 ” events ” : 4 ,
14 ” f u n c t i o n s ” : 31 ,
15 ” m o d i f i e r s ” : 1 ,

70 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

16 ” payable ” : 4
17 } ,
18 {
19 ” contractAddress ” : ”0

xb92aa4a864daf0d6a509e73a9364feba44384965 ” ,
20 ” events ” : 3 ,
21 ” f u n c t i o n s ” : 24 ,
22 ” m o d i f i e r s ” : 1 ,
23 ” payable ” : 1
24 } ,
25
26 . . .
27
28 }
29 }

Listing A3 displays a GQL query that returns some extrinsic metrics of a specific
smart contract’s address. Listing A4 displays the query results in the JSON format.
The query output, in addition to the smart contract’s address, contains information
such as the total number of transactions generated by the smart contract and the
amount of crypto coins associated with the smart contract’s address specified by the
query A3,

Listing A3: A GQL query for displaying exstrinsic metrics.

1 {
2 metr i c s (query :{ addre s s eq : ”0

x536c7efeebf f067a69393133b1c87a163a6b0598 ” })
3 {
4 adre s s
5 t r a n s a c t i o n s
6 balance
7 }
8 }

Listing A4: A GQL result displaying exstrinsic metrics.

1 {
2 ” data ” : {
3 ” metr i c s ” : [
4 {
5 ” contractAddress ” : ”0

x536c7efeebf f067a69393133b1c87a163a6b0598 ” ,
6 ” t r a n s a c t i o n s ” : 639 ,
7 ” balance ” : 0 Ether
8 }
9]

3.3. SMART-CORPUS 71

10 }
11 }

Use Case

A use case for Smart Corpus might concern a researcher interested in the static
analysis of smart contracts. For example, the researcher might be interested in
performing an analysis of smart contracts written with a particular version of the
Solidity language, 6.0, and having at least a payable function in the smart con-
tract. The research of smart contracts that meets these requirements would be very
expensive in terms of time, work and computational resources using a service like
EtherScan. Instead, thanks to Smart Corpus, the user needs to perform only a few
steps, as described below:

• connect to the service through the link: https://aphd.github.io/

smac-corpus/,

• select the option “version 6.0” from the drop-down menu entitled “pragma
version”,

• select the option “greater than zero” from the drop-down menu entitled “num-
ber of payables” and

• submit the form by clicking on the button “submit”.

After few seconds, depending on the number of smart contracts that meet the
requirements specified by the user, the smart contracts’ addresses and the metrics
values will be displayed in a table layout format ready to be downloaded.

3.3.3 Results

Smart Corpus has been in use for 10 months, since December 2019, and 100 K smart
contracts have been downloaded via the user interface. Until the tool was developed
(October 2020), Smart Corpus was a curated corpus of 30 K smart-contract source
codes, ABI and byte codes with related metadata and software metrics. As time
passes, Smart Corpus is continuously increasing at a rate of 100 smart contracts
per day. Figure 3.16 shows the number of smart contracts’ source codes, ABI and
byte codes retrieved per day since Smart Corpus was deployed for the first time.
For each smart contract, Smart Corpus computed extrinsic and intrinsic metrics, as
described in Sections 3.3.2 and 3.3.2.

Summing up, Smart Corpus has two GUIs to access data: the HTML GUI
and the GraphQL interface. The HTML GUI is described in Section 3.3.2, while
the GraphQL interface is described in Section 3.3.2. The GraphQL interface gives
blockchain researchers the ability to request for exactly what they need. The user
can directly access the results via GraphQL interface, as shown in Figure 3.15.

https://aphd.github.io/smac-corpus/
https://aphd.github.io/smac-corpus/

72 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

Figure 3.16: Number of smart contracts collected in Smart Corpus.

Unlike the existing repositories (see Section 3.3.1) which make available the
source code in a laborious way, Smart Corpus instead made this task easier and
faster. Indeed, one of the advantages of using Smart Corpus lies in the fact that
it can reduce the costs in performing the smart-contract static analysis. For ex-
ample, it can be used to easily analyze design and programming patterns for the
smart-contract programming language.

Even though the Smart Corpus service has been working for a few months and
has not been advertised yet, it has already collected 30K smart contracts, thus
providing an interesting and helpful future venue for researchers and software de-
velopers interested in the blockchain. Moreover, Smart Corpus allows for analysis
of how industry companies use the Solidity programming language to solve concrete
problems in different application areas, such as healthcare, insurance, transporta-
tion, government, entertainment and energy.

3.3.4 Conclusions and Future Works

In this work, we described the Smart Corpus project, an effort to bring smart-
contract data (source codes, ABIs and byte codes) to the hands of the research
community, providing help to reproducible research and a less time-consuming way
to gather data and to perform static analysis. The project has already stored sev-
eral megabytes of data, which correspond to about thirty thousand smart contracts.
This work corresponds to 10 months of data retrieving that are made available to
the blockchain scientific community and blockchain developers in a few seconds.
The Smart Corpus data set has strong potential to provide an interesting venue for
research in many software engineering areas, including but not limited to the best

3.4. CODE CLONES IN SOLIDITY 73

practices for Solidity software development, distributed collaboration, and code pa-
ternity and attribution. The Smart Corpus project is in its initial stage of develop-
ment, but it can already provide useful insight for researchers on smart contracts’
coding and everyday use in the blockchain. The corpus will continue to be expanded
in content and in the provision of intrinsic and extrinsic metrics, thus becoming more
and more representative of the Solidity code actually used in the blockchain com-
munity.

3.4 Code Clones in Solidity

3.4.1 Introduction

A bad programming habit could be the “code cloning”. We define “code cloning” in
smart contracts as the act of duplicating identical or near identical pieces of already
written source code. According to previous literature (?), some problems related to
code cloning are:

• the code cloning’s tendency to create inconsistencies in the process of update,
which hinder maintenance and contribute to the aging of the software.

• the increasing size of the source code due to code cloning.

In the Ethereum blockchain, the cost of Gas to deploy the smart contract is also
related to the size of the source code (?). Usually, smart contracts with duplicate
code can be refactored with a saving in terms of Gas (??), but this means that
further work for developers is required (?).

A motivation for this work is precisely the fact that code clones make the smart
contract source files very hard to consistently modify. For instance, if a smart
contract has several functions created by code duplication with a slight modification,
the software developer needs to carefully modify all the other functions in the smart
contracts when a fault is found in one function.

The research addresses the following research questions:

• Q1: What is the percentage of duplicated code on smart contracts deployed in
the Ethereum blockchain? Is it increasing or decreasing over the last 5 years?

• Q2: What might be some causes of smart contracts’ source code cloning in
the Ethereum blockchain?

The research aims to answer the questions, analyzing two corpora of smart contracts
and also discussing some cases of clones refactoring.

74 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

3.4.2 Background

Manual source code copy and modification is often used by programmers as an easy
means for the reuse of some functionality. Nevertheless, such a practice produces
duplicated pieces of code or clones whose maintenance might be difficult. Duplicated
codes are therefore good candidates for system redesign (?).

We can define two types of code clone:

• “Local code clone” indicates that the same piece of source code is present in
different parts of the same smart contract.

• “Global code clone” indicates that the same piece of source code is present in
different smart contracts deployed in the Ethereum blockchain.

Both types of code clones have been considered as a bad software development
practice (?). Some of the reasons are:

• they can potentially cause maintainability problems, for example when a
cloned code fragment needs to be changed, it might be necessary to align
such a change across all clones.

• Code duplication increases the size of the code, extending compile time,
expanding the size of the executable and thus increasing the costs in the
Ethereum blockchain.

• Code duplication often indicates design problems, such as missing inheritance
or procedural abstraction which hampers the addition of functionalities.

Previous research pointed out that source code clones are introduced for reasons
such as:

• making a copy of a code fragment is simpler and faster than writing the code
from scratch. (?),

• writing a code with time pressure leads to plenty of opportunities for code
duplication, especially in industrial software development contexts, (??).

We proposed other hypotheses in the case of smart contracts, as the Ethereum
blockchain has other specificities with respect to other programming ecosystems.
Some smart contract developers may copy the code from the code of a smart contract
that has already proved to be successful, deeming to be successful in their turn.
Another reason may be due to the fact that the Ethereum blockchain does not have
an official package manager to deploy smart contracts. A package manager is a
programming language tool to create project environments which allow to easily
import external dependencies (?).

The reasons why code clones appear in source code have been analyzed in other
programming languages (?) and code clones’ detection tools have been proposed

3.4. CODE CLONES IN SOLIDITY 75

as well (??). Methods for clone resolution include refactoring (?) and meta-level
techniques (?).

The aim of our research is to investigate the use of source code clone information
as a basis for smart contracts source code refactoring. Indeed, sometimes removing
clones could be so difficult, that it would be better to maintain the duplication,
but sometimes clones could also be good candidates to redesign the system, as
they represent duplicated code whose consistent maintenance might be difficult to
achieve (?). They also form possible explicit connections among components that
share the same piece of code and functionalities. Detection of source code clones
in large software systems, such as JDK, FreeBSD, NetBSD, Linux, and many other
systems has been investigated in the past by (?) while clone elimination or reduction
in programming languages, such as Java, has been investigated by Balazinska (?).

3.4.3 Related Work

M. Kondo et al. (?) studied the phenomenon of smart contracts cloning in Ethereum
Blockchain. They found that 79.2% of the smart contact studied are clones and that
the percentage of clones among newly created smart contracts continues to increase
over time. Moreover, they identified 26.3% of all 165,005 code blocks extracted from
their corpus as identical to OpenZeppelin code blocks. Most of these code blocks
belong to the ERC20 OpenZeppelin category. Our study confirmed their findings,
by investigating another corpus of smart contracts source code. Also, their analysis
regarded smart contracts deployed on the Ethereum blockchain until February 2018.
We extended their research to the months until December 2020.

N. He et al. (?) proposed a classification of the code clones among the smart
contracts deployed in the Ethereum blockchain. They analyzed a corpus of 10 million
smart contracts, deployed from July 2015 to December 2018. Interestingly, they
found that a large number of duplicated contracts suffered from the vulnerability
issues inherited from the original contracts. Some of their results are confirmed
by our research. We extended the analysis to smart contracts deployed in the last
two years and, in addition, we also considered the code duplication inside the same
smart contract.

M. Araoz et al. (?) present OpenZeppelin, one of the most popular packages to
develop secure smart contracts. OpenZeppelin contains a collection of code blocks
(subcontracts, libraries, and interfaces) that can be used as building blocks to de-
velop blockchain-based applications. For instance, it includes implementations of the
ERC20 standard, mathematical libraries (e.g., SafeMath), contract lifecycle man-
agement contracts (e.g., Pausable contract), and even cryptography utilities. As
of December 28, 2020, the project has 2,218 commits, 243 contributors, and 8.9K
stars in its GitHub repository. The development team at OpenZeppelin aims to
produce high-quality code to be reused by smart contract developers. The team
adheres to the following development principles: in-depth security, simple and mod-
ular code, clarity-driven naming conventions, comprehensive unit testing, pre-and-

76 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

post-condition sanity checks, code consistency, and regular audits. Ultimately, code
blocks from OpenZeppelin can be interpreted as “certified” pieces of code that are
developed by a community that strives for security and performance. In particular,
these code blocks are meant to be reused without modification. Their work is very
relevant for us, because a solution to code duplication can come from the libraries
proposed by their repository. In our work, we precisely show how code cloning can
be avoided by simply using their libraries.

3.4.4 Research Methodology

Research questions

The research has been lead by the following questions:

• Q1: What is the percentage of duplicated code on smart contracts deployed in
the Ethereum blockchain? Is it increasing or decreasing over the last 5 years?

• Q2: What might be some causes of source code cloning in the Ethereum
blockchain?

Data Collection

To collect smart contracts source code we used the “Smart Corpus” (?). “Smart
Corpus” is a repository made of 30K smart contract data (source codes, ABIs and
byte codes). Unlike the existing repositories which make available the source code in
a laborious way, “Smart Corpus” instead makes this task easier and faster. Indeed,
one of the main advantages of using Smart Corpus lies in the fact that it can reduce
the costs in performing the smart-contract static analysis. For our analysis we have
not considered all the smart contracts in the corpus but only a part. This choice
was made for two reasons: 1) to have a homogeneous distribution of smart contracts
with respect to the programming language version (the pragma) and with respect to
the year in which the smart contracts were installed on the Ethrereum blockchain.
2) to reduce the amount of time needed to compare all smart contracts searching
for code clones.

Data Cleaning

Before performing the algorithm to identify smart contracts code clones, we cleaned
the data collected in the “Smart Corpus” based on some considerations of Ethereum
blockchain’s specific features. The users have no permission to change the smart
contracts deployed in the Ethereum blockchain. Indeed, if the user wants to correct
a bug in a smart contract, s/he is forced to redeploy and correct the same smart
contract by using a new unique address. As a result, on the Ethereum blockchain
there might be two or more almost identical smart contracts with different addresses.
The fact that different addresses refer to the same smart contract let us suppose that

3.4. CODE CLONES IN SOLIDITY 77

many smart contracts might simply be “trials” or smart contracts deployed in the
blockchain to test and eventually modified them on the basis of the test results.

Fortunately, the smart corpus used to analyse the source code (?) in addition
to the smart contract’s address, contains the smart contract creator’s address. The
smart contract creator’s address is the address of the smart contract owner, who has
deployed the smart contract on the Ethereum blockchain. This piece of information
allows us to test the hypothesis that many smart contracts are deployed from the
same smart contract creator address with few differences. Indeed, for the purpose of
this analysis, we excluded similar smart contracts having the same smart contract
creator’s address: 28% of smart contracts, 2134 of 7623 were excluded for this reason.

Data Reporting

We distinguished two types of smart contract clones. The local smart contracts
clones defined as source code duplication inside the same smart contract and the
global smart contracts clones defined as code duplication among all smart contracts
deployed in the Ethereum blockchain. We used a script based on simple string
matching, to find code clones on the same smart contract. The script performs the
following steps:

• the source code is slightly transformed using string manipulation operations
that remove spaces, empty lines and comments;

• Then, all the lines of the source code are compared among them to find code
clones.

We chose the source code line as the minimal unit on which to perform the algorithm.
As an example, the line of a smart contract source code

i f (a > b && a > c) { // i f e l s e s ta tement

is condensed to

i f (a>b&&a>c) {

We used a different approach to find code clones among different smart contracts,
as for instance many DL-based code clone detection methods (?). L. Jiang et al. (?)
developed an algorithm named Deckard. Deckard algorithm is based on Abstract
Syntax Tree (AST) of the source code of a program to find exact or close matches
of subtrees of another AST source code. The algorithm code is available at the
following address: https://github.com/skyhover/Deckard.

As an example, consider the following two smart contracts fragments:

for (u int i =0; i<arrayLength ; i++) {
to ta lVa lue += mappedUsers [a d d r e s s I n d i c e s [i]] ;

}

for (u int j =0; j<customersLen ; j++) {
t o t a l += customers [addre s s Indece s [j]] ;

}

https://github.com/skyhover/Deckard

78 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

The parse trees for the two code fragments are identical, because the code differs
only in the identifier names and literal values.

We used Deckard algorithm for the following reasons:

• It is language-independent and works in any programming language that has
a context-free grammar (CFG), such as Solidity, the programming language
used to write smart contracts.

• It has already been used to analyze clones in smart contracts, and we could
thus compare the results of our study with previous studies that used the same
algorithm (?).

For the Deckard algorithm configuration we set the variable “min tokens” equal
to 50 and the variable “similarity” equal to 0.79. The variable “similarity” is the
threshold for tree similarity. Tree similarity is determined as a function of tree
editing distance, which is the minimal sequence of edit operations (either relabel
a node, insert a node, or delete a node) required to transform one parse tree into
another. Following previous literature recommendations, we set the variable value
at 0.79 (?).

3.4.5 Results and Discussion

Tables 3.6, 3.7 present the results of our analysis. The first table 3.6 presents the av-
erage percentage of both smart contracts’ local and global code duplication, grouped
per year in which the smart contracts were deployed in the Ethereum blockchain.
The second table 3.7 presents the average percentage of both smart contracts’ local
and global duplication, grouped per pragma version of the smart contracts deployed
in the Ethereum blockchain. Pragma is a directive that specifies what compiler ver-
sion to use to compile the source code to obtain the runtime byte-code. The results
of the trends of both local and global code clones, presented in the two tables, do not
change. This can be explained by the fact that there is a direct correlation between
the date and the different versions of the Solidity language.

As to the first research question (Q1), Table 3.6 shows how the percentage of
both local and global source code cloned is very significant, though the percentage
of smart contracts cloned in the Ethereum blockchain is based on a limited sample.
Moreover, the results are compatible with previous studies (?), even when analyzing
a different time window by including the years 2019-20 which had not previously
been studied. Table 3.6 also shows that the percentage of global clones increases
over time and pragma versions.

As to the second question (Q2), we need to separately discuss the two cases,
global and local code clones.

An increase of “global code cloning” over time can be observed. We propose the
following explanation for this phenomenon:

3.4. CODE CLONES IN SOLIDITY 79

Table 3.6: Average Percentage of Duplication divided per year

Year 2016 2017 2018 2019 2020

Local Clone (in
the same smart
contract)

68% 63% 61% 57% 51%

Global Clone
(among different
smart contracts)

37% 49% 68% 76% 82%

Number of con-
tracts analysed

1213 1984 1567 1342 983

Figure 3.17: Evolution of the percentage of global clones among the smart contracts
for every year.

Table 3.7: Average Percentage of Duplication divided per pragma version

Pragma 0.3.x 0.4.x 0.5.x 0.6.x 0.7.x

Local Clone (in
the same smart
contract)

68% 64% 63% 61% 57%

Global Clone
(among different
smart contracts)

37% 49% 68% 76% 82%

Number of con-
tracts analysed

767 1912 2043 898 657

80 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

Figure 3.18: Evolution of the percentage of local clones among the smart contracts
for every year.

Firstly, from a manual inspection we discovered that some of these cloned con-
tracts refers to highly-active smart contracts. In the context of this research, we
considered as highly-active smart contracts the smart contracts having an overall
number of transactions (both in input and in output) involving the contract greater
than 100 per day. An example of highly-active smart contract is the CryptoKitties
smart contract (?). It is reasonable to assume that smart contract developers clone
highly-active contracts with the hope to achieve the same commercial success (?).
In detail, the booming success of the popular Ethereum game Decentralized Ap-
plication (DApp) “Crypto Kitties” (?) (a game in which players collect and breed
digital cats) in the late 2017 led to the development of a plethora of smart con-
tract clone versions. Some of these Ethereum game DApps are “Crypto Dogs” (?)
and “Crypto Alpaca” (?). However, neither of these smart contracts’ clones ever
achieved the same popularity of CryptoKitties. Secondly, differently from other
more oldest programming languages in use today (C, C++, Java, PHP, Python,
ECMAScript), Solidity does not have a package manager.

A package manager is a programming language tool to create project environ-
ments which allows software developers to import external dependencies. By using
a package manager the developer does not need to reinvent the wheel or to copy
and paste the code from other projects to implement new features. Software de-
velopers who use other programming languages, such as Java and ECMAScript,
can employ this practice. For example, Java software developers use “Apache
Maven”(https://maven.apache.org/), Script software developers use “node pack-
age manager” (https://www.npmjs.com/). Indeed, a package manager for Solidity
would be very useful to add functionalities to smart contracts using code certified by
the open source community. Moreover the package manager can perform a security
review of the project’s dependency tree. Audit reports contain information about
security vulnerabilities in the dependencies and can help to fix a vulnerability by pro-
viding simple-to-run commands and recommendations for further troubleshooting.
Recently, a non-official package manager to develop smart contracts in the Ethereum

https://maven.apache.org/
https://www.npmjs.com/

3.4. CODE CLONES IN SOLIDITY 81

blockchain has been proposed. The project is currently under development and the
proposal is available at the following address: https://docs.ethpm.com/

An decrease of “local code cloning” over time can be observed, as shown by
Figure 3.18. To better understand this decreasing trend, we made a manual inspec-
tion of the cloning fragments. From a manual inspection we discovered that some
local cloning is easily removable by following the recommendations given by the
Solidity programming language documentation available at the following address:
https://docs.soliditylang.org/.

Listing A1 shows an example of a local clone (see lines 17 and 22).

Listing A1: Smart contract with local clone (see lines 17 and 22)

1
2 pragma s o l i d i t y >=0.7.0 <0 .8 .0 ;
3
4 cont rac t Bas icAccessContro l1 {
5
6 address payable admin ;
7
8 con s t ruc to r () {
9 admin = msg . sender ;

10 }
11
12 func t i on publ i cFunct ion1 () e x t e r n a l {
13 // . . .
14 }
15
16 func t i on pr ivateFunct ion1 () e x t e r n a l {
17 r e q u i r e (msg . sender == admin , ' Only Admin ') ;
18 // . . .
19 }
20
21 func t i on pr ivateFunct ion2 () e x t e r n a l {
22 r e q u i r e (msg . sender == admin , ' Only Admin ') ;
23 // . . .
24 }
25
26 }

According to the official Solidity language documentation, the code duplication
can be avoided by using a “function modifier”. A function modifier is a Solidity
construct which is used as a pattern to change the behavior of some functions,
and in many cases, to restrict them. Listing A2 displays the improved version of
Listing A1. In detail, it is possible to avoid the code repetition, by including the
logic in modifiers (see lines 24-27 of Listing A2) and applying them to a function
(see lines 16 and 20 of Listing A2).

Listing A2: Smart contract without local clone.

1

https://docs.ethpm.com/
https://docs.soliditylang.org/

82 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

2 pragma s o l i d i t y >=0.7.0 <0 .8 .0 ;
3
4 cont rac t Bas icAccessContro l1 {
5
6 address pub l i c admin ;
7
8 con s t ruc to r () {
9 admin = msg . sender ;

10 }
11
12 func t i on publ i cFunct ion1 () e x t e r n a l {
13 // . . .
14 }
15
16 func t i on pr ivateFunct ion1 () e x t e r n a l onlyAdmin () {
17 // . . .
18 }
19
20 func t i on pr ivateFunct ion2 () e x t e r n a l onlyAdmin () {
21 // . . .
22 }
23
24 mod i f i e r onlyAdmin () {
25 r e q u i r e (msg . sender == admin , ' Only Admin ') ;
26 ;
27 }
28 }

We propose the following explanation for the decreasing trend of local code
repetition over the years.

Firstly, it is reasonable to assume that over time there are more and more tools
that help the smart contract developers to write code following the “coding best
practices”. Coding best practices are a set of informal rules that the software de-
velopment community employs to improve the quality of softwares (?). Indeed, in
recent years, several tools have been proposed and published in academic papers.
Some of these tools are SmartCheck (?), SmartAnvil (?) and PASO (?). These tools
were not available in early versions of Solidity programming language. They share
the ability to help the user to detect bad coding practices, such as code repetition
and/or possible vulnerabilities.

Another plausible reason to explain this trend lies in the fact that, in gen-
eral, source code reuse in object-oriented programming languages is made possible
through different mechanisms, such as inheritance, shared libraries, object composi-
tion, and so on. In the first version of Solidity, some of these mechanisms were not
provided to the smart contracts’ developers. For example, the “Interface Contract”
was introduced only starting from Solidity version “0.4.11”. “Interface Contracts”,
similarly to the interfaces used in object-oriented languages, allow decoupling the
definition of a contract from its implementation, providing better extensibility. In-
deed, when a Contract Interface is defined, the implementations of a new Contract

3.4. CODE CLONES IN SOLIDITY 83

can be provided for any existing functions without modifying their declarations.

As a project grows, the need for additional functionality increases. Some of
these functionalities (see lines 21–24 of Listing A2), that are cloned among different
smart contracts (the global code clones), can be found in various libraries, such as
OpenZeppelin. However, Solidity does not have a package manager. Instead the user
who aims to reuse the code provided by OpenZeppelin, needs to look for the module
in its code repository. This is not a major obstacle for programmers with long
experience who know how to search the code in a repository such as OpenZeppelin,
but it could be a problem for less experienced programmers, who may search in the
web for already written code to implement additional functionalities in their smart
contract without a package manager which helps to solve their problems. Some of
the already written code may not be updated with the last version of Solidity and
present some vulnerabilities.

Listing A3 displays the improved version of the listing A2 by removing the func-
tion modifier, which is one of the most copied code among the smart contracts
deployed in the Ethereum blockchain, and by importing the “Ownable.sol” module
from the OpenZeppelin project (see line 4 of Listing A3). The “Ownable.sol” module
provided by the OpenZeppelin project makes the modifier “onlyOwner” available,
which can be applied to private functions to restrict their use to the smart contract’s
owner.

Listing A3: Smart contract which imports the openzeppelin module.

1
2 pragma s o l i d i t y >=0.7.0 <0 .8 .0 ;
3
4 import ” @openzeppel in / c o n t r a c t s / ownership /Ownable . s o l ” ;
5
6 cont rac t Bas icAccessContro l1 i s Ownable{
7
8 address pub l i c admin ;
9

10 cons t ruc to r () Ownable{}
11
12 func t i on publ i cFunct ion1 () e x t e r n a l {
13 // . . .
14 }
15
16 func t i on pr ivateFunct ion1 () e x t e r n a l onlyOwner () {
17 // . . .
18 }
19
20 func t i on pr ivateFunct ion2 () e x t e r n a l onlyOwner () {
21 // . . .
22 }
23 }

84 CHAPTER 3. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR EXPERT USERS

3.4.6 Conclusion

The research showed that different types of code clones can be found in smart con-
tracts. Out of 7500 smart contracts analysed, there are about 80% of smart contracts
that contain code which is duplicated from other smart contracts deployed in the
Ethereum blockchain. In the same smart contracts corpus, we found that the code
clones within the same smart contract are about 40%. Based on previous literature,
we know that maintaining these clones is an error-prone task and a potential threat
to the system’s overall security.

From the analysis done in the Smart Corpus (?) we have seen that the two kinds
of “code clone” have opposite trends. While the local code repetition is decreasing
over the years and it is inversely proportional to the pragma version number, the
global code repetition is increasing over the years. Based on the data, we provided
some explanations on the possible causes of code duplication for both types of code
clones. The proliferation of clones may be caused by the desire to copy successful
Ethereum DApps or by the lack of a package manager tool that allows smart con-
tracts developers to easily import external dependencies without the need to copy
and paste existing code. A qualitative study involving smart contracts developers
(e.g., a survey or a series of interviews) could provide additional insights into the
causes of code cloning in the Ethereum blockchain.

Chapter 4

Blockchain Models to Design
Tools for Non-Expert Users

4.1 Introduction

The previous chapter 3, underpinned the idea that blockchain-based tools for ex-
pert users are still in an early stage and standards for developing blockchain-based
applications have not been defined yet. This fact has hampered and slowed down
the adoption of the blockchain (?). Many academic studies (???) suggest that pro-
ductivity tools for expert users are crucial to improve the developers’ work and to
facilitate the adoption of blockchain technology. However, this might not be enough.
A new technology needs tools for non-expert users that are easy to use and able to
satisfy their needs (??), to be adopted on a larger scale.

Although much effort has been made by private companies and academic re-
searchers, non-expert users’ interaction with the blockchain technology is still dif-
ficult (??). Interacting with the blockchain requires technical knowledge (e.g.
installing a wallet, being aware of the inability to recover the password of the
blockchain account, deciding the minimum fee to pay to execute a transaction within
a certain time). Moreover, there is still a lot of misinformation or even missing in-
formation on the blockchain among non-expert users, who still prefer traditional
applications rather than applications based on the blockchain technology. There-
fore, many non-expert users associate the blockchain technology with suspicious
investment, because the cryptocurrency is very volatile or because there might be
fraudulent smart contracts. To overcome both misinformation and mistrust on the
blockchain, more user-centered tools could be provided to overcome the barriers
that can limit the access to a wider public, thus facilitating the interaction and
understanding of the possibilities that this technology can open.

This chapter is organized as follows. Section 4.2 presents the factors that influ-
ence the Ethereum transaction fees (?). The section sheds light on how different
variables might interact and influence the Oracle Gas Price, i.e. softwares that are

86CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

supposed to suggest the best price in Gas units to be paid by the users to exe-
cute their transactions (?). Section 4.3 evaluates the validity of the prediction the
Gas Oracles make on the Gas price to pay to have the transaction recorded in the
blockchain (?). Section 4.4 presents a new model for the Gas price prediction to
meet the user’s real needs in terms of fees to pay and waiting time to execute their
blockchain transactions. Section 4.5 analyses malicious smart contracts to provide
non-expert users with a means to prevent transaction fraud. The malicious smart
contracts are intended to steal money especially from non-expert users that have no
technical skills to understand that such smart contracts advertise something other
than what they actually do.

4.2 The Influence Factors on Ethereum Transac-

tion Fees

.

Blockchains are made of blocks. A block is a container data structure and it is
composed of a header and a list of transactions. Every transaction in Ethereum must
pay a transaction fee in a special resource called Gas (??). Gas is “fuel” for compu-
tational instructions executed in the blockchain. The general idea is to make users
pay for the computational costs (e.g., energy, CPU) necessary to execute, create,
and approve their transactions. Gas is bought by using Ether, a digital currency. A
Miner approves a batch of transactions by adding them to the blockchain ledger and
gets a reward as well as the transaction fees converted to Ether. Since Ether is the
second most valued cryptocurrency in the world1 (the most valued is Bitcoin (?)),
the transaction fees have a non-trivial cost for the user.

For a Miner, these fees contribute to his/her profit. For example, the average
revenue per block2 (in September 2018) was 3.48 Ether ($785.58 USD3). From that
amount, 0.48 Ether ($108.35 USD) was just in transaction fees. Every Miner can
set his/her own minimum fees (measured in Gas price) and there is no consensus on
what value should that be (?).

In the period considered in this research (from December 1, 2018 to December
15, 2018), the Ethereum transaction fees paid to have the transaction mined in
approximately 30 seconds (i.e., two blocks in the Ethereum platform) noticeably
changed from 60 GWei to 20 GWei4. Figure 4.1 shows the Gas prices estimated by
the Etherchain’s API5 in 8 hours.

1https://coinmarketcap.com/coins, 2018-09-28.
2https://bitinfocharts.com/ethereum/, 2018-09-28.
3We are assuming an exchange rate of 1 Ether = $225.742791 USD, based on the values by

https://currencio.co/eth/usd/ at 2018-09-28.
41 GWei = 10−9 Ether
5https://www.etherchain.org/api/gasPriceOracle

https://coinmarketcap.com/coins
https://bitinfocharts.com/ethereum/
https://currencio.co/eth/usd/
https://www.etherchain.org/api/gasPriceOracle

4.2. THE INFLUENCE FACTORS ON ETHEREUM TRANSACTION FEES 87

Figure 4.1: Ethereum transaction fees variation

It is essential for a user to get a good estimate of the price s/he should set for
his/her transaction to be approved in a given time. We assume that users do not
want to overpay for Gas. Moreover, if a user does not need that his/her transaction
is approved quickly, s/he may wait until it is possible to pay less and thus save
money.

The variation of Ethereum transaction fees poses some questions worth consid-
ering, such as: what are the factors that influence the Ethereum transaction fees?
What is the relationship between the Ethereum transaction fees and other economic
indicators? Is there any connection between the Ethereum transaction fees and the
number of pending transactions in Ethereum? Is there any connection between the
Ethereum transaction fees and the Miners’ policy, such as the minimum Gas price
and the maximum Gas limit for mining a transaction?

The aim of the research is to investigate the factors that influence the Ethereum
transaction fees and therefore the possible decision making behaviour of blockchain
users, miners included. The results are relevant not only from a computer science
perspective but also from an economic perspective, because blockchain is a tech-
nology adopted by an increasing number of institutions, because it can coordinate
strategic activities across different sectors: global agrifood chains, healthcare sys-
tem (?), banks, insurance and entertainment companies, etc. Section 4.2.1 presents
previous literature on the same research topic. Section 4.2.2 presents the main re-
search question of the work. Section 4.2.3 describes some aspects of the Ethereum
protocol and Granger causality, needed to understand the relationship among vari-
ables that might influence the Ethereum transaction fees. Section ?? presents the
methodology used to gather and analyze the data from Ethereum, to evaluate the
variables that affect the Ethereum Gas fees. Section 4.2.5 presents and discusses
the results. Section 4.2.6 presents the conclusions of the research.

4.2.1 Related Work

Several studies examined factors that influence cryptocurrencies prices and
fees (?????). Sovbetov (?) examines factors that influence the five cryptocurrencies
Bitcoin, Ethereum, Dash, Litecoin, and Monero, over 2010-2018 using weekly data.

88CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Giudici and Abu-Hashish (?) propose a new model that explains the dynamics of
bitcoin prices and models the interconnections among different crypto and classic
asset prices. Houy (?) analyses the economics of Bitcoin’s transaction fees and
shows that a fixed and imposed transaction fee can keep Bitcoin blockchain secure
enough when the transaction fee is high enough. Möser and Böhme (?) analyse
the transaction fees paid within 45.7 million transactions recorded in the public Bit-
coin blockchain from the inception of Bitcoin until the end of August 2014. They
interpret the heterogeneity and instability of transaction fees as an indication that
the protocol’s market mechanism fails to set a fair price for transactions. Easley et
al.(?) develops a game-theoretic model to explain the factors leading to the emer-
gence of transactions fees, as well as the strategic behaviour of miners and users.
He highlights the role played by mining rewards and by transactions volume.

4.2.2 Research question

Previous studies focus on the factors that influence cryptocurrencies prices and fees
in a daily, weekly or monthly time frame, while the present study considers a nar-
rower time frame, in seconds. Moreover, previous literature especially considers the
Bitcoin blockchain, while the present study investigates the Ethereum blockchain.
Figure 4.1 shows that the Gas prices estimated by the Etherchain’s API changes
many times in just 8 hours ranging from 20 to 50 Gwei. Therefore, we decided to
analyse the variables in a 15 seconds time frame. We chose this interval of time,
because it is the average time to mine a block in the ethereum network, as shown
by the row block time in Table 4.3. We thought this is the best way to answer our
main research question: what are the factors influencing the transaction fee price in
the time frame to mine a block?

4.2.3 Background

Ethereum protocol

The Ethereum protocol (?) defines how the Ethereum network works, how Miners
should generally operate, and rules everyone must follow to be a valid part of the
network. The protocol is written in general terms such that anyone could implement
his/her own version of the protocol into a custom Ethereum client. The most used
Ethereum clients are Go-Ethereum and Parity-Ethereum. Go-Ethereum, named
Geth, is written in GO, Parity-Ethereum is written in Rust. Figure 4.2 is a pie
chart showing the most used Ethereum clients6.

Through the Ethereum clients the Miners can set the conditions that the trans-
actions must satisfy to be accepted and transmitted in the network. For example
the Miners can set the minimum Gas price to mine a transaction and the amount
of Gas per block to target when mining a new block. Each Ethereum mining client

6https://www.ethernodes.org/network/1

https://www.ethernodes.org/network/1

4.2. THE INFLUENCE FACTORS ON ETHEREUM TRANSACTION FEES 89

Figure 4.2: Ethereum clients

has different default values to mine transactions and blocks. For example, the Geth
Ethereum client has 2 GWei as the minimum Gas price and 4,712,388 as the max-
imum amount of Gas per block. The Miners can change the settings according to
their needs. For example, to gain more money, a Miner can set a higher minimum
Gas price or, to prevent malicious denial of service (DoS), a Miner can lower the
block Gas limit to 2 million units of Gas.

Life cycle of an Ethereum transaction

Figure 4.3 presents the life cycle of Ethereum transactions. These are the main
stages of the transactions workflow:

1. A user logs into his/her Ethereum account and sends his/her transactions to
the Ethereum network, a set of interconnected nodes.

2. Some nodes receive the transactions and each one can pass them to nearby
nodes.

3. The nodes that can mine the blocks, i.e. the Miners, select the transactions
going to the mempool, according to its settings.

4. A miner picks the transactions up from the mempool, puts them in a block and
tries to find the nonce value representing a correct solution to a cryptographic
problem.

5. The first miner that finds a solution for its block, broadcasts the solution to
all the other nodes.

6. The nodes that received the solution, verify whether it corresponds to the
problem of the senders’ block. If the solution is correct, the other nodes can
confirm that the block can be added to the blockchain.

90CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Figure 4.3: Life cycle of an Ethereum transaction (tx). Orange boxes represent the
variables possibly influencing the Ethereum txs fee. Grey numbered boxes represent
the stages of the txs workflow.

7. When the majority of the nodes reaches a consensus, the block is added to the
blockchain.

Gas Price Oracle

The Etherchain Gas Price Oracle7 is a tool that provides a prediction on the fairest
Gas price to pay to get a transaction confirmed within a certain number of blocks.
It uses the method developed by EthGasStation8 to estimate the prices. We decided
to use Etherchain instead of EthGasStation mainly because Etherchain provides its
oracle data as a REST service, which is easier to acquire automatically. EthGasSta-
tion does not provide such interface requiring a manual or text-mining interaction
to acquire its prices.

The Etherchain tool provides four recommended Gas prices based on the desired
transaction speed and cost: “safe low”, “average”, “fast”, and “fastest”.

• “Safe low” is the Gas price intended to be both cheap and successful. It may
take a bit longer to get a transaction confirmed with this price, but anyway
less than 30 minutes.

• “Average” is the price accepted by the top Miners who account for at least
50% of the blocks. It takes around five minutes to get a transaction confirmed

7https://www.etherchain.org/api/gasPriceOracle
8https://ethgasstation.info/

https://www.etherchain.org/api/gasPriceOracle
https://ethgasstation.info/

4.2. THE INFLUENCE FACTORS ON ETHEREUM TRANSACTION FEES 91

with this price.

• “Fast” is the price accepted by the top Miners which takes approximately one
minute to get a transaction approved using this price.

• “Fastest” is the lowest Gas price that is accepted by all top Miners (estimated
over the last two days). It takes at most 30 seconds to get a transaction
confirmed with this price. Paying more than this price, it is unlikely to decrease
transaction confirmation time.

The research will consider the “fastest” prices, as a variable named “ora-
cle gasprice” from now on. Figure 4.4 shows the “oracle gasprice” variation history
during the day. The “oracle gasprice” recommendations are based on the lowest
Gas price accepted by the Miners in the last 200 blocks. The goal of the research is
to understand whether other variables can affect the “oracle gasprice” values, i.e.,
the alledged fairest Ethereum transaction fees to pay.

Granger causality

To understand whether the data series on one variable affects the data series on the
other variable, a specific relationship among the series needs to be observed. A time
series variable is called causal to another if the ability to predict the second variable is
improved by incorporating information about the first one. The notion of causality
was first proposed by Wiener (?). Granger causality is a technique to determine
whether one time series is useful in forecasting another. Granger (??) defined
causality as follows: A variable Y is causal for another variable X if knowledge of
the past history of Y is useful to predict the future state of X in addition to the
knowledge of the past history of X itself. So if the prediction of X is improved by
including Y as a predictor, then Y is said to be Granger causal for X.

Granger causality between two variables can be unidirectional, bidirectional (or
feedback) and neither unidirectional nor bidirectional, i.e., independent or without
Granger-causality in any direction. As to what concerns the results of this research,
the Granger causality test is calculated for different lags from 0 to 24 lags. Each lag
corresponds to a time interval of 15 seconds. It means that, if the variable x Granger
causes the variable y within one lag, it will need 15 seconds before the variable x
affects the variable y.

Augmented Dickey-Fuller test

Granger causality test can be applied only to statistically stationary time series. A
stationary time series is a series whose statistical properties, such as mean, variance,
etc., are all constant over time. Most statistical forecasting methods, the Granger
causality test included, are based on the assumption that the time series can be made
approximately stationary (i.e., “stationarized”) via mathematical transformations.

92CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Table 4.1: The variables studied to investigate whether they were predictive of
oracle gasprice

Variable name Description

oracle gasprice Gas paid to have the transaction confirmed within 1 to 2 blocks time

unconfirmed count Number of unconfirmed transactions in a particular memory pool

block time Time spent to mine a block in the Ethereum network

miners count Number of active Miners

hashrate (Hash/s) Speed at which a miner solves the Ethereum code

difficulty Number expressing ’how difficult’ it is to find a new block

eth btc Value of the BTC/Ether ratio

eth usd Value of the USD/Ether ratio

If the time series are non-stationary, then the time series model should be applied
to temporally differenced data rather than to the original data. Augmented Dickey-
Fuller test (ADF) shows whether time series have some upward or downward trend
or seasonal effects, i.e. whether mean or variance are not constant over time.

4.2.4 Methodology

The selection of variables taken into account in this study is based on different
works related to factors that influence cryptocurrencies prices, such as Bitcoin, pre-
sented in(?????) and listed in Table 4.1. Data were analysed along the following
variables: the Gas price oracle (oracle gasprice), the number of unconfirmed transac-
tions (unconfirmed count), the block time (block time), the number of active Miners
(miners count), the current hashrate of the network, a unit measured in hashes per
second or H/s (hashrate), the current difficulty of the network (difficulty), the value
of the USD/Ether ratio (eth usd), the value of the BTC/Ether ratio (eth btc).

• The variable oracle gasprice, measured in Wei, is the Gas paid to have the
transaction confirmed within 1 to 2 blocks time (around 15/30 seconds). In
our case it is the Ethereum transaction fees.

• The variable hashrate it is the speed at which a miner solves the Ethereum
code. In December 2018, the hash rate of the network was approximately 300
billion H/s or 300 GH/s.

• The variable unconfirmed count refers to the number of unconfirmed transac-
tions in a particular memory pool. The number of waiting transactions of a
particular memory pool differ from the total number of waiting transactions
in the Ethereum network. Moreover, the memory pool of each node might

4.2. THE INFLUENCE FACTORS ON ETHEREUM TRANSACTION FEES 93

Table 4.2: RESTful Services list

Variable name Service Name URI

oracle gasprice Etherchain’s API https://www.etherchain.org

unconfirmed count BlockCypher’s Ethereum API https://api.blockcypher.com

block time

Ethpool’s API

https://api.ethpool.org

miners count https://api.ethpool.org

hashrate (H/s) https://api.ethpool.org

difficulty https://api.ethpool.org

eth btc
Etherscan’s API

https://api.etherscan.io

eth usd https://api.etherscan.io

differ from the memory pool of other nodes: while there is a consensus on the
mined transactions, there is no enforced consensus on what is stored in the
memory pool of each node. However, for the aims of this research, it is rea-
sonable to assume that the waiting transactions trend in the memory pool is
representative of the general waiting transactions trend in the global network.

• The variable difficulty indicates how difficult it is to find the hash of a new
block. The difficulty is adjusted periodically as a function of how much hashing
power has been deployed by the network of miners.

• The variable block time refers to the time spent to mine a block in the
Ethereum network.

The data are sampled each 15 seconds and were sourced from the different RESTful
services listed in Table 4.12.

Dataset

For each variable of the dataset there are 92,160 observations, collected from De-
cember 1, 2018 to December 15, 2018 (Table 4.12). The dataset is publicly available
at Github.9

Table 4.3 shows statistics on our dataset. For each variable we measured the
mean, the standard deviation (SD), minimum (min), the 25th, 50th, and 75th per-
centiles and maximum (max).

The data were analyzed to determine the Granger causality between a specific
variable, i.e., oracle gasprice (the Gas price to have the transaction mined in 2 blocks
max), and all the other variables of Table 4.3. A test was previously conducted to

9https://github.com/apierr/gas-price

https://www.etherchain.org/api/gasPriceOracle
https://api.blockcypher.com/v1/eth/main
https://api.ethpool.org/networkStats
https://api.ethpool.org/poolStats
https://api.ethpool.org/poolStats
https://api.ethpool.org/networkStats
https://api.etherscan.io/api?module=stats&action=ethprice
https://api.etherscan.io/api?module=stats&action=ethprice

94CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Table 4.3: Statistical description of sample data

Mean SD min 25% 50% 75% max

oracle gasprice 33.59 8.83 20 26 31 41 60

unconfirmed count 91,768 6,312 70,772 88,429 92,915 95,582 111,252

block time 14.46 0.91 11.70 13.8 14.4 15.1 17.5

miners count 785 58.64 699 747 770 803 1,031

hashrate (TH/s) 173 4.15 167 169 175 177 181

difficulty (÷1015) 2.37 0.0718 2.22 2.32 2.37 2.44 2.55

eth btc 0.0268 0.0008 0.0246 0.0263 0.0267 0.0277 0.0283

eth usd 98.41 8.64 82.56 91.66 96.64 107.33 113.78

ensure that the data were stationary in terms of the variables used. In the case of
non-stationary series, the first difference of the series was performed just once to
make the series stationary. A pair Granger causality test was then performed for all
the series.

4.2.5 Results and Discussion

When we analyzed the data, some series were stationary (ex. data of oracle gasprice
variable), whilst other series revealed to be non-stationary (ex. data of eth usd vari-
able). Figure 4.4 is a graphical representation of the stationarity vs. non stationarity
of raw data concerning a sample of variables, i.e.,hashrate, difficulty, eth usd, eth btc,
unconfirmed count, miners count, block time, and oracle gasprice.

In Figure 4.4, the first five (hashrate, difficulty, eth usd, eth btc, and uncon-
firmed count) are non-stationary series, whilst the remaining represents stationary
series (miners count, block time, and oracle gasprice).

ADF test

To confirm whether the series were stationary or not, we perform a Augmented
Dickey-Fuller (ADF) test. ADF test results show that the data series on variables
hashrate, difficulty, eth usd, eth btc, and unconfirmed count are all non-stationary.
However they are all stationary after the first differentiation, therefore it is possi-
ble to state that they are integrated at the first order. The ADF test results are
summarized in Table 4.4.

4.2. THE INFLUENCE FACTORS ON ETHEREUM TRANSACTION FEES 95

Figure 4.4: Time series datasets

Table 4.4: ADF test results

Variables ADF Statistic p-value Conclusion

oracle gasprice -10.00 0.000* stationarity

unconfirmed count -2.958 0.058 non-stationarity

block time -10.92 0.000* stationarity

miners count -4.427 0.001* stationarity

hashrate -0.672 0.853 non-stationarity

difficulty -0.105 0.948 non-stationarity

eth btc -1.928 0.318 non-stationarity

eth usd -1.686 0.437 non-stationarity

*p < 0.05 means that the null hypothesis is rejected, indicating that the
data are stationary

Granger causality test

The pair-wise Granger causality test was thereafter performed for oracle gasprice
variable versus the variables listed in Table 4.5.

96CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Table 4.5: Granger causality test results

Null Hypothesis: F-stat. Prob. Decision

unconfirmed count does not Granger cause oracle gasprice 2.6274 0.0723 Accepted

oracle gasprice does not Granger cause uncon-
firmed count

5.2830 0.0215∗ Reject

eth usd does not Granger cause oracle gasprice 0.6094 0.5437 Accepted

oracle gasprice does not Granger cause eth usd 0.1961 0.6579 Accepted

eth btc does not Granger cause oracle gasprice 0.5923 0.4415 Accepted

oracle gasprice does not Granger cause eth btc 1.5087 0.2193 Accepted

miners count does not Granger cause oracle gasprice 1.0331 0.0309∗ Reject

oracle gasprice does not Granger cause miners count 0.0035 0.9527 Accepted

difficulty does not Granger cause oracle gasprice 1.2373 0.2499 Accepted

oracle gasprice does not Granger cause difficulty -32186 1.0000 Accepted

block time does not Granger cause oracle gasprice 1.8749 0.0323 Accepted

oracle gasprice does not Granger cause block time 0.3624 0.5472 Accepted

hashrate does not Granger cause oracle gasprice 1.9968 0.1576 Accepted

oracle gasprice does not Granger cause hashrate -7.2403 1.0000 Accepted

*p < 0.05 means that the null hypothesis is rejected, indicating that the effect of the lagged
values (value coming from an earlier point in time) of the other variable is statistically
significant.

Pair-wise comparison: oracle gasprice vs. hashrate, difficulty, block time,
eth btc, and eth usd

The results in Table 4.5 show that the data series on the variable hashrate does not
Granger cause the data series on the variable oracle gasprice, because the p-value
(0.1576) is not significant. They also show that the data series on the variable
oracle gasprice does not Granger cause the data series on the variable difficulty,
because the p-value (1.000) is also not significant. To sum up, there is no Granger
causality between the series, running from oracle gasprice to difficulty and the other
way, because difficulty does not affect oracle gasprice and the converse is also true.
Hence, the Granger causality is independent or non-directional between the two
series.

Similar results were obtained for the hashrate variable. Indeed, when the
hashrate increases, as a result, also the difficulty of validating newly added blocks
increases; when the hashrate decreases, also the difficulty decreases, to speed up the
time needed to mine a block. Based on the total hashrate, the difficulty is adjusted

4.2. THE INFLUENCE FACTORS ON ETHEREUM TRANSACTION FEES 97

by the nodes and the time to mine a block is kept constant (15 seconds). This is
the reason why these variables do not influence the transactions fees.

Finally, we obtained similar results for the relationship between oracle gasprice
and the following variables: eth btc, eth usd, and block time.

Pair-wise comparison: oracle gasprice vs. unconf count

The results in Table 4.5 also show that the data series on the variable oracle gasprice
does Granger cause the data series on the variable unconfirmed count, because the
p-value (0.0215) is significant. They also show that the data series on the vari-
able unconfirmed count does not Granger cause the data series on the variable or-
acle gasprice, because the p-value (0.0723) is not significant. To sum up, there
is Granger causality between the series, running from oracle gasprice to uncon-
firmed count, but not the other way, because unconfirmed count does not affect
oracle gasprice. Hence, the Granger causality is unidirectional between the two
series.

Pearson correlation: unconf count vs. oracle gasprice

To better understand the unidirectional relationship of Granger causality between
oracle gasprice and unconfirmed count variables, a Pearson correlation test was per-
formed. The Pearson correlation coefficient is equal to -0.6. Therefore the Pearson
correlation test result suggests that there is an inverse relationship between ora-
cle gasprice and unconfirmed count. A plausible explanation for this result is that,
when the oracle suggests a high price, users are not encouraged to submit the trans-
actions. It is indeed reasonable to assume that people that “can” wait, will do so if
the Oracle price is too high.

Pair-wise comparison: oracle gasprice vs. miners count

Furthermore, the results in Table 4.5 show that the data series on the variable
miners count does Granger cause the data series on the variable oracle gasprice,
because the p-value (0.0309) is significant. They also show that the data series on
the variable oracle gasprice does not Granger cause the data series on the variable
unconfirmed count, because the p-value (0.9527) is not significant. To sum up, there
is Granger causality between the series, running from miners count to oracle gasprice
and not the other way, because oracle gasprice does not affect miners count and the
converse is not true. Hence, the Granger causality is unidirectional between the two
series.

Pearson correlation: miner count vs. oracle gasprice

To better understand the unidirectional relationship of Granger causality between
miner count and oracle gasprice variables, a Pearson correlation test was performed.

98CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

The Pearson correlation coefficient is equal to -0.41. Therefore the Pearson correla-
tion test result suggests that there is an inverse relationship between oracle gasprice
and miner count: the more the number of miners, the lower the price predicted by
the Oracle. A plausible exaplanation might come from the fact that an increase
of the number of miners entails an increase of the mining competition to get the
transactions. As a consequence of the supply/demand balance, the increase in com-
petition entails a decrease of the prices.

4.2.6 Summary and Conclusions

There is much work (?????) investigating the factors influencing cryptocurrencies
prices and fees, focusing on the most common cryptocurrencies, such as Bitcoin.
Previous studies analyzed the factors on weekly or daily data. On the other hand,
this research analyzes instead Ethereum and adopts a finer time frame, to investigate
the factors that influence the Ethereum transaction fees in the average time to mine
one block (i.e., approximately 15 seconds).

The main objective of the research is to analyze the Granger causality relation-
ship between the data series on the variable oracle gasprice and other variables, such
as unconfirmed count, miners count and eth usd. A ADF test and a pair-wise Granger
causality test were performed to establish whether there is a Granger causality be-
tween the data series on the variable oracle gasprice and the data series on other
variables.

The results of the ADF test showed that the data series on eth usd and uncon-
firmed count did not present any stationarity. After taking the first difference of the
series, the results of the ADF test showed a stationarity.

In light of the results of the pair-wise Granger causality test (see Table 4.5), a
non-directional causality relationship was observed between the data series on the
oracle gasprice variable and the data series on the block time variable and between
the data series on the oracle gasprice variable and the data series on the hashrate
variable. This means that the past history of both the oracle gasprice and the
block time variables cannot help in respectively predicting their future values.

In a similar vein, it is possible to conclude that ethtbc, eth usd, hashrate and dif-
ficulty variables cannot be used to forecast the values of the oracle gasprice variable,
and also the converse is true (see Table 4.5).

Interestingly, a unidirectional causality was observed from the data series on the
oracle gasprice variable to the data series on the unconfirmed count variable (see
Table 4.5). This result shows that the past history of the oracle gasprice variable is
useful to forecast the number of waiting transactions, even though the converse is
not true. The results of the Pearson correlation test showed that they are inversely
correlated: when the oracle price increases, the number of waiting transactions in
the Ethereum network decreases. It stands to reason that when the oracle suggests
a high price to pay, the users wait to submit a transaction, thus decreasing the
overall number of pending transactions in their memory pools. As to what con-

4.3. ARE THE GAS PRICES ORACLE RELIABLE? 99

cerns the results of this research, the oracle gasprice variable Granger causes the
unconfirmed count variable when the number of lags is greater than 6. This means
that the oracle gasprice variable does not immediately affect the unconfirmed count
variable. This result is compatible with the fact that the user cannot be immedi-
ately aware of the variation of the oracle gasprice. Moreover we need to consider
the time taken by the user to submit the smart contract to the blockchain and the
time required by the transactions to propagate in the network. When choosing a
time frame greater than 15 seconds, it is not possible to appreciate the time needed
for the system to equilibrate the variation of a variable.

Finally, a unidirectional causality was also found from the data series on the min-
ers count variable to the data series on the oracle gasprice variable (see Table 4.5).
The result of the Pearson correlation test showed that the number of Miners and
the oracle gasprice variables are inversely correlated: when the number of Miners
increases, the oracle price decreases, as per the supply/demand balance.

Overall, the results of the research are useful to improve the predictions on the
Ethereum transaction fees at a given time, because they shed a light on how different
variables might interact and influence the Oracle Gas Price. Knowing that Oracle
predictions are biased by some variables might be useful for blockchain users, to
reach a more mindful and efficient use of the platform. Such results are relevant not
only from a computer science perspective but also from an economic perspective,
because they show the financial mechanisms of blockchain which is adopted by both
public and private institutions. Further research is anyway needed to build a model
that precisely provides the users with an estimate of the best Gas Price to pay to
have the transaction executed in a given time lapse, taking into account the variables
that influence the overall Ethereum transaction fees.

4.3 Are the Gas Prices Oracle Reliable?

4.3.1 Introduction

In Ethereum (?), users need to pay a fee in a special resource called Gas when
creating transactions (???). Gas is like fuel for computational instructions executed
in the blockchain. There are mainly three reasons for the Gas fees concept: (i)
to make the users pay for the computation costs (e.g., energy, CPU) required to
create and approve their transactions; (ii) to limit blockchain resource use; and (iii)
to avoid issues of intentional or non-intentional network abuse (e.g., DoS attacks,
infinite loops).

Transactions occurring in the network are verified by special nodes named “min-
ers”. In Ethereum, verifying a transaction means checking the sender and the con-
tent of the transaction. Miners generate a new block of transactions and then add
such a block to the network. Currently, miners need to solve a mathematical puzzle
(called “Proof of Work”) to create a new Ethereum block. Miners receive the Gas

100CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

transaction fees converted into cryptocurrency as a reward for adding a new block
to the blockchain (???).

The Gas price value is set by the user who chooses how much to pay to execute
the transaction. If the value set by the user is too low for the Ethereum miners, the
transaction risks to never be included in the blockchain. On the other hand, if the
transaction price is very high, the blockchain miners will be prone to include it in
the Ethereum blockchain, but the user will allegedly waste money.

In this work, we analyze the data of one popular oracle to predict the Gas price,
along with the Ethereum transactions’ and blocks’ data. More specifically, we use
in this study the EthGasStation oracle, as its API is public and can be used by any
other oracle or user. The Ethereum transactions’ variables considered in the study
are:

• the interval of time elapsed between the time when the transaction was first
seen in the Transaction Pool and the time in which the transaction was added
to the Ethereum Blockchain;

• the Gas price, i.e., the amount of Ether the user is willing to pay for every
unit of Gas, which is measured in “GWei”.

Oracle data is useful to predict the Gas price a user should pay to influence miners
to verify a transaction (and consequently, add such transaction to a block). To help
users decide on the price to pay to submit a transaction, Gas Oracle proposes the
following four price categories: safe low, standard, fast, and fastest. These categories
define the Gas price required to have a transaction confirmed within the next 100,
20, 5, and 2 blocks, respectively.

First, the results show that EthGasStation gives the Gas price prediction with a
higher margin of error compared to what it claims (2%). The margin of error ranges
from a minimum of 4% for the “fastest” category to a maximum of 28% for the
“fast” category. Second, we argue that by performing the Poisson regression more
frequently, the margin of error can, in theory, be decreased to the declared mark
of 2% for the “fastest” category. Finally, the results suggest that two of the Gas
Oracle categories are not frequently used in practice: fast and average categories. It
is indeed reasonable to expect that, to save money, single users or companies could
set different requirements in terms of interval time to add a transaction, that is not
provided by all the default categories.

This study is therefore relevant from a users’ perspective for at least two reasons:

• It shows the EthGasStation oracle is less reliable than advertised. Therefore,
users or companies employing Ethereum blockchain technology should be more
careful to trust oracles’ recommendations.

• It suggests that two of the four categories proposed by the Gas Oracle may
not meet the needs of Ethereum users. Therefore other categories could be

4.3. ARE THE GAS PRICES ORACLE RELIABLE? 101

created better suit the users’ requirements. For example, a company might be
interested to record a transaction with a maximum delay of 24 hours. Such a
category, not considered by the Oracle, might help the company to save money
in transaction fees.

The rest of the work is organized as follows. Section 4.4.2 described the trans-
action pool and the Gas Oracle investigated in the research. Section 4.3.3 presents
the experimental design and methodology used to collect and analyze the data. Sec-
tion 4.3.5 discusses the results of the case study using EthGasStation Oracle. Sec-
tion 4.3.5 describes the threats for the validity of the study. Section 4.4.3 presents
the related work. Finally, Section 4.4.9 presents the conclusions and outlines future
work ideas.

Background

In this section, we provide background information needed to better understand our
study.

Block

The blockchain is an ordered list of blocks, where each block is identified by its
cryptographic hash and a progressive number named “height” (?). Each block refers
to the block preceding it, resulting in a chain of blocks. Each block consists of a
set of transactions. Once a block is created and attached to the blockchain, the
transactions in the block cannot be changed or reverted. This is to ensure the
integrity of the transactions and to prevent the double-spending problem (?).

The “block time” is defined as the interval of time the blockchain takes to mine
a block. The time interval is not constant and changes every time a block is added
to the blockchain. In Ethereum blockchain the block time is expected to be between
10 to 19 seconds (with an average of 15 seconds). A standard unit of measurement
for time in the blockchain is not the second but the block number.

Transaction Pool

Each node in the Ethereum network has a virtual place named “Transaction Pool”,
where transactions enter when they are received from the network or submit-
ted locally. The Transaction Pool contains all currently known pending/uncon-
firmed transactions. They exit the Transaction Pool when they are included in the
Ethereum blockchain. The miners separate processable transactions, which can be
added to a block, and future transactions, which can be wait to be added. Transac-
tions move between those two states over time as they are received and processed.

Each node maintains its own Transaction Pool. When a node receives a new valid
block, it removes all the transactions contained in the block from its Transaction
Pool as well as the transactions which attempt to double spend the same output. A

102CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Figure 4.5: Life cycle of a transaction. Pα is the probability of a transaction in the
memory-pool to be mined, and Pβ is the probability of a mined transaction to be
approved.

double spend is a potential flaw in a digital cash scheme in which the same single
digital token can be spent more than once. The node can decide different policies:
for example, if the Transaction Pool size gets too close to the RAM capacity, the
node can set up a minimal fee threshold. Transactions with Gas price lower than
the threshold are immediately removed from the Transaction Pool and only new
transactions with a Gas price high enough are allowed to enter the transaction pool.

Life Cycle of a Transaction

To understand the concept of the data collection performed in the research, it is
necessary first to present the possible states of a transaction. Figure 4.5 illustrates
the life cycle of a transaction. A transaction life cycle starts when it is first observed
in a vantage point, a memory-pool, in the Ethereum network. A user offers a reward
to a miner to process its transaction and waits for the final results.

Figure 2.1 illustrates the compression property of hash functions.

The transaction approval depends on the amount of Gas offered by the user to
be sufficient to act on the network. When the user offers a sufficient amount of
Gas, miners can process this transaction, and as a consequence, the user will have
its transaction approved. Similarly to a car, a sufficient amount of Gas allows for
the transaction to reach its final state successfully. Otherwise, if a miner spends
the amount of Gas and is not able to process the transaction, the transaction is
discharged and stated as reproved. Some transactions were not mined during the
time window of our observation. In fact, we observed some transactions in the
memory-pool, and even a long time after this first observation, we were not able to
decide if this transaction is considered either approved or reproved. When such a
situation occurs, we consider the transaction as expired.

4.3. ARE THE GAS PRICES ORACLE RELIABLE? 103

4.3.2 Gas Oracle

An Oracle is a software that finds and analyses data concerning real-world facts.
Based on the data, it computes an estimate, extracting relevant information to
predict future data trends. Examples of real-world facts are commodities and goods
prices, flight or train delays. In the Ethereum blockchain, the information provided
by an oracle can be used by smart contracts the participants have agreed on, to
execute the transactions.

In the context of this research, Gas Oracle is an oracle that analyses blockchain
data to predict the best Gas price to pay for a transaction to be approved within
a certain number of blocks. We analyze data from one specific Gas Oracle, Eth-
GasStation.

This oracle claims that all predicted values are estimations based on the current
network condition and should be used as an indication. More specifically, Eth-
GasStation employs a Poisson Regression (?) on Ethereum data to estimate the
Gas prices accepted by the miners. However, it only computes and updates its pre-
dictions every 100 blocks (approximately 1,500 seconds or 25 minutes). Therefore,
the estimation made by the oracles every 100 blocks may not reflect the most cur-
rent status of the network. During this interval of time, some data regarding the
blockchain network such as the number of miners, the number of transactions and
the Gas price attached to the transactions might indeed suddenly change, thus hav-
ing an impact on the value of the minimum transaction fee accepted by the miners
to include a transaction in a block. All data regarding the blockchain network are
publicly available, also in the form of a timeline chart confirming our hypothesis.10

4.3.3 Experimental Design

We planned to test the reliability of a Gas Oracle by looking over real data from the
Ethereum blockchain. The research method consists of four phases: (a) Retrieving
Data, (b) Cleaning Data, (c) Modelling Data, and (d) Analyzing Data.

Retrieving Data

In this phase, we collect the data by making requests to various HTTP RESTful
API services at different times. Figure 4.6 describes the periodic polling used to get
new information from the HTTP RESTful API services. The flow collects data as
follows:

• a request is sent to the server every 15 seconds;

• if the request is successful, the server responds to the client request sending a
payload in JSON format;

10https://etherscan.io/charts

https://etherscan.io/charts

104CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Table 4.6: RESTful Services list

Resource name RESTful API service URI

EthGasStation https://ethgasstation.info/json/ethgasAPI.json

Block https://api.blockcypher.com/v1/eth/main/blocks/0

Unconfirmed Transactions https://api.blockcypher.com/v1/eth/main/txs

• if the request is not successful, the client will not record any data for that time
frame. During the data retrieving operation, an average of 1 request out of
20,160 requests was unsuccessful, i.e. 0.0049% of the requests failed.

Figure 4.6: Regular Polling every 15 seconds

Table 4.12 shows the URI of the RESTful API services used to fetch the Gas
Oracle data, the blocks data and the Unconfirmed Transactions data, i.e., the latest
transactions that have not been included in any block.

The data have been stored as files in JSON format in the file system of the server
where the analyses are performed. Figure 4.7 shows an example of the Gas Oracles
payload formatted in JSON format.

The key value pairs shown in code 4.7 represent respectively the Gas to pay to
have the transactions confirmed within: 2 blocks (fastest), 5 blocks (fast), 20 blocks
(average), and 100 blocks (safe low).

4.3. ARE THE GAS PRICES ORACLE RELIABLE? 105

{

"fastest":116.0,

"fast":100.0,

"safeLow":17.0,

"average":60.0,

"block_time":13.24,

"blockNum":8937688

}

Figure 4.7: JSON payload extracted from EthGasStation RESTFul API Services

Cleaning Data

In this phase, we perform a control of the data quality. The data retrieved have
been checked in compliance to the API documentation; Example of data not in
compliance to the API documentation are:

• string value where a numeric value was instead expected;

• numeric value where a string value was instead expected;

• numeric value which is not in the expected range;

• date value which is not in the expected time frame;

• missing value;

• missing key/value pairs;

• numeric value with different units of measurement.

We rejected the data, falling in one of the categories listed above, except for the
latest category where the values have been recalculated according to the expected
measurement unit.

As an example, a numeric value which is not in the expected range, is a negative
block’s height value, a date value in the future, or a negative value of the waiting time
for transactions to be added to the Ethereum blockchain. According to Kanda and
Shudo (?), a negative value of the waiting time variable may suggest a transaction
propagation delay among different nodes. This means that different nodes in the
blockchain could see the transaction at different instants of time.

During the cleaning phase, 0.83% of data has been rejected, distributed as fol-
lows: 770K out of 11M transactions (0.75%), 182 out of 345K blocks (0.05%) and
112 out of 345K Oracle’s predictions of the Gas price (0.03%).

106CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

4.3.4 Modelling Data

Validation Condition

In this step, we define the condition to assess the correctness of the Oracles’ Gas
price prediction. Oracles usually make the prediction based on the history of the
mined blocks data, such as the lowest Gas price accepted by the miner to add the
transaction to the block.

Suppose that during the time interval when the i-th block, Bi, is mined:

• op (Oracle Price) is the price predicted by the Gas Oracle to have the trans-
action included at the most within j blocks;

• B = {Bi+1, ..., Bi+j} is the set of j blocks mined in the blockchain following
the i-th block;

• T = {tx1, tx2, ..., txn} is the set of unconfirmed transactions, i.e. that have
not been included in any blocks, with Gas price respectively of tp1, tp2, , tpn,
that there were in a Transaction Pool when the i-th block was mined.

Figure 4.8: Gas Oracle prediction based on block history. The transaction having a
Gas price higher or equal to op (the yellow circle) are displayed in white text on a
darker background. The transaction having a Gas price lower than op are displayed
in black text on a lighter background.

Figure 4.14 depicts the Ethereum blockchain in the past (grey color
Bi−4000...Bi−1), with the addition of the block mined in the present (red color Bi)
and with future blocks (green color Bi+1...Bi+j). The Gas Oracle prediction is based
on the block history of the last 4,000 blocks represented in grey color. The swim-
ming pool represents the status of a Transaction Pool at the time when the Gas
Oracle makes the prediction (red block Bi). All the transactions belonging to the
set T that have a Gas price higher or equal to op (the yellow circle) are displayed in
green color to the right of the Bi block. If the prediction of the Oracle were correct,
all the transactions belonging to the set T having a Gas price higher or equals to
op, would be mined in one of the following j blocks {Bi+1, ..., Bi+j}.

4.3. ARE THE GAS PRICES ORACLE RELIABLE? 107

The condition is expressed by the following equation:

∀txi ∈ T ∧ txi ≥ op : txi ∈ {Bi+1, ..., Bi+j} (4.1)

Equation 4.1 is used to verify the prediction of the EthGasStation Oracle Gas
price.

Data Modelling

In this step, data were collected and stored in a relational database, where each table
represents the following items: blocks, transactions, and Oracles. Even though, for
this study we only considered data from one Oracle, we are planning to expand this
research to include other Oracles in the future.

Figure 4.15 shows the data contained in the database, the relationships between
table fields and their types (ex. string, integer, boolean, enumerate). It is notewor-
thy that the wait time for a transaction is not stored in the database but calculated
by the difference between confirmed (time) and received (time).

Figure 4.9: Database schema.

4.3.5 Analyzing Data

In this phase, we analyse the data to:

108CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Table 4.7: Statistical description of Transactions data

.

Mean St.D Mode Min 25% 50% 75% Max

waiting time (s) 44 82 25 0 25 29 38 1,499
gas price (GWei) 32 443 50 0 10 20 50 313,734
gas used 70,124 320,908 21,000 0 21,000 21,969 49,993 8,000,000
gas limit 303,967 947,926 21,000 21,000 42,000 70,000 150,000 8,000,030
size (Byte) 191 499 – 83 112 114 174 31,791

1. view some aggregated statistical metrics such as percentile, mean, standard
deviation, mode of the numerical data series;

2. find distribution of different variables such as: gas prices and time a transac-
tion needs to wait before being recorded in the blockchain;

The goal is to make a descriptive analysis of the data-sets concerning different
items, as modeled in the Section 4.3.4. All the data cover a period of time ranging
from March 29, 2019 to May 28, 2019.

Case Study: EthGasStation

In this section, we present our case study by analyzing oracle data from the Eth-
GasStation. The data-set analysed in this work is publicly available at our open-
access repository.11 The dataset is an SQLite database having three tables. The
first table, named “transaction”, contains more than 11 millions rows. The second
table, named “block”, contains around 345 thousand blocks. The last table, named
“oracle”, contains 345 thousand rows of Oracles’ predictions for the Gas price of
each category (fast, fastest, average and safe low). The dataset refers to a period of
time of two months, ranging from March 29, 2019 to May 28, 2019.

Transactions Data Analysis

Figure 4.16a shows the box plot of the waiting time in seconds before a transaction
is added to the Ethereum Blockchain. The violin plot shows the presence of a time
peak along the vertical axis at the value of 20 seconds, which means that, according
to the data-set 4.13 analysed in this research, most transactions wait from one to
two blocks before being added to the Ethereum Blockchain.

Figure 4.11 shows two violin plots of the waiting time of the transactions for
different Gas prices. Interestingly, the violin plots suggest that the Gas price at-
tached to the transaction influences the interval of time the transaction needs to
wait before being added to the Ethereum blockchain. The violin plots also present

11http://doi.org/10.5281/zenodo.3584242

http://doi.org/10.5281/zenodo.3584242

4.3. ARE THE GAS PRICES ORACLE RELIABLE? 109

Figure 4.10: Violin Plot (median, first and third percentiles, range) of the waiting
time in seconds before a transaction is added to the Ethereum Blockchain.

the same peak at the value of 20 seconds regardless of the Gas price. The difference
is the shape of the violin plot, which becomes larger at the decreasing of the Gas
price. In addition, having the Gas price higher than 10 Gwei does not guarantee that
the transaction is added to the blockchain within 1-2 blocks, but the probability is
anyway higher when compared to the transactions having the Gas price lower than
10 GWei.

Gas Oracle Data Analysis

We analyzed the data of the Oracle EthGasStation. This Oracle can diversely predict
the Gas price values to attach to transactions to have the transaction included at
the most within n blocks.

Table 4.8 reports the mean, the standard deviation (SD), the minimum (min),
the first quartile (25%), the median (50%), the third quartile (75%) and maximum
(max) of the Gas price recommendation for the transaction to be included at most
in two blocks according to EthGasStation.

Figure 4.12 shows the violin plots of the Gas price prediction according to the
EthGasStation Oracle for each Gas price category: 1) fastest (in blue, leftmost plot),
2) fast (in orange, second plot), 3) average (in green, third plot), and 4) safe low
(in red, rightmost plot). The violin plot shows that the most frequent value of Gas
price for each category is as follows: 20 GWei for the fastest category, 5 GWei for
both the fast and average category, and 3 GWei for the safeLow category.

Table 4.15 reports the mean, the standard deviation (SD), the mode, the min-
imum (min), the first quartile (25%), the median (50%), the third quartile (75%)

110CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Figure 4.11: Violin Plot of the waiting time in seconds before a transaction is added
to the Ethereum Blockchain. The blue plot to the left refers to the transactions
having a Gas price lower than 10 GWei. The orange plot to the right refers to the
transactions having a Gas price higher than or equal to 10 GWei.

Table 4.8: Statistical description of EthGasStation prediction on the Gas price
recommendation (in GWei) for the transaction to be included at most in two blocks.

Mean St.D Min 25% 50% 75% Max

15.28 6.60 3.0 10.0 20.0 20.0 61.0

and maximum (max) of the Gas price recommendation for the transaction for each
Gas price category.

Table 4.9: Statistical description of EthGasStation Gas price categories (in GWei)

.

Mean St.D Mode Min 25% 50% 75% Max

Fastest 15.33 6.60 20 3 10 20.0 20.0 61.0
Fast 4.58 2.42 3 3 3 3.6 5.0 60.0
Average 2.83 0.80 3 1 3 3.0 3.0 14.5
Safe Low 1.34 0.68 1 1 1 1.0 1.1 14.5

4.3. ARE THE GAS PRICES ORACLE RELIABLE? 111

Figure 4.12: Violin plot of the EthGasStation Oracle’s Gas price categories

112CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

The mode for the ”fast” and ”average” categories are the same. This indicates
that most times the Gas price is the same for both categories, in spite of being
different categories in terms of execution time. Therefore, our analysis suggests that
these two categories should be merged.

It is not possible to be sure that the users who submit the transactions are
following the Gas Oracles’ recommendation. However, it is reasonable to assume
that the users who set the Gas price equal to the Gas price suggested by the Oracle
are indeed following the Oracle’s recommendation. Even if they were not following
the Oracle’s recommendation, it is likely that the user agrees with the Gas price
attached to the transaction and the waiting time. If the user disagrees with the
waiting time, s/he would change the Gas price to rely on the expected waiting time.

The analysis of the Gas price of the transactions in the Transaction Pool shows
that 16% of the transactions have a price equal to the price suggested by the Gas
Oracle. The percentage of transactions having the Gas price equal to the Gas price
suggested by the Oracle is distributed among the four categories as follows: 1) 7%
safe low, 2) 1% fast and average, and 3) 8% fastest.

Figure 4.19b presents the percentage of Gas price categories used in Ethereum
Blockchain. The data analysis of the transactions waiting in the Transaction Pool
to be added to the Ethereum blockchain suggests that the categories “fast” and
“average” are not followed by most users probably because these categories do not
respond to their need. On the other hand, the categories “fastest” and “safe low”
are much more used in practice.

Figure 4.13: Usage of Gas Oracles Categories.

We used Equation 4.1 to calculate the margin of error of the EthGasStation
predictions. EthGasStation claims to have a 2% margin of error. Table 4.10 shows
the percentage of error among the Gas price categories recommended by the Oracle.
As we can see in Table 4.10, the margin of error for every category is greater than

4.3. ARE THE GAS PRICES ORACLE RELIABLE? 113

Table 4.10: Percentage of error among the Gas prices recommended by EtherGasSta-
tion according to Equation 4.1.

Margin of error
Fastest Fast Average Safe Low

EthGasStation 4% 28% 7% 5%

2%, and the “fast” category shows the greatest margin with 28% margin. Therefore,
EthGasStation predictions may be less reliable than advertised.

Discussion: How to Improve the Margin of Error?

One of the reasons for the EthGasStation Oracle to have such a margin of error
is because it performs its calculations (a Poisson Regression) to update the Gas
predictions every 100 blocks (approximately 25 minutes). We argue that 100 blocks
is not an appropriate interval of time for an Oracle to update its recommendations.
Especially in the Ethereum blockchain, where the Gas prices can vary a lot within
minutes.

In future related work, we aim to show that, by performing the Poisson Re-
gression at more frequent intervals, it is possible to improve the accuracy of the
prediction of the minimum Gas price to pay to have the transaction executed in a
given time lapse.

Threats to Validity

External Validity. In this research, we analyzed data Gas predictions from the
EthGasStation Oracle. Since Gas is a concept unique to the Ehtereum blockchain
platform, this study cannot be generalized to other blockchain platforms. We did
not address this threat for two reasons: (i) this research is an exploratory study on
one specific Oracle; and (ii) analyzing other types of transaction fees for different
blockchains is outside the scope of this research.

Construct Validity. We could not find how the oracle originally calculates its
margin of error. Therefore, the oracle may indeed have the margin of error it claims
under its method. However, since such method for error calculation is not openly
available, we need a properly defined one for comparison. Therefore, we defined the
equation 4.1 to measure the margin of error of the Oracle’s predictions.

4.3.6 Related Work

Singh and Hafid (?) proposes a more fine-grained classification model that splits
the confirmation time of transactions into eight classes: within 15 seconds, within

114CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

30 seconds, within 1 minute, within 2 minutes, within 5 minutes, within 10 min-
utes, within 15 minutes and within 30 minutes or longer. We know that on average,
a transaction has to wait for two block confirmations (∼30 seconds) before being
added. However, in the cases where the model would predict that the transaction be-
longs to the ”within 5 minutes” class, there is no way for the user to know if it would
take 3 minutes, rather than 4 minutes or more. Hence, while the paper presents a
model with good prediction accuracy, it considers confirmation time prediction as
a simple classification problem. It can only provide a user with an approximation
of time it would take for their transaction to be confirmed, which may or may not
always be ideal. In addition, Singh and Hafid (?) compare the performance of two
machine learning regression models (Multi-Layer Perceptron and Random Forest)
and the more classical, statistical model (Poisson Regression) on the task of predict-
ing the confirmation time for a transaction in Ethereum Blockchain. The authors
suggest that machine learning regression models perform well and better than the
already used statistical approach. However, due to the need for the model to be
periodically retrained and the time taken by the model to learn new data, the two
machine learning regression models are not the most viable solution for the confir-
mation of the time prediction, as the users may need to know the Oracles’ response
in a much shorter time interval.

Pierro and Rocha (?) investigated the factors that influence the Ethereum
transaction fees and the possible resulting decision-making behaviour of Ethereum
Blockchain users, miners included. They observed that the past history of the Or-
acle Gas price prediction is useful to predict the number of waiting transactions,
even though the converse is not true. The results of the Pearson correlation test
showed that they are instead inversely correlated: when the Oracle price increases,
the number of waiting transactions in the Ethereum network decreases. It stands to
reason that when the oracle suggests a high price to pay, the users wait to submit
a transaction, thus decreasing the overall number of pending transactions in their
memory pools.

Chen et al. (?) identified seven gas costly patterns that are not optimized by the
Solidity compiler. The authors analyze 4,240 contracts on three gas costly patterns.
Their results show that over 80% of the contracts suffer from those costly patterns.
The authors’ work differs from ours because they focus on detecting possible waste of
gas units, while in this study, we focus on the gas price (and the Oracles predictions
for such price).

Ducasse et al. (?) proposed an open-source platform for blockchain analysis
called SmartAnvil. Although SmartAnvil is intended to be independent of a spe-
cific blockchain platform, their work focus on Ethereum blockchain and contracts
written in the Solidity language. For that reason, the authors have plans to include
Gas optimization and estimation on SmartAnvil in the future, and they argue the
importance of Gas estimation for contract development and analysis.

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 115

4.3.7 Conclusion

The present study evaluated the validity of the prediction the EthGasStation oracle
makes on the Gas price to pay to have the transaction recorded in the blockchain.

We analyzed the oracle’s predictions and have assessed that it carries a higher
margin of error than originally claimed. EthGasStation claims to have a 2% margin
of error, while our analysis shows that margin to be at least twice as much. For
instance, the “Fastest” category showed a 4% margin of error, while the “Fast”
category showed 28%. We argued the reason for that higher margin of error is
because it cannot take into account changes in the Ethereum Network in real-time.
We also argued that by updating the Gas price recommendations at every new block
(instead of every 25 minutes), the margin of error can be lowered considerably.

The data analysis also indicates that the categories “average” and “fast” are
not very used in practice, with less than 1% of the transactions set the Gas price
suggested by the Oracle in those categories.

As future work, we plan to analyze data on other Gas Oracles besides the Eth-
GasStation, to see if our findings also occur in other oracles. We are also going
to implement our oracle to assess the feasibility and reliability to update the Gas
recommendations more frequently.

4.4 A User-Oriented Model for Oracles’ Gas

Price Prediction

4.4.1 Introduction

Ethereum blockchain is a distributed ledger where transactions are recorded into
a sequence of ordered blocks. The Gas is a unit of measurement unique to the
Ethereum blockchain that measures the computational work required to run trans-
actions within the Ethereum Virtual Machine (EVM). The transactors, i.e. the
users or the smart contracts that submit transactions to the blockchain network
(henceforth “users”), also propose a fee in terms of Gas price to validate, include,
and compute the transactions effect, when an executable code, the so called “smart
contract”, is called (?). The users especially pay the fee in Ethers, the Ethereum
cryptocurrency, for the effort required to compute the proof-of-work (PoW). The
PoW keeps the network resilient, though requiring a big investment of the miner,
i.e. the node that solves the PoW challenge 12. The PoW challenge indeed consists
in a cryptographic puzzle requiring large computational resources (?). As there is
a (weighted) distribution of minimum acceptable Gas prices, the users will have a
trade-off to decide between lowering the Gas price and maximising the chance that
their transaction will be timely committed to the blockchain (?).

12Ethereum is currently migrating to a Proof of Stake consensus algorithm. However, the study
targets current transactions on the main network where the PoW is still in use.

116CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

To send a transaction on the Ethereum blockchain, the user needs to specify
a Gas limit, which is the maximum amount of Gas that can be consumed by the
transaction, and a Gas price which is the cost in Ether the user is willing to pay
per unit of Gas consumed. If the transaction spends less Gas than the Gas limit,
the remaining Gas will be refunded to the user and the miner will earn less than the
maximum Gas Limit. Indeed, unlike the Bitcoin blockchain, where the users do not
need to set a Gas limit, but just the transaction fee which will be paid to miners, in
the Ethereum blockchain there is always the possibility for the miners to receive a
minor reward compared to the Gas limit set by the users (?).

There are some main reasons to have a Gas price in the Ethereum blockchain: 1)
the users must pay for computational costs and resources used (e.g., energy, CPU)
to generate and include their transactions into blockchain blocks upon approval;
2) a Gas price regulates and limits the use of blockchain resources; 3) a Gas price
incentivizes miners to actually include transactions in the blocks without just mining
empty blocks; 4) a Gas price allows the users to express (and pay for) priority; 5) a
Gas limit avoids network abuse or misuses, intentional or unintentional (e.g., DoS
attacks, infinite loops) (?).

The users, sometimes via an intermediary, send a transaction to an Ethereum
node. From there, the transaction is broadcast to other nodes and distributed across
the network. When the transaction reaches a miner’s node, the miner can add it to
the pool of pending transactions (also called “memory pool”) and then include it in
a new block which may be appended to the last one in the chain (?).

The computational cost of a transaction in Gas units depends only on the com-
putations occurred to process such transaction. The Ethereum documentation pro-
vides the different costs of each elementary operation. The users are free to specify
any Gas price that they wish, however the miners are free to ignore transactions
as they choose. Some miners, especially the miners with high computational re-
sources, may seek to make the highest profit and change the source code to evaluate
the transactions based on the Gas parameters, i.e. the Gas limit and the Gas
price (?). For instance, “Go Ethereum”, a software installed in some nodes of the
Ethereum network, might be used to set the parameter expressed by the variables
“–txpool.pricelimit” and “–txpool.lifetime”. In particular, the “txpool.pricelimit”
variable defines a baseline transaction price under which the node will simply not
accept transactions (not even to forward it to other nodes) (?). Consequently, on
the one hand, if the value set by the user is too low, miners will probably ignore
such transactions which risk to be never included in the blockchain. On the other
hand, if the transaction fee is too high, miners will be prone to include it in the
Ethereum blockchain, but the user will allegedly waste money. To suggest the best
trade off for Gas price, the Gas Oracles assign the Gas price to categories, which
are actually based on four quantiles (50th, 75th, 95th, 99th) determined from past
Gas price observations. Section 4.4.2 explains how the Gas Oracles model the Gas
price, based on data from past blocks (?).

In this study, we extend preliminary results (?) obtained for a single Oracle case,

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 117

the EthGasStation Oracle, to another case, the Ethchain Oracle, in a wider time-
frame, by analyzing the data of the Oracles that predict the Gas price, along with
the Ethereum transactions’ and blocks’ data. The Ethereum transactions’ variables
considered in the study are:

• the waiting time calculated as the time elapsing between the time the trans-
action was seen by the miner we are considering in this research and the time
the transaction has been included into the block (?).

• the Gas price, i.e., the amount of Ethers the user is willing to pay for every
unit of Gas, which is measured in “GWei” (?).

Oracles’ data are useful to predict the Gas price a user should pay to make it
convenient for a miner to include the transaction into a block. To help the users in
deciding the price to pay for the cost of the PoW calculation, Gas Oracles propose
the following four price categories: ‘safeLow’ , ‘average’ , ‘fast’ , and ‘fastest’ . These
categories define the Gas price required to have a transaction included within the
next 100, 20, 5, and 2 blocks, respectively. The study aims to answer the following
research questions:

• RQ#1: Are the Oracles’ predictions reliable as much as declared?

• RQ#2: Do the Gas price categories provided by the Oracles correspond to the
Gas price categories the users actually set?

• RQ#3: How could the Oracles provide the users with more reliable predic-
tions?

To answer our research questions, we hypothesized that 1) the predictions made by
the Gas Oracles have a margin of error greater than the margin of error declared
by them (2%); 2) the categorizations of the Gas price made by two Oracles do not
correspond the Gas price the users and/or companies actually set; 3) it is possible
to reduce the Gas Oracles’ error margin by calculating the ‘recommended Gas price’
when each block is added instead of every 100 added blocks as the existing Gas
Oracles actually do (?).

We collected data in three-months time from two Gas Oracles (Etherchain and
EtherGasStation) which predict the Gas price every time that 100 blocks are added
to the Ethereum blockchain. During the same period, we also collected over 10
million transactions from a transaction pool. We then cross-checked the data col-
lected by the transaction pool and the Oracles, to understand whether the Oracles’
estimates fail.

First, the results of this research show that both Gas Oracles (Etherchain and
EtherGasStation) give the Gas price prediction with a higher margin of error com-
pared to what they declare (2%). The margin of error ranges from a minimum of 4%
for the ‘fastest’ category to a maximum of 28% for the ‘fast’ category. Second, the

118CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

results show that the margin of error could be lowered to 2% for all the categories,
by performing the Poisson regression at smaller intervals of time. Finally, the results
suggest that two of the Gas Oracles categories are not frequently used in practice:
‘fast’ and ‘average’ categories. It is indeed reasonable to expect that single users or
companies aim to save money and thus set some requirements, which are different
in terms of waiting time and are not provided by the default categories.

The rest of the study is organized as follows. Section 4.4.2 presents the con-
cepts needed to better understand our research, such as the transaction pool, the
Gas Oracles, and the Gas price categories investigated in the study. Section 4.4.3
presents the related work the study uses as a starting point for a user-oriented model
for the Gas Oracles’ Gas price prediction. Section 4.4.4 presents the experimental
hypotheses guiding the study. Section 4.4.4 describes the methodology used to test
the hypotheses, to collect and perform the regression model on the data of the study.
Section 4.5.4 presents the results of the study. Section 4.4.8 discusses the results in
the light of the user-oriented model. Finally, Section 4.4.9 draws some conclusions
and outlines some ideas for future work.

4.4.2 Background

This section provides the readers with a brief introduction on the blockchain technol-
ogy and in particular on the Gas price mechanism sets on the Ethereum blockchain
to ensure a balanced use of resources.

Blocks

The blockchain is an ordered sequence of blocks containing the records of valid
transactions as approved by a consensus algorithms shared between a set of com-
putational nodes in a peer-to-peer network. It is a shared ledger where, to keep
unchangeable the block sequence and the temporal order of recorder transactions,
each block includes a cryptographic hash depending on the information recorded
on the previous block. Each block is also identified by progressive number named
“height” (?). Once a block is created and added to the blockchain, the transactions
in the block cannot be changed or deleted. This is to ensure the integrity of the
transactions and to prevent the double-spending problem (?).

Block time is the time the network takes to generate one extra block In Ethereum
the ‘average’ block-time is expected to be between 10 to 19 seconds (with an average
of 13 seconds) and depends on how long the miners take to find the correct hash to
validate a block by brute force computation. In the blockchain there are two units
of time measurements: (i) seconds, and (ii) blocks’ number or height (?).

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 119

Transaction Pool

The software running in each miner node collects the transaction into a virtual
storage named “transaction pool”. The miners distinguish processable transactions,
which can be included into a block, from future transactions, which can wait to be
included. Therefore the transactions move between these two states over time as
they are received and processed (?). When a miner solves the PoW challenge to
mine a block, the miner informs the adjacent nodes about that. As the adjacent
nodes receive this piece of information about the newfound block, they will vali-
date the received block and propagate the block data to peer nodes. In the case
of mining nodes, they will remove all the transactions contained in the newfound
block from their own transaction pool, checking also for transactions attempting to
double-spend the same output. A double spend is a potential flaw in a digital cash
scheme, where the same single digital token can be spent more than once (?). The
miners have full control over their transaction pool and may adopt different policies
to manage it. For instance, a miner could set up a minimum fee threshold, thus
transactions with a Gas price lower than the threshold are immediately discarded
from the transaction pool and only the new transactions with a price higher than
the threshold are allowed to enter the transaction pool (?).

Gas Oracle

In the blockchain terminology, Oracle may have different meanings. An Oracle can
be a program which provides the smart contracts with reliable data collected from
outside the blockchain. Oracles are also software systems which analyse some data
and make some prediction on that basis (?).

In this study, the term Gas Oracle assumes a specific meaning related to the activ-
ity of forecasting Gas prices. The Ethereum wiki 13 reports the following definition:
“a Gas Oracle is a helper function of the Geth client that tries to find an appropri-
ate default Gas price when sending transactions and it can be parametrized”. Thus
an Gas Oracle analyses blockchain data to predict the best Gas price to pay for a
transaction to be approved within a certain number of blocks. The Oracle’s fore-
casts may be important for companies using the Ethereum blockchain because the
time and the costs of performing transactions can affect their economical resources
and clients’ satisfaction (?). It is thus crucial for them that Oracles forecasts are as
reliable as possible. However, based on the analysis performed in this study, it is
not the case.

We indeed analyzed the predictions of two Gas Oracles: EtherGasStation and
Etherchain. Both Gas Oracles claim that all predicted values are estimations based
on the current network conditions and should be used as a suggestion. However, the
Gas Oracles only compute and update their predictions every 100 blocks (approx-
imately 1,500 seconds or 25 minutes) (?). Therefore, their estimations might not

13https://eth.wiki/

120CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Table 4.11: Gas price categories with the relative waiting time

Gas price category Maximum waiting time to include the trans-
action into a block

‘fastest’ 1-2 blocks

‘fast’ at most in 2 minutes

‘average’ at most in 5 minutes

‘safeLow’ at most in 30 minutes

mirror the current status of the network.

Gas Price Categories

Gas Oracles, EtherGasStation and Etherchain, estimate the time interval required
for a transaction to be included into the next blocks based on the Gas price attached
to the transaction (?). To estimate the waiting-time a transaction needs to be
included into a block, many variables need to be considered, such as the number of
transactions submitted by the users in a given period of time, the number of miners
and their policy (?).

Gas Oracles have defined four categories based on the quantiles of the Gas price
offered to the miners by the users which are accessible from the transactions data.
The four percentile are the 50th, the 75th, the 95th and the 99th percentile (?).
The 50th percentile corresponds to the ‘safeLow’ category, the 75th percentile to
the ‘average’ category, the 95th percentile corresponds to the ‘fast’ category and
finally the 99th percentile to the ‘fastest’ category.

To make information more accessible to users, the Gas Oracles states that each
category corresponds to a waiting time. In reality, it would be more effective for
the users to know that the Gas price is related to the number of blocks to wait and
not to the time because the average value to mine a block is 13 seconds but there
can be strong oscillations ranging from a few seconds to over half an hour to mine
a single block (see Section 4.5.4). Table 4.11 presents the categories defined by the
Gas Oracles (Etherchain 14 and Etherscan 15) and their waiting-times. The code
which estimates the Gas price to pay to the Gas Oracles is publicly available under
doi: 10.5281/zenodo.3758103.

14https://etherchain.org/tools/gasPriceOracle
15https://docs.ethgasstation.info/gas-price

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 121

4.4.3 Related Work

The blockchain can be disadvantageous from a user’s perspective because of dif-
ferent kind of wasted resources. The study focuses on the waste of Gas price or
waste of time the users might experience to add a transaction to a block. Previous
work highlighted other kinds of waste from a user-oriented perspective. Chen et
al. (?) identified seven Gas costly patterns, i.e., programming solutions that are
not optimized by the Solidity compiler. A Gas costly pattern required more compu-
tational resources, thus reducing the number of transactions that can be included
into a block. Therefore the users need to wait or pay more to have their transaction
executed. The authors analyzed 4,240 smart contracts on three Gas costly patterns.
They found that over 80% of the contracts suffer from this kind of costly patterns.
The authors’ work is therefore interesting because it highlights an existing waste of
Gas units in the blockchain, which disadvantages the users’ interests.

In a previous study, the researchers (?) measured the time for transactions to
be committed in both Ethereum and Bitcoin blockchain. The authors performed
a detailed analysis of issues that could negatively impact commit times in permis-
sionless PoW blockchains such as Ethereum. Their study is very interesting for the
purpose of this reseatch because it identifies the Gas price as a cause of delay in the
commitment of transactions.

A research study (?) investigated the reliability of seven Oracles on different
platforms such as Augur, Ms Bletchley, TownCrier and Corda. They discovered
that the common causes of failure are the data sources used by the Oracle to make
various kinds of predictions such as the weather forecast. These failures can have a
serious impact on the economy because many smart contracts perform operations on
the basis of these predictions. To meet the users needs, they provided a framework
that can be used to assess the Oracles’ reliability. The authors’ work supports the
interesting idea that, providing this framework together with the Gas Oracle, it is
possible to help the users’ decision making. Differently from their work, in this
research, we study the behavior of the Oracles that predict the Gas price in the
Ethereum blockchain.

Ducasse et al. (?) pointed out that even more experienced users, as software
developers of smart contracts, need to be helped to write smart contracts that are
more effective by using fewer resources. This is the main reason why the authors pro-
posed an open-source platform for blockchain analysis called SmartAnvil. Although
SmartAnvil is independent from a specific blockchain platform and thus may be
used to investigate any blockchain, their work focused on Ethereum blockchain and
contracts written in Solidity. The authors provided a tool that can facilitate the
identification of resources waste to solve a problem within the smart contracts. The
authors’ work is therefore interesting because it supports the idea that, providing
this tool together with a Gas Oracle, it is possible to help users and companies to
waste less time and money.

In a previous study (?), Singh and Hafid proposed a more fine-grained classifi-

122CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

cation model when compared to the existing Gas Oracles’ classification. The model
split the confirmation time of transactions into eight classes: respectively within 15
seconds, 30 seconds, 1 minute, 2 minutes, 5 minutes, 10 minutes, 15 minutes, and 30
minutes or longer. Interestingly, the authors proposed a classification that considers
different possibilities for the users to set a Gas price that might meet their needs,
while existing classification do not pay attention to the users’ point of view. In this
study, I limit my research to the existing classification of the Gas Oracles, but I
accept the idea that there may be some categories that better represent the users’
needs and interests.

Generally, the users or the companies may have the following interests and needs:
1) they may sometimes be willing to pay a lot to have the transaction executed as
soon as possible, 2) they may sometimes be willing to save money and wait a lot, as
long as their transactions are eventually added to the blockchain. For instance, the
users or companies may be willing to pay a lot during an initial coin offer (ICO),
when only a limited supply of tokens is available and thus “the first to arrive is the
first to be served”. On the contrary, when the time is not constrained, they may
wait to save money. For instance, when the smart contracts need to refund users
having an assurance in case of delay of arrival, the users might want to wait a few
hours before receiving the reimbursement (?).

Singh and Hafid (?) also compared the performance of two machine learning
regression models (Multi-Layer Perceptron and Random Forest) and the more clas-
sical, statistical model (Poisson Regression) on the task of predicting the confirma-
tion time for a transaction in the Ethereum blockchain. Interestingly, the authors
suggested that machine learning regression models perform well and better over the
existing method performed by the Gas Oracles, than the already used statistical
approach. However, the blockchain networks can change for many reasons (?). Pre-
vious research shows that the number of transactions moving through the Ethereum
network can increase or decrease based on specific users-related events, as for in-
stance when a company looks to raise money to create a new coin, app, or service.
In such real scenarios, after a certain number of blocks we need to retrain a model
like the one proposed by Singh and Hafid. In conclusion, the two machine learning
regression models are not the most viable solution for the confirmation of the time
prediction, as the users may need to know the Oracles’ response in a much shorter
time interval.

Another study (?) investigated other factors that might influence the Ethereum
transaction fees and the possible resulting decision-making behaviour of Ethereum
blockchain users, miners included. They observed that the past history of the Oracle
Gas price prediction is useful to predict the number of waiting transactions, even
though the converse is not true. The results of the Pearson correlation test showed
that they are instead inversely correlated: when the Oracle price increases, the num-
ber of waiting transactions in the Ethereum network decreases. It stands to reason
that when the Oracle suggests a high price to pay, the users that can wait, wait to
submit a transaction, thus decreasing the overall number of pending transactions in

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 123

their memory pools. This result pushes us to target our research towards a model
oriented on the users and not on the mere data or miners.

In a previous study (?), a quantitative study was conducted to determine whether
the Gas price prediction of the Oracle EtherGasStation is reliable. The study aimed
to evaluate the correctness of the Gas price prediction the EtherGasStation made
to have the transaction recorded in the blockchain. The study investigated the
EtherGasStation’s predictions and found that it brings about a higher margin of
error than originally declared. EtherGasStation indeed claims to have a 2% margin
of error, while the analysis of the predictions showed that the margin is at least
twice as much. For instance, the ‘fastest’ category showed a 4% margin of error,
while the ‘fast’ category showed a 28% margin of error.

Moreover, the study argued that such a higher margin of error is due to the
fact that EtherGasStation does not take into account changes in the Ethereum
Network occurring in real-time. The study was anyway limited in various ways,
as it considered just one Gas price Oracle in a short time framework, so that the
results cannot be generalized and used to understand wider and general trends in
Gas Oracles’ prediction.

This study therefore provides a more comprehensive analysis of Gas price pre-
dictions, by performing: a) a quantitative analysis of the predictions of another Gas
Oracle, Etherchain, to check whether they are reliable or whether also in this case
they fail in suggesting the right Gas price as in the case of the EtherGasStation
Oracle; b) a test for the hypothesis that the Gas price’s margin error is reduced for
each category, when reducing the time interval required for the estimation of the
Gas price.

4.4.4 Research Methodology

The research methodology of the study includes the following phases: (a) the exper-
imental hypotheses, (b) the Data Collection, (c) the Data Cleaning, (d) the Data
Modelling, and (e) the Regression Analysis. The following sub-sections describe
each phase.

Experimental Hypotheses

The study was designed to address the following Research Questions:

• RQ#1: Are the Oracles’ predictions reliable as much as declared?

• RQ#2: Do the Gas price categories provided by the Oracles correspond to the
Gas price categories the users actually set?

• RQ#3: How could the Oracles provide the users with more reliable predic-
tions?

To answer the questions, we advanced the following hypotheses:

124CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

• H1: The Gas Oracles’ predictions are not reliable. The Gas Oracles cannot
indeed take into account all the changes in the Ethereum Network in real-time,
especially because they compute the prediction every 30 minutes on average.

• H2: The Gas price categories proposed by the Oracles do not match the cate-
gories actually set by the users and/or companies. Single users or companies
may indeed set different requirements in terms of waiting time that is not
provided by the default categories.

• H3: A reduction of the margin of error in the Gas price prediction can be
achieved by calculating the ‘recommended Gas price’ at smaller interval of
time, thus considering the current changes of the network in real time.

Data Collection

In this research, we covered a 3-month analysis period and we made code pub-
licly available to replicate the data collections of the transactions used in this
research. The source code is available at the following online address https:

//github.com/aphd/eset/tree/master/src. The same code can be used to an-
alyze the transactions’ data in other time frames. We collected data by making
requests to various REST API services at different times. The flow to collect data
is:

• a request is sent to the server every 15 seconds;

• if the request is successful, the server responds to the client request sending a
payload in JSON format;

• if the request is not successful, the client does not record any data for that
time frame. During the data retrieving operation, an average of 1 request out
of 20,160 requests was unsuccessful, i.e., only the 0.0049% of requests have
failed.

Table 4.12 shows the URI of the REST API services used to fetch the Gas Oracle
data, the blocks data, and the unconfirmed transactions data, i.e., the latest trans-
actions that have not been included in any block. We choose to collect data from
these Gas Oracles because they are very popular among the Ethereum community.
Data were stored as files in JSON format in the file system of the server where the
analyses were performed.

Data Cleaning

A control over the data quality was performed. The data retrieved were accepted
when in compliance to the API documentation, or otherwise rejected. The 0.8% of
data was rejected, distributed as follows: 770K out of 11M transactions (0.75%),

https://github.com/aphd/eset/tree/master/src
https://github.com/aphd/eset/tree/master/src

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 125

Table 4.12: RESTful Services list

Resource name REST API service URI

EtherGasStation https://ethgasstation.info/json/ethgasAPI.json

Etherchain https://www.etherchain.org/api/gasPriceOracle

Block https://api.blockcypher.com/v1/eth/main/blocks/0

Unconfirmed Transac-
tions

https://api.blockcypher.com/v1/eth/main/txs

182 out of 345K blocks (0.05%) and 112 out of 345K Oracle’s predictions of the
Gas price (0.03%). Example of data, which were not in compliance to the API
documentation, are:

• string value where a numeric value was instead expected;

• numeric value where a string value was instead expected;

• numeric value which is not in the expected range;

• date value which is not in the expected time frame;

• missing value;

• missing key/value pairs;

• numeric value with different units of measurement.

The data falling in one of the categories listed above were rejected, except for the
latest category where the values were recalculated conforming with the expected
measurement units. Just to give an example, a numeric value which is not in the
expected range can be a negative block’s height value, a date value in the future, or
a negative value of the waiting time for transactions to be included into a block.

According to Kanda and Shudo (?), a negative value of the waiting time vari-
able may suggest a transaction propagation delay among different nodes. This means
that different nodes in the blockchain could see the transaction at different instants
of times. The transactions data-set contains indeed transactions with a negative
waiting time, around the 1.16% of all transactions. This might have at least two
reasons: 1) every node can have a different clock time, and 2) there is a propaga-
tion delay defined as the difference between the time when a node announced the
discovery of a new block or a transaction and the time when this announcement
was received by other nodes (?). In the study, the transactions data were collected
through an API that gives the transaction pool data of a single node. The API is

126CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

available at the following online address https://www.blockcypher.com/dev/. As
the Ethereum network is distributed, not all miners receive the same transactions
at the same time, therefore some nodes might store more transactions than others
at some time (?). Furthermore, every node can be a miner with different hardware
and software features and miners might have different RAM capacity to store un-
confirmed transactions. As a result, each miner has its own representation of the
pending transactions. The existence of such delay - which is not negligible - justifies
the negative times, because blocks can be discovered while communication and val-
idation is still in process. Decker and Wattenhofer (?), for the BitCoin blockchain,
observed that the median time until a node receives a block was 6.5 seconds, the
mean was 12.6 seconds and the 95th percentile of the distribution was around 40
seconds. Moreover, they showed that an exponential distribution provides a reason-
able fit to the propagation delay distribution. It is reasonable to think that there is
a similar effect in the Ethereum blockchain.

Modelling Data

In this subsection, we define the condition to assess the correctness of the Oracles’
Gas price prediction. Both EtherGasStation and Etherchain make the prediction
based on the history of the mined blocks data, such as the lowest Gas price accepted
by the miner to add the transaction to the block and the Gas offered by the users.

Suppose that during the time interval when the i-th block, Bi, is mined:

• op (Oracle Price) is the price predicted by the Gas Oracle to have the trans-
action included at most within j blocks;

• B = {Bi+1, . . . , Bi+j} is the set of j blocks mined in the blockchain following
the i-th block;

• T = {tx1, tx2, . . . , txn} is the set of unconfirmed transactions, i.e., that have
not been included in any blocks, with Gas price respectively of tp1, tp2, . . . , tpn,
that there were in a transaction pool when the i-th block was mined.

In an ideal scenario where the Gas Oracles never fail, the transactors that set
the Gas price equal or greater to the one suggested by the Gas oracle (op) should
have the transaction committed in the blockchain after n blocks where n depends on
the category proposed by the Gas Oracle and chosen by the user. Figure 4.14 shows
the ideal scenario where the users that set the Gas price following the Gas Oracle’s
suggestions have their transactions committed in the blockchain in the following n
blocks. The condition is expressed by the following equation:

∀txi ∈ T ∧ txi ≥ op : txi ∈ {Bi+1, ..., Bi+j} (4.2)

The equation 4.2 is used to verify the prediction of the Oracles’ Gas price: Ether-
chain and EtherGasStation.

https://www.blockcypher.com/dev/

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 127

Figure 4.14: The transactions having a Gas price higher or equal to the one proposed
by the Gas Oracle (op) are displayed in bold.

The existing Gas Oracles make the prediction every 100 blocks, performing a
Poisson regression. Based on the Gas price distribution of the transactions mined
in the last 200 blocks, the Gas Oracles estimate the Gas price to pay in relation to
the number of blocks the users should wait to have their transaction added. The
data are collected by querying the REST API Services mentioned in Table 4.12. To
test the hypothesis that the prediction can be improved, we performed the same
algorithm used by the Gas Oracles (?) at shorter time intervals (every 4 block for
the ‘fastest’) instead of every 100 blocks as the Gas Oracles actually do. The results
are collected in a table called realTimeOracle 4.15.

In this phase the data were collected and stored in a relational database, where
each table represents the following items: blocks, transactions, Oracles, and Other-
Prediction. Figure 4.15 shows the data contained in the database, the relationships
between table fields and their types (e.g., string, integer, boolean, enumerate). The
table named transaction stores all the transaction information such as the received
time detected in the transaction pool that was monitored for this research. It is
noteworthy that the waiting time for a transaction is not stored in the database
but calculated by the difference between confirmed (time) and received (time). The
table named block stores all the block information such as the current block num-
ber in the blockchain (block height), the number of transactions stored in a block
(n tx) and the lowest Gas price among all the transactions added in that block (low-
est gas price). The tables Etherchain and EtherGasStation store the ‘recommended
Gas price’ to have the transaction included in the block for each category. Finally,
table realTimeOracle stores all ‘recommended Gas price’ to have the transaction
included in the block for the ‘fastest’ and ‘safeLow’ category. The other two cate-
gories considered by the Gas Oracles have been excluded since this work, as well as

128CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

previous works (?), shows how the ‘fast’ and ‘average’ categories do not reflect the
requirements of companies and users.

Figure 4.15: Database schema.

Poisson Regression Model

The Oracles adopt a Poisson regression model, as per source code available via
Zenodo (?). As anticipated in section 4.4.3, different models, such as the machine
learning regression models, have been applied to improve the Gas Oracles predic-
tion. Although some of these models can give better results compared with the
Poisson Regression model, they have the drawback to be very expensive in terms of
computing resources. The time required to make the prediction (around 20 minutes)
is too long, as it is greater than the time taken by the blockchain network to mine
a block. This is the main reason why we investigated how to improve the Poisson
Regression model already used by the Gas Oracles.

In probability theory and statistics, the Poisson distribution is a discrete proba-
bility distribution of a given number of events occurring in a fixed interval of time or
space (?). We use the Poisson distribution to estimate the number of transactions
added to the blockchain per block period, which is on average 13 seconds. Let X
represents the set of x transactions added to the blockchain in a one block period.
For the sake of simplicity, let assume that all blockchain transactions are offering the
same Gas price to the miners. Equation 4.3 shows the Probability Mass Function
(PMF) of having x transactions added to the blockchain in one block period time.

P (X = x) =
λx ∗ e−λ

x!
, x ∈ [0,∞) (4.3)

In the Equation 4.3, λ is the mean number of transactions added to the blockchain
in one block period of time and e is Euler’s number.

To know the probability of having x transactions added in the n-th block, in the
formula 4.3 the λ value is to be multiplied for the number of blocks. Equation 4.4
shows the probability of having x transaction added to the n-th block.

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 129

P (X = x) =
n ∗ λx ∗ e−(n∗λ)

x!
, x ∈ [0,∞) (4.4)

The equations 4.3, 4.4 are valid when the events are observed under certain
conditions.

Conditions (C) for Poisson Distribution are:

• C1: An event can occur any number of times during a time period. In our
case, the event is the transaction added to the blockchain and the time period
is the block period.

• C2: Events occur independently from each others. In our case, if a transac-
tion is included into a block, it should not affect the probability of another
transaction to be included in the same block, i.e. in the same interval of time.

• C3: The average rate of events occurrences, i.e. the number of transactions
added to the blockchain per block, should be constant, i.e. the rate should not
change based on the block number added to the blockchain.

Of course, the Poisson distribution conditions are highly theoretical and do not
fit the blockchain real situations (RS) for many reasons:

• RS1: As to the condition C1, our results 4.14 show that the number of trans-
actions added to a block could be any integer number greater or equal to zero.
Thus, the condition C1 is satisfied.

• RS2: As to the condition C2, a transaction included into a block does affect
the probability to have another transaction added to the same block, simply
because the number of transactions is finite. However, in most cases, the
number of transactions is so high that they can be considered independent
with good approximation.

• RS3: As to the condition C3, there are cases where it may not be satisfied. For
example, if the policy of the miners suddenly changes and they decide to mine
empty blocks, the average rate of occurrence will drastically change. Although
the data in table 4.14 confirm that this can happen from time to time, this is
not the normal situation, because it goes against the interests of the miners
themselves. The network would indeed lose its usefulness and the value of the
Ethereum cryptocurrency (Ether) would decrease when compared to other
currencies (USD, EUR, etc.), and as a consequence, also the reward of the
miners, who are paid in Ether. Moreover, a changing number of transactions
submitted by the users to the blockchain network could change the average
transactions number per block, based on the Gas offered to the miners. This
can happen, for instance, during an ICO.

130CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

The points discussed above might explain why Gas Oracles’ margin error is larger
than expected. We suppose that, by recalculating the lambda factor in equation 4.4
at lower time block intervals compared to the Gas Oracles which recalculate the
lambda factor every 100 blocks, the margin of error in the probability computation
of having a transaction added to the blockchain in a certain number of blocks, can
be lowered. This does not mean that the Poisson model, in which the lambda is
recalculated every time a block is added to the blockchain, is the best way to model
the blockchain. Of course, other models might be tested taking into account the
time limit of 15 seconds, but up to now our model gives better results compared to
the current Gas Oracles’ model, as will be shown in section 4.4.7.

Regression Analysis

The purpose of this phase is to estimate the Gas price by running a Poisson re-
gression analysis on the data stored in the block table as Gas Oracles currently do.
The results of the Poisson Regression fill the table named “realTimeOracle”. Unlike
Gas Oracles, we perform the Poisson regression more frequently based on the four
category ‘fastest’ , ‘fast’ , ‘average’ and ‘safeLow’ . This choice is justified by:

• the categories are very different from each other based on waiting time require-
ments, expressed by different constraints. For example, the category ‘fastest’
has the constraint of having to guarantee 98% of transactions to be included
into a maximum of two blocks. This means that the error on the lambda de-
termination must be very small compared to the block interval. The category
‘safeLow’ instead requires to have the transactions included into a larger time
frame (120 blocks) and so the error on the λ can be greater compared to the
category ‘fastest’ .

• the time interval of 100 blocks to recalculate the λ could be very long com-
pared to changes in the network. According to our observed data 100 blocks
correspond to about 30 minutes with a sigma equal to 20 minutes. We suppose
that during this interval of time the network condition can change and this
change can affect the value of λ.

4.4.5 Results

This section presents the data-sets (blocks data-set, transactions data-set, Oracles’
predictions data-set, user-oriented predictions data-set), as modeled in Section 4.4.4.
The data-sets are stored in an SQLite database with five tables, one table for each
data-set. The total size of the database is of 1.1 Giga-Byte and is publicly available
via Zenodo (?). The first table, named “transaction”, contains more than 11 millions
rows. The second table, named “block”, contains around 345 thousand blocks. The
blocks data-set consists of 103596 records starting from height 7590409 to height

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 131

Table 4.13: Statistical description of transactions data

.

mean std mode min 25% 50% 75% max

waiting time (s) 44.02 82.65 25 0 25 29 38 1499
gas price (GWei) 32.19 443.29 50 0 10 20 50 313734
gas used 70124.2 320908 21K 0 21K 21969 49993 8e+06
gas limit 303967 947926 21K 21K 42K 70000 150000 8e+06
size (Byte) 191.11 499.98 - 83 112 114 174 31791

7694005. At the date of the research the last block is 7764216, meaning that we an-
alyzed the 103596/7764216∗100 = 1% of the Ethereum blockchain. The two tables,
named respectively “EtherGasStation” and “Etherchain”, contains 345 thousand
rows of Oracles’ predictions for the Gas price of each category: (‘fast’ , ‘fastest’ , ‘av-
erage’ , and ‘safeLow’). The Oracles’ predictions data-set covers a period of three
months starting from 15 March 2020 with 15 seconds temporal resolution. Finally
the table “realTimeOracle” contains the data of the user-orinted model for Oracles’
Gas price predictions. The data-sets refer to a three-months period of time, ranging
from March 1, 2020 to May 28, 2020.

The following sections present the results of the study as some aggregated sta-
tistical metrics such as percentile, mean, standard deviation, mode of the numerical
data series for transactions, blocks, Gas Oracles’ predictions and User-oriented pre-
dictions. The sections 4.4.5 also show the distribution of different variables, such
as Gas prices and time a transaction needs to wait before being recorded in the
blockchain. The error margins are summarized in Table 4.17, comparing the results
of the user-orinted model to the existing data-centered model of the Gas Oracles.

Transactions Data Analysis

Table 4.13 shows the statistics of the transactions data-set. The mean, the standard
deviation (SD), minimum (min), the 25th, 50th, and 75th percentiles and maximum
(max) are calculated for each variable shown in the table. The main variable is the
“gas price” value for each transaction included in a specific block.

Figure 4.16a shows the violin plot of the waiting time in seconds before a trans-
action is included into a block. The plot shows the presence of a peak at the value
of 20 seconds with a tail that tends towards infinity. Figures 4.16b, 4.16c show the
violin plots of the waiting time of the transactions for different Gas prices. Interest-
ingly, the violin plots show that the Gas price attached to the transaction influences
the interval of time the transaction needs to wait before being included into a block.
The violin plots also present the same peek at the value of 20 seconds regardless of
the Gas price.

132CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

(a) (b) (c)

Figure 4.16: Violin Plot of the waiting time in seconds before a transaction is
included into a block. (a) All transactions. (b) Transactions having a Gas price
lower than 10 GWei. (c) Transactions having a Gas price higher than or equal to
10 GWei.

Block Data Analysis

The blocks data-set gives information about each block, based on its height, i.e.,
the index number that denotes its position in the blockchain. The data included in
the blocks data-set are:

• the total number of fees in GWei, collected by miners in each block (fees);

• the size of the block (including the header and all the transactions) in Bytes
(size);

• the number of transactions in each block (n tx);

• the lowest Gas price attached to a transaction included in each block (low-
est gas price).

Table 4.14 shows the statistics of the blocks data-set. The mean, the standard
deviation (SD), minimum (min), the 25th, 50th, and 75th percentiles and maximum
(max) are reported for each variable. Figures 4.17a, 4.17b, 4.17c, 4.17d show the
probability density of each block variable at different values.

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 133

Table 4.14: Statistical description of the Ethereum blocks data (from the 6 871 349
th block to the 7 694 005 th block)

.

mean std min 25% 50% 75% max

fees (Wei) 6.4e+07 1.3e+09 0 2.45e+07 4.6e+07 7.7e+07 3.8e+11
size (Bytes) 18843.2 10580.7 524 9877 19045.5 27784.8 101294
n tx 97.859 63.6377 0 45 92 144 381
lowest gas price
(GWei)

4.46269 27.61 0 1 3 4 6215.03

block time
(s)

13.9453 12.9755 0 5 10 19 153

(a) (b) (c) (d)

Figure 4.17: (a) Block size (including header and all transactions) in bytes. (b)
Violin plot of the number of transactions included in each block. (c) Lowest Gas
price attached to each transaction and present in each block. (d) Violin Plot of the
total fees (in Wei) collected by the miners in each block.

134CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Table 4.15: Statistical description of Oracles categories

.

mean std mode min 25% 50% 75% max

‘fastest’ (GWei) 15.33 6.60 20 3 10 20 20 61
‘fast’ (GWei) 4.58 2.42 3 3 3 3.6 5 60
‘average’ (GWei) 2.83 0.80 3 1 3 3 3 14.5
‘safeLow’ (GWei) 1.34 0.68 1 1 1 1 1.1 14.5

Oracles Data Analysis

We analyzed the predictions data of the Oracles, Etherchain and EtherGasStation.
The Gas Oracles can diversely predict the Gas price values to attach to transactions
to have the transaction included at the most within n blocks.

Figure 4.18a shows the violin plots of the EtherGasStation Oracle’s Gas price
predictions for each Gas price category: 1) ‘fastest’ , 2) ‘fast’ , 3) ‘average’ , and 4)
‘safeLow’ . The ‘recommended Gas price’ range is highly variable and the variabil-
ity depends on each category. For example, for category ‘fast’ , the ‘recommended
Gas price’ ranges from a maximum of 61 GWei to a minimum of 1 GWei and the
most frequent value is 20 GWei. On the other side, the category ‘safeLow’ has a
‘recommended Gas price’ which ranges from a maximum of 15 GWei to a minimum
of 1 GWei and the most frequent value is 1 GWei.

Figure 4.18b shows the violin plots of the Etherchain Oracle’s Gas price predic-
tions for each Gas price category: 1) ‘fastest’ , 2) ‘fast’ , 3) standard, 4) ‘safeLow’ .
Likewise the EtherGasStation, the ‘recommended Gas price’ range of the Etherchain
is highly variable and the variability depends on each category. For instance, for the
category ‘fast’ , the ‘recommended Gas price’ ranges from a maximum of 61 GWei
to a minimum of 1 GWei and the most frequent value is 20 GWei, while the category
‘safeLow’ has a ‘recommended Gas price’ which ranges from a maximum of 15 GWei
to a minimum of 1 GWei and the most frequent value is 1 GWei.

Table 4.15 reports the mean, the standard deviation (SD), the mode, the min-
imum (min), the first quartile (25%), the median (50%), the third quartile (75%)
and maximum (max) of the Gas price recommendation for the transactions for each
Gas price category.

Figure 4.19a shows the violin plot of the Gas price prediction according to the
Etherchain Oracle (in blue) and EtherGasStation Oracle (in orange). The values
refer to the Gas price to pay to have the transactions confirmed within 1-2 blocks.
Figure 4.19b presents the percentage of Gas price categories corresponding to the
Gas price actually selected by the users in the Ethereum blockchain.

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 135

(a)

(b)

Figure 4.18: (a) Violin plot of the EtherGasStation Oracle’s Gas price categories.
(b) Violin plot of the Etherchain Oracle’s Gas price categories.

136CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

(a) (b)

Figure 4.19: (a) Violin plot of the Oracles’ Gas price prediction for the ‘fastest’
category (b) Gas Oracles Categories corresponding to the Gas price actually set by
the users.

Evaluation of the Poisson Model

The Oracles assume that the observed data are distributed in accordance to the Pois-
son Model. Before checking whether the observed data actually follow the Poisson
distribution, we checked the null hypothesis (H0) that the observed data are ho-
mogeneously distributed over time among all blocks. In other words, we tested the
hypothesis that the observed data are distributed in accordance with the Equiproba-
ble Model, which predicts that the transactions have the same probability of ending
in any of the next n blocks. Equation 4.5 expresses the expected probability to have
the transaction included in any block as predicted by the Equiprobable Model:

H0 : p1 = p2 = . . . = p200 = 0.005 (4.5)

where pi is the probability to have a transaction added to the ith block and it goes
from 1 to 200. Table 4.16 (1st section) presents the results of the comparison be-
tween the expected frequency and the observed frequency based on the Equiprobable
Model.

Therefore, we tested the alternative hypothesis that the observed data follow a
Poisson distribution with parameter λ > 0. Equation 4.6 expresses the expected
probability to have the transaction included into a block i based on the Poisson
Model.

H0 : ∀i ∈ [0, 200), P (X = x) =
i ∗ λx ∗ e−(i∗λ)

x!
, x ∈ [0,∞) (4.6)

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 137

Table 4.16: Null Hypothesis: the distribution of the transactions included in the
blocks follows the Equiprobable vs Poisson Model

Model Category lambda X-squared df p-value Decision

Equiprobable

‘fastest’
not

applicable

864.1 199 < .00001 Rejected
‘fast’ 910.9 199 < .00001 Rejected

‘average’ 898.5 199 < .00001 Rejected
‘safeLow’ 963.8 199 < .00001 Rejected

Poisson

‘fastest’ 1.1295 190.86 199 .648094 Accepted
‘fast’ 1.3435 182.11 199 .799031 Accepted

‘average’ 1.3437 175.82 199 .880322 Accepted
‘safeLow’ 1.4973 182.12 199 .798881 Accepted

*p < 0.05 means that the hypothesis is rejected, as there is a statistically significant
difference between the expected frequency and the observed frequency.

Listing A1 shows the R code used to calculate the expected frequency of transactions
per block based on the Poisson Model.

Listing A1: R code to compute the expected counts of transactions

1 b locks = 1:200 #l i s t o f b l o c k s
2 t o t a l = sum(observed)
3 expected =
4 t o t a l ∗ ((lambdaˆ b locks)∗exp(−lambda)) /
5 f a c t o r i a l (b locks)

Table 4.16 (2nd section) presents the results of the comparison between the
expected frequency and the observed frequency based on the Poisson Model. The
results are divided into four categories, as per Oracles’ definition.

Figure 4.20: Histogram of observed data.

138CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

4.4.6 Evaluation of Oracles’ Prediction

The Gas Oracles claim that at least 98% of transactions will be included at most
into the next n blocks, if the Gas price of the transactions is equal to or greater than
the Gas price they recommend. The Gas Oracles’ predictions are four, one for each
category. The n blocks are equal to 2, 4, 20 and 120 respectively for the categories
‘fastest’ , ‘fast’ , ‘average’ , and ‘safeLow’ . To verify the Gas Oracles’ predictions,
we collected a sample of 1.1M transactions and for each category we calculated the
proportion of transactions added within the 2-nd, 4-th, 20-th and 120-th blocks. We
found the following percentage of transactions for each category: 92% for ‘fastest’ ,
89% for ‘fast’ , 87% for ‘average’ and 94% for ‘safeLow’ . The results suggest that
the Gas Oracles’ predictions might be wrong, as all the percentages are lower than
98%, i.e. the percentage declared by the Oracles. However it might be claimed
that the Gas Oracles are actually right, as the discrepancy is just due to statistical
fluctuations occurring in the 100 blocks latency time the Oracles take to recalculate
the lambda value. We therefore tested both the hypotheses: the hypothesis that
the Oracles successfully predict the Gas price to pay to the miners (null hypothesis)
and the hypothesis that their predictions are wrong (alternative hypothesis).

Equations 4.7, 4.8 respectively represent the null and the alternative hypotheses.

(H0) ∀ cat ∈ {‘fastest’, ‘fast’, ‘average’, ‘safeLow’} : p >= 98% (4.7)

(Ha) ∀ cat ∈ {‘fastest’, ‘fast’, ‘average’, ‘safeLow’} : p < 98% (4.8)

Listing A2 represents the R code used to test the null hypothesis that the Oracles’
prediction are right within a frame of 100 blocks time.

Listing A2: Test of Equal or Given Proportions

1 prop . t e s t (x = t ran sac t i on s , p = 0 .98 , c o r r e c t = FALSE,
2 a l t e r n a t i v e = `` l e s s ' ')

The variable x represents a two-dimensional table with 2 columns, which respec-
tively provide the number of successful events (transactions included in the first n
blocks) and failures (transactions included after the n-th block). The variable p rep-
resents the expected proportion of successful events (Pe), based on the Gas Oracles’
predictions. The variable “alternative” specifies the proportion of successful events
based on the alternative hypothesis.

Table 4.17 represents the results of the null hypothesis H0 (Eq. 4.7) that the
observed proportion (Po) of transactions included in the blocks are equal or greater
than the expected proportion (Pe = 0.98). The table is divided into four sections
based on latency (2nd column). In particular, the first section represents the results
based on 100 blocks latency, as claimed by the Oracles.

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 139

Table 4.17: Alternative Hypothesis: the observed proportion (Po) of transactions
included in the blocks at latencies< 100 blocks are equal or greater than the expected
proportion (Pe) of the Gas Oracles.

Category Latency Po Pe X-squared df p-value Decision

‘fastest’ 100 0.92 0.98 1594.1 702 < .00001 Rejected
‘fast’ 100 0.84 0.98 310.9 102 < .00001 Rejected
‘average’ 100 0.91 0.98 698.5 389 < .00001 Rejected
‘safeLow’ 100 0.90 0.98 1463.8 1071 < .00001 Rejected

‘fastest’ 80 0.92 0.98 9212.8 601 < .00001 Rejected
‘fast’ 80 0.89 0.98 763.9 89 < .00001 Rejected
‘average’ 80 0.87 0.98 3295.2 301 < .00001 Rejected
‘safeLow’ 80 0.99 0.98 1053.4 994 .093174 Accepted

‘fastest’ 60 0.96 0.98 523.2 402 .000042 Rejected
‘fast’ 60 0.99 0.98 101.3 81 .063046 Accepted
‘average’ 60 0.99 0.98 241.2 207 .051696 Accepted

‘fastest’ 4 0.99 0.98 230.1 201 0.077864 Accepted

*p < 0.05 means that the hypothesis is rejected, indicating that there is a statistically
significant difference between the observed proportion (Po) and the expected proportion
(Pe).

4.4.7 Improving the Oracle Prediction

The Gas Oracles assume that the transactions’ distributions have different lambda
values of the PMF (Eq. 4.3), based on the Gas price. Figure 4.20 shows that the tail
length of transactions’ events is inversely proportional to the Gas price. Based on
this assumption, the Oracles calculate the λ (and as a consequence the Gas price)
every time 100 blocks are confirmed on the blockchain (100 blocks latency). We
hypothesized that it is possible to improve the Oracles’ performance by recalculating
the λ of the PMF (Eq. 4.3) at intervals of time smaller than 100 blocks latency.
Reducing the latency, we might indeed better take into account the possible network
changes (?). The network might have changed depending not only on the increasing
vs. decreasing number of miners and/or transactions in the network, but also and
more importantly on the users’ actual decisions on the Gas price to pay and time to
wait. We therefore reduced the latency for each category, until the null hypothesis
H0 (Eq. 4.7) is accepted with a level of significance of α = 5% (p < 0.05). Table 4.17
represents the results of the hypothesis H0 (Eq. 4.7) that the observed proportion
(Po) of successful events are equal or greater than the expected proportion (Pe =
0.98) at latencies smaller than 100 blocks.

140CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

4.4.8 Discussion

The transactions data-set consists of over 10 million rows which covers a period
of time of 3 months. This is a relatively small fraction compared with the to-
tal number of transactions in the same period, which should be around 77 mil-
lion (https://etherscan.io/chart/tx). Of course, the blockchain networks can
change for many reasons. Previous research (?) shows that the number of trans-
actions moving through the Ethereum network can increase or decrease based on
specific users-related events, for instance when a company looks to raise money to
create a new coin, app, service, etc. or when it launches an ICO. Another scientific
research (?) shows that there are several conditions under which mining infrastruc-
tures will be active or under which the miners will have no incentives to mine a given
cryptocurrency due to the increase of the energy cost or unavailability of solar energy
which can be used to make calculations at no cost. These or similar remarks are
at the core of the idea that the Oracles’ data-centered model might provide wrong
predictions, because it does not take into account the network changes depending
on the users’ actual behaviour or users-related events. This is the main reason why
the research presented in this work proposes a model shift, from a data-centered
model to a user-oriented model for Oracles’ Gas price predictions.

From a Data-Centered Perspective

The data-centered model is actually used by the Oracles, to provide the users with
the predictions every 100 blocks confirmation. The model rely on data on the
transactions history of the last 200 blocks confirmed on the blockchain (https://
github.com/ethgasstation/ethgasstation-backend). The analysis showed that
most transactions wait from one to two blocks before being included (see Table 4.13).
The results of the analysis also showed that the Gas price influences the probability
to have the transactions included into the next blocks. Figure 4.16a indeed shows
that the shape of both the violin plots becomes larger at the decreasing of the
Gas price. In particular, a transaction’s Gas price higher than 10 GWei does not
guarantee that the transaction is included within 1-2 blocks. The probability is
anyway higher when compared to the transactions having a Gas price lower than 10
GWei.

Once data have been cleaned 4.4.4, we investigated the model actually followed
by the Oracles to provide a Gas price prediction, i.e. the Poisson model. We defined
the Poisson Model for the successful events of having a transaction included into
a block. We pointed out that not all its conditions (defined in Section 4.4.4) are
satisfied. We anyway checked whether the successful transactions were distributed
in accordance with the Poisson Model instead of an equiprobable model. First,
we tested the hypothesis that the transactions’ distribution follow the Equiproba-
ble Model. However, we found strong evidence that the Equiprobable Model does
not fit the data, as per p-value = 2.2−16 inferior to 0.001. Second, although not

https://etherscan.io/chart/tx
https://github.com/ethgasstation/ethgasstation-backend
https://github.com/ethgasstation/ethgasstation-backend

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 141

all the conditions are met, we tested the alternative hypothesis that the successful
transactions’ distribution follow the Poisson Model. We found that the alternative
hypothesis cannot be rejected with a confidence level of 95%. While in an Equiprob-
able Model it would make no sense to predict a Gas price, the Poisson Model does
provide us with a meaningful insight to predict a Gas price, as it gives a lambda
value which is inversely proportional to the transactions’ Gas price. Indeed, as
shown in Figure 4.20, the lower the transaction Gas price, the longer the queue of
Poisson distribution is.

To a User-Oriented Perspective

By performing the Poisson regression model every 100 blocks, the Gas Oracles do
not take into account all the changes in the Ethereum Network in real-time. As
hypothesized in H1, the Gas Oracles’ predictions based on the data-centered model
are not reliable, especially because they compute the prediction every 30 minutes on
average. We showed that the Oracles’ predictions are not just accidentally wrong,
due to possible statistical fluctuations in 100 blocks latency. We indeed found that
the Oracles’ prediction are actually wrong with a level of confidence of 98%. More-
over, we found that the margin of error is greater than declared (2%) and it is even
13% for the ‘fastest’ . The greater the latency, the more probable is that the Poisson
model cannot take into account also user-related events or decisions occurring in the
network.

Some special scenarios - our model can successfully manage - are those related
to the network congestion which can happen when a company looks to raise money
to create a new coin, app, or service (?). These scenarios are special because they
may imply a longer waiting time before the transaction is included and committed,
because there are more transactors offering a higher Gas price when compared to
a non-congested network state. One of the ways that may be used to reduce the
waiting time is to make users aware that a higher fee is needed to have the transaction
included into a block in a shorter time than usual. As our model for the fastest
category is trained every 4 blocks, it can recommend Gas prices that reflect the
current possibly congested situation instead of past situations when there was no
congestion.

It is not possible to be sure that the users who submit the transactions are
following the Gas Oracles’ recommendation. However, it is reasonable to assume
that the users who set the Gas price equal to the Gas price suggested by the Oracle
are indeed following the Oracle’s recommendation. Even if they were not following
the Oracle’s recommendation, it is likely that the user agrees with the Gas price
attached to the transaction and the waiting time. If the users disagree with the
waiting time, they would change the Gas price to rely on the expected waiting time.
Anyway, in a data-centered model, this would not influence the analysis, as it is
based on the statistics about Gas price and waiting time recorded.

However, the analysis of the Gas price of the transactions in the transaction pool

142CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

shows that just 16% of the transactions have a Gas price equal to the Gas price sug-
gested by the Gas Oracle. The percentage of transactions having the Gas price equal
to the Gas price suggested by the Oracle is distributed among the four categories as
follows: 1) 7% ‘safeLow’ , 2) 1% ‘fast’ and ‘average’ , 3) 8% ‘fastest’ . Figure 4.19b
presents the percentage of Gas price categories used in Ethereum blockchain. Ta-
ble 4.15 shows how the mode for the ‘fast’ and ‘average’ categories are the same.
This means that most times the Gas price is the same for both categories, in spite
of being different categories in terms of execution time. The data analysis of the
transactions waiting in the transaction pool to be included into a block also suggests
that the categories ‘fast’ and ‘average’ are not set by the users probably because
these categories do not correspond to their interests and/or needs. On the contrary,
the categories ‘fastest’ and ‘safeLow’ are set the most. This means that, as hypoth-
esized in H2, the users set a Gas price in relation to an interval time to include a
transaction, which are not fully-fledged predicted by the default categories.

Both the Oracles present the same pattern of results: the distributions of the
‘recommended Gas price’ are almost the same for Etherchain and EtherGasStation.
The violin plots of both the Oracles also show the presence of two different peaks
of ‘recommended Gas price’ at the same value. One of the peak corresponds to the
third quartile value, i.e., 20 GWei, while the other peak is below the median and it
is equal to 10 GWei. Figure 4.19a shows the violin plot of the Gas price predictions.

We also showed, as hypothesized in H3, that a reduction of the margin of error in
the Gas price prediction can be achieved by reducing the latency, thus considering
the current changes of the network. The Oracles’ prediction can indeed be improved,
by reducing the latency of 100 blocks time. The results confirmed that the margin
of error is reduced for all the categories, when the Poisson regression model is
performed at shorter time intervals. Interestingly, the results also showed that the
margin of error depends on the latency and it is different for each category. In
particular, the category ‘fast’ requires a shorter latency compared with the other
categories. The ‘fast’ category is indeed more demanding than the others in terms
of waiting time, as the Gas Oracles estimate the Gas price to have the transaction
included within two blocks at most. On the contrary, in the case of other categories,
such as the ‘safeLow’ , the Gas price does not need to be predicted so often.

4.4.9 Conclusions

The existing Gas Oracles are based on a data-centered model which relies on
the analysis of the blocks data history to make the Gas price prediction, without
considering any data on the categories the users actually set. To propose a user-
oriented model of Gas Oracles’ Gas price prediction, the study explored both the
overall validity of the Gas Oracles’ predictions and the more specific validity of the
Gas Oracles’ Gas price categories when compared to the categories actually set by
the users.

4.4. A USER-ORIENTED MODEL FOR ORACLES’ GAS PRICE PREDICTION 143

• The study first evaluated the validity of the Gas Oracles’ predictions on the
Gas price to pay to have the transaction recorded in the blockchain. It re-
vealed that both Etherchain and EtherGasStation predict with a margin of
error at least twice as much as the margin of error they declare. For instance,
the ‘fastest’ category showed a 4% margin of error, while the ‘fast’ category
showed a 28% margin of error. The user-oriented model proposed in this re-
search gives a prospective contribution to the improvement of the Gas Oracles’
predictions to better indicate the categories that correspond to the users’ re-
quirements and the Equation that best provides them with a more effective
Gas price to set.

• The study shows that the four Gas price categories proposed by both the Or-
acles do not match the categories actually set by the users and/or companies.
As a result of the analysis, we found indeed that less than 1% of transactions
set the Gas price suggested by the Gas Oracle in the categories ‘average’ and
‘fast’ . On the contrary, we found that it is worth predicting the Gas price for
the ‘fastest’ and ‘safeLow’ categories, as they make sense in terms of users’
interests.

• The study contributes to the understanding of the Equation the Gas Oracles
should use to provide the users’ with a better Gas price prediction. The
user-oriented model we propose recommends indeed to calculate the Gas price
by reducing the latency of 100 blocks time to have a lower margin of error
compared to the Oracles’ actual one. The study shows that, by reducing the
latency to perform the Poisson regression model :

– the error margin of the prediction for the ‘fastest’ category is 2% com-
pared to the 4% of the Gas Oracles’ prediction. In this case, we performed
the Poisson regression model every 4 blocks instead of 100 blocks.

– the error margin of the prediction for the ‘average’ and ‘fastest’ categories
is 1% compared to the 14% and 13% of the Gas Oracles’ prediction. In
this case, we performed the Poisson regression model every 60 blocks
instead of 100 blocks.

– the error margin of the prediction for the ‘safeLow’ category is 1% com-
pared to the 4% of the Gas Oracles’ prediction. In this case, we performed
the Poisson regression model every 80 blocks instead of 100 blocks.

Table 4.17 summarizes the results. The model can provide the users with a
better estimation, because it can take into account the current changes of the
blockchain and the users’ network in real time.

The main threat of the user-oriented model is the need to perform the Poisson
regression model 25 times more for the category ‘fast’ when compared to the data-
centered model of the existing Gas Oracles. Indeed, although this user-oriented

144CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

model provides better results in terms of error margin when compared to the data-
centered model of the Gas Oracles Etherchain and EtherGasStation, it has the
disadvantage of being less efficient in terms of computational resources. The major
novelty of this study lies in the very idea of a user-oriented model for the Oracles’ Gas
price predictions. Different from the existing model used to produce the Oracles’
estimations, the model proposed in the study is aimed to predict the categories
actually set by the users, also suggesting them a more precise estimation on the
most effective Gas price to set for each category.

4.4.10 Related Work

Sin Kuang Lo et al. (?) investigated the reliability of seven Oracles on different
platforms such as Augur, Ms Bletchley, TownCrier and Corda. They discovered
that the common causes of failure are the data sources used by the Oracle to make
various kinds of predictions such as the weather forecast. These failures can have a
serious impact on the economy because many smart contracts perform operations on
the basis of these predictions. To meet the users needs, they provided a framework
that can be used to assess the Oracles’ reliability. The authors’ work supports
the interesting idea that, providing this framework together with the Gas Oracle,
it is possible to help the users’ decision making. Differently from their work, in
this research, I study the behavior of the Oracles that predict the Gas price in the
Ethereum blockchain (??).

4.5 AI Techniques for Detecting Malicious Smart

Contracts

4.5.1 Introduction

The Ethereum’s network has millions of participants, and some of them could likely
be malicious. Usually, a malicious user is defined as a user who abuses his privileges
to harm other users. Since we are considering the Ethereum context, we refer to a
malicious user as a network participant that tries to convince other participants to
invest their money in high-risk contracts, in which there’s no guarantee of getting
back their Ethers. These types of contracts are obviously considered fraudulent
contracts. A particular type of fraud is that of the Ponzi Scheme (?), a pyramidal
model in which investors are recruited with the promise of easy earnings and high-
interest rates relative to the initial investment. Other participants of the scheme can
also recruit new investors to increase their earnings. This last point is interesting
in the Ethereum context because many of the contracts identified as Ponzi Scheme
require that a scheme participant recruits a new investor to get his money back (?).
Previously we said that a malicious user abuses his privileges. The main privileges
provided by blockchain are (?):

4.5. AI TECHNIQUES FOR DETECTING MALICIOUS SMART CONTRACTS 145

• Anonimity: thanks to inner properties of blockchain the head of the Ponzi
Scheme can stay anonymous, and so the other participants of the scheme.

• Ummutable and potentially unstoppable contracts: Once a smart con-
tract is deployed, it is not possible to modify it, therefore making impossible
to break the scheme. Potentially, smart contract execution can’t be stopped
by any central authority though some Smart Ponzi put an exit condition, for
which that scheme can not be executed anymore. This condition comes true
when there are not sufficient funds to pay a participant. Obviously, a mali-
cious user may want to exploit all the advantages provided by the blockchain
technology, so this exit condition bring us to think that this types of contract
are just either proof of concepts or experiments.

• Trustworthiness: Most of the time, a smart contract’s source code is avail-
able on the blockchain. The availability and the transparency of the source
code transmits trust to a user, since a potential participant is more enticed
to invest money in a contract which clearly shows how it works instead of a
contract which keeps hidden its inner properties.

Actually, some of the identified Smart Ponzi are just experiments (?) since the na-
ture of the contract is explicitly explained by the contract’s creator with comments
or with the names of the variables and functions. Terms like participants, invest-
ments, payout, investors are quite common inside these contracts. Despite some
of these contracts being just experiments, the problem of possible Ponzi Schemes
scams is real, and it is important to prevent it from happening. To do so, one must
identify Ponzi contracts and classify them; this is possible because a Ponzi Scheme
contract is recognizable by its execution flow and some well-defined rules. The cyclic
flow ensures that the head of the pyramid (who is the one that starts the scheme)
finds potential investors. Likewise, investors recruit new participants. Funds from
new participants are used to pay the previous investors that joined the scheme. The
scheme goes on until it is broken. The general rules of a Smart Ponzi are:

1. A minimum investment is required to join the Ponzi scheme.

2. Investors starts to get paid only if funds are sufficient.

3. If new investors are not available anymore, the scheme is broken.

4. If funds are not sufficient to pay the investors, the scheme is broken.

These rules are common to all Smart Ponzi contracts despite some details that can
be slightly different. For example, the minimum fee required to join the scheme
differs from contract to contract. In addition to these rules, there are some other
elements common to all Smart Ponzi. These are:

1. The contract’s owner, which starts the scheme.

146CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

2. Investors, which are defined trough their address and their balance.

3. An array or mapping that stores all the scheme participants.

4. A function that allows a new participant to join the scheme.

5. A function to pay the participants.

It is also interesting to notice that there are different categories of Ponzi schemes
contracts. Previous work (?) defined four categories and a taxonomy of Smart
Ponzi. First, we have tree-shaped schemes that use a tree data structure to induce
an ordering among users. In this particular category of schemes, the user who has
just joined the tree must indicate the participant who invited him. The user who
invited the new participant becomes his parent node in the tree. Another category
is that of chain-shaped schemes, which are a special case of tree-shaped schemes.
These types of schemes multiply the investment by a constant factor. Waterfall
schemes have a different logic of money distribution. Here each new investment is
poured along the chain of investors so that each can take their share. Eventually,
we have Handover schemes, where the fee to join the scheme is determined by the
contract. This fee gets an increased value each time a new investor joins the scheme.
Looking at the already classified Ponzi Schemes contracts on the Ethereum
blockchain, we noticed that a lot of them were published between 2016 and 2017.
We aim to build a classifier trained with all the contract that have been spotted in
the past few years as well as some which don’t belong to this group, as they are not
Ponzi schemes. It is interesting to notice that a lot of the already known schemes are
very similar between them, and it is clear that a lot of developers took inspiration
from others’ work. We can find also different versions of the same contract with
slight differences (variable names or some unimportant operations).

4.5.2 Related Work

The first Ponzi scheme contracts date back to 2015, the year of the launch date
of Ethereum, but almost all of the Smart Ponzi contracts of our dataset are dated
between 2016-2018. Since they appeared in the blockchain (not only in that of
Ethereum but also in that of Bitcoin) the Ponzi scheme and fraudulent contracts
in general (?) have aroused great interest in the scientific community. This is
because these schemes are potentially dangerous for participants who invest their
money unconsciously and that the inherent properties and advantages offered by a
blockchain make them even more effective. The main advantage that a fraudulent
smart contract can take advantage of is that of the guarantee of anonymity offered by
the blockchain. This makes a scam virtually impossible to track, which is why such
schemes need to be spotted. Currently, several solutions have already been explored
to identify Ponzi schemes within the blockchain, both in that of Bitcoin and in
that of Ethereum. To recognize Smart Ponzi within Bitcoin, several approaches

4.5. AI TECHNIQUES FOR DETECTING MALICIOUS SMART CONTRACTS 147

were used, including those oriented to data mining (?). The idea is to apply data
mining techniques to detect Bitcoin addresses related to Ponzi schemes, considering
features like the lifetime of the address, the activity days, the sum of all the values
transferred to the address and others; the problem is seen as a binary classification
problem, in which a classifier must recognize between ’Ponzi’ and ’non-Ponzi’. In
the field of Bitcoin, using survival analysis, factors that affect scam persistence have
been spotted (?). Vasek and Moore found out that when the scammer interacts a
lot with their victims, the scam’s life is increased, and that scams are shorter-lived
when the scammers register their account on the same day that they post about
their scam.
The Ethereum blockchain has also aroused great interest in the search for Ponzi
scheme contracts. Previous work (?) examined all the contracts with a certified
source code, determining if they were implementing a Ponzi scheme. They also
analyzed the source code of smart contracts (when available) and discovered that
most of the contracts share common patterns. For the classification of Smart Ponzi
on Ethereum, a proposed model classifies whether a contract implements a Ponzi
scheme or not by using features extracted from the transaction history and from the
opcodes of smart contracts (?). In general, we can say that data science approaches
are widely used not only to detect scams but honeypots in general (?). Our approach
is always based on solving a binary classification problem, but it differs as it is based
on natural language processing techniques. In fact, we used the source code (when
available) of smart contracts to create our features. The idea is that Smart Ponzi
have a well-defined structure and use meaningful terms that identify them. It is
very unlikely that there are Ponzi scheme contracts that do not make their source
code clear, or that in any case try to make their operation ambiguous, because a
participant is more inclined to invest his money in a contract that clearly shows
their functioning, rather than in a contract whose functionality is not known. In
the next sections we will see in detail our proposed approach for the classification
of smart Ponzi schemes.

4.5.3 ResearchMethodology

Scraping

The use of machine learning concerning cryptocurrencies is becoming increasingly
important, especially for the classification of smart contracts and predictions related
to the trend in the currency market (?). Our idea is to build a machine learning
model taking advantage of Natural Language Processing (NLP) techniques. In par-
ticular, we want to exploit Text Classification techniques to classify Ponzi schemes
contracts, but first, we must determine what textual features will be part of our
dataset. All Ponzi schemes contracts have a common execution flow and structure,
so, we may take advantage of this information. The first text feature we identified
is the source code of the smart contracts when available. We had this feature for

148CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

the entire dataset. Another text feature is the contracts’ Opcode. We collected
Opcodes for the entire dataset since the source code of all the collected contracts
was available. The idea is that since Smart Ponzi contracts have a similar structure,
their Opcodes will be similar as well. The last text feature consists of pieces of
information extracted from contracts’ transactions. Again, we took advantage of
the cyclic execution flow of a Ponzi scheme and key terms. The flow consists in:

Figure 4.21: Example of contracts transactions

1. Contract creation by the pyramid leader.

2. Recruitment of investors.

3. The just recruited investors recruit new participants as well.

4. Payment of the investors.

5. Repeat from point 2 until the scheme is broken.

Considering this execution flow, it’s reasonable to think that in Ponzi schemes
contracts, we will find transactions performed to execute the function to allow a
new participant to join the scheme and transactions that execute functions to pay
the investors. Usually, these functions have well-defined names such as join, enter,
pay, payout, and similar terms; the idea is to take advantage of these pieces of
information to recognize a Smart Ponzi.
The next step in our recognition procedure is the feature extraction. All the text
information is available on Smart-Corpus (?). All one needs is the contract’s
address, and then scraping from the web page its relative source code, opcode,
and transactions is straightforward. We started from all the collected contracts’
addresses, and then we used Python to perform a web scraping task to retrieve
all the needed information. In particular, we used the beautifulsoup module to
perform web scraping and clean the text information from HTML tags and elements.

4.5. AI TECHNIQUES FOR DETECTING MALICIOUS SMART CONTRACTS 149

Classification

We started from a dataset made of already known Ponzi schemes and of contracts
that are not Ponzi schemes. We collected 171 Smart Ponzi contracts and 1500
contracts that are not Ponzi schemes, so our dataset is strongly unbalanced.

We saw the Ponzi schemes contracts classification problem as a binary classifi-
cation problem and we assigned the binary target variable with value 1 for a Smart
Ponzi and 0 for other contracts. Section 4.5.3 provides an overview about the
models used for the Ponzi schemes contracts classification problem.

AST extraction

To have easy access to the contracts’ variables, statements, conditions, and all the
constructs in general, we extracted all the Abstract Syntax Trees (AST) from our
samples. We used python as the programming language to build our solution. Ex-
tracting AST from contracts using python is a trivial task thanks to the solid-
ity parser module. The module only requires the user to load the desired contract
for which the AST is then extracted in a JSON file after parsing the source code.

Semantic Information Extraction

To extract information from AST, we must parse it. First, to parse a Solidity con-
tract AST we must know its structure, defined by Solidity’s grammar. Checking
grammar, we know how our AST fields are defined; some of the types defined are
trivial, like VariableDeclaration, which contains only a variable name and its type.
Other nodes could contain quite complex types and require a deep exploration of the
subtree. Types like BinaryOperation, MemberAccess, and IndexAccess (for example)
require a recursive exploration of the subtree because they could have operations
of the same type (i.e. a BinaryOperation could have another BinaryOperation in-
side). Once we built our AST parser, we extracted all the potential information
relevant from a semantic viewpoint. Variables names, struct names, conditions in-
side constructs (like for, if, while), and the operations performed inside contracts
are all relevant because we saw previously that some terms and some operations
are recurrent in smart Ponzi schemes. To extract a semantic document from AST,
we took all the labels previously listed and saved them in different structures. We
tried to look for the extracted features as much as possible similar to something that
suggests a natural language. To do this, we built a dictionary that replaces all the
mathematics and logic operators with their semantic meaning (i.e. the symbol ’=’ is
replaced with ’is assigned with value’). To add semantic to the resulting document,
we added meaningful words related to the type of construct. For example, before
a variable name or a struct name we added ’declaring’, and after a struct name we
added ’with members’ followed by struct members name.Since this approach could
sound tricky and probably not so easy to understand, we provide an example of the

150CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

’semantization’ of the source code. Suppose to have a Solidity line of code like the
one below.

1 if (msg.value < 50 finney)

The entire line of code is an ’IfStatement’ field of the Solidity AST. In this specific
case the expression inside this IfStatement, which is ’msg.value < 50 finney’, is a
BinaryOperation. Our parser decomposes the expression as follows: the symbol
’<’ is the operator of the BinaryOperation, while ’msg.sender’ and ’50 finney’ are
respectively the left part of the operation and the right part of the operation. The
right part is simple, since it includes just a numerical value and a Solidity’s keyword.
The left part is not trivial, because it is a MemberAccess expression and it needs
further decomposition. In this case, the expression is not too complex, since it
has only one identifier, which is ’sender’, so exploring the subtree requires only one
additional step. Now that we decomposed the IfStatement the parser will build the
corresponding line in the semantic document.

1 if msg value is less than 50 finney

Following this approach for all contracts, we were able to extract semantic documents
from contracts’ AST and perform text classification.

Models

The models tested for the Smart Ponzi classification problem are: Decision Tree,
Support Vector Machine (SVM),Multinomial Naive Bayes. Decision Trees are among
the simplest classifiers and can be used for both classification and regression prob-
lems. As the name suggests, they work building a tree representation starting from
data. We choose to test the Decision Tree just because it is one of the simplest mod-
els and because any missing values in the data do not affect the process of building a
tree to any considerable extent. One possible problem is that this particular model is
inadequate for applying regression and predicting continuous values (but this is not
our case). Other problems consist in the average time required to train the model,
which is very long, and that computations can get quite complex, especially when
compared with other models. Consequently, despite being simple, the Decision Tree
is quite an expensive model. The second model we tested is the SVM, which maps
training examples to points in space. This model is memory efficient, and it works
well when the two classes are linearly separated. The problem is that this model is
not suitable for large datasets, and it is not easy to keep track of decisions taken
by the SVM, and therefore, it is not simple to explain the obtained results. The
Multinomial Naive Bayes consider a feature vector where a given term represents
the number of times it appears or very often i.e. frequency. We choose to test this
model because it has a low computational cost, can work with large datasets, and
is well known to perform well in text classification problems, making it a perfect
choice for our classification problem. The main disadvantage is that using a Naive
Bayes is difficult to get the set of independent predictors for developing a model.

4.5. AI TECHNIQUES FOR DETECTING MALICIOUS SMART CONTRACTS 151

Considering the models’ inner properties, we can make some considerations about

Figure 4.22: Proposed approach’s workflow

the expected results. In terms of time complexity, we expect the Decision Tree as
the slowest model to train, and the SVM as the fastest. We expect to reach the
best performances with the Multinomial Naive Bayes Model, and at least to reach
similar results with the Support Vector Machine, which should behave as well in
this particular task.

Classification Methodology

To perform the classification, we built two different CSV files. The first one has
contracts’ source code and opcode, while the second one has contracts’ source code
and transactions information. The idea is to test the models’ performances making
comparisons in terms of class metrics evaluation like accuracy, precision, recall, and
f1-score. We want to check if these values are better with a model trained with source
code and opcode or with a model trained with source code and transactions. First,
we decided to use 80% of our dataset to build the training set and the remaining 20%
to build the test set. Since we had fewer samples for the Ponzi schemes contracts,
we decided not to use a validation set. Once we built our dataset, we dropped
all the empty fields and possible duplicates, and then we converted our collection
of documents to a matrix of token counts. Before training and testing the model,
we normalized our data removing the words that commonly appear in the English
language. We performed any character normalization, and we set a threshold to

152CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Table 4.18: Classification score for Decision Tree model

Features Criterion Target Precision Recall F1-Score Accuracy

Source code/Opcode
Gini Not Ponzi 0.98 0.99 0.99

0.97833
Gini Ponzi 0.94 0.89 0.91

Source code/Opcode
Entropy Not Ponzi 0.98 1.00 0.99

0.98555
Entropy Ponzi 1.00 0.89 0.94

Source code/Transactions
Gini Not Ponzi 0.99 1.00 0.99

0.98916
Gini Ponzi 0.97 0.94 0.96

Source code/Transactions
Entropy Not Ponzi 0.99 1.00 0.99

0.98916
Entropy Ponzi 0.97 0.94 0.96

Table 4.19: Classification score for Multinomial Naive Bayes model

Features Fit Prior Target Precision Recall F1-Score Accuracy

Source code/Opcode
True Not Ponzi 0.97 1.00 0.99

0.97472
True Ponzi 1.00 0.81 0.89

Source code/Opcode
False Not Ponzi 0.97 1.00 0.99

0.97472
False Ponzi 1.00 0.81 0.89

Source code/Transactions
True Not Ponzi 0.99 1.00 1.00

0.99277
True Ponzi 1.00 0.94 0.97

Source code/Transactions
False Not Ponzi 0.99 1.00 1.00

0.99277
False Ponzi 1.00 0.94 0.97

ignore terms having a document frequency lower than the given threshold.

Experimental setup used

To perform our experiments we used a MSI PL62 7RC with the following tech specs:

• Processor: Intel(R) Core(TM) i7-7700HQ CPU @ 2.80GHz

• RAM: 8 GB

• Cores: 8

• Architecture:64-bits Ubuntu 18.04.4 desktop

We also used Google Colab to train and test our models. In particular, we used a
VM with 25 GB of RAM.

4.5.4 Results and discussion

4.5. AI TECHNIQUES FOR DETECTING MALICIOUS SMART CONTRACTS 153

Table 4.20: Classification score for Support Vector Machine model

Features Loss Target Precision Recall F1-Score Accuracy

Source code/
Opcode

Hinge Not Ponzi 0.99 0.99 0.99
0.98555

Hinge Ponzi 0.94 0.94 0.94

Source code/
Opcode

Squared Hinge Not Ponzi 0.99 0.99 0.99
0.98194

Squared Hinge Ponzi 0.92 0.93 0.94

Source code/
Transactions

Hinge Not Ponzi 0.98 1.00 0.99
0.98194

Hinge Ponzi 0.97 0.89 0.93

Source code/
Transactions

Squared Hinge Not Ponzi 0.99 1.00 0.99
0.98916

Squared Hinge Ponzi 0.97 0.94 0.96

Table 4.18 resumes the results obtained with the Decision Tree model. We tested
all the models with two different features. The first text feature joins the source code
and the opcode, while the second one joins source code and transactions. Also, we
tested our models with different parameters. For example, the criterion parameter
allows to choose between the Gini impurity and entropy as functions to measure
the quality of a split. Looking at results, we see that in terms of precision, recall,
and f1-score, the decision tree behaved well with both the two different text features
and with both Gini impurity and entropy. Choosing between the Gini impurity
and the Entropy-based information gain doesn’t make too much difference because
they are pretty much the same. Anyway, selecting the Gini impurity would spare to
compute logarithmic functions, which are computationally intensive. Anyway, we
can see from the results that the best configuration is a Decision Tree trained with
source code and transactions as a text feature. Table 4.19 shows results reached
by a Multinomial Naive Bayes model. Again, the model behaved well and reached
results not so far from Decision Trees’s one, and sometimes slightly better. Again,
the best configuration is a Multinomial Naive Bayes trained with source code and
transactions. The parameter Fit Prior defines whether to learn class prior probabili-
ties or not, but from the results, we can see that using a uniform prior or not doesn’t
make any difference. Table 4.20 shows results reached by a SVM model. The loss
parameter allows to choose betweeen the hinge and squared hinge loss function. The
SVM model behaved well both with source code and opcode and also with source
code and transactions as text feature, despite the configuration trained with source
code and transactions returns slightly better results.
Now that we showed all the results reached by all of the tested models, we can do
further considerations. All the models have behaved well, and they were able to clas-
sify Ponzi schemes contracts. As we expected, the best models are the Multinomial
Naive Bayes and the SVM, which obtained the best results in terms of precision,
recall, and f1-score, reaching both an accuracy of 99pt%. The accuracy reached by
our models is almost perfect as evidenced by the ROC curve plotted following a
training of an SVM model shown in the Figure 4.23, but we must consider that

154CHAPTER 4. BLOCKCHAIN MODELS TO DESIGN TOOLS FOR NON-EXPERT USERS

Figure 4.23: Example of ROC curve showing the True Positive and False Positive
rate reached by our SVM model

this was also because Ponzi Schemes contracts have a well-defined structure, and
many of them are similar in terms of code since a lot of Ethereum developers take
inspiration from others’ work.

4.5.5 Future Work

It must be said that despite all the work that has already been done, Ethereum
remains a relatively recent platform, and as a result, many vulnerabilities and hon-
eypots have yet to be identified (?). Given these premises, new scam schemes may
be implemented by exploiting these vulnerabilities. All Ponzi scheme contracts used
as dataset samples date back to 2016-2018, but new contracts may have been intro-
duced in the meantime.We must consider that the Ponzi Schemes contracts analyzed
despite are included in a period of three years, they show no differences substan-
tial in implementation. Although there have been several pragma and consequently
some changes in the definition of functions and constructs are required, the flow
of execution of a Smart Ponzi remains almost unchanged compared to the types
already presented in section 4.5.1.
The goal is to use our model to check whether new Ponzi schemes have actually
been introduced into the Ethereum blockchain. The Ponzi scheme is just one of the
possible scams that can be implemented against the participants of the Ehtereum
network. In fact, other possibilities have been identified that allow taking advantage
of the inner properties and possibilities offered by blockchain technology to imple-
ment scams. One possibility is to expand and make our model more comprehensive
than the one presented in this study in such a way as not only to recognize Ponzi
schemes but also contracts that are potentially highly damaging, in economic terms,
to the participants who use it.

Chapter 5

Visualization-based models

5.1 Introduction

The previous two chapters have been dedicated to the development of tools to help
the interaction of, respectively, expert and non-expert users with the blockchain.
The tools proposed in the chapters can certainly help to spread the use of the
blockchain among some users, but this might not be enough to introduce it to the
whole society. Indeed, many academic studies suggest that the blockchain has impli-
cations for nearly all sectors of society such as governance (?), political economy (?),
environmental protection (?), law (?), healthcare (?) just to name a few. Models
and tools that facilitate the interoperability among experts in different sectors might
be needed to realize all the blockchain implications as useful implementations in the
form of practical proposals to solve societal problems.

In the field of blockchain there is a lack of models (??) and tools (?) that allow
experts in different areas, such as experts in law, policy, finance, digital innovation,
to cooperate and share knowledge among them. Different research areas own dif-
ferent technical jargons used to communicate scientific knowledge: indeed, while
computer scientists need to understand program code, law experts are not expected
to understand the program code. Graphic representation could be a means to fa-
cilitate the understanding of scientific knowledge among different disciplines (?).
Figures and diagrams might indeed be a communication medium among different
disciplines’ languages and expertises. Figures and diagrams not only show the rele-
vant data that support key research findings, but also provide visual information on
the interactions among different operations required in scientific reasoning (??). Be-
ing able to adequately and precisely visualize data is also a pillar on which decisions
can be made, as proposed by different dashboards in the market (?).

The chapter 5 is specifically dedicated to present a tool and a model based on
graphical representation that are intended to facilitate the understanding of the
blockchain mechanisms. Section 5.2 presents Smart-Graph (?), i.e., a tool able to
provide graphical representations for smart contracts on the Ethereum blockchain.

156 CHAPTER 5. VISUALIZATION-BASED MODELS

The graphical representation provided by Smart-Graph highlights two relevant as-
pects for the blockchain software developers and companies: the economical costs
required to deploy and execute a smart contract on the blockchain and the main-
tainability of the smart contract source code. Section 5.3 presents the analysis of
two use case studies aimed to devise a comprehensive interdisciplinary model for
graphical representation, which is then provided within Miró (?). Miró integrates a
data-driven approach with an approach that guides users with different expertise in
specific domains, to achieve the intended visualization, based on their aims, knowl-
edge and hypotheses. The model can thus provide the users with different expertises
a means to collaborate in the blockchain environment.

5.2. SMART-GRAPH 157

5.2 Smart-Graph

5.2.1 Introduction

The use of blockchains is currently explored in a number of scientific fields due to
their potential to radically change the ways of economical exchange and the hows of
traditional legal entities (?). For these reasons, in the Ethereum blockchain, where
specific expertise in smart contracts’ development is required, also other experts
are required, i.e. experts in statistics, machine learning, economics, marketing and
finance (??). In addition, the complexity of blockchain engineering hampers the
understanding of the users, be them laypeople, experts in other fields and sometimes
even software developers (?). Previous studies showed that graphical representations
of data can help the understanding of a subject, making it a faster and easier task (?).

In this section, we review some visualization approaches and practical tools pre-
viously used to provide technical insights for experts and not-experts in the field of
graphical representation of the static aspects of the software. After reviewing and
discussing the main approaches, this study proposes a web-based tool to graphically
represent smart contracts. Agile methods promote “working software over compre-
hensive documentation” (??). Recent research has shown that agile teams use quite
a number of artefacts (?). One of these artefacts is Unified Modeling Language
(UML) (?). UML is a modelling language in the field of software engineering that
is intended to provide a standard way to visualize the design of a system (?). UML
offers a way to visualize a system’s architectural blueprints in a diagram, including
elements such as the individual components of the system; how the system runs; how
entities interact with each other (components and interfaces) (?). The study aims
to design and build a tool, “Smart Graph”, to visualize the smart contracts entities
and how they interact. Figure 5.1 shows an example of the graphical representation
provided by the tool, “Smart Graph” (?).

In this research, we survey both two-dimensional space (2D) and three-
dimensional space (3D) visualization techniques, representing the static aspects of
the software. Finally, the study presents a web-based tool, “Smart Graph”, to
generate a 2D graphical representation of the smart contract’s source code via a
UML class diagram. The graphical representation provided by “Smart Graph” is
an augmented version when compared to the previous traditional UML class dia-
gram. Indeed, it allows giving information that is specific to Solidity programming
language, such as “Function Modifer” and “Function Fallback” (??).

Furthermore, the study presents and discusses the general components of the
web-based tool “Smart Graph”. The advantage of web-based tools is that the Solid-
ity developers do not need to install any software in their operating system. Solidity
is a contract-oriented, high-level language for implementing smart contracts and is
designed to target the Ethereum Virtual Machine (EVM) (?). The tool presented
in this study aims to provide smart contracts programmers with a fast overall view
of the smart contract structure and a useful insight into the source code they are

158 CHAPTER 5. VISUALIZATION-BASED MODELS

developing.
The rest of the section is structured as follows: Section 5.2.2 describes some

work on the graphical representation of data software. Section 5.2.3 presents the
research questions and hypothesis of this work. Section 5.2.4 presents the research
methodology adopted for developing Smart-Graph. Section 5.2.5 presents the re-
sults. Section 5.2.6 presents the conclusion of this research.

5.2.2 Background

Smart-Graph aims to highlight two relevant aspects for the blockchain software de-
velopers and companies: The relevant aspects are the costs and the maintainability
of the source code. These aspects depend on the following properties: on the storage
location and on pure functions (and especially the balance between pure and impure
functions).

Data location in Solidity

A smart contract written in Solidity is a collection of source code’s functions and
data that are stored at a specific address on the Ethereum blockchain. The EVM can
access and store information in six places: stack, memory, storage, code, callData
and logs.

The table 5.1 reports some properties of the data location, such as the properties
of volatile vs. persistent, and the operation that can be performed. For instance
the stack memory is volatile. This means that, after the execution of the function,
the data are lost. Also the memory location is a volatile memory, but in this case
the data are lost after the execution of the contract. In fact, the memory location is
used to share data among different functions. Finally, the log location is a persistent
memory, such as the store, but differently from the storage, log location is cheaper.
It is worth noticing that the current UML class diagram specification cannot provide
all these pieces of information.

Table 5.1: Data Location in Solidity

Name Volatile Persistent Read Write Description

1 stack 3 3 3 EVM Opcodes pop information from and push data onto
the stack.

2 memory 3 3 3 Information store accessible during a transaction.
3 storage 3 3 3 Data in the storage are written in the blockchain (hence

they change the state).
4 code 3 3 3 Executing code and static data storage.
5 callData 3 3 The data field of a transaction (external function).
6 logs 3 3 Write-only logger/event output. Can be accessed from

outside the blockchain.

One could wonder why the data location is so important. The yellow paper
provides information on the cost of every “write and read” operation on a data

5.2. SMART-GRAPH 159

Figure 5.1: UML class diagrams of Tether smart contract.

160 CHAPTER 5. VISUALIZATION-BASED MODELS

location in terms of Gas(?). Table 5.2 reports the cost of the “write and read”
operation in euro. The price is based on the data coming from the EtherGasStation
and the price of the euro/ether pairs. The data reported in the table refer to the
date of Friday, the fifth of March 2021.

Table 5.2 shows as the storage and the log memory location are both persistent
but have different costs. For each operation, two values are reported, one value refers
to the price to pay to execute the transaction as soon as possible and the other to
the price to pay to execute the transaction in 30 minutes. Table 5.2 shows that the
amount of Gas used during a transaction heavily depends on the smart contract
data location, and thus also the price to pay to have the transaction executed. As
a consequence, the best practice would be to write an optimized code that uses a
minimum amount of Gas.

Table 5.2: Cost of the “write and read” operations

zone EVM Operation
€/Word €/KB €/MB

cheap fast cheap fast cheap fast

Stack
Read - - - - 0.44 4.44
Write - - - 0.01 0.67 6.67

Memory
Read - - - 0.01 0.67 6.67
Write - - - 0.02 14.89 148.88

Storage
Read - 0.1 0.04 0.043 44.44 444.43
Write 0.14 1.36 4.34 43.4 4444.32 44444.24

Log
Read - - - - - -
Write - - - - 0.88 13.34

Functions in Solidity 0.8.2

A function written in Solidity programming language consists of a function header
and a function body. The function header is made up of six parts: the function
declaration keyword, function name, function parameters, the visibility modifier,
the behaviour modifier and the return type. In particular, next to the function
“visibility” modifier, the function “behaviour” modifier is specified. The function
“behaviour” modifier is specific of Solidity programming language and is not present
in other programming languages, such as Java. Moreover, the current UML class
diagram does not include this piece of information, and thus cannot provide us with
information about the behaviour of a function.

Possible values for the function “behaviour” modifier are: view and pure. A view
function is a function that has no side effects. This means that a function with such
behaviour is not allowed to change the external world, such as the blockchain status.
Another property of a view function is that its output can change over time. As
view function can read values external to the function, these values can change over
time and so also the output can change accordingly. Pure functions are functions
close to functions in math. In fact, these functions have no side effects and are

5.2. SMART-GRAPH 161

Figure 5.2: Cached Result vs Direct Call.

deterministic. This means that for a given input, a pure function gives the same
output regardless the time.

There are several reasons to highlight pure behavoiur of a smart contract function
through a graphic representation. Some of these reasons will be listed and discussed
below.

• Caching. Highlighting the pure function behaviour is important for a software
developer, because the result of a pure function can be cached. In fact, when a
compiler detects a pure function, it can automatically optimise the execution
by caching the result. These properties come from the fact that a pure function
does not depend on time. So the compiler can map the input, which usually
passed through a function, directly to a value, as the figure shows 5.2. An
advantage of caching the result is that the execution is faster, as shown in this
scatter plot 5.3.

• Testing. Another important aspect of pure functions is that they are easy to
debug. This figure shows that a pure function depends only on the function’s
input parameters and not on the external scope. On the contrary, in the case
of impure functions, a developer needs to look outside the function’s scope to
determine what the variable state is at the time the function is called.

• Parallel Computing. Pure functions are easy to run in parallel. Nowadays
the CPU manufacturers improve the processor performance by increasing the
number of cores. This means that having a source code made of many pure
functions can enhance the performance of smart contract execution.

5.2.3 Research Questions and Hypothesis

The tool presented in the study has been designed to make the access easy for the
users as it does not require any configuration and installation in the users’ com-
puters. The users can indeed access the tool from any web browser. Through the
tool’s web interface, the user can give a smart contract address as an input, and
get a augmented UML class diagram of the smart contract address as an output.

162 CHAPTER 5. VISUALIZATION-BASED MODELS

Figure 5.3: Cached Result vs Direct Call Scatter Plot.

The tool is available via a web browser and can be tested at the following link:
https://aphd.github.io/smart-graph/. The backend produces the graphical repre-
sentation of the smart contract, i.e. the augmented UML class diagrams.

The research aims to discuss the strengths and limitations of the UML class
diagrams to visually represent the smart contracts’ source code. The study considers
and analyzes a source code coming from a DApp composed of many smart contracts,
and it proposes a web-based tool to overcome the limitations of the UML class
diagrams. The study aims to answer the following research questions:

• Q1 Are the UML Class diagrams used by the most popular OOP languages,
such as C++ and Java, sufficient to visually represent the smart contracts’
source code?

• Q2 Is there a better way to visually represent the smart contracts’ source code?

To answer the research questions, the following hypotheses are proposed:

• H1 The current UML class diagrams used by some OOP languages, such as
C++ and Java, are not sufficient to visually represent the information of a
smart contract. For instance, in the current UML class diagrams’ specification,
there is no way to visually represent features of the source code that are unique
in Solidity, and that could be very important for a smart contract developer,
such as the “Receive Ether Function” and the “Fallback Function”.

• H2 Given the complexity of some DApps, which are often composed of many
smart contracts, a static representation of the source code is not apt to repre-
sent the most important information of the source code in an accessible way.
An interactive environment for the smart contracts’ developers can be useful
to better represent the smart contracts’ source code, for instance by allowing

https://aphd.github.io/smart-graph/

5.2. SMART-GRAPH 163

Figure 5.4: The “Smart Graph” GUI accessible through a web browser over the
internet.

to visualize the smart contracts’ source code through actions, such as drill
down or zoom in/out in the diagram.

5.2.4 Research Methodology

Frontend

The front-end is the platform component visible and accessible to the users, stake-
holders included.

The front-end was implemented in a web-based environment. This is an advan-
tage, as the front-end component is platform-independent. This means that the users
will only need a web browser to access the platform. Moreover, it will be possible
to benefit from cutting-edge web technologies to produce graphical representations
and visualize them.

Figure 5.4 shows the “Smart Graph” GUI accessible through a web browser.
The GUI is divided into two sections: the “Smart Graph Form”, on the top of the
page, and the “Smart Graph Diagram Container”, in the middle of the page. The
“Smart Graph Form” has a text field as an input and a button named “Generate the
Diagram” to get the output. The input text field allows the user to write a smart
contract’s address. When the user clicks on the button, the backend generates the
corresponding UML class diagram, which is shown below the form. The “Smart

164 CHAPTER 5. VISUALIZATION-BASED MODELS

Graph Diagram Container” is the area where both the classical UML class diagrams
and the augmented UML class diagrams are displayed.

In designing the front-end part, a challenge is representing DApps that are com-
posed of many smart contracts. In these cases, the UML class diagrams are visually
complex and prone to be information overloaded. To visualize many UML class
diagrams, the “Smart Graph Diagram Container” is interactive, as the user can
perform different actions within the class diagram. For instance, the GUI presents
two buttons, which are accessible in the upper right part of the interface 5.4 and
make it possible to zoom in or zoom out a certain part of the UML diagrams. The
zoom-in action allows getting details about specific features of the smart contract,
by selecting the most important parts of the visual representation and hiding the
less relevant parts. Moreover, the user can see the augmented version of the UML
diagram, by clicking on the smart contract’s name displayed on the top of the UML
class diagram, as shown in Figure 5.5.

Figure 5.5 shows the details about the method named ”transferOwnership”,
which belongs to the smart contract “Ownable” displayed in Figure 5.1. The
implementation of the “Ownable” smart contract made by the OpenZeppelin de-
velopers is available at the following link: https://github.com/OpenZeppelin/

openzeppelin-contracts/blob/master/contracts/access/Ownable.sol. The
function ”transferOwnership” allows transferring the owner’s account, i.e. the ac-
count that deployed the smart contract, to a new owner.

Figure 5.6 shows the pipeline of the operations executed by the backend when a
user requests the UML class diagrams by providing a specific smart contract address.

Backend

The backend code is written in javascript because it supports synchronous operations
like Promise. The Promise’s feature is very important in the backend-part because
it allows handling potential blocking operations, such as fetching resources from a
server. An instance of potential blocking operation occurs when the user submits
the request to the backend of the tool. When this happens, the backend makes a
request to Etherscan to get the source code corresponding to the smart contract
address specified by the user. Etherscan is an Ethereum block explorer which allows
to explore and search the Ethereum blockchain for smart contracts source code (?).

The operation of fetching a smart contract source code from the network could
be time-consuming, as it can take around 5 seconds. Therefore, we use a feature
of JavaScript language named “Promise”, in order to timely make the system re-
sponsive to other requests. Essentially, a Promise is an object that represents an
intermediate state of an operation. There is no guarantee of the precise moment
when the operation will be completed and the result will be returned, but there is
the guarantee that, when the result is available or when the promise fails, the code
provided to the Promise will be executed in order to do something else with a suc-
cessful result or to gracefully handle a failure case. This is useful to set up a sequence

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/Ownable.sol

5.2. SMART-GRAPH 165

Figure 5.5: trasnferOwnership method visualized as a tree diagram.

Figure 5.6: Pipeline of the operations executed by the backend when a user requests
the UML class diagrams of a specified smart contract’s address.

166 CHAPTER 5. VISUALIZATION-BASED MODELS

Figure 5.7: Synchronous Model vs Asynchronous Model.

of async operations to correctly work. Figure 5.7 shows the asynchronous operation
that can occur during the generation of the augmented UML class diagrams.

The backend supports the following main operations: data retrieving 5.2.4, data
parsing 5.2.4 and data writing 5.2.4.

Data Retrieving

The retrieving operation allows the backend part to retrieve the smart contract
source code. The retrieve method takes one argument, the path to the resource to
fetch which is made from the following two parts: the Etherscan address and the
smart contract address. For instance, a valid resource path is https://etherscan.
io/address/0x00000000219ab540356cbb839cbe05303d7705fa#code. The re-
trieve method returns a Promise that resolves to the Response object to that request,
whether it is successful or not. Once a Response object is retrieved, the HTML code
contained in the Response object is processed to remove the HTML Tags to obtain
just the Solidity source code of the smart-contract. The Solidity source code is
processed by the backend Parser.

Data Parsing

The parsing operation allows the back-end to parse the Solidity source code and
produces a tree data structure in which each node stores an object of key-value pairs.
For instance, the smart contract “renounceOwnership” method has the following
nodes of key-value pairs.

{

"type":"FunctionDefinition",

"name":"renounceOwnership",

"visibility":"public",

"isConstructor":false ,

"isReceiveEther":false ,

"isFallback":false ,

"isVirtual":true ,

"stateMutability":null

}

https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa#code
https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa#code

5.2. SMART-GRAPH 167

Data Writing

The writing operation allows the back-end to write two versions of UML class di-
agrams. The first version is similar to the UML class diagram of OOP languages,
such as Java and C++. This version of diagram contains information such as the
smart contract’s attributes, the smart contract’s functions, and the relationship type
among different smart contracts. The second version is the augmented UML dia-
gram. It displays additional information compared to the first-version diagram, such
as information about the presence of “Function Modifer” and “Function Fallback”
which are not part of the current unified modeling language specification.

Based on previous studies on graphical representations in different fields (?),
multiple representations of the same smart contract source code have been preferred
over the traditional UML class diagram. This technique allows to quickly visualize
complex systems and guarantees better readability. Based on the users’ actions,
the backend will generate the corresponding augmented version of the UML class
diagram.

5.2.5 Results and Discussion

Figure 5.1 displays the UML class diagram of a smart contract, follow-
ing the current UML specification whose details are publicly available at
(https://www.omg.org/spec/UML/About-UML/). There are two limitations of this
representation type. First, it is very difficult to give a meaningful and comprehensive
representation of the DApp in a screen, because is made of many smart contracts
having different relationships among each other. Indeed, the UML diagram should
display many classes, each one corresponding to different smart contracts. A recent
study(?) shows that many DApps are made of a number of smart contracts greater
than 10, which makes the graphic representation difficult. Moreover, the diagram
generated via the UML specification hides some important details which are typical
of smart contracts. Indeed, the Solidity programming language, used to write the
smart contracts, owns specificities that no other OOP language owns. The current
UML class diagram specification does not include specific features and constructs,
such as “Receive Ether Function”, “Function Modifer”, “Function Fallback” and
“Pure Function”. These specific features could be very important for smart con-
tracts’ developers to have a quick insight on the smart contract’s specific features.
So, as to what concerns Q1, “Are the UML Class diagrams used by the most popular
OOP languages sufficient to visually represent the smart contracts’ source code?”,
the answer is negative.

A study regarding different methods to visually represent the source code has
been investigated. Some of them involve metaphors, such as the metaphor of the city
and the metaphor of the planet solar. This type of visualization could better fit the
structure of DApps, because most of them are made of different smart contracts: a
recent study(?) shows that 20% of the DApps deployed in the Ethereum blockchain

https://www.omg.org/spec/UML/About-UML/

168 CHAPTER 5. VISUALIZATION-BASED MODELS

are made of 10 or more smart contracts. In the study an interactive visualization
has been proposed to improve the existing web-based tools that provide a static
representation of the smart contracts’ source code. In this kind of existing tools, the
developer must use the horizontal and vertical scroll bar to see the diagram from
the left to the right and from up to down, and viceversa. Moreover, the user needs
to check the source code to understand the details of the implementation.

As to what concerns Q2, “Is there a better way to visually represent the smart
contracts’ source code?”, the study argued that the novelty of the tool “Smart
Graph” is precisely the fact that it allows to visualize additional information, which
was not provided by traditional UML class diagrams (?). Indeed, in “Smart Graph”
the user can drill down into a specific function, to look for information specific to
the Solidity programming language. For instance, Figure 5.5 shows a tree diagram
displaying all information related to a particular smart contract’s function. In this
way the developer does not need to inspect the source code, but s/he can get all the
information s/he needs just by interacting with the visual representation.

Based on the discussion about the different storage location and the properties of
pure functions in Solidity, this is the solution proposed in this study. Smart-Graph
is a tool that accepts as input a smart contract source code. It reads some external
variables, such as the Gas Oracle and the Ether/Dollar pairs and then it creates
three bullet graphs.

These three bullet graphs reflect the needs of different users:

• The user that wants to execute the transaction as soon as possible.

• The user that can wait 5 minutes.

• The user that has no urgency to execute the transaction and can wait longer.

Finally, the developer can drill down the report to check the main properties of
the source code that affect the cost of the execution of the smart contract. The
further properties that are shown are related to the number of functions, on their
behaviour and the data location. Indeed, these properties have an important impact
on the costs of transaction execution.

5.2.6 Conclusion

The research presented a tool, “Smart-Graph”, that produces UML diagrams from
source code in Solidity. “Smart-Graph” is a target-oriented tool for experts in the
blockchain domain and it provides graphical representations which were already
tested in other contexts, i.e. the UML diagram classes. However, when compared
to previous UML diagrams, Smart-Graph provides an augmented version of the
graphical representation. Indeed, “Smart-Graph” allows the user to inspect the
class diagram to look for further details, such as “Fallback Function” or “Function
Modifier”, which are not accessible in the traditional UML class diagrams. Future

5.3. AN INTERDISCIPLINARY MODEL FOR GRAPHICAL REPRESENTATION 169

Figure 5.8: For a given Smart-Contract, Smart-Graph displays three bullet graphs.
The graphs are produced based on the data taken from the external world (the
current Ether/Dollar Pair and the Oracle Gas). The graph is time-dependent.

research should be dedicated to the development of the tool, which could also provide
visual representations of smart contracts based on metaphors, thus also targeting
people who are not experts in the software development domain.

5.3 An Interdisciplinary Model for Graphical

Representation

5.3.1 Introduction

Graphical representations of data are fundamental for the understanding of scien-
tific knowledge, as readers often rely on what the experts visually represent in their
publications to understand the underlying data-set and interpret their potential sci-
entific meaning (?). Figures and diagrams not only show the relevant data that
support key research findings, but also provide visual information on the interac-
tions among different operations required in scientific reasoning (??). Being able
to adequately and precisely visualize data is also a pillar on which decisions can be
made, as proposed by different dashboards in the market.

Data visualization has various purposes, such as to make abstract thinking on
data series or sets more concrete and (mentally) manipulable, to help readers identify
and evaluate some features of the data, to let users see the possible underlying trends,
patterns, processes, mechanisms, etc. of the phenomena considered and studied (?).
The way data are visualized can therefore have important epistemic implications for
scientific knowledge, as data visualization is not an “interpretation-free” practice,
i.e. a neutral process of data presentation in terms of scientific understanding. There
are indeed several ways to transform data into a visual format, each of them entailing

170 CHAPTER 5. VISUALIZATION-BASED MODELS

different possibilities for data interpretation.
Nowadays data visualization plays a significant role in the large adoption of

data-driven and machine learning approaches and techniques. In this frame, the
definition of what a visualization is can be object of debate. A visualization could
be defined as a reusable component, which is achieved through a dedicated software
library. For instance, some software for data visualization are MATLAB and Math-
ematica. Despite the large amount of tools offered by these software, surprisingly, it
is left to the practitioner to actually manipulate the data to achieve a ready-to-be-
used graphical representation. Previous research proposed data-driven models that
exploit existing software libraries or adopt a framework-agnostic approach (D. A.
Keim, 2002 (?)) based on data types to be visualized.

The work aims at designing a framework for a software, named Miró, which
instead allows the users to produce meaningful graphical representation in an auto-
matic way without the need to manually transform the data. First of all, we aim to
verify the benefits and the shortcomings of existing data-driven and problem-driven
models, by presenting some case studies. The case studies focus on the problem
of visually representing specific data-sets collected in different scientific domains
for different (descriptive vs. prescriptive) scientific aims. The case studies suggest
that data-driven models can actually provide a visualization that fits the domain
knowledge and scientific aims of the experts in the case of descriptive sciences, but
present some limitations in the case of prescriptive sciences. Finally, the research
draws some conclusion from the case studies, presenting an alternative interdisci-
plinary perspective for data visualization. A comprehensive model for graphical
representation is then presented, which integrates a data-driven approach with an
approach that guides the experts on a specific domain field to achieve the intended
visualization, based on their aims, knowledge and hypotheses. Miró adopts this in-
terdisciplinary perspective and is based on a visualization engine developed in Pharo
and named Roassal (?).

5.3.2 Data-driven and Problem-driven Models

In the field of data visualization computing, researchers proposed different ap-
proaches to a comprehensive data-model, i.e. a model able to provide a meaningful
graphical representation of a data-set for some scientific aims. Some authors advo-
cated graphical representation techniques or visualization frameworks (?) based on
data-driven models. The data-driven model approach is based on the idea that a
comprehensive data-model is based on a prior data classification that can guide the
automatic creation of a meaningful graphical representation. In general, the data-
driven model describes the data characteristics of the data-set, such as the size (the
number of rows), the data type (string, number, boolean) and the dimension (the
number of the variables to represent), to categorize the data. Keim (?) proposed a
data-driven visualization model based on the data types to be visualized, the visu-
alization technique and the technique of visual interaction with data, ranging from

5.3. AN INTERDISCIPLINARY MODEL FOR GRAPHICAL REPRESENTATION 171

standard and projection to distortion and ”link&brush”.
Other authors, especially in the context of big data visualization, proposed graph-

ical representation techniques based on a problem-driven model (?). The problem-
driven model provides the researchers with the possibility to perform specific tasks
on specific variables of the data-set, such as visualizing a variable distribution, per-
forming a linear regression between two variables to see an eventual relationship via
a scatter plot, comparing their composition via a pie chart, etc.

On the one hand, adopting a problem-driven model does not necessarily mean
abandoning data-driven models. The problem-driven model may be tightly linked
to the data-driven model, because the data-driven model imposes constraints on the
graphical representation of data which might conditioning how the problem can be
solved. For instance, in the case of time series, there are graphs that are less appro-
priate than others or that are simply wrong depending on the data classification: the
time data-type is indeed a constraint given or inferred from the data-driven model.
On the other hand, a graphical representation that is guided only by a data-driven
model would not allow the users to further act on data to have their final intended
graphical representation. In the software where a problem-driven model is also en-
visaged, the user can interfere with the final graphical representation of the data.
The user can indeed act on and guide the graphical representation to be produced.

e main disadvantage of the problem-driven model is that it might be negatively
influenced by the users’ previous hypotheses or scientific aims. On the contrary,
a data-driven model is neutral under this respect: of course it is based on a prior
classification, but the users might not know it. Without the users’ interference, the
final graphical output of a data-driven model might indeed have the advantage of
questioning the researchers’ prior goals and solicit a belief revision. Especially when
a graphical output is unexpected and not corresponding to previous scientific goals,
it might bring about further research or action.

Both the models assume that the data-set contains the information useful to
produce a meaningful graphic representation. This may not always be the case.
Scientific studies based on data-sets make use of graphical representations to better
interpret their results. Among these studies, it is possible to find descriptive as
well as prescriptive studies. The former aim to describe phenomena as they are,
observing, recording, classifying, and comparing them (?). The latter aim to provide
the conditions for how phenomena should be, thus supporting inferences for data
interpretation and decision and/or action to perform on data. Of course, a scientific
study could be both descriptive and prescriptive, also depending on the scientific
goals. The development of new decision-aiding technology should be tailored for
both (?), also in the case of graphical representation (?). The study is therefore
driven by the question on how a model should be to provide a meaningful graphical
representation of a data-set to support the inferences and/or the decision a researcher
wants to draw, in both the case of descriptive and prescriptive scientific studies.

In the study we propose a general distinction between a model for descriptive
studies and a model for prescriptive studies. Within these two models, it is possi-

172 CHAPTER 5. VISUALIZATION-BASED MODELS

ble to specify sub-models, specific for scientific domain and particular data types
involved in the study (?). Both the models can be used whenever a study has both
descriptive and prescriptive scientific aims, as it is often the case.

5.3.3 Research Questions and Hypotheses

The study aims to discuss the strengths and limitations of existing models for data
visualization, by considering and discussing some case studies coming from publica-
tions of different scientific domains and having different scientific aims.

The research addresses the following questions: Q1) Are data-driven models
sufficient for a software to help the researchers to automatically create the intended
visual form for a data-set? Q2) In the case the data-driven models are not sufficient,
what could be the best way to overcome their limitations? Q3) Can the existing
libraries or programs fit a data-driven model perspective and at the same time
overcome their shortcomings?

To answer the research questions, we advanced the following hypotheses: H1)
The data-driven models might support the creation of meaningful graphical rep-
resentation only for some specific scientific aims, such as the researchers’ aims to
provide a descriptive data analysis. H2) For scientific aims going beyond descriptive
analysis, the existing data-driven models might not be sufficient. The data-driven
models might need to be integrated into a more comprehensive and interdisciplinary
data-model to overcome their eventual limitations. H3) Existing software libraries
are data-driven and might not be sufficient to help researchers to find the intended
visual form for prescriptive scientific aims. They might need further implementation
to allow the users to perform different manipulation on data, such as transformation,
accommodation and integration with complementary data, to achieve the intended
graphical output.

Several different real-world scenarios and case studies support the hypotheses
mentioned above (??), a couple of which are discussed in the following Section 5.3.4.

5.3.4 Case Studies Evaluation

We analyzed data-sets which are representative of two different scientific approaches:
1) descriptive and 2) prescriptive studies. In particular we provide a detailed analysis
of some case studies, coming from 1) the domain of software metrics, in the wider
field of AI, and 2) the field of human mobility and sustainable development. The
analysis can be extended to further case studies in different scientific domains.

Descriptive Case Studies

As to descriptive scientific studies, we considered first of all the case of a study on the
performance evaluation of different frameworks in AI (?). The case study proposes a
set of meaningful visual representations of a benchmark data-set for the performance

5.3. AN INTERDISCIPLINARY MODEL FOR GRAPHICAL REPRESENTATION 173

evaluation of different Deep Learning (DL) models and frameworks. The Authors
calculated the accuracy and the throughput of five classification problems for the DL
models and frameworks. The output data-set was made of a series of two categorical
data (the name of the framework and the DL model) and two physical data.

We selected this study for three reasons: 1) The work aims to provide a significant
graphical representation of the performance metrics of different frameworks; 2) The
work also aims to extend the graphical representation to other frameworks, to be
applied to other works and thus be generalized. 3) The study’s data-set presents a
number of variables and categories, which are not trivial to represent as a whole to
obtain a meaningful graphical representation (?).

When analyzing the study case, we found that there is a data-driven model,
specifically Keim’s data-model, that provides us with a significant representation
of the data-set, without any accommodation and/or transformation of the data
and, more importantly, without any addition of further information by the user.
Indeed, by applying Keim’s data-model, the data-set is well within multi-dimensional
category and so the meaningful graphical representation technique should be a “heat-
map graph”, where the colour is represented by the categorical data and the two
physical data (accuracy and throughput) are represented in a 2D coordinate system.
Therefore, as to what concerns Q1, “Do data-driven models support the creation of
meaningful graphical representation”, the answer is positive. As the Keim’s data-
model is sufficient to have a proper graphical representation, we do not need to
cope with Q2 on how to improve it for this specific case study. As to what concern
Q3, the existing libraries for producing data visualizations alone cannot give that
expected output, even though based on a data-driven model. However, throughout a
data-driven model such as the Keim’s model and some accommodation of the data,
the existing libraries could provide the expected automatic visual representation,
starting from the raw data-set.

Other descriptive case studies concern, for instance, static programming analysis
and focus on the correlation between numerical variables, such as the number of lines
of code, cohesion, coupling or cyclomatic complexity (?) and categorical variables,
such as the name of the package included in the analyzed software. This type of
studies’ authors often choose to represent their data-sets via a bar graph where the
bar length represents the numerical value and the categorical variable is represented
by the different color of the bar or by a label. Also in these cases, the graphical
output can thus be provided by a data-driven model such as Keim’s model. The
analysis can be extended to other descriptive case studies in different disciplines (e.g.
biology (?), and sociology (?)), where Keim’s data-model is sufficient to provide the
categorization for descriptive scientific aims.

Prescriptive Case Studies

In the case of prescriptive scientific studies we first considered an interdisciplinary
study on human mobility (?). The Authors collected the data using smartphones

174 CHAPTER 5. VISUALIZATION-BASED MODELS

and smartwatches worn by several participants over 2 weeks. Through these devices,
they collected three kinds of data: 1) motion sensor data, 2) physiological data, 3)
environmental data. For the purposes of this case study, we are interested in the
second data-set collecting information about electrocardiographic (ECG) data, such
as heart beat and blood pressure. The data-set has the following characteristics:
1) data are multidimensional, as each row of the data set contains both spatial
coordinates (longitude and latitude) and physiological data (heart rate, in beats per
minute), provided by the optical heart rate sensor of the smartwatch; 2) the row
data series consists of over 1 millions of data.

One of the purposes of the research study was to use physiological data to infer
the user’s stress and emotion level to identify places within a University campus
area that are perceived as dangerous by the majority of participants. We selected
this research for the following reasons:

• The research covers different domains: mobile computing, sensing systems,
human mobility profiling and cardiology.

• As in the previous case study, the data-set presents a number of variables and
categories, which are not trivial to represent in an overall meaningful graphic
representation.

If we apply the Keim’s model to the data-set, the graphic representation output
is a “heat-map chart”, where the position is represented in a 2D-coordinate system
and the heart rate beat is represented by color hue. This type of representation
may not be enough meaningful for the aims of the study, when based only on the
data-set collected by the devices. Indeed, the data-set is not per se sufficient to have
a meaningful representation: the danger zones’ classification needs other, additional
data, such as the normal resting heart rate range and the dangerous heart rate range,
to be properly represented.

Figure 5.9 shows the graphical representation produced considering the addi-
tional data, the normal and dangerous heart rate ranges. These additional data are
used to represent the different zones on the map with colors having different opacity
(color with opacity 1 for the dangerous zones and transparent color for the zones
considered safe).

Therefore, as to what concerns Q1, the answer is that the data-driven model
is not sufficient to give the intended graphic representation. Indeed the authors
considered complementary data that are not merely added to the existing categories
considered by the data-driven model, but rather organize in a higher-order structure
and provide the cues to interpret the data-set to have a meaningful representation
of the zones considered dangerous. The complementary data do shape the authors’
interpretation of the data-set as they provide some intervals (the heartbeat rates
intervals), as conditions to classify dangerous vs. safety zones. Indeed, the graphical
representation 5.9 can be prescriptively used by experts in urban development for
strategic planning to improve safety in public places.

5.3. AN INTERDISCIPLINARY MODEL FOR GRAPHICAL REPRESENTATION 175

Figure 5.9: Places that are perceived as dangerous by the majority of users through
the use of colors with different shades.

As to Q2, the solution to overcome the limitations of the data-driven model
could be the possibility of inserting further data types into the data-set, relating
the average heartbeat rates stored in the original data-set with the heartbeat rates
intervals considered normal and dangerous. Furthermore, the data must be re-
sampled taking into account the new knowledge, the normal resting heart rate range,
coming from a different domain, the cardiology. However, this solution requires
specific knowledge from the cardiology domain which may be different from the
researchers’ knowledge performing the data analysis.

Finally, regarding Q3, data visualization libraries alone cannot help to obtain the
expected output. Indeed, different tasks should be foreseen to achieve the intended
outcome through a software, including the data visualization libraries:

• the program should make use of a data-driven model, such as the Keim’s
model.

• the program should give the user the possibility to add other data type. In
the prescriptive case study, the data-type are intervals (conditioning the in-
terpretation of the other data), also coming from a different scientific domain,
i.e. cardiology.

• the program should give the researchers the possibility to further categorize
the data-set via the additional knowledge. The program must provide the
data-set with an higher-order structure to achieve the graphic representation
meaningfully corresponding to the authors’ scientific aims.

• Once adopting this workflow, the program might use the data visualization
library to generate the intended graphic representation.

176 CHAPTER 5. VISUALIZATION-BASED MODELS

Figure 5.10: Areas affected by air pollution.

Another example of prescriptive studies concern the correlation between air pol-
lution and respiratory illnesses (?). The research findings come from data belonging
to different domains such as 1) prescriptive data conditions in health information
systems, 2) the air quality index (AQI) data provided by the World Health Orga-
nization (WHO), and 3) the descriptive data coming from particular air pollution
electrical sensors. The descriptive data alone, in particular the concentration of mi-
croscopic particles with a diameter of 2.5 µm or less, are not sufficient to produce
a graphical representation apt to meet the prescriptive aims of the study (see Fig-
ure 5.10), i.e the sustainable development program in urban and rural areas affected
by air pollution.

5.3.5 An Interdisciplinary Model

In the field of graphical representation, interdisciplinary models have been proposed
to cope with the limitations of both previous data-driven and problem-driven models.
For instance, Hall et al. (?) proposed a trans-disciplinary model which allow the
experts in a particular domain to be supported by visualization experts. Their work
is very interesting as the interaction between experts with skills in different domains
could greatly influence the production of meaningful graphical representations to
display cues for scientific findings.

However, the prescriptive case study examined in this research cannot be solved
through this trans-disciplinary approach. Of course a competence in visualization
is welcome, but cannot per se highlight the conditions of meaningfulness, which
come from another scientific domain in the prescriptive case studies. Therefore an
interdisciplinary model is needed which integrates knowledge and practice coming
from different scientific domains in the process of visualization. Figure 5.11 proposes

5.3. AN INTERDISCIPLINARY MODEL FOR GRAPHICAL REPRESENTATION 177

Figure 5.11: Interdisciplinary Model

the main elements of the interdisciplinary model.

• The source domain/s is/are the domain/s from which the data are collected.

• The complementary domain/s is/are the domain/s from where to collect the
data required to interpret the source domain/s data.

• The blended domain (?) is given by the intersection between the source
domain/s and the complementary domain/s, where some new insight could
emerge.

• The data model is the model driving the software in the process of data cate-
gorization and visualization.

As a solution to the prescriptive case studies examined, we propose an interdisci-
plinary problem-driven approach for the visualization of data coming from different
domains. For the aims of descriptive studies, the source domain and the data-driven
model are usually sufficient to have meaningful graphical representations. The pre-
scriptive case studies instead show the limits of both data-driven and problem-driven
model, as there are scientific aims for which it is not sufficient having both the data
models and the data coming from a scientific domain to obtain meaningful graphic
reports for the research findings.

In prescriptive studies, two further processes - not envisaged in previous data-
driven and problem-driven models - are needed to have meaningful graphical repre-
sentations of the source data:

178 CHAPTER 5. VISUALIZATION-BASED MODELS

• A selection process: when the data collected by the researchers in the source
domain are not sufficient, other specific data selected from a different scientific
domains might be needed to interpret the source data. These data might
indeed be the condition of meaningfulness for data interpretation, and thus
for the visual output of the software.

• A transformation process: specific tasks might be needed for the re-
interpretation of the data in light of the selected complementary data and
the scientific aims of the study. For instance, the source data might need to
be re-sampled considering the complementary knowledge.

The scientist’s insight needs, therefore, to be entered as complementary data in
any software’s visual framework, which in turn should make it possible to enter them,
interacting with the scientist. In the prescriptive case studies, the interdisciplinary
approach is driven by the interaction among experts in different domains (mobile
computing and cardiology) and guides the production of graphical representations,
meaningfully representing the areas perceived as dangerous (see Figure 5.9). The
insertion of the relevant complementary data might come not only from experts of
another domain, but also from online interactions among experts in different domains
and/or online web-based crowd-sourcing selected by the expert users themselves.

This interdisciplinary model might then overcome the limitations of both the
data-driven and the problem-drive models, especially when it automatically pro-
poses the complementary data based on the scientific aims of the expert and the
relative missing expertise, which could come from an expert in another domain. This
approach is the framework for Miró, a software intended to be a guide to build mean-
ingful graphical representations for both descriptive and prescriptive studies, based
on a data-set coming from the source domain/s and on a data model eventually able
to provide complementary online data. Differently from softwares based on previ-
ous data-driven and/or problem-driven models, the Miró’s interdisciplinary model
allows the user to insert data or select data coming from complementary domain/s,
and transform the source data-set to have the intended graphical representation.

In the case study requiring data from both human mobility and cardiology, when
the participants to the experiment are considered as a group, their information
provides other meaningful cues to identify critical geographical or temporal points.
For example, the two figures coming from the prescriptive case studies represent
respectively 1) the places that are implicitly perceived as dangerous or risky by most
users and 2) the most polluted areas of a city. By analyzing the data-sets and their
graphical representations, it emerges that there are data (fields) that make sense
only within one or more interval/s [a, b]. Often, the interval information is neither
provided within the data-set nor within the single scientific discipline and thus the
interval must be set by the scientist and/or by another expert. This needs to be
contemplated by the dashboard developer. For instance, in study 1), the heart-rate
belongs to the health domain and make the place dangerousness meaningful only if
the average value is above a certain threshold. The threshold needs to be provided

5.3. AN INTERDISCIPLINARY MODEL FOR GRAPHICAL REPRESENTATION 179

by a scientist (also following the scientific practices of his/her scientific field), it
is not provided by the data-set per sé, especially in interdisciplinary prescriptive
studies like 1).

Some data actually come from the data-sets, some other data come from the
scientist’s interpretation of the data in light of the scientific hypotheses in her/his
study. The latter should be provided by the scientist and a dashboard should make it
possible to enter them. Prescriptive scientific studies are more likely to need interval
information as a condition of meaningfulness to make sense of the data-sets when
compared to descriptive scientific studies, which can instead provide meaningful
graphical representations based on traditional models. Of course, scientific studies
can be both descriptive and prescriptive: Miró can provide a meaningful graphical
representation also for these studies as it does not abandon traditional models, but
it instead proposes further functionalities.

5.3.6 Conclusion and Future Works

This research shows how important might be an interdisciplinary data model, espe-
cially in prescriptive studies, to have a software able to provide meaningful graphical
representations of data. In the case of descriptive studies, existing models - data-
driven models and/or problem-driven models - might be sufficient to produce mean-
ingful graphical representations when providing the data coming from the source
domain/s. In the case of prescriptive studies, the existing models might fail to
produce meaningful graphical representations when just the collected data coming
from the source domain/s are provided. The research proposed an interdisciplinary
approach to overcome the limitations of the existing models via a software-expert
interaction. In this framework, the software allows the users to reinterpret and
transform the collected source data in the light of the scientific knowledge coming
from (online) interaction with other experts or data-sets coming from complemen-
tary domain/s. The graphical representation is made meaningful in the blended
domain, thus providing a visual support for new findings.

180 CHAPTER 5. VISUALIZATION-BASED MODELS

Chapter 6

Conclusion

Blockchain technology has been around for more than ten years and countless pa-
pers on interesting applications of blockchain technology have been written and
published in scientific journals (????). Many experts mention the potential appli-
cations of the blockchain for the aims of industry, market, agency, or governmen-
tal organizations (????). There are indeed many scientific works that explain the
advantages and benefits for our society in adopting this technology in different ar-
eas: food traceability analysis (???), healthcare records management (?), identity
management system (?), intellectual property protection (?), verifiable electronic
voting (???). Blockchain can thus be an innovative and a revolutionary solution in
many sectors of our society and it can improve our lives by making some everyday
tasks more efficient and transparent (?).

Despite the countless scenarios where the blockchain can be applied to improve
our quality of life, there are only few examples where this technology has been ap-
plied in a real-world scenario (?). This work embraces the idea that the blockchain
technology still needs several improvements in different areas before becoming popu-
lar and adopted by many companies, both private and public. According to previous
research, some areas for improvement are the costs associated with the blockchain
development (??). Moreover, it has been suggested that the interaction with this
new technology may still be difficult (?). To address these problems, different mod-
els and tools to facilitate the interaction with this technology have been proposed
in the dissertation.

First, the dissertation proposed two applications aimed at expert users, namely
PASO (?) and Smart-Corpus (?). Based on the latter, the dissertation reported the
results of a corpus analysis on the source code clone practice in smart contracts (?).
Second, the dissertation provided some insights into the design and the development
of tools for non-expert users to overcome the barriers that can limit the access to
a wider public. These user-centered tools can facilitate the interaction with the
blockchain and the understanding of the possibilities that this technology can open
in everyday life (??). Finally, the dissertation proposed an interdisciplinary model
and tool, namely Miró (?), which allows experts in different areas, such as experts

182 CHAPTER 6. CONCLUSION

in law, policy, finance, digital innovation, to cooperate and share their knowledge in
the field of blockchain technology.

The tools and models proposed in the dissertation might be crucial in enabling
the widespread adoption and development of blockchain technologies for academic
and private users. Indeed, the purpose of the work was to develop user-centered
tools with the aim of ensuring that blockchain is widely available through public
and open-source code libraries. Some of the tools presented in the dissertation,
based on the academic and non-academic citations on their use, are already helping
to ensure that the full blockchain potential is reached and that further developments
can be made to make the blockchain technology diffused, used and adopted within
the society.

Contents

184 CHAPTER 6. CONTENTS

List of Figures

2.6 Creation of new accounts with associated code (known informally as
“contract creation”). 32

2.7 Message call transaction which can update the storage. 32

3.1 The Parser Generator takes a file containing the Solidity grammar
rules. It produces a PASO Parser, i.e. a parser in JavaScript com-
puter language that can be run in a client browser. 47

3.2 Example of input and output of the PASO Parser. 48

3.3 The two ovals respectively represent the set of Object oriented met-
rics (on the left) and the set of metrics that are specific to Solidity
Language (on the right). 49

3.4 PASO GUI Textarea. 52

3.5 PASO GUI Metrics. 52

3.6 PASO GUI. Figure 3.4 shows the textarea where the user can write or
paste the smart contract or several smart contracts. Figure 3.5 shows
some metrics value corresponding to the smart contract written in
the textarea. 52

3.7 Smart-Corpus’s pipeline model. 60

3.8 . 61

3.9 . 61

3.10 . 61

3.11 Data retrieving pipeline: Figure 3.11a–c shows three different phases
to retrieve the smart contracts. (a) Transactions list in a block, (b)
smart contract’s webpage code and (c) smart contract’s source code. . 61

3.12 Smart Corpus’s database schema. 62

3.13 Smart contracts’ directory structure. 64

3.14 Smart Corpus’s user interface. 65

3.15 Example use of variables to filter a query result with GraphQL. . . . 67

3.16 Number of smart contracts collected in Smart Corpus. 70

3.17 Evolution of the percentage of global clones among the smart con-
tracts for every year. 77

3.18 Evolution of the percentage of local clones among the smart contracts
for every year. 78

186 CHAPTER 6. LIST OF FIGURES

4.1 Ethereum transaction fees variation 85
4.2 Ethereum clients . 87
4.3 Life cycle of an Ethereum transaction (tx). Orange boxes represent

the variables possibly influencing the Ethereum txs fee. Grey num-
bered boxes represent the stages of the txs workflow. 88

4.4 Time series datasets . 93
4.6 Regular Polling every 15 seconds . 102
4.7 JSON payload extracted from EthGasStation RESTFul API Services 103
4.8 Gas Oracle prediction based on block history. The transaction having

a Gas price higher or equal to op (the yellow circle) are displayed in
white text on a darker background. The transaction having a Gas
price lower than op are displayed in black text on a lighter background.104

4.9 Database schema. 105
4.10 Violin Plot (median, first and third percentiles, range) of the wait-

ing time in seconds before a transaction is added to the Ethereum
Blockchain. 107

4.11 Violin Plot of the waiting time in seconds before a transaction is
added to the Ethereum Blockchain. The blue plot to the left refers to
the transactions having a Gas price lower than 10 GWei. The orange
plot to the right refers to the transactions having a Gas price higher
than or equal to 10 GWei. 108

4.12 Violin plot of the EthGasStation Oracle’s Gas price categories 109
4.13 Usage of Gas Oracles Categories. 110
4.14 The transactions having a Gas price higher or equal to the one pro-

posed by the Gas Oracle (op) are displayed in bold. 125
4.15 Database schema. 126
4.16 Violin Plot of the waiting time in seconds before a transaction is

included into a block. (a) All transactions. (b) Transactions having
a Gas price lower than 10 GWei. (c) Transactions having a Gas price
higher than or equal to 10 GWei. 130

4.17 (a) Block size (including header and all transactions) in bytes. (b)
Violin plot of the number of transactions included in each block. (c)
Lowest Gas price attached to each transaction and present in each
block. (d) Violin Plot of the total fees (in Wei) collected by the
miners in each block. 131

4.18 (a) Violin plot of the EtherGasStation Oracle’s Gas price categories.
(b) Violin plot of the Etherchain Oracle’s Gas price categories. 133

4.19 (a) Violin plot of the Oracles’ Gas price prediction for the ‘fastest’
category (b) Gas Oracles Categories corresponding to the Gas price
actually set by the users. 134

4.20 Histogram of observed data. 135
4.21 Example of contracts transactions . 146
4.22 Proposed approach’s workflow . 149

6.0. LIST OF FIGURES 187

4.23 Example of ROC curve showing the True Positive and False Positive
rate reached by our SVM model . 152

5.1 UML class diagrams of Tether smart contract. 157
5.4 The “Smart Graph” GUI accessible through a web browser over the

internet. 161
5.5 trasnferOwnership method visualized as a tree diagram. 163
5.6 Pipeline of the operations executed by the backend when a user re-

quests the UML class diagrams of a specified smart contract’s address.163
5.7 Synchronous Model vs Asynchronous Model. 164
5.9 Places that are perceived as dangerous by the majority of users

through the use of colors with different shades. 173
5.10 Areas affected by air pollution. 174
5.11 Interdisciplinary Model . 175

188 CHAPTER 6. LIST OF FIGURES

Bibliography

AA.VV. (2020). Oracle-gas-price-source-code, may 2020.

Abras, C., Maloney-Krichmar, D., Preece, J., et al. (2004). User-centered design.
Bainbridge, W. Encyclopedia of Human-Computer Interaction. Thousand Oaks:
Sage Publications, 37(4):445–456.

Abu-Elezz, I., Hassan, A., Nazeemudeen, A., Househ, M., and Abd-Alrazaq, A.
(2020). The benefits and threats of blockchain technology in healthcare: A scoping
review. International Journal of Medical Informatics, page 104246.

Adhami, S., Giudici, G., and Martinazzi, S. (2018). Why do businesses go crypto?
An empirical analysis of initial coin offerings. Journal of Economics and Business,
100(C):64–75.

Adler, J., Berryhill, R., Veneris, A., Poulos, Z., Veira, N., and Kastania, A. (2018).
Astraea: A decentralized blockchain oracle. In 2018 IEEE international confer-
ence on internet of things (IThings) and IEEE green computing and communi-
cations (GreenCom) and IEEE cyber, physical and social computing (CPSCom)
and IEEE smart data (SmartData), pages 1145–1152. IEEE.

Aitzhan, N. Z. and Svetinovic, D. (2016). Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous messaging
streams. IEEE Transactions on Dependable and Secure Computing, 15(5):840–
852.

Al-Jaroodi, J. and Mohamed, N. (2019). Blockchain in industries: A survey. IEEE
Access, 7:36500–36515.

Alimadadi, S., Mesbah, A., and Pattabiraman, K. (2016). Understanding asyn-
chronous interactions in full-stack javascript. In 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering (ICSE), pages 1169–1180. IEEE.

Altman, E., Menasché, D., Reiffers-Masson, A., Datar, M., Dhamal, S., Touati,
C., and El-Azouzi, R. (2020). Blockchain competition between miners: A game
theoretic perspective. Frontiers in Blockchain, 2:26.

190 BIBLIOGRAPHY

Amani, S., Bégel, M., Bortin, M., and Staples, M. (2018). Towards verifying
ethereum smart contract bytecode in isabelle/hol. In Proceedings of the 7th ACM
SIGPLAN International Conference on Certified Programs and Proofs, CPP 2018,
page 66–77, New York, NY, USA. Association for Computing Machinery.

Andoni, M., Robu, V., Flynn, D., Abram, S., Geach, D., Jenkins, D., McCallum, P.,
and Peacock, A. (2019). Blockchain technology in the energy sector: A system-
atic review of challenges and opportunities. Renewable and Sustainable Energy
Reviews, 100:143–174.

Anjum, A., Sporny, M., and Sill, A. (2017). Blockchain standards for compliance
and trust. IEEE Cloud Computing, 4(4):84–90.

Antonucci, F., Figorilli, S., Costa, C., Pallottino, F., Raso, L., and Menesatti, P.
(2019). A review on blockchain applications in the agri-food sector. Journal of
the Science of Food and Agriculture, 99(14):6129–6138.

Antunes, N. and Vieira, M. (2009). Comparing the effectiveness of penetration
testing and static code analysis on the detection of sql injection vulnerabilities
in web services. In 2009 15th IEEE Pacific Rim International Symposium on
Dependable Computing, pages 301–306. IEEE.

Ayed, A. B. (2017). A conceptual secure blockchain-based electronic voting system.
International Journal of Network Security & Its Applications, 9(3):1–9.

Azaria, A., Ekblaw, A., Vieira, T., and Lippman, A. (2016). Medrec: Using
blockchain for medical data access and permission management. In 2016 2nd
International Conference on Open and Big Data (OBD), pages 25–30. IEEE.

Bach, L. M., Mihaljevic, B., and Zagar, M. (2018). Comparative analysis of
blockchain consensus algorithms. In 2018 41st International Convention on
Information and Communication Technology, Electronics and Microelectronics
(MIPRO), pages 1545–1550. IEEE.

Backus, J. (1978). Can programming be liberated from the von neumann style?
a functional style and its algebra of programs. Communications of the ACM,
21(8):613–641.

Baclawski, K., Kokar, M. K., Kogut, P. A., Hart, L., Smith, J., Letkowski, J.,
and Emery, P. (2002). Extending the unified modeling language for ontology
development. Software and Systems Modeling, 1(2):142–156.

Baker, B. S. (1995). On finding duplication and near-duplication in large software
systems. In Proceedings of the Second Working Conference on Reverse Engineer-
ing, WCRE ’95, page 86, USA. IEEE Computer Society.

BIBLIOGRAPHY 191

Baker Effendi, S., van der Merwe, B., and Balke, W.-T. (2020). Suitability of graph
database technology for the analysis of spatio-temporal data. Future Internet,
12(5):78.

Balazinska, M., Merlo, E., Dagenais, M., Lague, B., and Kontogiannis, K. (2000).
Advanced clone-analysis to support object-oriented system refactoring. In Pro-
ceedings Seventh Working Conference on Reverse Engineering, pages 98–107.

Balzer, M., Deussen, O., and Lewerentz, C. (2005). Voronoi treemaps for the vi-
sualization of software metrics. In Proceedings of the 2005 ACM Symposium on
Software Visualization, SoftVis ’05, pages 165–172, New York, NY, USA. ACM.

Baralla, G., Ibba, S., Marchesi, M., Tonelli, R., and Missineo, S. (2018). A blockchain
based system to ensure transparency and reliability in food supply chain. In
European conference on parallel processing, pages 379–391. Springer.

Baralla, G., Pinna, A., Tonelli, R., Marchesi, M., and Ibba, S. (2021). Ensuring
transparency and traceability of food local products: A blockchain application to
a smart tourism region. Concurrency and Computation: Practice and Experience,
33(1):e5857.

Bartoletti, M., Carta, S., Cimoli, T., and Saia, R. (2020). Dissecting ponzi schemes
on ethereum: identification, analysis, and impact. Future Generation Computer
Systems, 102:259–277.

Bechtel, W. and Abrahamsen, A. (2005). Explanation: a mechanist alterna-
tive. Studies in history and philosophy of biological and biomedical sciences,
36(2):421—441.

Bellare, M. and Rogaway, P. (1993). Random oracles are practical: A paradigm
for designing efficient protocols. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 62–73.

Bentov, I., Lee, C., Mizrahi, A., and Rosenfeld, M. (2014). Proof of activity: Ex-
tending bitcoin’s proof of work via proof of stake [extended abstract] y. ACM
SIGMETRICS Performance Evaluation Review, 42(3):34–37.

Berdik, D., Otoum, S., Schmidt, N., Porter, D., and Jararweh, Y. (2021). A survey
on blockchain for information systems management and security. Information
Processing & Management, 58(1):102397.

Bergel, A., Maass, S., Ducasse, S., and Girba, T. (2014). A domain-specific language
for visualizing software dependencies as a graph. In 2014 Second IEEE Working
Conference on Software Visualization, pages 45–49.

Berners-Lee, T., Cailliau, R., Luotonen, A., Nielsen, H. F., and Secret, A. (1994).
The world-wide web. Communications of the ACM, 37(8):76–82.

192 BIBLIOGRAPHY

Bistarelli, S., Mazzante, G., Micheletti, M., Mostarda, L., and Tiezzi, F. (2020).
Analysis of ethereum smart contracts and opcodes. In Barolli, L., Takizawa,
M., Xhafa, F., and Enokido, T., editors, Advanced Information Networking and
Applications, pages 546–558, Cham. Springer International Publishing.

Bracciali, A., Chatzigiannakis, I., Vitaletti, A., and Zecchini, M. (2019). Citizens
vote to act: Smart contracts for the management of water resources in smart cities.
In 2019 First International Conference on Societal Automation (SA), pages 1–8.
IEEE.

Bragagnolo, S., Rocha, H., Denker, M., and Ducasse, S. (2018). Ethereum query
language. In Proceedings of the 1st International Workshop on Emerging Trends
in Software Engineering for Blockchain, WETSEB ’18, page 1–8, New York, NY,
USA. Association for Computing Machinery.

Brant, J. and Roberts, D. (2009). The smacc transformation engine: How to convert
your entire code base into a different programming language. In Proceedings of the
24th ACM SIGPLAN Conference Companion on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’09, pages 809–810, New York,
NY, USA. ACM.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. (2004).
Tropos: An agent-oriented software development methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236.

Breu, R., Hinkel, U., Hofmann, C., Klein, C., Paech, B., Rumpe, B., and Thurner,
V. (1997). Towards a formalization of the unified modeling language. In European
Conference on Object-Oriented Programming, pages 344–366. Springer.

Brown, R. and Vári, A. (1992). Towards a research agenda for prescriptive decision
science: The normative tempered by the descriptive. Acta Psychologica, 1-3:33–
48.

Budish, E. (2018). The economic limits of bitcoin and the blockchain. Technical
report, National Bureau of Economic Research.

Buterin, V. (2013). Ethereum: a next generation smart contract and decentralized
application platform. In White paper.

Buterin, V. (2014). A next generation smart contract & decentralized application
platform. Ethereum White Paper, pages 1–36.

Buterin, V. et al. (2014). A next-generation smart contract and decentralized ap-
plication platform. white paper, 3(37).

Cachin, C. and Vukolić, M. (2017). Blockchain consensus protocols in the wild.
arXiv preprint arXiv:1707.01873.

BIBLIOGRAPHY 193

Cadwalladr, C. (2016). Google, democracy and the truth about internet search. The
Guardian, 4(12):2016.

Camino, R., Torres, C. F., Baden, M., and State, R. (2019). A data science approach
for honeypot detection in ethereum. arXiv preprint arXiv:1910.01449.

Carter, J. L. and Wegman, M. N. (1979). Universal classes of hash functions. Journal
of computer and system sciences, 18(2):143–154.

Chen, H., Pendleton, M., Njilla, L., and Xu, S. (2020a). A survey on ethereum
systems security: Vulnerabilities, attacks, and defenses. ACM Computing Surveys
(CSUR), 53(3):1–43.

Chen, T., Li, X., Luo, X., and Zhang, X. (2017). Under-optimized smart contracts
devour your money. In Saner’17 - Early Research Achievements.

Chen, T., Li, Z., Zhu, Y., Chen, J., Luo, X., Lui, J. C.-S., Lin, X., and Zhang,
X. (2020b). Understanding ethereum via graph analysis. ACM Trans. Internet
Technol., 20(2).

Chen, W., Zheng, Z., Ngai, E. C.-H., Zheng, P., and Zhou, Y. (2019). Exploit-
ing blockchain data to detect smart ponzi schemes on ethereum. IEEE Access,
7:37575–37586.

Chen, Y., Oney, S., and Lasecki, W. S. (2016). Towards providing on-demand expert
support for software developers. In Proceedings of the 2016 CHI conference on
human factors in computing systems, pages 3192–3203.

Chidamber, S. R. and Kemerer, C. F. (1991a). Towards a metrics suite for object
oriented design. In Conference Proceedings on Object-Oriented Programming Sys-
tems, Languages, and Applications, OOPSLA ’91, page 197–211, New York, NY,
USA. Association for Computing Machinery.

Chidamber, S. R. and Kemerer, C. F. (1991b). Towards a metrics suite for object
oriented design. In Conference Proceedings on Object-Oriented Programming Sys-
tems, Languages, and Applications, OOPSLA ’91, page 197–211, New York, NY,
USA. Association for Computing Machinery.

Chidamber, S. R. and Kemerer, C. F. (1994). A metrics suite for object oriented
design. IEEE Transactions on Software Engineering, 20(6):476–493.

Chodorow, K. (2013). MongoDB: The Definitive Guide. O’Reilly Media, Inc.

Conboy, K. and Fitzgerald, B. (2010). Method and developer characteristics for
effective agile method tailoring: A study of xp expert opinion. ACM Transactions
on Software Engineering and Methodology (TOSEM), 20(1):1–30.

194 BIBLIOGRAPHY

Concas, G., Marchesi, M., Murgia, A., Pinna, S., and Tonelli, R. (2010). Assessing
traditional and new metrics for object-oriented systems. Proceedings of the 2010
ICSE Workshop on Emerging Trends in Software Metrics, pages 24–31.

Concas, G., Monni, C., Orrù, M., and Tonelli, R. (2013). A study of the community
structure of a complex software network. In 2013 4th International Workshop on
Emerging Trends in Software Metrics (WETSoM), pages 14–20.

Courtois, N. T. (2014). On the longest chain rule and programmed self-destruction
of crypto currencies.

Coxe, S., West, S., and Aiken, L. (2009). The analysis of count data: A gentle
introduction to poisson regression and its alternatives. Journal of personality
assessment, 91:121–36.

Crafa, S., Di Pirro, M., and Zucca, E. (2019). Is solidity solid enough? In Interna-
tional Conference on Financial Cryptography and Data Security, pages 138–153.
Springer.

Crosby, M., Pattanayak, P., Verma, S., Kalyanaraman, V., et al. (2016). Blockchain
technology: Beyond bitcoin. Applied Innovation, 2(6-10):71.

Dahse, J. and Holz, T. (2014). Simulation of built-in php features for precise static
code analysis. In NDSS, volume 14, pages 23–26. Citeseer.

Dannen, C. (2017). Introducing Ethereum and solidity, volume 1. Springer.

de Villiers, A. and Cuffe, P. (2020). A three-tier framework for understanding
disruption trajectories for blockchain in the electricity industry. IEEE Access,
8:65670–65682.

Decker, C. and Wattenhofer, R. (2013). Information propagation in the bitcoin
network. In IEEE P2P 2013 Proceedings, pages 1–10.

Destefanis, G. (2021). Design patterns for smart contract in ethereum. In 2021 IEEE
18th International Conference on Software Architecture Companion (ICSA-C),
pages 121–122. IEEE.

Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R., Bracciali, A., and Hierons, R.
(2018). Smart contracts vulnerabilities: a call for blockchain software engineering?
In 2018 International Workshop on Blockchain Oriented Software Engineering
(IWBOSE), pages 19–25. IEEE.

Diogo, M., Cabral, B., and Bernardino, J. (2019). Consistency models of nosql
databases. Future Internet, 11(2):43.

BIBLIOGRAPHY 195

Dorri, A., Kanhere, S. S., and Jurdak, R. (2017). Towards an optimized blockchain
for iot. In 2017 IEEE/ACM Second International Conference on Internet-of-
Things Design and Implementation (IoTDI), pages 173–178. IEEE.

Ducasse, S., Rieger, M., and Demeyer, S. (1999). A language independent approach
for detecting duplicated code. In Proceedings IEEE International Conference
on Software Maintenance-1999 (ICSM’99).’Software Maintenance for Business
Change’(Cat. No. 99CB36360), pages 109–118. IEEE.

Ducasse, S., Rocha, H., Bragagnolo, S., Denker, M., and Francomme, C. (2019a).
SmartAnvil: Open-Source Tool Suite for Smart Contract Analysis. In Blockchain
and Web 3.0: Social, economic, and technological challenges. Routledge.

Ducasse, S., Rocha, H., Bragagnolo, S., Denker, M., and Francomme, C. (2019b).
SmartAnvil: Open-Source Tool Suite for Smart Contract Analysis. In Blockchain
and Web 3.0: Social, economic, and technological challenges. Routledge.

Dunphy, P. and Petitcolas, F. A. (2018). A first look at identity management schemes
on the blockchain. IEEE Security & Privacy, 16(4):20–29.

Dyson, S. F., Buchanan, W. J., and Bell, L. (2020). Scenario-based creation and
digital investigation of ethereum erc20 tokens. Forensic Science International:
Digital Investigation, 32:200894.

Easley, D., O’Hara, M., and Basu, S. (2017). From mining to markets: the evolution
of bitcoin transaction fees. SSRN Electronic Journal, pages 1–55.

Efanov, D. and Roschin, P. (2018). The all-pervasiveness of the blockchain tech-
nology. Procedia Computer Science, 123:116 – 121. 8th Annual International
Conference on Biologically Inspired Cognitive Architectures, BICA 2017 (Eighth
Annual Meeting of the BICA Society), held August 1-6, 2017 in Moscow, Russia.

Eklund, P. and Haemmerlé, O., editors (2008). Conceptual Structures: Knowledge
Visualization and Reasoning. Springer Berlin Heidelberg.

Eklund, P. W. and Beck, R. (2019). Factors that impact blockchain scalability.
In Proceedings of the 11th International Conference on Management of Digital
EcoSystems, MEDES ’19, page 126–133, New York, NY, USA. Association for
Computing Machinery.

et al., M. A. (2017). zeppelin os: An open-source, decentralized platform of tools
and services on top of the evm to develop and manage smart contract applications
securely.

Ethereum Community (2016). Ethereum homestead documentation.

Ethereum Foundation (2020). Solidity documentation release 0.6.12.

196 BIBLIOGRAPHY

Faye, S., Bronzi, W., Tahirou, I., and Engel, T. (2017). Characterizing user mo-
bility using mobile sensing systems. International Journal of Distributed Sensor
Networks, 13(8):155014771772631.

Fenton, N. E. (1991). Software Metrics: A Rigorous Approach. Chapman & Hall,
Ltd., GBR.

Fenton, N. E. and Neil, M. (2000). Software metrics: Roadmap. In Proceedings of
the Conference on The Future of Software Engineering, ICSE ’00, page 357–370,
New York, NY, USA. Association for Computing Machinery.

Few, S. (2006). Information Dashboard Design. OReilly.

Forkan, A. R. M., Kimm, G., Morshed, A., Jayaraman, P. P., Banerjee, A., and
Huang, W. (2019). Aqvision: A tool for air quality data visualisation and
pollution-free route tracking for smart city. In 2019 23rd InfoVis, pages 47–51.

Forward, A. and Lethbridge, T. C. (2002). The relevance of software documentation,
tools and technologies: A survey. In Proceedings of the 2002 ACM Symposium on
Document Engineering, DocEng ’02, page 26–33, New York, NY, USA. Associa-
tion for Computing Machinery.

Fusco, F., Lunesu, M. I., Pani, F. E., and Pinna, A. (2018). Crypto-voting, a
blockchain based e-voting system. In KMIS, pages 221–225.

Gabel, M. and Su, Z. (2010). A study of the uniqueness of source code. In Proceedings
of the Eighteenth ACM SIGSOFT International Symposium on Foundations of
Software Engineering, FSE ’10, page 147–156, New York, NY, USA. Association
for Computing Machinery.

Galvez, J. F., Mejuto, J. C., and Simal-Gandara, J. (2018). Future challenges on
the use of blockchain for food traceability analysis. TrAC Trends in Analytical
Chemistry, 107:222–232.

Gamblin, T., LeGendre, M., Collette, M. R., Lee, G. L., Moody, A., de Supinski,
B. R., and Futral, S. (2015). The spack package manager: bringing order to hpc
software chaos. In SC ’15: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12.

Garrett, J. J. (2010). The elements of user experience: user-centered design for the
web and beyond. Pearson Education.

Gatteschi, V., Lamberti, F., Demartini, C., Pranteda, C., and Santamaŕıa, V.
(2018). Blockchain and smart contracts for insurance: Is the technology mature
enough? Future Internet, 10(2):20.

BIBLIOGRAPHY 197

Gervais, A., Karame, G. O., Wüst, K., Glykantzis, V., Ritzdorf, H., and Capkun,
S. (2016). On the security and performance of proof of work blockchains. In Pro-
ceedings of the 2016 ACM SIGSAC conference on computer and communications
security, pages 3–16.

Gill, T. G. (1995). Early expert systems: Where are they now? MIS quarterly,
pages 51–81.

Giudici, P. and Abu-Hashish, I. (2018). What determines bitcoin exchange prices?
a network var approach. Finance Research Letters.

Godfrey, P., Gryz, J., and Lasek, P. (2016). Interactive visualization of large data
sets. IEEE Transactions on Knowledge and Data Engineering, 28(8):2142–2157.

Gousios, G. and Spinellis, D. (2017). Mining software engineering data from github.
In Proceedings of the 39th International Conference on Software Engineering Com-
panion, ICSE-C ’17, page 501–502. IEEE Press.

Granger, C. W. J. (1969). Investigating Causal Relations by Econometric Models
and Cross-Spectral Methods. Econometrica, 37(3):424–438.

Granger, C. W. J. (1981). Some properties of time series data and their use in
econometric model specification. Journal of Econometrics, 16(1):121–130.

Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., and Smaragdakis, Y.
(2018). Madmax: Surviving out-of-gas conditions in ethereum smart contracts.
Proc. ACM Program. Lang., 2(OOPSLA).

Greene, W. (2011). Models for counts of events. In Econometric Analysis, chapter 18,
pages 802–828. Pearson Education, 7th edition.

Greenfield, J. and Short, K. (2003). Software factories: assembling applications with
patterns, models, frameworks and tools. In Companion of the 18th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and
applications, pages 16–27.

Grimaldi, D. A. and Engel, M. S. (2007). Why Descriptive Science Still Matters.
BioScience, 57(8):646–647.

Gürkaynak, G., Yılmaz, İ., Yeşilaltay, B., and Bengi, B. (2018). Intellectual prop-
erty law and practice in the blockchain realm. Computer law & security review,
34(4):847–862.

Hackius, N. and Petersen, M. (2017). Blockchain in logistics and supply chain: trick
or treat? In Digitalization in Supply Chain Management and Logistics: Smart and
Digital Solutions for an Industry 4.0 Environment. Proceedings of the Hamburg
International Conference of Logistics (HICL), Vol. 23, pages 3–18. Berlin: epubli
GmbH.

198 BIBLIOGRAPHY

Hall, K. W., Bradley, A. J., Hinrichs, U., Huron, S., Wood, J., Collins, C., and
Carpendale, S. (2019). Design by immersion: A transdisciplinary approach to
problem-driven visualizations. IEEE transactions on visualization and computer
graphics, 26(1):109–118.

Hansen, C. (2014). Scientific visualization : uncertainty, multifield, biomedical, and
scalable visualization. Springer, London.

Hausmann, J. H. and Kent, S. (2003). Visualizing model mappings in uml. In
Proceedings of the 2003 ACM Symposium on Software Visualization, SoftVis ’03,
page 169–178, New York, NY, USA. Association for Computing Machinery.

Hawlitschek, F., Notheisen, B., and Teubner, T. (2018). The limits of trust-free
systems: A literature review on blockchain technology and trust in the sharing
economy. Electronic commerce research and applications, 29:50–63.

He, N., Wu, L., Wang, H., Guo, Y., and Jiang, X. (2019). Characterizing code
clones in the ethereum smart contract ecosystem. CoRR, abs/1905.00272.

Hegedűs, P. (2018). Towards analyzing the complexity landscape of solidity based
ethereum smart contracts. In Proceedings of the 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain, WETSEB ’18, pages
35–39, New York, NY, USA. ACM.

Hjalmarsson, F., Hreidharsson, G. K., Hamdaqa, M., and Hjalmtysson, G. (2018).
Blockchain-based e-voting system. In 2018 IEEE 11th International Conference
on Cloud Computing (CLOUD), pages 983–986. IEEE.

Hofman, W., Spek, J., and Brewster, C. (2017). Applying blockchain technology
for hyperconnected logistics. In 4th International Physical Internet Conference,
4th-6th July 2017 Graz University of Technology, Graz Austria.

Hölbl, M., Kompara, M., Kamǐsalić, A., and Nemec Zlatolas, L. (2018). A systematic
review of the use of blockchain in healthcare. Symmetry, 10(10):470.

Iacobucci, E. and Ducci, F. (2019). The google search case in europe: Tying and
the single monopoly profit theorem in two-sided markets. European Journal of
Law and Economics, 47(1):15–42.

Ibba, S., Pinna, A., Lunesu, M., Marchesi, M., and Tonelli, R. (2018). Initial coin
offerings and agile practices. Future Internet, 10(11):103.

Jaccheri, L. and Osterlie, T. (2007). Open source software: A source of possibil-
ities for software engineering education and empirical software engineering. In
Proceedings of the First International Workshop on Emerging Trends in FLOSS
Research and Development, FLOSS ’07, page 5, USA. IEEE Computer Society.

BIBLIOGRAPHY 199

Jiang, L., Misherghi, G., Su, Z., and Glondu, S. (2007). Deckard: Scalable and
accurate tree-based detection of code clones. In 29th International Conference on
Software Engineering (ICSE’07), pages 96–105.

Jovanovic, N., Kruegel, C., and Kirda, E. (2006). Pixy: A static analysis tool for
detecting web application vulnerabilities. In 2006 IEEE Symposium on Security
and Privacy (S&P’06), pages 6–pp. IEEE.

Kamiya, T., Kusumoto, S., and Inoue, K. (2002). Ccfinder: A multilinguistic token-
based code clone detection system for large scale source code. IEEE Trans. Softw.
Eng., 28(7):654–670.

Kanda, R. and Shudo, K. (2019). Estimation of data propagation time on the bitcoin
network. In Proceedings of the Asian Internet Engineering Conference, AINTEC
’19, pages 47–52, New York, NY, USA. ACM.

Kassab, M., DeFranco, J., Malas, T., Destefanis, G., and Neto, V. V. G. (2019a).
Investigating quality requirements for blockchain-based healthcare systems. In
2019 IEEE/ACM 2nd International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB), pages 52–55. IEEE.

Kassab, M., DeFranco, J., Malas, T., Neto, V. V. G., and Destefanis, G. (2019b).
Blockchain: A panacea for electronic health records? 2019 IEEE/ACM 1st Inter-
national Workshop on Software Engineering for Healthcare (SEH), pages 21–24.

Kassab, M. H., DeFranco, J., Malas, T., Laplante, P., Neto, V. V. G., et al. (2019c).
Exploring research in blockchain for healthcare and a roadmap for the future.
IEEE Transactions on Emerging Topics in Computing.

Keim, D. A. (2002). Information visualization and visual data mining. IEEE Trans.
Vis. Comput. Graph, 8(1):1–8.

Kerren, A., Stasko, J., Fekete, J.-D., and North, C. (2008). Information Visual-
ization: Human-Centered Issues and Perspectives. Lecture notes in computer
science. Springer.

Kim, I., Cho, G., Hwang, J., Li, J., and Han, S. (2010). Visualization of neutral
model of ship pipe system using x3d. In Lecture Notes in Computer Science, pages
218–228. Springer Berlin Heidelberg.

Kiviat, T. I. (2015). Beyond bitcoin: Issues in regulating blockchain tranactions.
Duke LJ, 65:569.

Kobryn, C. (2002). Will uml 2.0 be agile or awkward? Commun. ACM,
45(1):107–110.

200 BIBLIOGRAPHY

Kochovski, P., Gec, S., Stankovski, V., Bajec, M., and Drobintsev, P. D. (2019).
Trust management in a blockchain based fog computing platform with trustless
smart oracles. Future Generation Computer Systems, 101:747 – 759.

Kondo, M., Oliva, G. A., Jiang, Z. M. J., Hassan, A. E., and Mizuno, O. (2020).
Code cloning in smart contracts: a case study on verified contracts from the
ethereum blockchain platform. Empirical Software Engineering, 25(6):4617–4675.

Kousser, T. and McCubbins, M. D. (2004). Social choice, crypto-initiatives, and
policymaking by direct democracy. S. Cal. L. Rev., 78:949.

Kratzke, N. (2020). Volunteer down: How covid-19 created the largest idling super-
computer on earth. Future Internet, 12(6):98.

Kshetri, N. and Voas, J. (2018). Blockchain-enabled e-voting. IEEE Software,
35(4):95–99.

Kube, N. (2018). Daniel drescher: Blockchain basics: a non-technical introduction
in 25 steps.

Kuhn, A., Ducasse, S., and Gı̂rba, T. (2007). Semantic clustering: Identifying topics
in source code. Information and software technology, 49(3):230–243.

Lee, J. Y. (2019). A decentralized token economy: How blockchain and cryptocur-
rency can revolutionize business. Business Horizons, 62(6):773 – 784. Digital
Transformation and Disruption.

Li, X., Jiang, P., Chen, T., Luo, X., and Wen, Q. (2020). A survey on the security
of blockchain systems. Future Generation Computer Systems, 107:841–853.

Li, Z., Lu, S., Myagmar, S., and Zhou, Y. (2006). Cp-miner: finding copy-paste
and related bugs in large-scale software code. IEEE Transactions on Software
Engineering, 32(3):176–192.

Liskov, B. and Zilles, S. (1974). Programming with abstract data types. In Pro-
ceedings of the ACM SIGPLAN Symposium on Very High Level Languages, page
50–59, New York, NY, USA. Association for Computing Machinery.

Liskov, B. H. (1972). A design methodology for reliable software systems. In Proceed-
ings of the December 5-7, 1972, Fall Joint Computer Conference, Part I, AFIPS
’72 (Fall, part I), page 191–199, New York, NY, USA. Association for Computing
Machinery.

Liu, X., Muhammad, K., Lloret, J., Chen, Y.-W., and Yuan, S.-M. (2019). Elastic
and cost-effective data carrier architecture for smart contract in blockchain. Future
Generation Computer Systems, 100:590 – 599.

BIBLIOGRAPHY 201

Lo, S. K., Xu, X., Staples, M., and Yao, L. (2020). Reliability analysis for blockchain
oracles. Computers and Electrical Engineering, 83:106582.

Loeliger, J. (2012). Version control with Git. O’Reilly Media, Sebastopol, Calif.

Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A. (2016). Making smart
contracts smarter. In CCS’2016 (ACM Conference on Computer and Communi-
cations Security).

Mahling, A., Herczeg, J., Herczeg, M., and Böcker, H.-D. (1988). Beyond visualiza-
tion: Knowing and understanding. In Lecture Notes in Computer Science, pages
16–26. Springer.

Marai, G. E. (2018). Activity-centered domain characterization for problem-driven
scientific visualization. IEEE Trans. Vis. Comput. Graph, 24(1):913–922.

Marchese, A. and Tomarchio, O. (2021). An agri-food supply chain traceability
management system based on hyperledger fabric blockchain.

Marchesi, L., Marchesi, M., Destefanis, G., Barabino, G., and Tigano, D. (2020a).
Design patterns for gas optimization in ethereum. In 2020 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE), pages 9–15.
IEEE.

Marchesi, L., Marchesi, M., and Tonelli, R. (2020b). Abcde–agile block chain dapp
engineering. Blockchain: Research and Applications, 1(1-2):100002.

Marchesi, M., Marchesi, L., and Tonelli, R. (2018). An agile software engineering
method to design blockchain applications. In Proceedings of the 14th Central and
Eastern European Software Engineering Conference Russia, pages 1–8.

Medeiros, I., Neves, N., and Correia, M. (2015). Detecting and removing web ap-
plication vulnerabilities with static analysis and data mining. IEEE Transactions
on Reliability, 65(1):54–69.

Mense, A. and Flatscher, M. (2018). Security vulnerabilities in ethereum smart
contracts. In Proceedings of the 20th International Conference on Information
Integration and Web-Based Applications, page 375–380, New York, NY, USA.
Association for Computing Machinery.

Milojicic, D. S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B.,
Rollins, S., and Xu, Z. (2002). Peer-to-peer computing.

Min, H. (2019). Blockchain technology for enhancing supply chain resilience. Busi-
ness Horizons, 62(1):35–45.

202 BIBLIOGRAPHY

Möser, M. and Böhme, R. (2015). Trends, tips, tolls: A longitudinal study of bitcoin
transaction fees. In Financial Cryptography Workshops, pages 19–33.

Murgia, A., Tonelli, R., Marchesi, M., Concas, G., Counsell, S., McFall, J., and
Swift, S. (2012a). Refactoring and its relationship with fan-in and fan-out: An
empirical study. Proceedings of the Euromicro Conference on Software Mainte-
nance and Reengineering, CSMR, pages 63–72.

Murgia, A., Tonelli, R., Marchesi, M., Concas, G., Counsell, S., McFall, J., and
Swift, S. (2012b). Refactoring and its relationship with fan-in and fan-out: An
empirical study. In 2012 16th European Conference on Software Maintenance and
Reengineering, pages 63–72. IEEE.

Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic cash system.

Nakamoto, S. et al. (2008). Bitcoin: a peer-to-peer electronic cash system (2008).

Nofer, M., Gomber, P., Hinz, O., and Schiereck, D. (2017). Blockchain. Business &
Information Systems Engineering, 59(3):183–187.

O’leary, D. E. (1991). Design, development and validation of expert systems: A
survey of developers. Validation, verification and test of knowledge-based systems,
pages 3–20.

Oliva, G. A., Hassan, A. E., and Jiang, Z. M. (2020a). An exploratory study of smart
contracts in the ethereum blockchain platform. Empirical Software Engineering,
25(3):1864–1904.

Oliva, G. A., Hassan, A. E., and Jiang, Z. M. J. (2020b). An exploratory study of
smart contracts in the ethereum blockchain platform. Empirical Software Engi-
neering, pages 1–41.

Ølnes, S., Ubacht, J., and Janssen, M. (2017). Blockchain in government: Benefits
and implications of distributed ledger technology for information sharing.

Ortu, M., Destefanis, G., Kassab, M., Counsell, S., Marchesi, M., and Tonelli, R.
(2015). Would you mind fixing this issue? an empirical analysis of politeness and
attractiveness in software developed using agile boards. volume 212.

Ortu, M., Orrú, M., and Destefanis, G. (2019). On comparing software quality
metrics of traditional vs blockchain-oriented software: An empirical study. In
2019 IEEE International Workshop on Blockchain Oriented Software Engineering
(IWBOSE), pages 32–37. IEEE.

Osgood, R. (2016). The future of democracy: Blockchain voting. COMP116: In-
formation security, pages 1–21.

BIBLIOGRAPHY 203

O’Donovan, P. and O’Sullivan, D. T. J. (2019). A systematic analysis of real-world
energy blockchain initiatives. Future Internet, 11(8):174.

Peck, M. E. (2017). Blockchain world-do you need a blockchain? this chart will tell
you if the technology can solve your problem. IEEE Spectrum, 54(10):38–60.

Piazza, F. S. (2017). Bitcoin and the blockchain as possible corporate governance
tools: Strengths and weaknesses. Bocconi Legal Papers, 9:125.

Pierro, G. and Tonelli, R. (2020). Paso: A web-based parser for solidity language
analysis. In 2020 IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), pages 16–21.

Pierro, G., Tonelli, R., and Marchesi, M. (2020a). Smart-corpus: an organized
repository of ethereum smart contracts source code and metrics.

Pierro, G. A. (2020). Oracles data-set.

Pierro, G. A. (2021). Smart-graph: Graphical representations for smart contract
on the ethereum blockchain. In 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 708–714. IEEE.

Pierro, G. A., Bergel, A., Tonelli, R., and Ducasse, S. (2020b). An Interdisci-
plinary Model for Graphical Representation. In CIFMA 2020 - 2nd International
Workshop on Cognition: Interdisciplinary Foundations, Models and Applications,
Amsterdam / Virtual, Netherlands.

Pierro, G. A., Bergel, A., Tonelli, R., and Ducasse, S. (2020c). An interdisciplinary
model for graphical representation. pages 147–158.

Pierro, G. A., Castriotta, M., and Talarico, E. (2019). Aind survey.

Pierro, G. A. and Rocha, H. (2019). The influence factors on ethereum transaction
fees. In 2nd International Workshop on Emerging Trends in Software Engineering
for Blockchain, WETSEB ’19, pages 24–31, Piscataway, NJ, USA. IEEE Press.

Pierro, G. A. and Rocha, H. (2019a). The influence factors on ethereum transaction
fees. In 2019 IEEE/ACM 2nd International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB), pages 24–31. IEEE.

Pierro, G. A. and Rocha, H. (2019b). The influence factors on ethereum transaction
fees. In 2nd International Workshop on Emerging Trends in Software Engineering
for Blockchain, WETSEB ’19, pages 24–31, Piscataway, NJ, USA. IEEE Press.

Pierro, G. A., Rocha, H., Tonelli, R., and Ducasse, S. (2020). Are the gas prices
oracle reliable? a case study using the ethgasstation. In 2020 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE), pages 1–8.

204 BIBLIOGRAPHY

Pierro, G. A., Rocha, H., Tonelli, R., and Ducasse, S. (2020a). Are the gas prices
oracle reliable? a case study using the ethgasstation. In 2020 IEEE International
Workshop on Blockchain Oriented Software Engineering (IWBOSE), pages 1–8.
IEEE.

Pierro, G. A. and Tonelli, R. (2020a). Paso. In Conference Proceedings on Object-
Oriented Programming Systems, Languages, and Applications.

Pierro, G. A. and Tonelli, R. (2020b). Paso: A web-based parser for solidity language
analysis. In 2020 IEEE International Workshop on Blockchain Oriented Software
Engineering (IWBOSE), pages 16–21.

Pierro, G. A. and Tonelli, R. (2021). Analysis of source code duplication in ethreum
smart contracts. In 2021 IEEE International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 701–707. IEEE.

Pierro, G. A., Tonelli, R., and Marchesi, M. (2020b). An organized repository of
ethereum smart contracts’ source codes and metrics. Future Internet, 12(11):197.

Pierro, G. A., Tonelli, R., and Marchesi, M. (2020c). Smart-corpus: an organized
repository of ethereum smart contracts source code and metrics. arXiv preprint
arXiv:2011.01723.

Pilkington, M. (2016). Blockchain technology: principles and applications. In Re-
search handbook on digital transformations. Edward Elgar Publishing.

Pinna, A., Ibba, S., Baralla, G., Tonelli, R., and Marchesi, M. (2019). A massive
analysis of ethereum smart contracts empirical study and code metrics. IEEE
Access, 7:78194–78213.

Pinna, A., Ibba, S., Baralla, G., Tonelli, R., and Marchesi, M. (2019). A massive
analysis of ethereum smart contracts empirical study and code metrics. IEEE
Access, 7:78194–78213.

Pinzón, C. and Rocha, C. (2016). Double-spend attack models with time advantange
for bitcoin. Electronic Notes in Theoretical Computer Science, 329:79 – 103. CLEI
2016 - The Latin American Computing Conference.

Pointcheval, D. and Stern, J. (2000). Security arguments for digital signatures and
blind signatures. Journal of cryptology, 13(3):361–396.

Porru, S., Pinna, A., Marchesi, M., and Tonelli, R. (2017a). Blockchain-oriented
software engineering: challenges and new directions. In 2017 IEEE/ACM 39th
International Conference on Software Engineering Companion (ICSE-C), pages
169–171. IEEE.

BIBLIOGRAPHY 205

Porru, S., Pinna, A., Marchesi, M., and Tonelli, R. (2017b). Blockchain-oriented
software engineering: Challenges and new directions. In Proceedings of the 39th
International Conference on Software Engineering Companion, ICSE-C ’17, page
169–171. IEEE Press.

Pradhan, A., Stevens, A., and Johnson, J. (2017). Supply chains are racing to
understand blockchain–what chief supply chain officers need to know. Gartner.

Ranganthan, V. P., Dantu, R., Paul, A., Mears, P., and Morozov, K. (2018). A
decentralized marketplace application on the ethereum blockchain. In 2018 IEEE
4th International Conference on Collaboration and Internet Computing (CIC),
pages 90–97.

Richey, S. and Taylor, J. B. (2017). Google and Democracy: Politics and the Power
of the Internet. Routledge.

Rieger, M. and Ducasse, S. (1998). Visual detection of duplicated code. In ECOOP
Workshops.

Rimba, P., Tran, A. B., Weber, I., Staples, M., Ponomarev, A., and Xu, X. (2017).
Comparing blockchain and cloud services for business process execution. In 2017
IEEE International Conference on Software Architecture (ICSA), pages 257–260.
IEEE.

Rocha, H., Ducasse, S., Denker, M., and Lecerf, J. (2017). Solidity parsing using
smacc: Challenges and irregularities. In Proceedings of the 12th edition of the
International Workshop on Smalltalk Technologies, pages 1–9.

Roux, O. and Bourdon, J., editors (2015). Computational Methods in Systems Bi-
ology. Springer International Publishing.

Saberi, S., Kouhizadeh, M., Sarkis, J., and Shen, L. (2019). Blockchain technol-
ogy and its relationships to sustainable supply chain management. International
Journal of Production Research, 57(7):2117–2135.

Salerno, J., Yang, S. J., Nau, D., and Chai, S.-K., editors (2011). Social Computing,
Behavioral-Cultural Modeling and Prediction. Springer Berlin Heidelberg.

Salimitari, M., Chatterjee, M., and Fallah, Y. P. (2020). A survey on consensus
methods in blockchain for resource-constrained iot networks. Internet of Things,
page 100212.

Savelyev, A. (2017). Contract law 2.0:‘smart’contracts as the beginning of the end of
classic contract law. Information & Communications Technology Law, 26(2):116–
134.

206 BIBLIOGRAPHY

Savelyev, A. (2018). Copyright in the blockchain era: Promises and challenges.
Computer law & security review, 34(3):550–561.

Schmidt, S., Jung, M., Schmidt, T., Sterzinger, I., Schmidt, G., Gomm, M.,
Tschirschke, K., Reisinger, T., Schlarb, F., Benkenstein, D., et al. (2018).
Unibright-the unified framework for blockchain based business integration. White
paper, April.

Scott, B. (2016). How can cryptocurrency and blockchain technology play a role in
building social and solidarity finance? Technical report, UNRISD Working Paper.

Scotto, M., Sillitti, A., Succi, G., and Vernazza, T. (2004). A relational approach
to software metrics. In Proceedings of the 2004 ACM Symposium on Applied
Computing, SAC ’04, pages 1536–1540, New York, NY, USA. ACM.

Seshagiri, P., Vazhayil, A., and Sriram, P. (2016). Ama: static code analysis of web
page for the detection of malicious scripts. Procedia Computer Science, 93:768–
773.

Shala, B., Trick, U., Lehmann, A., Ghita, B., and Shiaeles, S. (2020). Blockchain
and trust for secure, end-user-based and decentralized iot service provision. IEEE
Access, 8:119961–119979.

Shen, C. and Pena-Mora, F. (2018). Blockchain for cities—a systematic literature
review. IEEE Access, 6:76787–76819.

Sidorenko, E. L. (2018). The legal status of cryptocurrencies in the russian federa-
tion. Economics, taxes and law, 11(2):129–137.

Sikorski, J. J., Haughton, J., and Kraft, M. (2017). Blockchain technology in
the chemical industry: Machine-to-machine electricity market. Applied energy,
195:234–246.

Silva, P., Vavricka, D., Barreto, J., and Matos, M. (2020). Impact of geo-distribution
and mining pools on blockchains: A study of ethereum. In 2020 50th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks
(DSN), pages 245–252.

Singh, H. J. and Hafid, A. S. (2019). Transaction confirmation time prediction
in ethereum blockchain using machine learning. https://arxiv.org/pdf/1911.
11592.

Singh, H. J. and Hafid, A. S. (2020). Prediction of transaction confirmation time in
ethereum blockchain using machine learning. In Prieto, J., Das, A. K., Ferretti,
S., Pinto, A., and Corchado, J. M., editors, Blockchain and Applications, pages
126–133, Cham. Springer International Publishing.

https://arxiv.org/pdf/1911.11592
https://arxiv.org/pdf/1911.11592

BIBLIOGRAPHY 207

Sovbetov, Y. (2018). Factors influencing cryptocurrency prices: Evidence from
bitcoin, ethereum, dash, litcoin, and monero. Journal of Economics and Financial
Analysis, 2:1–27.

Stinson, D. R. and Paterson, M. (2018). Cryptography: theory and practice. CRC
press.

Sun, J., Tang, P., and Zeng, Y. (2020). Games of miners. In Proceedings of the
19th International Conference on Autonomous Agents and MultiAgent Systems,
AAMAS ’20, page 1323–1331, Richland, SC. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Svajlenko, J. and Roy, C. K. (2015). Evaluating clone detection tools with big-
clonebench. In 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pages 131–140.

Swan, M. (2015). Blockchain: Blueprint for a new economy. ” O’Reilly Media, Inc.”.

Szabo, N. (1997). Formalizing and securing relationships on public networks. First
monday.

Tapscott, A. and Tapscott, D. (2017). How blockchain is changing finance. Harvard
Business Review, 1(9):2–5.

Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
and Noble, J. (2010). The qualitas corpus: A curated collection of java code for
empirical studies. In 2010 Asia Pacific Software Engineering Conference, pages
336–345.

Thummalapenta, S., Cerulo, L., Aversano, L., and Di Penta, M. (2010). An empirical
study on the maintenance of source code clones. Empirical Software Engineering,
15(1):1–34.

Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
and Alexandrov, Y. (2018). Smartcheck: Static analysis of ethereum smart con-
tracts. In Proceedings of the 1st International Workshop on Emerging Trends in
Software Engineering for Blockchain, WETSEB ’18, pages 9–16, New York, NY,
USA. ACM.

Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I., Takhaviev, R., Marchenko, E.,
and Alexandrov, Y. (2018). Smartcheck: Static analysis of ethereum smart con-
tracts. In 2018 IEEE/ACM 1st International Workshop on Emerging Trends in
Software Engineering for Blockchain (WETSEB), pages 9–16.

Tilley, S. and Huang, S. (2003). A qualitative assessment of the efficacy of uml
diagrams as a form of graphical documentation in aiding program understanding.

208 BIBLIOGRAPHY

In Proceedings of the 21st Annual International Conference on Documentation,
SIGDOC ’03, page 184–191, New York, NY, USA. Association for Computing
Machinery.

Tilley, S. R., Müller, H. A., and Orgun, M. A. (1992). Documenting software
systems with views. In Proceedings of the 10th Annual International Conference
on Systems Documentation, SIGDOC ’92, page 211–219, New York, NY, USA.
Association for Computing Machinery.

Tonelli, R., Destefanis, G., Marchesi, M., and Ortu, M. (2018a). Smart contracts
software metrics: a first study. arXiv preprint arXiv:1802.01517.

Tonelli, R., Ducasse, S., Fenu, G., and Bracciali, A. (2018b). 2018 ieee 1st inter-
national workshop on blockchain oriented software engineering (iwbose). In 2018
IEEE 1st International Workshop on Blockchain Oriented Software Engineering
(IWBOSE).

Tonelli, R., Pinna, A., Baralla, G., and Ibba, S. (2018c). Ethereum smart contracts
as blockchain-oriented microservices. In Proceedings of the 19th International
Conference on Agile Software Development: Companion, pages 1–2.

Tran, H., Menouer, T., Darmon, P., Doucoure, A., and Binder, F. (2019). Smart
contracts search engine in blockchain. In Proceedings of the 3rd International
Conference on Future Networks and Distributed Systems, ICFNDS ’19, New York,
NY, USA. Association for Computing Machinery.

Turner, M. and Fauconnier, G. (1999). A mechanism of creativity. Poetics Today,
20.

van Emden, E. and Moonen, L. (2002). Java quality assurance by detecting code
smells. In Ninth Working Conference on Reverse Engineering, 2002. Proceedings.,
pages 97–106.

Vasin, P. (2014). Blackcoin’s proof-of-stake protocol v2. URL: https://blackcoin.
co/blackcoin-pos-protocol-v2-whitepaper. pdf, 71.

Velasco-Montero, D., Fernandez-Berni, J., Carmona-Galan, R., and Rodŕıguez-
Vázquez, Á. (2018). Optimum selection of dnn model and framework for edge
inference. IEEE Access, 6:51680–51692.

Vujičić, D., Jagodić, D., and Randić, S. (2018). Blockchain technology, bitcoin,
and ethereum: A brief overview. In 2018 17th international symposium infoteh-
jahorina (infoteh), pages 1–6. IEEE.

Weber, I., Gramoli, V., Ponomarev, A., Staples, M., Holz, R., Tran, A. B., and
Rimba, P. (2017). On availability for blockchain-based systems. pages 64–73.

BIBLIOGRAPHY 209

Wei, H. and Li, M. (2017). Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source code. In
IJCAI, pages 3034–3040.

Werbach, K. (2018). Trust, but verify: Why the blockchain needs the law. Berkeley
Tech. LJ, 33:487.

Weyuker, E. J. (1988). The evaluation of program-based software test data adequacy
criteria. Commun. ACM, 31(6):668–675.

Whitaker, M. D. and Pawar, P. (2020). Commodity ecology: From smart cities to
smart regions via a blockchain-based virtual community platform for ecological
design in choosing all materials and wastes. In Blockchain Technology for Smart
Cities, pages 77–97. Springer.

Wiener, N. (1956). The theory of prediction. In Modern mathematics for engineers,
Series I. Beckenham, E. F.

Wong, M. L. and Leung, K. S. (1997). Evolutionary program induction directed by
logic grammars. Evol. Comput., 5(2):143–180.

Wood, G. (2018). Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Yellow Paper. Byzantium Version e94ebda, pages 1–39.

Wood, G. (2019). Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper. Byzantium version 7e819ec, pages 1–39. [Online].
Available: https://ethereum.github.io/yellowpaper/paper.pdf.

Wright, A. and De Filippi, P. (2015). Decentralized blockchain technology and the
rise of lex cryptographia. Available at SSRN 2580664.

Wüst, K. and Gervais, A. (2018). Do you need a blockchain? In 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT), pages 45–54. IEEE.

Yli-Huumo, J., Ko, D., Choi, S., Park, S., and Smolander, K. (2016). Where
is current research on blockchain technology?—a systematic review. PloS one,
11(10):e0163477.

Zacks, J. and Tversky, B. (1999). Bars and lines: A study of graphic communication.
Memory and Cognition, 27(6):1073–1079.

Zhang, H., Li, Y.-F., and Tan, H. B. K. (2010). Measuring design complexity of
semantic web ontologies. J. Syst. Softw., 83(5):803–814.

Zhang, Y., Kasahara, S., Shen, Y., Jiang, X., and Wan, J. (2018). Smart contract-
based access control for the internet of things. IEEE Internet of Things Journal,
6(2):1594–1605.

https://ethereum.github.io/yellowpaper/paper.pdf

210 BIBLIOGRAPHY

Zhao, J. L., Fan, S., and Yan, J. (2016). Overview of business innovations and
research opportunities in blockchain and introduction to the special issue.

Zheng, Z., Xie, S., Dai, H.-N., Chen, W., Chen, X., Weng, J., and Imran, M.
(2020). An overview on smart contracts: Challenges, advances and platforms.
Future Generation Computer Systems, 105:475–491.

Zheng, Z., Xie, S., Dai, H.-N., Chen, X., and Wang, H. (2018). Blockchain challenges
and opportunities: A survey. International Journal of Web and Grid Services,
14(4):352–375.

Zhou, Y. and Davis, J. (2005). Open source software reliability model: An empirical
approach. In Proceedings of the Fifth Workshop on Open Source Software Engi-
neering, 5-WOSSE, page 1–6, New York, NY, USA. Association for Computing
Machinery.

Zhu, J., Zhuang, E., Ivanov, C., and Yao, Z. (2011). A data-driven approach to
interactive visualization of power systems. IEEE Transactions on Power Systems,
26(4):2539–2546.

Zyskind, G., Nathan, O., et al. (2015). Decentralizing privacy: Using blockchain
to protect personal data. In 2015 IEEE Security and Privacy Workshops, pages
180–184. IEEE.

	Introduction
	What is the Blockchain?
	What are the Blockchain Technology Use Cases?
	Does Blockchain reach the society?
	Research Questions
	Hypotheses
	Structure of the Dissertation
	List of Publications

	Background
	Introduction
	Technologies Connected to Blockchain
	Hash
	Digital Signatures
	Merkle Trees
	State Machine
	Consensus Algorithm

	Blockchain
	Transactions and Addresses
	World State
	Miners
	Forks and Longest Chains
	Ethereum Virtual Machine (EVM)
	Ether
	Memory-Pool

	Smart Contract
	Programming Languages for Smart Contracts
	Solidity Grammar

	Blockchain Oracles
	Gas Oracles

	Blockchain Models to Design Tools for Expert Users
	Introduction
	PASO
	Introduction
	Related Work
	Motivation
	PASO Components
	Limitation
	Conclusion and Future Work

	Smart-Corpus
	Introduction
	Research Methodology
	Results
	Conclusions and Future Works

	Code Clones in Solidity
	Introduction
	Background
	Related Work
	Research Methodology
	Results and Discussion
	Conclusion

	Blockchain Models to Design Tools for Non-Expert Users
	Introduction
	The Influence Factors on Ethereum Transaction Fees
	Related Work
	Research question
	Background
	Methodology
	Results and Discussion
	Summary and Conclusions

	Are the Gas Prices Oracle Reliable?
	Introduction
	Gas Oracle
	Experimental Design
	Modelling Data
	Analyzing Data
	Related Work
	Conclusion

	A User-Oriented Model for Oracles' Gas Price Prediction
	Introduction
	Background
	Related Work
	Research Methodology
	Results
	Evaluation of Oracles' Prediction
	Improving the Oracle Prediction
	Discussion
	Conclusions
	Related Work

	AI Techniques for Detecting Malicious Smart Contracts
	Introduction
	Related Work
	ResearchMethodology
	Results and discussion
	Future Work

	Visualization-based models
	Introduction
	Smart-Graph
	Introduction
	Background
	Research Questions and Hypothesis
	Research Methodology
	Results and Discussion
	Conclusion

	An Interdisciplinary Model for Graphical Representation
	Introduction
	Data-driven and Problem-driven Models
	Research Questions and Hypotheses
	Case Studies Evaluation
	An Interdisciplinary Model
	Conclusion and Future Works

	Conclusion

