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Abstract

Software systems evolve by adding new features, fixing bugs or refactoring
existing source code. During this process, some problems may occur (e.g.,
backward-incompatibility, missing or unclear method deprecation) causing
evolving systems and their clients to be inconsistent or to fail, decreasing
code quality. As nowadays software systems are frequently part of bigger
ecosystems, such problems are even harder to handle because the impactmay
be large and unknown.

One solution to deal with such maintainability problems is the usage
of rules to ensure consistency. These rules may be created by experts or
extracted from source code repositories, which are commonly evaluated
in small-scale case studies. We argue that existing approaches lack of: (i) a
deep understanding of the benefits provided by expert-based rules, (ii) a
better use of source code repositories to extract history-based rules, and (iii)
a large-scale analysis of the impact of source code evolution on the actual
clients.

In this thesis we propose to analyze and improve rules to better support
developers keeping track of source code evolution. We cover three aspects:

• The benefits provided by expert-based rules: we report on an investi-
gation of rules created based on expert opinion to understand whether
they are worthwhile to be adopted given the cost to produce them.

• The improvement of history-based rules: we propose two solutions to
extract better rules from source code history.

• The impact of source code evolution on a software ecosystem: we un-
dergo an investigation, in a large-scale ecosystem, on the awareness of
the client systems about source code evolution.

We evaluated the proposed approaches qualitatively and quantitatively
in real-world case studies, and, in many cases, with the help of experts on the
system under analysis. The results we obtained demonstrate the usefulness
of our approaches.

Keywords: software evolution, mining software repositories, API evolution,
software ecosystems, empirical software engineering





Résumé

Les systèmes logiciels evoluent continuellement pour ajouter de nouvelles
fonctionnalités, corriger des bugs ou refactoriser du code source existant.
Durant ce processus, certains problèmes peuvent survenir (par exemple, le
manque de rétro-compatibilité, l’absence ou l’imprécision des deprecations
explicites) provoquant l’inconsistance ou l’échec des systèmes en évolution et
avec leurs clients, ce qui aboutit finalement à une baisse de la qualité du code.
Comme de nos jours les systèmes logiciels font souvent partie de plus grands
écosystèmes, ces problèmes sont encore plus difficiles à gérer car l’impact
peut être grand et inconnu.

Pour faire face à ces problèmes demaintenabilité et garantir la consistance
du code source, il est possible d’utiliser des règles. Ces règles peuvent être
créées par des experts ou extraites de précédentes versions du code source.
Elles sont couramment évaluées dans des études de cas à petite échelle. Nous
soutenons que les approches existantes : (i) n’analysent pas précisément les
avantages des règles créées par des experts; (ii) gagneraient à mieux utiliser
les dépôt de codes sources pour extraire des règles basées sur l’historique,
et (iii) devraient analyser à grande échelle et sur des cas réels l’impact de
l’évolution du code source sur les clients.

Dans cette thèse, nous proposons d’analyser et d’améliorer les règles pour
aider les développeurs à mieux suivre l’évolution du code source. Pour cela,
nous étudions trois aspects différents :

• Les avantages prévus par les règles créées par des experts : nous
analysons précisément ces règles pour comprendre si elles valent la
peine d’être adoptées malgré le coût pour les produire.

• L’amélioration des règles basées sur l’historique : nous proposons deux
solutions pour extraire de meilleures règles à partir du dépôt de codes
sources.

• L’impact de l’évolution du code source sur un écosystème logiciel : nous
étudions les conséquence de l’évolution de code source sur des sys-
tèmes clients dans le contexte d’un écosystème de grande échelle.

Les approches proposées dans cette thèse ont été évaluées qualitative-
ment et quantitativement avec des études de cas issues du monde réel. Pour
plusieurs de ces études, nous avons pu bénéficier de l’aide d’experts sur les
systèmes en cours d’analyse. Les résultats que nous avons obtenus démon-
trent l’utilité de nos approches.

Mot clés: évolution du logiciel, exploration de données, évolution d’API,
écosystèmes de logiciels, génie logiciel empirique
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Chapter1Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Ensuring Consistency with Rules . . . . . . . . . . . . . . . . . . . . . 2
1.4 Our Approach in a Nutshell . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context

In software development, change is the only constant. Software systems
evolve by adding new features, fixing bugs and refactoring existing source
code. A software system that does not evolve may become outdated and
irrelevant [Leh96]. In practice, most of the effort during a software system
lifecycle is spent to support its evolution [Som10], which is also responsible
for up to 80% of the total cost of the development [Erl00].

Nowadays, software systems are frequently part of bigger ecosys-
tems [Lun09]. These ecosystems usually exist in large companies, organiza-
tions, or open-source communities such as Eclipse, Pharo, Android, Apache,
Linux distributions, among others. In such environment, software systems
are part of a collection, often interrelated among one another [BCP+13].

As any other software system, the ones composing an ecosystem must
evolve over time. In this context, the evolution of core applications (e.g.,
frameworks and libraries) is likely to impact many client systems. That it
to say, the evolution of certain applications may trigger a propagation of
changes over the ecosystem, known as ripple effect.

Robbes et al. [RLR12] found, for example, that in an ecosystem centered
on a dynamic programming language, a simple API change potentially af-
fected thousands of clients, but in practice only a minority of these clients
were aware and reacted. In Eclipse, 42% of the methods in version 1.0 were
not in version 2.0 [MWZ11], consequently, when migrating to the newer ver-
sion, Eclipse’s clients are clearly impacted by these changes.

In some cases it is hard to predict howa software system is used by clients.
Developers of a large corporation pointed to us in a discussion that some-
times changes in their core systems would break other systems that they
were not expecting. That is to say, the extension of the impact may be large
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and sometimes unknown. This leads to the question: how can we ensure that
software evolution is consistently propagated both to evolving systems and
their clients?

In short, software evolution is naturally a complex task. This may be ag-
gravated in environments where systems are very dependent among one an-
other such as software ecosystems. Developers need help maintaining their
systems.

1.2 Problem

To facilitate the time-consuming task of following the evolution of a system,
some good practices should be adopted. For example, frameworks and li-
braries should be backward-compatible, i.e., they should not cause a client
built with an older version to fail under a newer version. Developers should
also always deprecate methods with helpful replacement messages, before
removing them.

In practice, many problems may occur mainly due to the large size and
the amount of developers involved in the development process. Belowwe list
some concrete problems detected by the literature:

• Researchers have found that frameworks and libraries are backward-
incompatible [BTF05,DJ06,WGAK10], i.e., they do not follow the basic
principle of providing backward-compatibility for clients.

• Recommendations of deprecation messages are often missing or un-
clear on how to replace deprecatedmethods [RLR12]. Moreover, public
methods may be simply removed without deprecation [HRA+15].

• Even if client systems should only use public interfaces, developers of-
ten use internal and undocumented methods of frameworks to access
functionalities not available in the public interfaces [BR06,DR08,Bus13,
BSvdB13]. After evolution, these internals may cause client systems to
fail.

Thesemaintainability problems show the difficulty of software evolution,
in particular to keep consistency of source code evolution. It is important to
ensure that source code evolution is correctly propagated.

1.3 Ensuring Consistency with Rules

To deal with such maintainability problems, approaches have been pro-
posed to support software evolution and reduce the efforts of developers.
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One approach commonly adopted is the usage of rules to ensure con-
sistency. These rules aim to point defects in source code [LZ05, WH05,
KPW06,NNP+10, SSPR12], ensure the use of best coding practices and con-
ventions [Cop05, HP04, RBJ97, RDGN10], or describe classes and methods
replacements [DR08, SJM08, WGAK10, MWZM12]. Overall, the literature
provides two solutions to obtain these rules. Unfortunately, there is a lack
in each solution as to support developers in their maintenance tasks, as
described below.

A first solution is to obtain the rules with the help of experts of the sys-
tem under analysis (we call these expert-based rules). These rules can focus on
important problems of the system since they are created based on the previ-
ous experience of the developer. However, theymust bemanually defined by
an expert, which is costly. In practice, getting access to experts and capturing
their knowledge into rules is a difficult task that is rarely undergone. While
the study of generic rules that are not created by experts is well covered by the lit-
erature (e.g., [BvdB06,WDA+08,CMSV12,BM08,BM09]), it is not clear whether
expert-based rules are worthwhile to be adopted given the cost to produce them.

Apart of being costly, it is expected that experts may not have the com-
plete knowledge of the whole system or they may be no longer available. So,
the reduction of the dependence on experts would be relevant to avoid those
possible issues. Therefore, as a second solution to obtain rules, previous stud-
ies propose to use the source code history as a source of information to ex-
tract them (we call these history-based rules). These rules can be inferred from
source code changes found in code repositories. In this context, existing ap-
proaches present some limitations. First, current approaches [LZ05,WH05,KPW06,
NNP+10, SSPR12] do not properly focus on the discovering of system-specific con-
ventions in source code usage. Second, related studies [DR08, SJM08, WGAK10,
MWZM12] do not cover all the cases of classes and methods replacements.

In common, those approaches to support software evolution are often eval-
uated in small-scale case studies or individual client systems; the literature
still lacks of large-scale evaluation. As we explained before, a software sys-
tem is frequently part of a bigger software ecosystem. The analysis of software
evolution and its impact on ecosystems can help developers to better under-
stand its real extension and what can be done to alleviate this impact. Ecosys-
tem impact analysis is a recent field of research, with restricted studies in terms of
case study size [MRK13] and API analyzed type [RLR12]. The real impact of source
code evolution on a large-scale case study is not known.
In summary, existing approaches lack of: (i) a deep understanding of the ben-
efits provided by expert-based rules, (ii) a better use of source code reposito-
ries to extract history-based rules, and (iii) an analysis of the impact of source
code evolution on the actual clients.
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1.4 Our Approach in a Nutshell

In this thesis we propose to analyze and improve rules to better support de-
velopers keeping track of source code changes. Such rules may ensure, for
example, the usage of better APIs to improve performance, legibility, porta-
bility, etc. We cover three aspects: the benefits provided by expert-based rules,
the improvement of history-based rules, and the impact of source code evolu-
tion (in the form of rules) on a software ecosystem.

Analyzing the benefits provided by expert-based rules. Existing ap-
proches to support the analysis of generic rules indicate that these rules do
not prevent the introduction of defects in software. This may occur because
the rules are too generic and do not focus on specific problems of the soft-
ware under analysis. We undergo an investigation of rules created based on
expert opinion to understand whether such rules are worthwhile enforcing,
given the cost to produce them, in the context of defect prevention.

Improving history-based rules. Current approaches related to mining
rules from source code repositories do not properly use these repositories
to extract history-based rules. We propose two solutions in order to benefit
from previous source code changes and generate better rules for developers.
As a first solution, we extract rules using patterns, considering the spread of
the same source code change over time to detect system-specific conventions.
As a second solution, we extract rules using data-mining to produce more
flexible rules and help client systems. We validate both approaches with the
help of experts on the systems under analysis.

Analyzing the impact of source code evolution on a software ecosys-
tem. An ecosystem analysis allows one to better understand the real impact
of source code changes and how it could be alleviated. We undergo an inves-
tigation, in a large-scale ecosystem, on the awareness of the client systems
about source code changes. We answer research questions regarding the fre-
quency, magnitude, duration, extension, and consistency of such changes in
the ecosystem.

1.5 Contributions

The main contributions of this thesis can be summarized as follows:

• Contribution 1. We provide new experiments on the lack of relation-
ship between violations generated by generic rules and defects as well
as novel experiments on the relationship between expert-based rules
and defects [HADA12].

• Contribution 2. We provide two novel approaches to extract history-
based rules from code repository to better support the evolving system



1.6. Structure of the Thesis 5

and the clients [HADV13,HEA+14,HAE+15b,HAE+15a].

• Contribution 3. We provide a large-scale study, at the ecosystem level,
to understand to which extent client developers are impacted by source
code evolution [HRA+15].

1.6 Structure of the Thesis

Chapter 2: State of the Art

This chapter presents the related work in the context of expert-based and
history-based rules as well as ecosystem analysis.

Chapter 3: Benefits of Expert-based Rules

This chapter describes our approach to analyze the benefits provided by
expert-based rules. We undergo an investigation of rules created based on
expert opinion to understand whether such rules are worthwhile enforcing
in the context of defect prevention.

Chapter 4: Supporting System-specific Conventions with History-based
Rules

This chapter describes our first approach to extract history-based rules to de-
tect system-specific conventions. We extract data from incremental revisions
in source code history, and the rules are based on predefined patterns that
ensure their quality. We validate our approach on open-source systems with
the help of an expert, which is important to provide assessment about the
rules.

Chapter 5: Supporting Client Systems with History-based Rules

This chapter describes our second approach to extract history-based rules.
Rules are alsomined from source code history but using data-mining instead
of predefined patterns, which allows the generation of more flexible rules.
The approach is evaluated on five open-source systems, and the rules are
assessed with the help of experts.

Chapter 6: Impact of Software Evolution on Ecosystems

This chapter presents our analysis of the impact of source code changes on a
community of developers.We cover the Pharo ecosystem,which has six years
of evolution, about 3,600 distinct systems, and more than 2,800 contributors.
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Chapter 7: Conclusion

This chapter concludes the thesis and presents future work. Finally, it also
presents the collaborationworkwith the ASERG/UFMG group andwith the
Siemens Research & Technology Center.
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2.1 Introduction

In this chapter we present the current approaches to support software evo-
lution, focusing on the approaches that use rules, but not limited to them.
We organize this chapter in three sections: (i) analysis of generic and expert-
based rules, (ii) extraction of history-based rules, and (iii) analysis of software
ecosystems.

We show that there are lacks in all approaches as to support the devel-
opers. We argue that: first, many related work is dedicated to study generic
rules and there is little focus on the analysis of expert-based rules; second,
existing work about history-based rules does not properly support evolving
systems nor clients; and, finally, ecosystem impact analysis is a recent field of
research, with restricted case study size and API analyzed type.

2.2 Analysis of Generic and Expert-based Rules

A rule is a specific statement that describes an action to follow when you
write code, or a description of a particular solution to a commonly encoun-
tered problem in software development1. Rules focus on a particular aspect
of standards compliance or on an accepted practice to deal, for example, with
bad code practices, performance or security issues, among others. They are
used to ensure source code consistency, and their final goal is to ensure soft-
ware quality.

Overall, rules can be either generic or system-specific. Generic rules are
created by non-experts on the system under analysis and the same rule can
be used by distinct systems. They are more commonly found in static analy-
sis tools such as PMD [Cop05], FindBugs [HP04] and SmallLint [RBJ97]. For
example, “checking variables and methods length”, “detecting nesting with

1IBM documentation: http://goo.gl/Wipppm

http://goo.gl/Wipppm


8 Chapter 2. State of the Art

more than one if statement”, or “searching an assignment that has no effect”
are practices that can be ensured for any system.

In contrast, system-specific rules are created by experts on the system
under analysis (we call these expert-based rules), targeting a specific system.
For example, checking the correct API to be used, or checking methods that
should be used/defined together, etc., in the context of the system under
analysis.

As these rules are intended to improve code quality, a solution to evaluate
them is to verify whether they are likely to point to defects in source code.
In this context, Wagner et al. [WDA+08] analyze two Java tools (FindBugs
and PMD) on two different software projects, to evaluate their use in defect
detection. The authors could not confirm the use of rules provided that such
tools to detect defects. Basalaj et al. [BvdB06] study the link between C++
generic violations and defects for 18different projects and found a correlation
for only 12 out of 900 rules.

Couto et al. [CMSV12] state that overall there is no correspondence be-
tween the violations raised by FindBugs and themethods changed to remove
defects. Boogerd et al. empirically assess the relation between violations of
rules raised by MISRA C and defects in two industrial cases [BM08, BM09].
They have found that 10 out of 88 rules in one case study, and 12 out of 72

in another case studywere significant predictors of defect location. However,
from such significant rules, both case studies overlapped only on one rule.

Even though distinct static analysis tools have been analyzed covering
different programming languages, those studies agree that such generic rules
do not prevent the introduction of defects in software. The results suggest the
importance of tailoring such rules to the system under analysis [BM09].

In this context, Renggli et al. [RDGN10] advocate the use of expert-based
rules to check and maintain system-specific best practices. Their empirical
validation demonstrates that expert-based rules significantly improve code
qualitywhen comparedwith generic rules. The demonstration is done in two
long term evolution case studies. The authors also provide a survey on the
usefulness of such rules according to 16 experienced developers. They have
found that all developers that use the expert-based rules on a regular basis
found them useful; 69% of the developers stated that the expert-based pro-
duce more useful results than the generic ones while the other 31% could not
see a difference.Moreover, 81% of the developers stated that the expert-based
rules produce relevant results that help them to detect critical problems in
their application. Relating the violation reported by these rules with defects
is not in the scope of their research.
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Summay

The analysis of the possible correlation between generic rules and defects is
well covered by previous studies. In contrast, the study of system-specific
rules created by experts for defect prevention is not yet covered, i.e., it is not
clear whether such rules are worthwhile to be adopted given the cost to pro-
duce them. In Chapter 3 we study the relation between such expert-based
rules and defects to better understand whether these rules are worthwhile in
such contexts.

2.3 Extraction of History-based Rules

In practice, getting access to experts and capturing their knowledge into rules
is a difficult task since they need to be manually defined. Moreover, it is ex-
pected that experts may not have the complete knowledge of the whole sys-
tem or they may be no longer available. Thus, the reduction of the depen-
dence on experts would be relevant to avoid those possible issues.

As a solution, related studies propose to analyze the source code history
to extract rules. We separate these researches in two groups, the first one
focuses on system-specific analysis whereas the second is more general in
the sense that it focuses on helping client systems to follow API evolution.

2.3.1 System-specific Analysis

Some studies have been proposed to learn from bug-fix changes found in
code repositories. Kim et al. [KPW06] propose to discover system-specific
defects by analyzing the diffs found in bug-fixes changes. Such changes are
stored in a database (called memories) that can be then accessed to perform
defect detection and change suggestion. Nguyen et al. [NNP+10] aim to dis-
cover recurring bug-fixes by analyzing two system versions. Based on graph-
based representation, they recognize recurring bug-fixes and recommend
fixes. Williams and Hollingsworth [WH05] focus on discovering violations
likely to be real defects bymining code history. The authors investigate a spe-
cific type of violation (checking whether returned value is tested before being
used) that is more likely to happen in C programs. The study improves bug-
finding techniques by ranking violations based on past source code changes.
Sun et al. [SSPR12] propose to extend a commercial static analysis tool by dis-
covering specific defects. Such work focuses on mining a graph, with data or
control dependences, to discover specific problems.

Mileva et al. [MWZ11] focus on discovering changes that must be sys-
tematically applied in source code. These changes are obtained by compar-
ing two versions of the same system, determining object usage, and deriv-
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ing patterns. By learning systematic changes, they are able to find places in
source code where changes are not correctly applied. Livshits and Zimmer-
mann [LZ05] propose to discover system-specific usage patterns over code
history. Results show that the usage patterns such asmethod pairs (e.g.,lock()
must happen with unlock()) can be found in practice. In addition, other stud-
ies propose to recover rules from execution traces [LKL08, LRRV12]. These
studies extract rules via dynamic analysis of a single system version to pro-
duce temporal rules (e.g., every call to m1() must be preceded by a call to
m2()).

As another solution to obtain more focused rules, some studies propose
to filter rules provided by static analysis tools. Such studies are based on the
fact that a significant percentage of violations reported by these tools are false
positives [KE07,RDGN10,FSV11]. In that respect, Kim et al. [KE07] help de-
velopers to discover the “best” rules by looking at source code history to de-
tect which rule violations were more often fixed in the past. With such infor-
mation in hands, the existing rules can be then ranked, i.e., the more a rule is
fixed, the more it is important for a given system. In a related work, Araujo et
al. [FSV11] aim to discover the categories of rules (e.g., correctness or perfor-
mance) that make sense for a system under analysis. Yet, rules obtained with
these approaches will remain generic andwill not focus on specific problems
of the system under analysis.

Motivating Examples

We present two concrete and real-world examples of system-specific rules
that would be helpful to developers, but that are not yet covered by the liter-
ature.

First, in Apache Ant2, a convention stating a new way to close files, i.e.,
calls to InputStream.close() should be replaced by calls to FileUtils.close(*), was
introduced in the system in 2004 to improve maintenance, centralizing the
knowledge on closing files. After the addition, this specific convention con-
tinued to be occasionally applied in source code in the following six years by
Apache Ant developers aware about it [HADV13]. If this convention were
better known by developers, it would have been applied in source code at
once or in a shorter timeframe.

Second, in the Pharo language3, there is a convention where calls to Col-
lection.isEmpty().ifTrue(*) should be replaced by calls to Collection.ifEmpty(*)
to improve legibility when testing empty objects in conditional statements.
However, in Roassal4, a system implemented in Pharo, the convention is the

2http://ant.apache.org
3http://www.pharo.org
4http://objectprofile.com/ObjectProfile.html

http://ant.apache.org
http://www.pharo.org
http://objectprofile.com/ObjectProfile.html
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opposite: calls to Collection.ifEmpty(*) should be replaced by calls to Collec-
tion.isEmpty().ifTrue(*). An expert pointed that Roassal adopts this usage con-
vention because it should be portable over different Smalltalk dialects, and
as Collection.ifEmpty(*) is Pharo-specific, it should be avoided; we detected
this convention being occasionally applied in Roassal source code during one
year and half. Notice that, applying the Pharo-specific rule to Roassal, or the
Roassal-specific rule to Pharo would actually decrease their code quality.

These two cases have some characteristics in common:

• They can be described as change rules: as they are recurrent and follow a
specific format, they can be described as change rules similarly to rec-
ommendation rules found in current static analysis tools but with the
advantage of being system-specific. Once described as rules, they can
be used to ensure consistency, which is particularly interesting in the
context of large-scale systems.

• They are spread over time: the changes occur in different revisions (com-
mits) of the systems, differently, for example, from changes related
to API evolution involving class/method renaming, which cannot be
spread over time.

Previous researchers took advantage of the fact that similar source code
changes are recurrent to support bug discovering (e.g., [LZ05,WH05,KPW06,
NNP+10, SSPR12]), or to filter rules provided by static analysis tools (e.g.,
[KE07]). In the bug-discovering context, researchers restrict their analysis to
bug-fix changes whereas in the rule filtering context researchers restrict their
analysis to rule-fix changes. In both cases, they do not focus on the detec-
tion of change conventions, and the variable time is never considered. In fact,
the presented examples are neither predefined rules nor related to bug-fix
changes: they are system-specific conventions incrementally applied by de-
velopers over time.

Summay

Similar source code changes are recurrent over history. Based on the analy-
sis of such data, previous studies propose to support bug discovering or to
filter rules provided by static analysis tools. Overall, the analysis of source
code changes to produce system-specific conventions are not yet covered by
existing studies. In Chapter 4 we propose an approach that focuses on the
extraction of system-specific conventions from source code history.
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2.3.2 Supporting Client Systems

Many approaches have been developed to support the evolution of frame-
work and libraries and reduce the efforts of client developers. Chow and
Notkin [CN96] present an approach where the framework developers anno-
tate changed methods with replacement rules that will be used to update
client systems. Henkel and Diwan [HD05] propose CatchUp, a tool that uses
an IDE to capture and replay refactorings related to the framework evolution.

Some studies compute rules by comparing two version of one system.
Kim et al. [KNG07] automatically infer rules from structural changes. The
rules are computed from changes at or above the level of method signatures,
i.e., the body of the method is not analyzed. Kim andNotkin [KN09] propose
a tool (LSDiff) to support computing differences between two system ver-
sions. In such study, the authors take into account the body of the method
to infer rules, improving their previous work [KNG07] where only method
signatures were analyzed. Each version is represented with predicates that
capture structural differences. Based on the predicates, the tool infers system-
atic structural differences. Nguyen et al. [NNW+10] propose a tool (LibSync)
that use graph-based techniques to help developers migrate from one library
version to another. In this process, the tool takes as input the client system,
a set of systems already migrated to the new library as well as the old and
new version of the library in focus. Using the learned adaptation patterns,
the tool recommends locations and update operations for adapting due to
API evolution.

Some studies address the problem of discovering the mapping of APIs
between different platforms that separately evolved. For example, Zhong et
al. [ZTX+10] target the mapping between Java and C# APIs while Gokhale et
al. [GGP13] present the mapping between JavaME and Android APIs.

Dig and Johnson [DJ05] help developers to better understand the require-
ments for migration tools. For example, they found that 80% of the changes
that break client systems are refactorings. Cossette andWalker [CW12] found
that, in some cases, API evolution is hard to handle and needs expert assis-
tance.

Another solution to support client systems is based on the identification
of evolution rules. Such rules describe method call replacements, in partic-
ular, in the format one-to-one, one-to-many, many-to-one, and many-to-many,
meaning that one more method calls should be replaced by one or more
method calls. For example, an one-to-one rule may define that calls to method
m1() should be replaced by calls tomethodm2(), whereas an one-to-many rule
may define that calls to method m1() should be replaced by calls to method
m2() and m3(). Next, we present existing studies that automatically identify
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evolution rules.
Dagenais and Robillard [DR08] propose a tool (SemDiff) that suggests re-

placements for framework elements based on how a framework adapts to its
own changes. The tool first detects code locations that used a method that
was later deleted, then, it mines the replaced methods to understand how
they were adapted. The tool is able to provide on request rules and examples
extracted from the framework’s source code to help developers. Schäfer et
al. [SJM08] propose to mine framework usage change rules from client sys-
tems. The approach produces rules by comparing two versions of a class us-
ing the framework, and it is also able to produce rules related to fields and
inheritance relations. Both studies produce one-to-one rules.

Wu et al. [WGAK10] propose an approach (AURA) that combines call de-
pendency and text similarity analyses to produce evolution rules. They ex-
tract rules by comparing twomajor versions of the framework in order to pro-
duce one-to-one, one-to-many and many-to-one rules. Meng et al. [MWZM12]
propose a history-based matching approach (HiMa) to support framework
evolution. The rules are extracted from the revisions in code history together
with comments recorded in the evolution history of the framework.HiMa im-
proves the AURA approach by producing rules at revision level and by han-
dling many-to-many rules. Both approaches extract rules from frameworks
and libraries rather than from clients.

The approaches AURA and HiMa can produce different types of rules
as opposed to only one-to-one rules. Such two approaches use deletion and
addition of methods as the basis for detecting rules. On the one hand, they
are able to produce rules about methods deleted from old release and added
to the new one, i.e., rules about method replacement (e.g., due to renaming).
On the other hand, they cannot produce rules about methods existing in the
new release, i.e., rules aboutmethod suggestion (e.g., to improve performance
ou legibility).

Motivating Examples

Wepresent concrete and real-world cases inwhich evolution rules are helpful
to developers, and we detail the lacks found in the literature.

1. One-to-one rules about method replacement. This type of evolution
rule presents the basic case in which one method in the old release of the
framework is replaced by another method in the new one. It is covered by
several previous studies [DR08, SJM08,WGAK10,MWZM12]. For example,
it would catch the case where in JHotDraw5 5.2 to 5.3 the method LineCon-
nection.end() was replaced by LineConnection.getEndConnector() [WGAK10].

5http://www.jhotdraw.org

http://www.jhotdraw.org
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Thus, these rules would help a client of this framework searching a replace-
ment for LineConnection.end(). Overall, such approaches produce rules either
on the request of the developer or by automatically listing them.

2. One-to-one rules about method suggestion. This type of evolution
rule presents the case in which one method should be replaced by another,
but both methods exist in the new release. It is covered by some previ-
ous studies [DR08, SJM08]. For example, it would catch the Apache Ant
case where a convention stating a new way to close files, i.e., calling FileU-
tils.close(InputStream) instead of InputStream.close(), was introduced to close
files [HADV13]. Note that both solutions to close files are available in the new
release, i.e., both methods InputStream.close() and FileUtils.close(InputStream)
exist. However, the latter should be the one called.

3. One-to-many/many-to-one/many-to-many rules about method re-
placement.This type of evolution rule presents the case inwhich one ormore
methods in the old release is replaced by one or more methods in the new
one. Wu et al. [WGAK10] cover one-to-many and many-to-one cases whereas
Meng et al. [MWZM12] improve by adding many-to-many. For example, this
type of rule would catch the case where in JHotDraw 5.2 to 5.3 calls to Cut-
Command(DrawingView) were replaced by calls to CutCommand(Alignment,
DrawingEditor) and UndoableCommand(Command) [WGAK10].

4. One-to-many/many-to-one/many-to-many rules about method sug-
gestion. This type of evolution rule presents the case in which one or more
methods should be replaced by other methods, but they still exist in the
new release. This case is not covered by any of the previous approaches be-
cause (i) they are restricted to the analysis of one-to-one rules [DR08, SJM08]
or (ii) they rely on method deletion/addition as the basis for detecting
rules [WGAK10, MWZM12]. We present here two examples in which this
type of rule would be helpful for developers. First, in the Moose platform6,
calls to MooseModel.root() and MooseModel.add(MooseModel) were replaced
byMooseModel.install(). In this case, all the methods are available but Moose-
Model.install() is suggested to be used according to a core developer7. Second,
in Pharo, calls to UserManager.default() and UserManager.currentUser() were
replaced by calls to Smalltalk.tools() and UserManager.userManager(). Again,
all the methods are available, but as the method Smalltalk.tools() acts as
a facade to access the system, it is the suggested solution. Notice that, an
approach that uses deletion/addition of methods for detecting rules would
not detect any of these two examples because such methods were neither
removed nor added from the system.

In short, none of the previous approaches cover the types 1, 2 and 3 of

6http://www.moosetechnology.org
7http://goo.gl/b41V9C

http://www.moosetechnology.org
http://goo.gl/b41V9C
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evolution rules together, and no existing approaches handle type 4.
While only one approach provides on request rules [DR08], the others

provide a list of rules; no existing approaches provide both (on request and a
list of rules) to support the developers. In addition, only one approach [DR08]
is able to display source code change examples. Table 2.1 compares the main
characteristics of the studies in the context of evolution rules.

Table 2.1: Comparison of related approaches to detect API evolution rules;
repl means rules about method replacement and sugg means rules about
method suggestion; ch histmeans that the approach mines all the change his-
tory and two versmeans that the approach compares two versions to produce
rules; on req means that rules are produced on request and list means that a
list of rules is produced. (* AURA does not produce m-to-n rules).

Approach

Mapping

Input1-to-1
1-to-m, m-to-1 Recommen- Example

m-to-n dation helper
repl. sugg. repl. sugg.

SemDiff [DR08] yes yes no no ch. hist. on req. yes
Schafer et al. [SJM08] yes yes no no two vers. list no
AURA [WGAK10] yes no yes* no two vers. list no
Hima [MWZM12] yes no yes no ch. hist. list no

Summay

Current studies about evolution rules do not properly describe one-to-one,
one-to-many,many-to-one, andmany-to-many changes, which are important be-
cause they can guide client developers towards new functionalities in the new
release of the framework. In Chapter 5 we propose an approach that covers
the four types of evolution rules, involving both method replacement and
suggestion. Our rules are generated on the request of the developer or by
listing, and our tool is able to display an example helper to better support
client systems.

2.4 Analysis of Software Ecosystems

Software ecosystem is an overloaded term, which has several meanings.
There are two principal facets: the first one focuses on the business as-
pect [MS05, JBC13], and the second on the artifact analysis aspect, i.e., on
the analysis of multiple, evolving software systems [JSW11, Lun09, RLR12].
In this work we use the latter one; we consider an ecosystem to be “a
collection of software projects which are developed and co-evolve in the same
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environment” [Lun09]. The environment can be an organization, or an open-
source community, and these software systems have common underlying
components, technology, and social norms [JSW11].

Software ecosystems have been studied under a variety of aspects. Jer-
gensen et al. [JSW11] study the social aspect of ecosystems by focusing on how
developers move between projects in the software ecosystems. The studies of
Lungu et al. [LRL10] and of Bavota et al. [BCP+13] aim to recover dependen-
cies between the software projects of an ecosystem in order to support impact
analysis. Lungu et al. [LLGR10] focus on software ecosystem analysis through
interactive visualization and exploration of systems and their dependencies.
Gonzalez-Barahona et al. [GBRM+09] study the Debian Linux distribution
to measure its size, dependencies, and commonly used programming lan-
guages. Manikas et al. [MH13] present an overview about current studies on
software ecosystems.

Recently, Mens et al. proposed the investigation of similarities between
software ecosystems and natural ecosystems found in ecology [MCG14,
MCGS14]. In this context, they are studying the GNOME and the CRAN
ecosystems [CMG14] to better understand how software ecosystems can
benefit from natural ones. German et al. [GAH13] also analyze the evolution
of the CRAN ecosystem, investigating the growth of the ecosystem, and the
differences between core and contributed packages.

In the context of ecosystem impact analysis, McDonnell et al. [MRK13] in-
vestigate API stability and adoption on a small-scale Android ecosystem (10

systems). In such study, API changes are derived from Android documenta-
tion pages. The have found that Android APIs are evolving fast while client
adoption is not catching up with the pace of API evolution.

In a large-scale study, Robbes et al. [RLR12] investigate the impact of a
specific type of source code evolution, API deprecation, in a ecosystem that
includes more than 3,600 projects. In this case, the API changes are extracted
from source code, not from documentation. They have found that API depre-
cation caused a large impact in the ecosystem, but a strongminority of clients
stayed in an inconsistent state for long periods of time or did not react at all.

Summay

Some studies have been done on ecosystem analysis. In addition, many stud-
ies have also been developed to support source code evolution, as presented
in the previous section, but not in the context of software ecosystems. The
impact of source code evolution covering software ecosystems remains un-
known because current studies are either restricted to small-scale ecosystems
or specific types of API evolution (i.e., API deprecation). In Chapter 6 we pro-
vide a large-scale study, at the ecosystem level, to better understand to which
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extent client developers are impacted by software evolution.

2.5 Summary

In this chapter we showed that there are lacks in current approaches to sup-
port software evolution, in particular to ensure source code consistency. We
considered three aspects: (i) analysis of generic and expert-based rules, (ii)
extraction of history-based rules, and (iii) analysis of software ecosystems.

We identified the following three problems. First, expert-based rules have
not yet been evaluated as to defect prevention. Second, history-based rules
do not properly use the source code repositories as to produce better rules.
Finally, the real impact of source code evolution in the actual clients is not
known. The next four chapters present our approaches to cover each of these
problems.
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3.1 Introduction

The evolution of frameworks and libraries is likely to impact their clients.
Such impact has been shown to be very large and even unknown in the
context of software ecosystems [RLR12]. As a solution to alleviate this
issue, developers can make use of rules to better manage the impact. Over-
all, these rules can be generic or system-specific, created by experts. Such
rules are normally targeted towards multiple goals, such as reliability or
portability [BM08], but very few are focused on the system under analysis.

As these rules are intended to improve code quality, a solution to eval-
uate them is to verify whether they are likely to point to defects in source
code. In this context, there are empirical evidences supporting the intuition
that generic rules do not prevent the introduction of defects in software sys-
tems [KE07,CMSV12, BM09, BM08, BvdB06,KAYE04]. In general, violations
and observed defects are independent, there is no correlation between them.
We hypothesized that this happens because the rules used are not focusing
on specific problems of the system under analysis. For example, studies in-
dicate that the most prevalent type of defect is semantic or program spe-
cific [KPW06, LTW+06, BM09]. These kinds of defects cannot be easily de-
tected by generic rules [KE07]. In addition, using system-specific rules is not
easy since they must be defined by an expert of the system under analysis,
which is costly. The efficiency of such specific rules for defect prevention or
reduction needs therefore to be demonstrated.

In this chapter, we report on a systematic study to investigate the relation
between, on one side, generic or system-specific violations and, on the other
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side, observed defects [HADA12]. For that, in a first step, we consider all vi-
olations reported by generic and system-specific rules. In a second step, we
consider those violations that better correlate with the presence of defect.

The study is performed on Seaside, aweb application framework, that has
been used andmaintained for years and for which system-specific rules have
been created by experts [RDGN10]. The results show that system-specific
rules provide a better defect prevention than generic ones.

The main contributions of this chapter can be summarized as follows:

1. We provide replication of previous experiments as to the lack of corre-
lation between generic violations and defects.

2. We provide new experiments on the correlation between system-
specific violations and defects.

3. We provide a comparison between the precision of generic and system-
specific rules as to defect prediction.

Structure of the Chapter

Section 3.2 gives an overview of the approaches used to assess and match vi-
olations and defects in source code; these approaches are used to support our
study. Section 3.3 presents our experiment setting. Section 3.4 details the re-
sults of the empirical study. Section 3.5 presents the evaluation of the results.
Section 3.6 discusses threats to validity of the experiment, and Section 3.7
concludes the study.

3.2 Assessing and Matching Violations and Defects

This section describes the approach adopted to assess and match violations
and defects in source code. More specifically, we describe how to assign vio-
lations and defects to software components such as methods or lines of code.
Then, we present how to match violations and defects to lines of code.

3.2.1 Violations and Defects

Previous researches try to predict defects at the levels of classes, methods, or
lines of code [CMSV12,OWB04,BM08,BM09]. This work is about evaluating
the relation between violations and defects, which requires to match them to
source code. Working at the level of line is considered more difficult but giv-
ing better results [KE07] because it gives a more detailed level of granularity.
For example, static analysis tools usually give violations at the level of lines
of code, therefore, it is best to identify defects at the same level so that both
information match.
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In contrast, a problem that may occur when adopting class or method
levels is the possibility of wrong matching. Consider for example matching
defects and violations at the class level, a violation may occur in one method
of the class and a defect in another method. It is not clear in this case whether
the match between a violation and a defect at the class level is really mean-
ingful. The same mismatch happens, to a lesser extent, at the method level.
For this reason, in our research, we work at the level of lines of code.

To match violations and defects, we must identify lines with violations
and/or defects:

• Identifying lines with violations. As many rules provided by static
analysis tools work at the level of line, a violation points directly to the
rule breaking line.

• Identifying lines with defects. This task is done by mining com-
mit messages in the software history to find bug-fix changes. Two
approaches for this step are normally used: searching for keywords
such as “Fixed” or “Bug” [MV00] or searching for references to bug
reports [SZZ05]. Identifying a bug-fix commit allows one to identify
the code changes that fixed the defect, and, therefore, where the defect
was located in the source code. A line of code is related to a defect if
it is modified by a bug-fix change, since to resolve a problem the line
was changed or removed [KE07]. Such line is marked as defect related
because a single bug may be caused by several defects (lines of code).

Therefore, each line of code may be marked as violation and/or defect
related. If one considers that violations should prevent defects, one is in-
terested in the lines that have both markers, called true positives (TP), i.e.,
the cases where rules truly identified defects. Lines marked only with viola-
tions are false positives (FP), i.e., rules pointed to lines without defects. Lines
marked only with defects are false negatives (FN), i.e., rules failed to identify
defects. Finally, lines with neither violations nor defects are true negatives
(TN), i.e., rules correctly ignored lines without defects. Such approach is also
used by [BM09,BM08,KE07] to assess the true positives.

Of course, rules may be actually created with other purposes than detect-
ing defects, but in this research fieldwe focus on their ability to prevent bugs.
We will come back on this issue later in our experiment by considering only
rules that better correlate with the presence of defects (i.e., the top rules).

3.2.2 Unique Lines of Code

Bugs happen at various moments in software life and are corrected at dif-
ferent time. One needs to consider many versions of a system to collect data
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on various bugs and be able to meaningfully correlate violations and defects.
During the life of the system, lines are added, removed or changed for many
reasons not all related to bug-fixes. Line-based ruleswill raise (or not) a viola-
tion for a line as long as the line remains unchanged. A defect will be marked
on a line from the time it is corrected (actually, just before) back to the time it
was created. Thus, previous studies work with the idea of unique lines of code
(ULoC) [BM08,BM09].

A ULoC is a line that remains unchanged, possibly across several ver-
sions of the system. It is created at one point in time (a version of the system)
and ends when it is changed or deleted. Different ULoCs in the system, even
if they are physically contiguous in the code, may have different extension
in time depending when they are created or ended. To match violations to
defects at the line level, one needs to identify all the ULoCs in the system
during the whole time period of the experiment. This is done by creating a
graph that represents a method history (a method history contains one or
more method versions) in which each node represents a physical line of code
and each edge represents a non-changed line between two method versions;
a path in the graph is a ULoC (see Figure 3.1). This approach is similar to
the result of the SVN annotate and Git blame commands, where it is possible
to know in one method version when the line was last modified. This graph
is also close to an annotation graph [ZKZW06,KZPW06], but the former just
keeps track of non-changed lines while an annotation graph also keeps track
of modified lines.

Before creating the graph, the source code of the methods is normalized
such that blank lines and formatting changes are ignored. By doing this, we
avoid, for example, cases where a violation points to one line in one version
and the same violation points to two lines in another version, due to changes
of formatting between versions.

ULoCs support the computation of true and false positives and negatives.
Figure 3.1 shows an example of the generated graph representing a method
history with four versions (four commits). Numbers in the top left corner of
the boxes are unique identifiers for the ULoCs. We see that the first physi-
cal line of code has never been modified in these four versions, therefore, it
makes a single ULoC (ULoC-1). The second physical line of code in version
1 was modified in version 2, therefore, it also makes a single ULoC (ULoC-
2), and another one, ULoC-3, for the same physical line of code starting at
version 2. In total, there are eleven ULoCs.

In Figure 3.1 there are also two bug-fixes, in version 2 and 4. The lines
changed or removed to correct the bugs are marked with the word “defect”.
For illustration, the actual line of code is shown in the node just before and
after the bug-fix. ULoCs with violation and defect (TP) are presented in light
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Figure 3.1: Example of graph representing a method history with four ver-
sions and with ULoCs marked with violations and defects

gray, violation-only ULoCs (FP) in strong gray, defect-only ULoCs (FN) in
medium gray, and ULoCs with neither markers (TN) are left in white. There-
fore, in Figure 3.1 there are:

• 2 TPs: ULoCs 2 and 6;

• 1 FP: ULoC 10;

• 2 FNs: ULoCs 4 and 8;

• 6 TNs: ULoCs 1, 3, 5, 7, 9 and 11.

One can measure the efficiency of a rule from the portion of violations
predicted correctly over all ULoCs marked with violations, i.e., TP/(TP +

FP ).

3.3 Experiment Setting

In this section we plan our experiment as suggested in [WRH+00].

3.3.1 Research Questions

We want to assess the correlation between generic violations and defects as
well as between system-specific violations and defects. Moreover, we want to
study if system-specific rules are better bug predictors than generic rules. As
part of this research we need to replicate previous experiments (e.g., [KE07,
CMSV12,BM09,BM08,BvdB06]) on our case study, showing that generic cod-
ing rules generate many false positives with regard to bug prediction.

We rephrase here our three contributions in the form of three questions.
These questionswill then be formalized intomore specific research questions
that will allow us to define formal hypotheses.
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1. Can generic violations be used for defect prevention?

2. Can system-specific violations be used for defect prevention?

3. Are system-specific violations more likely to point to defects than ge-
neric violations?

We derive two versions of such questions. The first simply considers all
generic rules and all system-specific rules. The second considers a more re-
stricted set of generic and system-specific rules that we call top rules.

Evaluating All Rules. The next three questions take into account all rules.
A first question is about the relation between generic violations and defects.
We want to know if these two variables are related or independent:

RQ1 Is there a relation between generic violations and defects?

This question has already been answered, mostly negatively, in other
studies. We replicate it here because we work with a language that was not
considered previously (Smalltalk) and with a static analysis tool similarly
not studied (SmallLint).

We also want to know if there is a relation between system-specific viola-
tions and defects and this motivates our second research question:

RQ2 Is there a relation between system-specific violations and defects?

The previous questions analyze the relation between violations and de-
fects. In addition, we want to assess whether system-specific violations are
better than generic violations with respect to defect prevention:

RQ3 Are system-specific violations more likely to point to defects than generic vio-
lations?

Evaluating Top Rules. Generic rules are somehow easier to define than the
system-specific ones, because one can do it once for distinct systems. In con-
trast, system-specific rules must be created for each new system. With more
generic rules, one should expectmore violations and consequently (as is typi-
cal in information retrieval) one should also expect better bug coverage (more
bugswill be covered) butwith lower precision. That is to say, each generic vio-
lation will have a lower probability of indicating a bug. Thus, we may expect
that generic rules will naturally fare lower (e.g., RQ3) than system-specific
ones, simply because they are more numerous and will give more hits. To
have a fairer comparison, we will perform the same experiments for the top
rules of the two sets, i.e., the rules that better correlate with the presence of
bugs.

Given selected groups of top generic and top system-specific rules we can
ask the same questions as RQ1, RQ2, and RQ3.
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RQ4 Is there a relation between top generic violations and defects?

RQ5 Is there a relation between top system-specific violations and defects?

RQ6 Are top system-specific violations more likely to point to defects top generic
violations?

By answering such questions we can define which groups of rules are
worthwhile for defect prevention in the case study under analysis.

3.3.2 Case Study

The context of the experiment is real systems for which source code, commits
logs linked to an issue database, and generic and system-specific rules are
available. We need real systems to ensure that our experiment is meaning-
ful. Moreover, we need systems with commits linked to issue database and
generic and system-specific rules to assess the relation between defects and
violations. System-specific rules are defined by the experts of the system un-
der analysis.

One difficulty of this research is to find systems that fulfill these require-
ments, and particularly for which a set of system-specific rules is defined.We
selected Seaside [DLR07] to perform our empirical studies mainly because of
its set of system-specific rules [RDGN10], but also because it has the advan-
tage of being a real-world and non-trivial application, with a consolidated
number of users and a relevant history of bugs.

Seaside1 is an open-source framework for developing web applications
written in Smalltalk [DLR07]. It is a competitor for Ruby onRails as the frame-
work of choice for rapid web prototyping. This system defines various inter-
nal domain-specific languages to configure application settings, nest compo-
nents, define the flow of pages, and generate XHTML.We analyze the impact
of system-specific rules for defect prevention when compared with generic
rules on a long term evolution of Seaside. We analyze 943 snapshots of Sea-
side core, which were produced in almost four years of development (from
November 2007 to September 2011). Table 3.1 presents an overview of the size
of our case study.

Seaside includes Slime [RDGN10], a Seaside-specific program checker
consisting of a set of rules, created by experts, working at the level of the ab-
stract syntax tree (AST); we call these system-specific rules. Smalltalk includes
SmallLint [RBJ97], a generic program checker consisting of rules also work-
ing at AST level; we call these generic rules. SmallLint can be compared to
other static analysis tools such as FindBugs [HP04] and PMD [Cop05] and it
comes with rules targeting common bugs and code smells in Smalltalk.

1http://www.seaside.st

http://www.seaside.st
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Table 3.1: Overview of Seaside core size

Number of snapshots 943
Average classes per snapshot 216
Average methods per snapshot 1,592
Average LOC per snapshot 6,428

3.3.3 Experiment for RQ1, RQ2, RQ4 and RQ5

This first experiment is about the relation between violations and defects. We
want to know if these two variables are related or independent.
Hypotheses Formulation. The null and alternative hypotheses are formal-
ized as:

H1,2,4,5
0 Violations and defects are independent.

H1,2,4,5
a Violations and defects are related.

Variable and Subject Selection. The independent variable is the violations
raised by the rules on lines of code. It is categorical and can take two val-
ues: with violation and without violation. The dependent variable in this study is
the defects, which are raised by bug-fix changes on lines of code. It is also
categorical and can take two values: with defect and without defect.

The subjects for these experiments will be ULoCs from our case study
(Seaside) and we will measure the number of ULoCs in each of four cate-
gories: with violation/with defect (TP), with violation/without defect (FP),
without violation/with defect (FN), and without violation/without defect
(TN).
Experiment Design. To test the hypotheses H1,2,4,5 we use the Chi-squared
test, which can be used when there are two categorical variables, each with
two or more possible values. The null hypothesis is that the frequencies for
the dependent variable (defects) are the same for different values of the in-
dependent variable (violations). If we cannot reject the null hypothesis, we
must conclude that the variables are in fact independent. When we can re-
ject the null hypothesis (i.e., the variable are dependent), it is also important
to understand how the variables are related. This is done by observing the
Pearson residuals, which measure the difference between the observed and
expected frequencies. When the absolute value of the residual is greater than
two (> 2), one considers that the observed frequency is significantly higher
than the expected and that more of the independent variable should induce
more of the dependent one.
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As is customary, the tests will be performed at the 5% significance level
which means there will be a probability of 5% or less of erroneously reject-
ing the null hypothesis. We will also report the effect sizewhich measures the
distance between the null hypothesis and alternative hypothesis, and is inde-
pendent of sample size. Effect size value 0.1, 0.3 and 0.5 are considered small,
medium and large effects, respectively.

One of the traditional requirements for Chi-square is independence of
observations, i.e., presence or absence of a violation or a defect in one ULoC
should not affect presence or absence of a violation or a defect in another
ULoC. In this context, let us consider the following example: a ULoC with a
violation is modified to address such violation, creating a new ULoC that is
supposed to be violation-free. However, the new ULoC is not guaranteed to
be violation-free; the developer may fix a violation by adding another one.

3.3.4 Experiment for RQ3 and RQ6

Hypotheses Formulation. The null and alternative hypotheses are formal-
ized as:

H3,6
0 System-specific and generic violations are equally precise in identifying defects.

H3,6
a System-specific violations are more precise in identifying defects than generic

violations.

Notice that we make a directional (one-tailed) hypothesis. This should
be made when there is evidence to support such a direction. This evidence
will stem from the results of the first experiments where we will answer neg-
atively to RQ1 (there is no relation between generic violations and defects)
and positively to RQ2 (there is a relation between system-specific violations
and defects).
Variable and Subject Selection. The independent variable in this study is the
group of rules (generic or system-specific). The dependent variable could have
been the precision of the coding standard rules where precision is the per-
centage of ULoC with violation and defect among all ULoC with violation.
However, wewill show in the result section that we do not have enough rules
with non-null precision to perform a test: many rules didn’t give any viola-
tion, so precision is undefined for them, and other got violations but not on
ULoCs with defects, so precision would be null for them.

To bypass this issue, we will group ULoCs according to another criterion.
Wewill consider all ULoCs in the history of amethod as one subject. Another
way to see it is to say that the combined versions of one method will be a
subject. We considered working with “normal” methods as subject, that is
to say one method in one version, but this would have the drawback that
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the same ULoC can appear in several versions of a method (if it does not
change between these versions, e.g. see ULoC-1 in Figure 3.1), and therefore
would have been counted more than once. By taking the whole history of
each method, we avoid giving more weight to some ULoCs.

The metric used will be the Positive Predictive Value (PPV) which has the
same formula as precision2: proportion of ULoC with defects among those
with violation. A high PPV indicates that the method, in its history, tends to
have defects where it breaks some generic (or system-specific) coding stan-
dard rule.
Experiment Design. For this experiment, we use an unpaired setting, which
means the methods composing one sample may not be the same as those
composing the other sample. This is due to the fact that not all methods break
generic and system-specific coding standard rules,many of thembreak either
one or the other category of rule, and even fewer methods would have a non
null PPV for both categories.

We test the hypotheses H3 and H6 with a Mann-Whitney test which is
used for assessing whether one of two samples of independent observations
tends to have larger values than the other. It can be used when the distribu-
tion of the data is not normal and there is different participants (notmatched)
in each condition. The null hypothesis is that the median PPV is the same for
both samples.

Again the tests will be performed at the 5% significance level and we will
also report the effect size.

3.3.5 Instrumentation

Defects. For our research, we use the prediction at the level of lines of code
because it is a more precise level of granularity and it also avoids the issues
stated in Section 3.2.1. To identify bug-fix changes, we use the technique of
searching for keywords since Seaside has a normal practice of writing bug-fix
commits with the keyword “Issue”. Seaside history contains 14, 416 ULoCs,
from which 664 (4.6%) contained defects.
All Rules. With respect to the used rules, we considered two sets of rules,
the first one with 91 generic rules and the second one with 29 system-specific
rules. We considered only rules that work at the level of lines of code, exclud-
ing, for example, rules like “method too long”. Below, we briefly describe the
groups of generic rules. The number of individual rules by group is shown
between parentheses.

2Recall is not calculated because it would imply discovering all the bugs in the history of
system under analysis, even the ones not marked in the commits, which is an impracticable
task.
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• Unnecessary code (20). It targets code that is not needed or can be avoided
(replaced) since other pieces of code can bemore efficient or legible, e.g.,
an assignment that has no effect.

• Spelling (5). It looks at identifiers to find words wrongly spelled.

• Possible bugs (20). It targets general code that is considered likely to
cause bugs, e.g., an unconditional recursion, or modification of a col-
lection while iterating over it.

• Pharo bugs (7). It searches for code patterns specific to Pharo (Smalltalk
dialect used in this work) that could cause bugs, e.g., debugging code
left in a method.

• Bugs (7).Another kind of code that can cause bugs, e.g., a missing super
implementation, a method that overrides a “system” message.

• Miscellaneous (13). It searches for different patterns that, for example, a
programmer coming fromother languagesmight produce, e.g., in arith-
metic expressions3.

• Intention revealing (19). It searches for code related to the intention re-
vealing pattern, e.g., a code that breaks the Law of Demeter, variable
capitalization, or code using the wrong iterator.

The system-specific rules are separated into the following groups:

• Portability (8). Seaside runs without modification on 7 different plat-
forms which differ slightly in both the syntax and the libraries they
support [RDGN10]. Thus, this category targets code patterns specific
to some platforms, e.g., code that uses dynamic arrays, or some specific
methods/classes not portable across different Smalltalk platforms.

• ANSI compatibility (8). It targets code that is not ANSI compatible and
is also related to the portability of Seaside.

• Possible bugs (12). It targets Seaside-specific code that is likely to cause
bugs, e.g., code in which a given message is not the last in a specific
sequence of method calls.

• Formatting (1). It targets code in which a specific pattern must be fol-
lowed, e.g., a correct pattern to deprecate an API protocol.

Some of these rules would clearly not be related to bug prevention (for
example the spelling group), thus, we also experimented with the top rules as
already introduced in Section 3.2 and detailed in the next subsection.

Table 3.2 presents the number of violations raised by all rules as well as
the percentage of ULoC impacted.

3In Smalltalk arithmetic operators are normal methods, so “arithmetic expressions” are
evaluated from left to right without operator precedence, 1 + 2 ∗ 3 is interpreted as (Java like
notation) 1.add(2).times(3) = 3.times(3) = 9
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Table 3.2: Seaside violations for all rules.

Group #violations ULoC with violations
All generic 1,118 7.7%
All system-specific 312 2.1%

Top Rules. In this subsection we detail the approach used to determine the
top rules. Table 3.3 shows all the rules that generate some violations and for
which at least one violation coincide with a defect, that is to say the rule for
which TP > 0. This result confirms previous work, in which a subset of rules
performs better than others [KE07, BM09,BM08,BvdB06]. Rules prefixed by
“GR” are system-specific rules and those prefixed by “RB” are generic rules.

Table 3.3: Rules with TP > 0. Rules in bold performed significantly better
than a random predictor (top rules).

Rule #violation #TP
GRAnsiCollectionsRule 8 1
GRAnsiConditionalsRule 118 18
GRAnsiStreamsRule 11 1
GRAnsiStringsRule 40 10
GRDeprecatedApiProtocolRule 56 3
GRNotPortableCollectionsRule 7 4
RBBadMessageRule 16 1
RBGuardingClauseRule 19 2
RBIfTrueBlocksRule 7 2
RBIfTrueReturnsRule 14 3
RBLawOfDemeterRule 224 18
RBLiteralValuesSpellingRule 232 10
RBMethodCommentsSpellingRule 216 8
RBNotEliminationRule 58 1
RBReturnsIfTrueRule 72 3
RBTempsReadBeforeWrittenRule 16 3
RBToDoRule 38 6

In fact, any random predictor, marking random lines with violations,
would, with a sufficient number of attempts, end up with a number of true
positives higher than zero, but would not be very useful. Therefore, we
can assess the significance of a rule by comparing it to a random predic-
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tor [BM09]. As suggested by [BM09, BM08], this problem can be modeled
as follows: the project is viewed as a large repository of lines, with a certain
probability (p= #ULoC with defects / #ULoC) of those lines being defect
related. A rule marks n lines with violations. A certain number of these
violations (r) are successful defect predictions (i.e., TPs).

This is compared with a random predictor, which selects n lines ran-
domly from the repository.We canmodel the randompredictor as a Bernoulli
process (with probability p and n trials). The number of correctly predicted
lines r has a binomial distribution; using the cumulative distribution function
P (TP ≤ X ≤ n) we compute the significance of the rule [BM08]. In confor-
mance with our other statistical tests, we choose a 5% threshold4. When the
random predictor has less than 5% probability to give a better result than
the rule, we call this one a top rule. For example, for Seaside we have 14, 416

ULoCs and 664 with defects, so the probability of randomly picking a line
with defect is p = (664/14416) = 0.046. For rule GRNotPortableCollection-
sRule (Table 3.3), TP = 4, n = 7 and the cumulative distribution function
P (4 ≤ X ≤ 7) is 0.0001, therefore, we consider it a top rule. The top rules are
presented in bold in Table 3.3.

Table 3.4 presents the number of violations raised by the top rules as well
as the percentage of ULoC impacted.

Table 3.4: Seaside violations for top rules

Group #violations ULoC with violations
Top generic 299 2.0%
Top system-specific 165 1.1%

3.4 Experiment Results

In this section we present the results of our empirical study. We first present
the results for all rules, then, we follow with the results for top rules.

3.4.1 Evaluating All Rules

The hypotheses for the Chi-squared test are derived from the one presented
in Section 3.3.3.

RQ1 Is there a relation between generic violations and defects?

H1
0 Generic violations and defects are independent.
4Note however that this is not a statistical test of significance.
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H1
a Generic violations and defects are related.

Table 3.5 shows the contingency table for generic violations. The Chi-
squared test gives a p-value = 0.65 (> 0.05 significance level), therefore, we
cannot reject the null hypothesis that generic violations and defects are inde-
pendent, i.e., the proportions of lines with andwithout generic violations are
the same in lines with and without defects.

Table 3.5: Contingency table for generic violations (#ULoCs)

with defect without defect total
with violation 55 1,063 1,118

without violation 609 12,689 13,298
total 664 13,752 14,416

Table 3.6 shows the residuals for generic violations, the values close to 0

indicate that there is no significant difference between the observed frequen-
cies and the expected ones.

Table 3.6: Residuals for generic violations

with defect without defect
with violation 0.48 -0.10

without violation -0.14 0.03

Next, we present the results for all system-specific rules.

RQ2 Is there a relation between system-specific violations and defects?

H2
0 System-specific violations and defects are independent.

H2
a System-specific violations and defects are related.

Table 3.7 shows the contingency table for system-specific violations. The
Chi-squared test gives p-value < 0.001. The effect size is 0.051. We can reject
the null hypothesis with a very small probability of error, we conclude that
system-specific violations and defects are related, i.e., the proportions of lines
with and without system-specific violations are not the same in lines with
and without defects.

Table 3.8 shows the residuals for system-specific violations. One can see
that condition with violation and defect is over-represented (> 2) and is the
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Table 3.7: Contingency table for system-specific violations (#ULoCs)

with defect without defect total
with violation 37 275 312

without violation 627 13,477 14,104
total 664 13,752 14,416

major contributor to the rejection of the null hypothesis. We further conclude
that defects appear more frequently on lines with system-specific violations
than on lines without violation.

Table 3.8: Residuals for system-specific violations

with defect without defect
with violation 5.97 -1.31

without violation -0.88 0.19

We now test whether system-specific violations are better than generic
violations with respect to defect prevention. An evidence to support such a
direction is the fact that we answered negatively to RQ1 and positively to
RQ2.

RQ3 Are system-specific violations more likely to point to defects than generic vio-
lations?

H3
0 System-specific and generic violations have the same PPV.

H3
a System-specific violations PPV is higher.

From all method histories, 509 methods had at least one generic violation
and 175 had at least one system-specific violation, these will be our two sam-
ples in this test. The other methods having no violation have undefined PPV
(i.e., TP/(TP + FN) = 0 / 0).

Applying the Mann-Whitney test for such samples, we have p-value
= 0.003. The effect size is 0.1. We can reject the null hypothesis and say
that system-specific PPV is higher than generic PPV, methods with system-
specific violations have more chance to have defects on these lines than those
with generic violation. We conclude that it is better to use system-specific
violations to point to defects than generic violations.

3.4.2 Evaluating Top Rules

We also performed the same experiments on the top rules.
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RQ4 Is there a relation between top generic violations and defects?

H4
0 Top generic violations and defects are independent.

H4
a Top generic violations and defects are related.

RQ5 Is there a relation between top system-specific violations and defects?

H5
0 Top system-specific violations and defects are independent.

H5
a Top system-specific violations and defects are related.

Table 3.9 and 3.10 show the contingency tables for top generic and system-
specific violations, respectively. TheChi-squared tests give p-value< 0.001 for
both. We can reject null hypotheses H4

0 and H5
0. We conclude that top generic

violations and top system-specific violations are related to defects.

Table 3.9: Contingency table for top generic violations (#ULoCs)

with defect without defect total
with violation 32 267 299

without violation 632 13,485 14,117
total 664 13,752 14,416

Table 3.10: Contingency table for top system-specific violations (#ULoCs)

with defect without defect total
with violation 32 133 165

without violation 632 13,619 14,251
total 664 13,752 14,416

The effect size is 0.042 for top generic and 0.076 for top system-specific
violations. Table 3.11 and 3.12 show the residuals for top generic and top
system-specific violations. We see that category with violation and defect is
over-represented (> 2) and is the major contributor to the rejection of the
null hypotheses.We further conclude that defects appearmore frequently on
lines with top generic or top system-specific violations than on lines without
such violations.

Finally, we test whether top system-specific violations are better than top
generic violations with respect to defect prevention. An evidence to support
such a direction is the fact that residual of the categorywith violation and defect
is higher for the former than for the later.
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Table 3.11: Residuals for top generic violations

with defect without defect
with violation 4.91 -1.07

without violation -0.71 0.15

Table 3.12: Residuals for top system-specific violations

with defect without defect
with violation 8.85 -1.94

without violation -0.95 0.20

RQ6 Are top system-specific violations more likely to point to defects top generic
violations?

H6
0 Top system-specific and top generic violations have the same PPV.

H6
a Top system-specific violations PPV is higher.

From all method histories, 77 methods had at least one top generic viola-
tion and 67 had at least one top system-specific violation. These will be our
two samples in this test.

Applying the Mann-Whitney test we have p-value = 0.047. The effect size
is 0.14. There is a significant difference between both samples and we can
reject the null hypothesis. We conclude that it is better to use top system-
specific violations to point to defects than top generic violations.

3.5 Discussion

3.5.1 Evaluating All Rules

We studied the relation between violations and defects. The outcome of our
experiments is that generic violations are not efficient to identify lines with
defects (RQ1). This is coherent with the conclusions of previously published
results [KE07,BM09,BM08,BvdB06]. The fact that different bug-finding tools
andprogramming languageswere considered in other experiments and ours,
reinforce the general validity of this conclusion.

This results is due to the great amount of false positives generated by
generic rules. It hints at the importance of tailoring coding standard rules to
a specific domain, which is confirmed by RQ2, showing that system-specific
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violations and defects are dependent for the case study under analysis. In
this case, we see a reduction of the amount of false positives.

Since RQ1 was rejected, and RQ2 accepted, the result provided by RQ3 is
expected: PPV measured for system-specific rules is higher than for generic
rules. We conclude that, for the case study under analysis, generic rules are
not effective enough to be used for defect prevention. System-specific rules
give more relevant information on how to avoid bugs and therefore they are
effective to be used for defect prevention.

3.5.2 Evaluating Top Rules

We also studied the relation between top violations and defects. With this
experiment, we are fairer to both groups of rules, sincewe select just themost
effective rules for defect prevention, thus producing less false positives. The
results of RQ4 and RQ5 show that both top generic and top system-specific
violations are related to defects, and thus can be used for defect prevention.
This result is also confirmed by previous work, in which a subset of rules
performed better than others [KE07,BM09,BM08,BvdB06].

Contrary to RQ3, the result of RQ6was not clear beforehand because both
RQ4 andRQ5were accepted. TestingRQ6 shows that top system-specific PPV
is (statistically) significantly higher than top generic PPV. Therefore, we can
say that it is better to use top system-specific violations to point to defects
than top generic violations. We conclude that, for the case study under anal-
ysis, top system-specific rules are more effective to be used for defect preven-
tion than top generic rules.

3.6 Threats to Validity

3.6.1 Construct Validity

The construct validity is related to whether the measurement in the study
reflects real-world situations. In our study, the main threat is the quality of
the analyzed rules.

We believe that this threat is alleviated because we adopted a set of rules
coming from the most used static analysis tool in Smalltalk (SmallLint) and a
set of rules created by the Seaside experts, as the generic and system-specific
rules, respectively.

3.6.2 Internal Validity

The internal validity is related to uncontrolled aspects that may affect the
experimental results.
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Thematching between violations and defectsmay be an underestimation:
some bug-fixes only introduce new code, such as the addition of a previously
forgotten check clauses.

Overestimation is less likely: although not all lines that are part of a bug-
fix may be directly related to the bug, violations on such lines still point out
the area inwhich the bug occurred. These possible problems are also pointed
out by [BM08, BM09] since they also study defect prevention at the level of
line of code.

Violations might point to defects that have not been found. The influence
of such dormant defects is minimized in the case of a long-running project
as the one analyzed, where most of the defects will have been found.

Finally, we have not tried to identify instances of method renaming to re-
ceive the propagation of defects and violations. If a method foo() had previ-
ously been named bar(), bar()will not receive the propagation of defects and
violations from foo(). However, only 475 methods have been renamed dur-
ing the experiment time frame, which includes 943 versions and 1,592 meth-
ods per version on average, i.e., 0.5 method renaming per version. Therefore,
there is a very small amount of method renaming, which is hardly likely to
impact on the validity of the results.

3.6.3 External Validity

The external validity is related to the possibility to generalize our results.

We believe Seaside is a credible case study. It includes a large number of
versions (943 collected over a time frame of almost four years), classes and
methods representing real-world and non-trivial application, with a consol-
idated number of users and a relevant history of bugs. Despite this obser-
vation, our findings — as usual in empirical software engineering – cannot
be directly generalized to other systems, specifically to systems implemented
in other languages or to systems from different domains, even if a compari-
son with previous studies [KE07,CMSV12,BM09,BM08,BvdB06] (which an-
alyze systems implemented in other languages and from different domains)
yielded similar results.

There are two requirements for the used approach that should be
considered when replicating this study. The first is the existence of system-
specific rules, the second is the possibility to link software repository and
issue database. Many studies have successfully extracted such links be-
fore [KE07,SZZ05,KZPW06,BM09,BM08], suggesting that there is a general
habit of clearly identifying bug-fixes in many projects.
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3.7 Summary

Software evolution is likely impact other systems, which may be aggravated
in the context of ecosystems. To alleviate such impact, developers can make
use of generic or system-specific rules. As these rules are intended to improve
code quality, a solution to evaluate them is to verify their relationship with
defects.

To the best of our knowledge, this work is the first to study the use of
system-specific rules created by experts for defect prevention. It provides
a systematic study to investigate the relation between generic or system-
specific violations and observed defects. The study was performed on
Seaside, a real world-system, that has been used and maintained for years
and for which system-specific rules were created. Two groups of research
questions were created to assess whether system-specific rules would be
better bug predictors than generic rules. The first questions were about ge-
neric and system-specific rules, the second considered the top rules, a more
focused set of generic and system-specific rules. All the results reported in
this work were statistically significant, and not due to chance.

We conclude that, for the case study under analysis, generic rules were
not effective enough to be used for defect prevention. This was also reported
by previouswork. In contrast, system-specific rules providemore relevant in-
formation on how to avoid bugs, and, therefore, they are more effective to be
used for defect prevention. With the results reported in this work, we expect
system-specific rules to be created and used by developers in complement to
generic ones for defect prevention.

The results presented in this chapter show that system-specific rules cre-
ated by experts are somehow better than generic ones. However, assessing
experts is costly, they may not have the complete knowledge of the whole
system or they may be no longer available. In that respect, the reduction of
the dependence on experts would be relevant. The next two chapters present
solutions to extract rules from source code history, reducing the involvement
of the experts.
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In the previous chapter we have seen that expert-based rules can be in
fact worthwhile if system-specific. Yet, they are costly since they need to be
manually created by experts on the system under analysis. In this chapter we
propose to use the source code history as the basis to create rules related to
system-specific conventions.

4.1 Introduction

As presented in Chapter 2 in Section 2.3.1, previous researchers took advan-
tage of the fact that similar source code changes are recurrent to support bug-
discovering (e.g., [LZ05,WH05,KPW06,NNP+10, SSPR12]), or to filter rules
provided by static analysis tools [KE07]. In both cases, related work does not
focus on the detection of change conventions, and the variable time is never
considered to produce rules.

In this chapter, we propose an approach that describes source code
change conventions as rules [HADV13, HAE+15b]. These rules are created
by mining incremental revisions in code repositories, based on predefined
rule patterns that ensure their quality. In this process, we consider methods
that were not removed from the system, and we take into account the vari-
able time. This allows us to produce rules related to code conventions, which
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can even help experts, since they may not have the complete knowledge of
the whole system under analysis.

We focus on a category of rules that provides recommendations for de-
velopers, which is particularly important to keep consistency in large-scale
systems and ecosystems. Such category can be found in static analysis tools,
but, of course, in a generic form. For example, PMD contains a set of rules1

to support porting systems from a Java version to another. FindBugs con-
tains rules2 that suggest the replacement of method calls to improve perfor-
mance. In SmallLint, rules provide recommendations to improve code legi-
bility, among others.

We validate our approach on open-source systems with the help of ex-
perts. For such experiment, we selected two real systems sincewe have access
to their experts, which is fundamental to receive real assessment about the
rules and their violations. The results show that many rules are in fact rele-
vant for the experts and can be used to ensure that better rules are adopted
by developers.

Moreover, we discuss the creation of rules according to their occurrence
over time to check when a change is frequent enough to be considered as a
rule. In addition, we compare the extracted rules with generic rules provided
by a static analysis tool. The results show that the two sets are mutually ex-
clusive.

The main contributions of this chapter can be summarized as follows:

1. We provide a novel approach to produce system-specific conventions
from source code history.

2. We provide a qualitative and quantitative (both with the help of a sys-
tem expert) evaluation of the rules extracted from real-world systems.

3. We provide an analysis about the overlap between our rules and rules
provided by static analysis tools as well as about the ideal number of
changes to create rules.

Structure of the Chapter

We present our approach in Section 4.2. We propose research questions to
validate our approach and define our experiment setting in Section 4.3. We
present the results of the experiments and discuss them in Section 4.4. We

1http://pmd.sourceforge.net/pmd-5.0.2/rules/java/migrating.html
2Rules in http://findbugs.sourceforge.net/bugDescriptions.html, e.g., (1)

“Method allocates a boxed primitive just to call toString”, (2) “Method invokes inefficient
Number constructor; use static valueOf instead”, (3) “Method invokes inefficient Boolean con-
structor; use valueOf instead”, (4) “Use the nextIntmethod of Random rather than nextDouble
to generate a random integer”.

http://pmd.sourceforge.net/pmd-5.0.2/rules/java/migrating.html
http://findbugs.sourceforge.net/bugDescriptions.html
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present a complementary discussion in Section 4.5. In Section 4.6, we discuss
the threats to the validity of our experiments. Finally,we conclude the chapter
in Section 4.7.

4.2 Mining System-Specific Rules

In this section we present our approach, which extracts system-specific rules
bymonitoringAPI changes found in source code history of the system. Before
detailing our approach, we present an overview about it.

4.2.1 Overview of the Approach

Consider the examples shown in Figure 4.1 that occurred in the Pharo3 pro-
gramming language. Figure 4.1-I shows a replacement of the static method
call RPackageOrganizer.default() by RPackage.organizer(). Figure 4.1-II shows a
replacement to improve legibility, i.e., calls to Collection.at(3) are replaced by
calls to Collection.third().

I. Diff between revisions 1 and 2 of method foo()
− rpackage = RPackageOrganizer.default();
+ rpackage = RPackage.organizer();

II. Diff between revisions 3 and 4 of method bar()
− if (collection.at(3) == myValue) { . . .
+ if (collection.third() == myValue) { . . .

Figure 4.1: Examples of changes in Pharo. “−” indicates the deleted line and
“+” indicates the added line (code converted to Java-like syntax to ease un-
derstanding).

Notice that the replaced methods are not removed from the system. In
Figure 4.1-I, the old method call, RPackageOrganizer.default(), should only be
used in specific cases and by some classes. In Figure 4.1-II, the new method
call, Collection.third(), improves code legibility when compared to the old
one, Collection.at(3). These changes occurred several times in different revi-
sions, and they are evidence of the effort to use of a better API. It is impor-
tant to ensure that these changes are consistently applied over source code to
avoid maintenance problems. Our approach is intended to ensure that such
changes can be described as rules. That is to say, instead of using rules only
provided by experts that come in static analysis tools, we want to learn from
the various changes that occurred on the system over time and provide corre-

3http://www.pharo.org

http://www.pharo.org
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sponding rules. This will minimize the period in which these changes occur
over time.

Figure 4.2 shows an overview of our approach. In the first step, we extract
deltas from revisions in a system history (Subsection 4.2.2), which is done
once for a system history under analysis (or can be done incrementaly after
each commit). In the second step, we discover rules based on the extracted
changes and the patterns. This step is performed for each pattern, and it is
divided in two substeps: (i) it creates rules based on the provided pattern
(Subsection 4.2.3) and (ii) it filters the created rules based on their occurrence
over different revisions (Subsection 4.2.3).

Figure 4.2: Overview of our approach.

4.2.2 Extracting Deltas from Revisions

The first step of our approach is to extract changes from the revisions. When
comparing the differences between changed source code, one needs to define
what should be analyzed in the code. For example, one can keep track of syn-
tactical changes (i.e., adding or removing conditional statements, modifying
expressions), or structural changes (i.e., adding or removing classes, meth-
ods, method invocations). While syntactical changes play important role in
the context of bugs discovering [NNP+10,KPW06,SSPR12,WH05], they have
a small role in discovering systematic changes, for which structural changes
are better suited since they do not take into account low level changes [KN09,
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LZ05].
In this work, we illustrate our approach by extracting rules from method

call changes. In order to do that, we need first to extract the correct data from
the source code history of a system.

Let a delta be a set of deleted and added invocations between two revisions
of a method. We represent a delta with predicates that describe deleted or
added method invocations:

deleted-invoc(context-id, receiver, signature, static)
added-invoc(context-id, receiver, signature, static)

where, the predicate deleted-invoc(. . . ) represents a deleted invocation; the
predicate added-invoc(. . . ) represents an added invocation; context-id uniquely
identifies a change context (i.e., the changed method and the revision); re-
ceiver is the receiver of the invocation; signature is the signature of the invoked
method (for the arguments, the value is presented if they are primitive types
such as int, boolean or null, otherwise the type is presented; this is done to
obtain more precise convention rules); and static is a keyword isStatic or not-
Static that states if the invocation is static.

Small deltas between revisions are preferable to avoid the noise that can
be found in large ones [LZ05,MWZ11]. Thus, to avoid the problem of large
diff size betweenmethods, making it difficult to extract relevant information,
we always select deltas involved in less than five deleted or added invoca-
tions. Moreover, discover other type of rules may imply extracting other data
(e.g., inheritance), which is not in the scope of this work.

In Figure 4.3, we present the deltas generated by the changes in Figure 4.1.

I. Deltas between revisions 1 and 2 of method foo()
deleted-invoc(“foo()-rev2”, “RPackageOrganizer”, “default()”, “isStatic”)
added-invoc(“foo()-rev2”, “RPackage”, “organizer()”, “isStatic")

II. Deltas between revisions 3 and 4 of method bar()
deleted-invoc(“bar()-rev4”, “Collection”, “at(3)”, “notStatic”)
added-invoc(“bar()-rev4”, “Collection”, “third()”, “notStatic”)

Figure 4.3: Deltas generated for the changes in Figure 4.1.

4.2.3 Discovering Rules

Creating Rules

This step creates rules from the extracted deltas. To improve the quality and
relevance of the rules, we define patterns that the rules must follow. These
patterns will limit the search space, and, thus, the extraction of noisy rules.
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In particular, such patterns were inspired by existing change rules found in
static analysis tools.

We illustrate our solution with rules related to method call replacement.
As presented in the introduction, FindBugs, PMD and SmallLint already in-
clude rules to call somemethods rather than others, and our goal is to expand
this set of rules. In SmallLint, for example, a change rule states that invoca-
tions to Object.equals(nil) should be replaced by invocations to Object.isNil()
to improve code legibility. Assume that such rule was applied in source code.
So, for each replacement, our approach generates a delta similar to, eachwith
their respective context-id:

deleted-invoc(“mtd()-revX”, “Object”, “equals(nil)”, “notStatic”)

added-invoc(“mtd()-revX’, “Object”, “isNil()”, “notStatic”)

The deltas are used as a database in which we want to find instances
of predefined patterns. For example, the previous change follows the pat-
tern where the receiver remains the same (i.e.,Object) while the method call
changes (i.e., from equals(nil) to isNil()). Thus, we query the following pattern
in order to find such changes in our database:

pattern(deletedSignature, addedSignature) =

deleted-invoc(id, receiver, deletedSignature, “notStatic”) and

added-invoc(id, receiver, addedSignature, “notStatic”)

The variables id, receiver, deletedSignature and addedSignature are used to
ensure the constraints of such pattern. We use the same variable receiver in
both deleted and added predicates to ensure the same receiver, and we use
different variable (deletedSignature and addedSignature, such that deletedSig-
nature 6= addedSignature) to ensure different signatures in both predicates.
This pattern will output rules in the format: receiver.deletedSignature → re-
ceiver.addedSignature, where the left hand side (LHS) presents what should
be deleted and the right hand side (RHS) presents what should be added.
For example, the previous delta is represented as Object.equals(nil) → Ob-
ject.isNil().

By studying change rules of static analysis tools, we want to abstract pat-
terns that will allow us to automatically extract system-specific rules. Based
on that, we define five patterns to abstract change rules. The following list of
patterns is not exhaustive, and new ones can be included. Next, we present
each pattern.
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Pattern 1: Change receiver and invocation, static
pattern1(deletedReceiver, deletedSignature, addedReceiver, addedSignature) =

deleted-invoc(id, deletedReceiver, deletedSignature, “isStatic”) and
added-invoc(id, addedReceiver, addedSignature, “isStatic”)

Example
FileDirectory.default() → FileSystem.workingDirectory()

Pattern 2: Change invocation, same receiver, static
pattern2(receiver, deletedSignature, addedSignature) =

deleted-invoc(id, receiver, deletedSignature, “isStatic”) and
added-invoc(id, receiver, addedSignature, “isStatic”)

Example
SystemNavigation.default() → SystemNavigation.new()

Pattern 3: Change receiver, same invocation, static
pattern3(deletedReceiver, addedReceiver, signature) =

deleted-invoc(id, deletedReceiver, signature, “isStatic”) and
added-invoc(id, addedReceiver, signature, “isStatic”)

Example
SystemChangeNotifier.uniqueInstance()→ SystemAnnouncer.uniqueInstance()

Pattern 4: Change invocation, same receiver, non-static
pattern4(deletedSignature, addedSignature) =

deleted-invoc(id, receiver, deletedSignature, “notStatic”) and
added-invoc(id, receiver, addedSignature, “notStatic”)

Example
Object.noMoreNotificationsFor() → Object.unsubscribe()

Pattern 5: Change double invocation, same receiver, non-static
pattern5(deletedSignature1,deletedSignature2,addedSignature1,addedSignature2)=

deleted-invoc(id, receiver, deletedSignature1, “notStatic”) and
deleted-invoc(id, deletedSignature1, deletedSignature2, “notStatic”) and
added-invoc(id, receiver, addedSignature1, “notStatic”) and
added-invoc(id, addedSignature1, addedSignature2, “notStatic”)

Example
Object.vm().getSystemAttribute(1001) → Object.platform().name()

Patterns 1, 2 and 3 represent the case where a static invocation is replaced
by another. Patterns 4 and 5 cover the replacement of non-static invocations.
These patterns were kept because they produced little noisy rules. Other pat-
terns were revealed, for example, a variation of Pattern 4 accepting differ-
ent receivers, however, this option did not seem promising since many noisy
rules were produced. Similarly, a variation of Pattern 5 could be added, but
it showed likewise to be related with noisy results.

From the delta shown in Figure 4.3-I, we find a rule based on Pattern
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1: RPackageOrganizer.default()→ RPackage.organizer(). From the delta shown
in Figure 4.3-II, we find a rule based on Pattern 4: Collection.at(3) → Collec-
tion.third().

Filtering Rules

In the source code history of real systemsmany rules may be found. Our goal
is to assess the rules which are likely to be system-specific conventions.

In order to do that, in this final step, we classify the rules according to
their occurrence over different revisions, and we only keep the rules that occur
in two or more revisions. Changes that occur in different revisions are those
being incrementally applied by developers, and we want to describe such
changes as rules (cf. Section 2.3.1).

In contrast, changes that occur in only one revision are likely to capture
method or class renaming done, for example, with the support of refactoring
tools provided by current IDEs. These cases are not in the scope of the work
presented in this chapter, but they are covered in the next chapter.

4.3 Validation Experiment

In this section we detail our research questions and the experiments that test
them. We first present the proposed research questions (Subsection 4.3.1).
Next, we present the context of our experiment detailing the case studies
and the evaluated change rules (Subsections 4.3.2 and 4.3.3). Finally, in Sub-
sections 4.3.4 and 4.3.5, we formalize the experiment design used to answer
the research questions.

4.3.1 Research Questions

We propose research questions to assess the rules generated by the proposed
approach. We assess the change rule correctness and whether they are likely
to find violations in source code that developers would fix.
Assessing Rule Correctness. We evaluate whether the rules are correct ac-
cording to the opinion of an expert:

RQ1 Are the rules correct to the system expert?

Assessing Rule Violations. The rules may be classified as correct but pro-
duce no violation when applied to source code. To complement RQ1, we
also evaluate whether violations identified by the change rules are likely to
be fixed, as suggested by the rule. This will also be validated with the help
of an expert. For example, a violation for the rule Collection.at(3) → Collec-
tion.third() is a piece of source code that still contains Collection.at(3); if the
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expert decides that this piece of code should be fixed, he will remove Collec-
tion.at(3) and add Collection.third(). Thus, we propose another research ques-
tion:

RQ2 Are the violations likely to be fixed by the system expert?

4.3.2 Case Studies

The context of the experiment is real systems for which source code history is
available. We need real systems to ensure that our experiment is meaningful,
and we need source code history to extract our change rules. Moreover, it is
fundamental to have access to the experts of the systems to receive assess-
ment.

In this work, we selected two open-source Smalltalk systems, Pharo and
Moose to perform our empirical studies. They have the advantage of being
large, real-world and non-trivial systems, with a relevant number of develop-
ers as well as relevant source code history. Also, they have different missions
working in different domains.

Pharo4 [BDN+09,BCDL13] is an open-source Smalltalk-inspired dynam-
ically typed language and environment. It can be compared to the Java SDK
and includes the implementation of all features inherent to an object-oriented
language (collections, exceptions, primitive types, etc.) as well as an IDE and
several tools. It is currently used in many industrial and research projects5.
The analyzed version in this study has 374 KLOC, 3,246 classes, and it is sup-
ported by 37 developers.

Moose6 [DAB+11,NDG05] is an open-source platform for software and
data analysis written in Pharo. It is composed of several tools to deal with
meta-modeling; frameworks to build visualizations, diagrams, interactive
browsers; it also includes tools to support common software maintenance
tasks such as code duplication detection, identifying dependency cycles,
among others. It is currently supported by several research groups around
the world7, and also adopted in industrial projects8. The analyzed version in
this study has 210 KLOC, 2,617 classes, and it is supported by 21 developers.

We extracted rules from source code changes that occurred during the
evolution of Pharo 1.4 to 2.0 (435 revisions from April 2012 to March 2013).
Then,we applied such rules in the last release of Pharo 2.0 itself and inMoose.

Furthermore, we have access to an expert of the Pharo language, which is
fundamental to receive real assessment about the rules and their violations.

4http://www.pharo.org
5http://consortium.pharo.org
6http://www.moosetechnology.org
7http://www.moosetechnology.org/about/researchprojects
8http://www.moosetechnology.org/about/industrialprojects

http://www.pharo.org
http://consortium.pharo.org
http://www.moosetechnology.org
http://www.moosetechnology.org/about/researchprojects
http://www.moosetechnology.org/about/industrialprojects
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The expert selected to support us validating and assessing the rules and the
violations is a core developer and release master of Pharo.

Additionally, we also experimented with three Java systems: Ant9, Tom-
cat10 and Lucene11. Ant is a tool for automating software build processes,
Tomcat is a web server and servlet container, and Lucene is an information
retrieval software library. Such experiments are about mining and automat-
ically validating rules (i.e.,, without the help of experts) from these Java sys-
tems; we discuss them in Section 4.4.

4.3.3 Detecting Rules

We obtain the rules by mining Pharo code changes which incrementally oc-
curred in revisions between versions 1.4 and 2.0. As small deltas between re-
visions are preferable to avoid the noise that can be found in large ones [LZ05,
MWZ11], we select deltas involved in less than five deleted or added invo-
cations. In this process, changes are represented as the deltas described in
Subsection 4.2.2 and stored in a database. From such database of deltas, we
generated the rules as described in Subsection 4.2.3.

As shown in Table 4.1, this process generated a total of 426 rules consider-
ing all patterns.We ranked the rules generated by each pattern by the number
of distinct revisions they appear in. Then, we only analyzed the top-15 (i.e.,
the first 15 in the ranking) rules generated by each pattern; this was done to
reduce the amount of rules to be manually analyzed by an expert. To detect
the rules relevant for our study (cf. Subsection 4.2.3), we selected from the
top-15 the ones that occurred in two or more revisions. In the case that the
15th and the 16th rules occurred in the same amount of revisions, they were
not considered; this was done to ensure a maximum of 15 rules per pattern.
This process generated at the end 45 relevant rules considering all patterns.

Table 4.1: Rules obtained from Pharo.

Pattern 1 2 3 4 5 Total
All Rules 25 31 49 304 17 426
Relevant rules (≥ 2 revisions) 14 11 3 13 4 45

4.3.4 Experiment for RQ1: Assessing Rule Correctness

RQ1 Are the rules correct to the system expert?
9http://ant.apache.org

10http://tomcat.apache.org
11http://lucene.apache.org

http://ant.apache.org
http://tomcat.apache.org
http://lucene.apache.org
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With the help of an expert we validate the rules according to their cor-
rectness. We asked the expert to classify the rules as correct or incorrect, a
correct rule being one that he believes would describe a good modification to
apply in the source code.

4.3.5 Experiment for RQ2: Assessing Rule Violations

We detail this experiment following the methodology proposed byWohlin et
al. [WRH+00].

Hypotheses Formulation

RQ2 Are the violations likely to be fixed by the system expert?

H2
0 Number of violations before and after fixing are the same.

H2
a Number of violations after fixing are smaller.

Notice that we make a directional (one-tailed) hypothesis.

Variable and Subject Selection

The subjects for this experiment are the violations generated by rules. First, we
take the last version of Pharo and Moose, and we compute the number of vi-
olations generated by each rule; this will generate a sample, namely violations
before fixing. From such sample, we remove the violations that, according to
the expert, should be fixed exactly as suggested by the rule; this will generate
another sample, namely violations after fixing.

The independent variable is the rule. It is categorical and takes two values:
before or after fixing the violations. The dependent variable (measured) is the
number of violation for each rule.

Experiment Design

We want to compare the two generated samples. Thus, we use a paired set-
ting, which means the rules composing one sample (before fixing the vio-
lations) are the same as those composing the other sample (after fixing the
violations).We use theWilcoxon test which is used for assessingwhether one
of two samples tends to have smaller/larger values than the other. It can be
used when the participants are the same in each sample. The null hypothesis
is that the median of violations is the same for both samples. If we cannot re-
ject the null hypothesis, we conclude that there is no statistically significant
difference between the number of violations in both samples. The tests will
be performed at the 5% significance level. We will also report the effect size.
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4.4 Experiment Results

In this section, we present the results of our empirical study and discuss
them.

4.4.1 Evaluating RQ1: Assessing Rule Correctness

RQ1 Are the rules correct to the system expert?

Table 4.2 shows that 62% (28 out of 45) of the analyzed rules were cor-
rect according to the expert. In Pattern 1, 79% (11 out of 14) of analyzed rules
were correct while in Pattern 3, 1 out of 3 were correct. The incorrect rules
were mostly noisy rules, which are likely to occur when they are extracted
from deltas not related to change conventions. In such deltas, method calls
not involved with change conventions tend to get intermingled with real
rules [LZ05]. The outcome of this experiment is that a relevant amount of
rules is correct according to the expert.

Table 4.2: RQ1: Assessing rule correctness.

Pattern 1 2 3 4 5 Total
Relevant rules 14 11 3 13 4 45
Correct rules 11 (79%) 6 (55%) 1 (33%) 7 (54%) 3 (75%) 28 (62%)

Table 4.3 presents some rules generated for Pharo. For instance, in the rule
RPackageOrganizer.default()→ RPackage.organizer(), the method RPackageOr-
ganizer.default() should only be used in specific cases as stated in its com-
ments; the rule vm(). getSystemAttribute(1001) → platform().name() clearly
improves legibility.

All the correct rules were implemented in the static analysis tool Small-
Lint (the static analysis tool for Smalltalk), and they are publicly available12 to
support developers. Furthermore, the discovering of 28 new system-specific
rules represents a significant addition to the set of rules provided by Small-
Lint, which originally includes only 19 generic change rules thatwere created
by experts.

4.4.2 Evaluating RQ2: Assessing Rule Violations

RQ2 Are the violations likely to be fixed by the system expert?

H2
0 Number of violations before and after fixing are the same.
12http://www.smalltalkhub.com, Project: FindBugs, Package: MiningLintRules-

PharoMigration

http://www.smalltalkhub.com
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Table 4.3: Examples of Pharo rules.

P. 1
FileDirectory.default()→ FileSystem.workingDirectory()
RPackageOrganizer.default()→ RPackage.organizer()

P. 2
ZnCharacterEncoder.forEncoding(*)→ ZnCharacterEncoder.newForEncoding(*)
SystemAnnouncer.current()→ SystemAnnouncer.uniqueInstance()

P. 3
DataStream.initialize()→MCDataStream.initialize()
SystemChangeNotifier.uniqueInstance()→ SystemAnnouncer.uniqueInstance()

P. 4
getSource()→ sourceCode()
noMoreNotificationsFor(*)→ unsubscribe(*)

P. 5
vm().getSystemAttribute(1001)→ platform().name()
vm().getSystemAttribute(1003)→ platform().subtype()

H2
a Number of violations after fixing are smaller.

We set two samples of violations of the rules for Pharo and Moose, the
first sample before fixing the real violations, and the second sample after fix-
ing the real violations. Table 4.4 shows the number of rules that produced at
least one violation and the total number of violations in each sample. In the
last analyzed Pharo release, 8 rules generated at least one violation, produc-
ing a total of 21 violations (before fixing). The expert pointed that, from such
violations, 10 should be fixed, so only 11 violations remained (after fixing).
In the last analyzed Moose release, 7 rules generated at least one violation,
producing a total of 37 violations (before fixing). The expert pointed that all
violations should be fixed, thus, 0 violations remained (after fixing).

Applying theWilcoxon test in the samples gives a p-value< 0.01, then we
reject the null hypothesis. Moreover, the effect size is = 0.56 (large effect). We
conclude that the rules are pointing to violations in source code, and, these
violations are likely to be fixed by the system expert.

Table 4.4: RQ2: Assessing violations before and after fixing the real ones.
Rules refers to the number of rules that produced at least one violation.

System Rules
Violations

Before fixing After fixing
Pharo 8 21 11
Moose 7 37 0
Total 15 58 11
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4.4.3 Java Case Studies

We also extracted and validated rules for the Java systems Ant, Tomcat and
Lucene, which produced 88 rules [HADV13]. The validation of those rules,
in contrast to the previous validation, were done automatically using the ap-
proach developed by [KPW06] on navigating through revisions and checking
if the learned rules were fixed over time. Next we discuss some change rules
generated to the Java systems.

An example of rule generated for Apache Ant is a convention to close
files, where calls to InputStream.close() should be replaced by calls to FileU-
tils.close(InputStream). This convention was introduced in the system in 2004,
but in practice it has never been fully adopted as, even six years later (2010),
the refactoring was still being applied.

In Tomcat, we detected rules defined by FindBugs such as “DM_NUM-
BER_CTOR: Method invokes inefficient Number constructor; use static val-
ueOf instead”13. This rule is intended to solve performance issues and it states
that using valueOf is approximately 3.5 times faster than using the construc-
tor. In fact, we detected such rules because Tomcat developers have been us-
ing FindBugs over time. Even if there was an effort to fix such violations, they
were not completely removed. This means that developers may not be aware
of common refactorings even when static analysis tools are adopted. Also,
the great amount of violations generated by such tools in real-world systems
is not easy to manage [RDGN10,FSV11,KE07].

In Lucene, rules were related, for example, to structural changes (e.g.,
replace Document.get() by StoredDocument.get()) and to internal guid-
ance to have better performance (e.g., replace Analyzer.tokenStream() by
Analyzer.reusableTokenStream(), replace Random.nextInt() by SmartRan-
dom.nextInt()). Overall, the analysis also produced rules related to Java
API changes such as the replacement of calls from the classes Vector to
ArrayList, Hashtable to Map, and StringBuffer to StringBuilder, which were
incrementally fixed by developers, and, thus, also detected by our approach.

4.5 Complementary Discussion

In this section we discuss three topics complementary to our experiments.
First, we discuss the creation of rules with respect to its frequency over time,
then, we present the overlap of our rules with predefined generic change
rules. Finally, we discuss the creation of other types of system-specific rules
beyond of the ones adopted in this study.

13http://findbugs.sourceforge.net/bugDescriptions.html#DM_NUMBER_

CTOR

http://findbugs.sourceforge.net/bugDescriptions.html#DM_NUMBER_CTOR
http://findbugs.sourceforge.net/bugDescriptions.html#DM_NUMBER_CTOR
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4.5.1 Assessing When Rules Should be Created

In our experiments we extracted rules from a specific timeframe, i.e., the
changes in Pharo from version 1.4 to 2.0. Then, we validated such rules in
the latest Pharo and Moose releases. However, in practice, we may have no
clear timeframe about what should be analyzed in the past code history, the
code history may not be available, or the system may be in initial develop-
ment stage. Therefore, to support these cases, in this subsection we discuss
the creation of rules with respect to its frequency over time, i.e., not according
to a predefined timeframe.

The idea is to assess when a change is frequent enough to be considered
as a rule. This frequency can impact the quality of the produced rules as
well as the amount of generated rules. Thus, depending on the goal of the
developer (e.g., to produce rules with better precision or to produce more
rules), different frequencies can be adopted. Next, we study the impact of
such frequency to obtain rules.

Process to learn and evaluate rules

To assess when rules should be created, we need to learn the rules and
evaluate them incrementally revision by revision. To learn the rules from
source code history, we use the approach developed by [KPW06] on navi-
gating through revisions to extract information. It suits well since it works
by learning from changes in revisions. The idea is that we walk through the
revision history of a project learning rules and evaluating at each revision
how well our approach works when using only the information available
for that revision. We learn a rule when it occurs in f different revisions. We
evaluate at revision n the rules learned from revisions 1 to n− 1. If the fix in
revision n matches the learned rule, i.e., the modification to obtain revision
n matches the LHS and RHS, we have a true positive (TP) violation. If the
fix in revision n matches the LHS, but not the RHS, we have a false positive
(FP) violation. We can measure the precision of a rule from the portion of
violations predicted correctly over all violations, i.e., precision = TP/(TP + FP).

Discussion

Table 4.5 (top) shows the precision and the number of rules obtained over
the frequency f such that 2 ≤ f ≤ 9 for our case study14. For example, if we
say that rules are created when the same change occurs over two different
revisions (i.e., f = 2), then 104 rules are generated and they have a preci-

14We empirically detected that f ≥ 9 was not relevant to be studied because not so many
rules were generated.
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sion of 25%. As expected, the greater the frequency, the more precise are the
generated rules, but the smaller the number of generated rules.

Table 4.5 (bottom) shows the delta for the precision and the number of
rules. For example, moving from f = 2 to f = 3 (i.e., ∆3

2) improves the pre-
cision by 36% but reduces the number of generated rules by 58%, which is
the greatest loss in number of rules. Moving from f = 3 to f = 4 (i.e., ∆4

3)
improves the precision by 85% (which is the greatest gain in precision) but
reduces the number of generated rules by 46%. Also, moving from f = 6 to
f = 7 (i.e., ∆7

6) changes neither the precision nor the number of generated
rules.

Table 4.5: Top: evaluation of the frequency (f ) to create rules. Bottom: delta
between frequencies (∆f

f−1) of precision and number of rules.

Frequency (f ) 2 3 4 5 6 7 8 9
Precision 25% 34% 63% 71% 72% 72% 75% 75%
Rules 104 43 23 12 8 8 6 6

∆ Frequency ∆3
2 ∆4

3 ∆5
4 ∆6

5 ∆7
6 ∆8

7 ∆9
8

∆ Precision +36% +85% +12% +1% 0% +4% 0%
∆ Rules -58% -46% -47% -33% 0% -25% 0%

Figure 4.4 shows the curves of precision and number of rules over the
frequency. We observe that the curves are clearly inversely proportional, i.e.,
the precision tend to be greater and the number of generated rules tend to be
smaller. If the number of generated rules is an important goal, then we should not
choose a large f .
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Figure 4.4: Evaluation of the frequency (f ) over precision and number of
rules.

In Table 4.6 we compare the precisions of the rules generated in each
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frequency. This comparison is done by applying the Mann-Whitney test in
each pair of rule samples. For example, the p-value 0.01 (first line and last col-
umn) means that the precision of the rules obtainedwith f = 9 is statistically
greater at the 1% level than the precision of the rules obtained with f = 2.
Also, the p-value 0.43 (last line and last column) means that we cannot con-
clude that the precision for f = 9 is greater than the precision for f = 8. We
marked with * results that are significant at the 10% level and with ** results
that are significant at the 5% level.

By analyzing the first line in the table, we see that the precision of rules
obtained with f = 2 is smaller than any other sample (they are all marked
with * or **). When analyzing the second line, we see that the precision of
rules obtained with f = 3 is smaller than the ones obtained with f = 8 and
f = 9. The same occurs in the third line: the precision of rules obtained with
f = 4 is smaller than the ones obtainedwith f = 8 and f = 9. However, when
analyzing the fourth line (i.e., f = 5 in bold), we see that no other sample is
greater than the one obtained with f = 5 (none of them are marked with *
or **). The same occurs for the subsequent lines. Therefore, it means that the
precision of the rules obtained from f = 5 to 9 are statistically equivalent. In
such samples, the precision remains between 71% and 75% (as we see in Ta-
ble 4.5). In other words, choosing between f = 5 to 9 would bring equivalent
results. If precision is an important goal, we should choose a large f, but only up to
a certain point (f=5 in our experiments).

Table 4.6: p-values comparing the precisions of the created rules. ** p-value <
0.05, * p-value < 0.10.

Frequency (f ) 3 4 5 6 7 8 9
2 0.07* 0.05* 0.07* 0.02** 0.02** 0.02** 0.01**
3 - 0.36 0.23 0.11 0.11 0.07* 0.05*
4 - - 0.25 0.11 0.14 0.05* 0.04**
5 - - - 0.36 0.43 0.22 0.17
6 - - - - 0.60 0.39 0.43
7 - - - - - 0.37 0.27
8 - - - - - - 0.43

4.5.2 Overlap with Generic Change Rules

As stated in the introduction, the static analysis tool SmallLint also provides
generic change rules that were manually created by experts. It contains 19

generic change rules that details how source code should be updated to im-
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prove code maintainability.
We found that there is no overlap between our rules and the generic

change rules provided by SmallLint. This was also similar to the results pro-
vided by [KPW06] in which the intersection of bug-detection rules generated
by their approach and rules found in the Java static analysis tool PMD were
mostly exclusive. One reason for this result is that the generic change rules
were not applied in the analyzed case study over different revisions or they
were applied in large commits, so our approach was not able to detect them.

To better understand the adoption of generic rules by developers, we in-
vestigated their usage in our case study, Pharo.We detected that 17,821 (27%)
methods in version 2.0 were new ones. From such methods, we found that
1,064 (6%) used the suggested RHS of the generic change rules while only
129 (1%) used the non-suggested LHS of the generic rule. It means that new
methods were mostly created using (when necessary) the suggested RHS.
This shows that these rules are in fact relevant for developers; the rules dis-
covered in our study can improve such set of rules with new system-specific
ones.

4.5.3 Creating Other Types of System-Specific Rules

In this subsection we briefly discuss the creation of other types of system-
specific rules beyond the one presented in this study. Next, we present three
types of system-specific rules that can also be extracted from code history
with the support of a slightly different dataset and patterns.

Simply-deleted calls. This type of rule catches methods that in general
should not be called. For example, in FindBugs some rules present this idea:
“Don’t use removeAll() to clear a collection”, “Invokes dangerous method
System.exit()” and “Invokes dangerous method runFinalizersOnExit()”. Simi-
larly, in SmallLint, some rules state: “Debugging code left in methods (avoid
using halt(), haltOnce(), etc.)” and “Calls questionable message (avoid using
become(), primitiveChangeClassTo(), etc.)”. In order to extract such types of
rules from code history and expand the set of rules of current static analysis
tools, one can use a dataset similar to the one adopted in this study. The
patterns would detect deltas that frequently deleted but did not add calls. In
this context, some studies (e.g., [WGAK10, MWZM12]) propose the extrac-
tion of simply-deleted rules, but focusing on API migration, i.e., not adopting
the time variable to filter out rules and not focusing on system-specific rules.

Method pairs. This type of rule catches methods that normally should
appear together in a class. For example, FindBugs, PMD and SmallLint
present the rules “Class defines equals() but not hashCode()” and “Class
defines hashCode() but not equals()”, meaning that the methods equals() and
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hashCode() should be defined together. A dataset similar to ours but with the
data grouped by signature of methods (instead of method calls) of a class
can be adopted to extract this type of rule. The patterns would detect two
or more methods that are likely to appear together. Notice that in this case,
a data-mining approach (e.g., Apriori [ZJ12]) can also be used to detect the
co-occurrence of methods in the dataset.

Method call pairs. This type of rule catches methods that normally should
be called together. For example, co-occurringmethod calls (e.g.,open()/close()
and lock()/unlock()) are likely to exist in common software development. A
dataset similar to ours (but not focusing on the deltas since themethod call pair
rules rely in a single version to be detected) can be adopted to extract this type
of rule. The patterns would detect two or more method calls that are likely to
appear together. Livshits and Zimmermann [LZ05] propose to extract such
type of rule from a single version of a system using a data-mining approach
to detect co-occurring method call pairs.

4.6 Threats to Validity

4.6.1 Construct Validity

The construct validity is related to whether the measurement in the study
reflects real-world situations. In our study, the main threat is the validation
of the rules.

As an error in this processwould bias the results, our rulesweremanually
validated with the help of an expert (which is hard to have for real-world
systems) to decrease the possibility of bias.

4.6.2 Internal Validity

The internal validity is related to uncontrolled aspects that may affect the
experimental results. In our study, the main threat is the possible errors in
the implementation of our approach causing the generation of wrong rules.

Apart from the validation by the expert presented in this chapter, the rules
generated by our approach have been (i) used by several members of our
laboratory in different systems and (ii) divulged in an open-source software
reengineering mailing list15 such that developers of this community can use
it, thus, we believe that the risks of this threat are reduced.

Moreover, the patterns used to extract rules from source code history
may be an underestimation of the real changes occurring in commits: some
changes are more complex, only introducing new code or only removing old

15http://www.moosetechnology.org

http://www.moosetechnology.org
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code. We do not extract rules from such cases, and they might also repre-
sent relevant source of information. However, the patterns do reflect generic
change rules found in static analysis tools.

4.6.3 External Validity

The external validity is related to the possibility to generalize our results. In
our study, the main threat is the representativeness of our case studies.

Pharo and Moose are credible case studies as they are open-source, real-
world, and non-trivial systems with a consolidated number of developers
and users. They also come from different domains and include a large num-
ber of revisions. Despite this observation, our findings — as usual in empir-
ical software engineering -– cannot be directly generalized to other systems,
specifically to systems implemented in other languages or to systems from
different domains. Closed-source systems, due to differences in the inter-
nal processes, might also have different properties in their commits. Finally,
small systems or systems in initial stage may not produce data sufficient to
generate rules.

4.7 Summary

In this study, we proposed to automatically extract system-specific conven-
tions from source code history. In this process, we extract information from
incremental revisions in source code history and the rules are based on pre-
defined patterns that ensure their quality.

We validated our approach on open-source systems with the help of an
expert, which was important to provide real assessment about the change
rules. In addition, we discussed the creation of rules with respect to their
frequency over time and we compared the extracted rules with predefined
generic change rules provided by a static analysis tool. We reiterate here the
most interesting conclusions we derived from our study:

1. A relevant amount of the change rules (62%, 28 out of 45) were correct
to the expert in our Smalltalk case study.We discovered 28 new system-
specific rules, which represents a significant addition to the set of rules
provided by the static analysis tool SmallLint since it contains only 19

generic change rules.

2. Rules pointed to real violations in source code. In total, 15 rules gener-
ated violations, producing a total of 58 violations from which 47 (81%)
were real ones.
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3. We also extracted and automatically validated rules for three Java sys-
tems. Thus, with the Smalltalk experiment, case studies written in two
programming languages were covered.

4. There was no overlap between our rules and the generic change rules
provided by SmallLint.

5. Different frequencies can be adopted, depending on the goal of the de-
veloper, to assess when rules should be created.

The rules generated by the proposed approach are related to system-
specific conventions. Yet, there is a lack as to better support client systems
as we have seen in Chapter 2. Moreover, the rules are based on predefined
patterns;while simple to be created, the patternswill generate rules restricted
to them. In addition, as pointed by our discussion on Section 4.5.1, it is im-
portant to discover thresholds to assess when the rules should be created.
Thus, it would be relevant to produce more flexible rules, i.e., independent
of predefined patterns and less dependent on thresholds.

The next chapter presents an approach to mine rules from source code
history with the goal to support client systems andwithout the need of using
predefined patterns.
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In the previous chapter we presented an approach to extract system-
specific conventions from source code history based on predefined patterns.
In this chapter we complement the previous one: we propose an approach to
mine rules from source code history by focusing on better supporting client
systems (rather than system-specific conventions) and by using data-mining
(rather than predefined patterns).

5.1 Introduction

As described in Chapter 2 in Section 2.3.2, frameworks often evolve by break-
ing compatibilitywith clients [BTF05,DJ06,WGAK10]. At the ecosystem level,
this problemmaybe evenmore complex and risky [RLR12]. To dealwith such
issues, approaches have been developed to support the evolution of frame-
works, and reduce the efforts of client developers. In this context, the iden-
tification of evolution rules has become a research focus: some researchers
demonstrated the need to automatically identify evolution rules of the types
one-to-one [DR08, SJM08], one-to-many, many-to-one [WGAK10], and many-to-
many [MWZM12].

In these rules, the replaced method can be either absent or present in the
new release of the framework. Rules that involve methods still present in the
new release of the framework are relevant, for example, to the detection of
better APIs, missing deprecations, or any replacement involving methods
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not necessarily removed during the framework evolution, i.e., they are about
method suggestion. However, currently, only the one-to-one approaches
generate evolution rules involving method suggestion. While the other ap-
proaches produce more types of rules, they rely on deletion/addition of
methods as the basis for detecting rules, so they are able to produce rules
about method replacement (e.g., method renaming) but they cannot produce
rules about method suggestion.

In this chapter, we propose to extract evolution rules by monitoring
changes applied in source code during framework or library evolution using
a data-mining technique [HEA+14, HAE+15a]. Similarly to the previous
chapter, we focus on mining method call changes taking into account the
changes between revisions. However, in this chapter, our approach is able to
produce more flexible rules, in the formats one-to-one, one-to-many, many-to-
one and many-to-many, involving method replacement and suggestion.

The proposed approach is validated on five open-source systems, and the
validity of our rules is assessedwith the help of experts. The results show that
rules can be extracted from source code changes in code history, and that
they are likely to enforce the correct changes to be applied. We detected a rel-
evant amount of rules related to method suggestion, thus, our approach can
improve the spectrum of rules generated by pre-existing solutions. Further-
more, we provide a complementary discussion on the effort to select correct
rules and the gain provided by the rules in the case studies themselves.

The main contributions of this chapter can be summarized as follows:

1. We provide a novel approach to support the evolution of frameworks
and libraries through evolution rules.

2. We provide a qualitative evaluation of the rules in real-world systems
to assess whether they are valid according to the assessment of experts.

3. We provide a comparison of the rules with related work.

4. We provide a discussion around the effort to select correct evolution
rules and the gain provided by them.

Structure of the Chapter

We present our approach in Section 5.2. We propose research questions and
present case studies in Section 5.3. We present the experiment design and an-
swer the research questions in Sections 5.4 and 5.5. In Section 5.6, we present
concrete examples of rules found by our approach and discuss additional is-
sues regarding effort and gain. We present the threats to the validity of our
experiments in Section 5.7. Finally, we conclude the chapter in Section 5.8.
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5.2 Mining API Change Rules

In this section we present our approach to extract rules. Before detailing our
solution, we show an overview of it.

5.2.1 Overview of the Approach

Consider the two examples shown in Figure 5.1 that occurred in Pharo
and Moose. Figure 5.1-I shows an example of replacement of the call Clas-
sOrganizer.default() by the call Protocol.unclassified() due to a class and
method renaming. Figure 5.1-II shows an example of the replacement of
the calls MooseModel.root() and MooseModel.add(MooseModel) by the call
MooseModel.install() to improve maintenance and clean the code. These two
changes occurred several times in different revisions of these systems. Our
goal is to ensure that such changes are not lost, and can be described as rules
to support clients of these systems (i.e., users of the API).

I. Replace ClassOrganizer.default() by Protocol.unclassified()
Diff between revisions 1 and 2 of method foo()
− if (method.protocol() == ClassOrganizer.default()) {...
+ if (method.protocol() == Protocol.unclassified()) {...

II. Replace MooseModel.root().add(...) by install()
Diff between revisions 3 and 4 of method bar()
− self.add(MooseModel.root().add(model));
+ self.add(model.install());

Figure 5.1: Examples of changes in Pharo and Moose. “−” indicates the
deleted lines and “+” indicates the added lines. Bold indicate the changed
method calls (code is converted to Java-like syntax to ease understanding).

Our approach produces rules that indicate how method calls should be
replaced. There are two ways to produce rules:

1. On request rules: After a framework upgrade there are compilation er-
rors because some methods were removed. The developer asks to our
tool what to do with the offending method call. He receives on request
rules about how this particular method call should be replaced.

2. List of rules: Method calls that should be replaced are automatically
extracted from code history. The developer will receive automatically
created rules about the overall API evolution. For example, rules to en-
sure the changes shown in Figure 5.1. This scenario includes cases of
method replacement.
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Figure 5.2 shows an overview of our approach (it shares some similari-
ties with the approach described in the previous chapter, so a comparison
between both approaches is presented in Subsection 5.6.4). In the first step,
we extract changes from revisions in a system history (Subsection 5.2.2). In
the second step we discover rules based on the extracted changes and the re-
quests. This step is performed each time a rule is requested and it is divided
in two substeps: (i) it selects changes related to the provided request (Sub-
section 5.2.3) and (ii) it creates rules based on the selected changes (Subsec-
tion 5.2.3). We first explain these steps in the context of on request rules, then
in Section 5.2.4 we explain how to produce a list of rules. Finally, in Subsec-
tion 5.2.5 we briefly describe our tool APIEvolutionMiner, which implements
the proposed approach.

Figure 5.2: Overview of our approach.

5.2.2 Extracting Deltas from Revisions

Similarly to the previous chapter, the first step is to extract deltas from the
revisions that will be used in the rule discovering process. We represent a
delta with predicates that describe deleted or added method calls:
deleted-call(context-id, signature)
added-call(context-id, signature)
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where the predicate deleted-call(. . . ) represents a deleted call; the predicate
added-call(. . . ) represents an added call; context-id uniquely identifies the
change to save its context; and signature is the signature of the method with
declaring module, name, and parameter list.

Notice that the delta presented in this approach is slightly different from
the one presented in the previous chapter, i.e., here, the signature includes the
declaring module, and there is no receiver and static variables. Such changes
are needed to facilitate the input of the data-mining algorithm, presented in
the next subsection. In fact, the delta adopted in this chapter can be derived
from the delta presented in the previous chapter.

Figure 5.3 shows the deltas generated for the changes in Figure 5.1. For
example, the change in Figure 5.1-II has two deleted calls (MooseModel.root()
and MooseModel.add(MooseModel)) and one added, MooseModel.install().
Thus, two deleted predicates and one added predicate are generated as
shown in Figure 5.3-II.

I. Replace ClassOrganizer.default() by Protocol.unclassified()

Deltas between revisions 1 and 2 of method foo()
deleted-call(“foo()-rev2”, “ClassOrganizer.default()”)
added-call(“foo()-rev2”, “Protocol.unclassified()”)

II. Replace MooseModel.root().add(...) by install()

Deltas between revisions 3 and 4 of method bar()
deleted-call(“bar()-rev4”, “MooseModel.root()”)
deleted-call(“bar()-rev4”, “MooseModel.add(MooseModel)”)
added-call(“bar()-rev4”, “MooseModel.install()”)

Figure 5.3: Deltas generated for the changes in Figure 5.1.

5.2.3 Discovering Rules

The process to produce rules starts with a method call that needs to be re-
placed, for example, because it does not compile anymore. Given this call,
we will extract rules that suggest how to replace it. Next, we describe the
steps to discover rules.

Selecting Deltas

We name as request the method call that should be replaced. Given a request,
we select from all deltas: (i) the deleted calls that match the request, and (ii)
the added calls:

select-deltas(request) ⇒ select all deltas where deleted calls include the re-
quested call
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For example, for the request ClassOrganizer.default(), the delta shown in
Figure 5.3-I is returned:
select-deltas( {ClassOrganizer.default()} )⇒

deleted-call(“foo()-rev2”, “ClassOrganizer.default()”)
added-call(“foo()-rev2”, “Protocol.unclassified()”)

Furthermore, a request can contain more than one method. For example,
for a request with MooseModel.root() and MooseModel.add(MooseModel), the
delta shown in Figure 5.3-II is returned:
select-deltas( {MooseModel.root(), MooseModel.add(MooseModel)} )⇒

deleted-call(“bar()-rev4”, “MooseModel.root()”)
deleted-call(“bar()-rev4”, “MooseModel.add(MooseModel)”)
added-call(“bar()-rev4”, “MooseModel.install()”)

Creating Rules

In this stepwemine the selected deltas in order to produce rules. In this study
we adopt the Apriori algorithm [ZJ12]. This algorithm has been adopted be-
cause it is intended to produce association rules (which highlight general
trends in a database), and our goal is to produce rules about method call
replacement.

Before mining the rules, we represent the selected deltas as transactions1.
For example, the two selections shown in the previous subsection are simply
represented as:
T1: “deleted ClassOrganizer.default()”, “added Protocol.unclassified()”
T2: “deletedMooseModel.root()”, “deletedMooseModel.add(MooseModel)”, “added
MooseModel.install()”

The transactions are first analyzed using the data-mining technique fre-
quent itemset mining. Given a set of transactions, this technique identifies the
itemsets which are subsets of at least n transactions. It defines support as the
number of occurrences of an itemset. An itemset is considered frequent if
its support is greater than or equal to a specified threshold called minimum
support (for short, we use min-supp):

find-frequent-itemsets(transactions, min-supp)⇒ returns the itemsets in transac-
tionswith support ≥ min-supp

For transaction T1, for example, find-frequent-itemsets({T1}, 1) produces
three frequent itemsets, each one with support2 = 1, as shown in Table 5.1.

Traditionally, from the frequent itemsets, association rules [ZJ12] are com-
puted. An association rule is defined as L→ R, where L and R are itemsets.

1A transaction contains all themethod calls of the selected delta identified by the predicate
type (deleted or added). The context-id is not presented in the transactions.

2It means a relative support of 100%, i.e., each itemset occurs in all transactions.
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Table 5.1: Frequent itemsets for transaction T1.

Id Frequent itemset Support
I1 “deleted ClassOrganizer.default()” 1
I2 “added Protocol.unclassified()” 1
I3 “deleted ClassOrganizer.default()”, “added Protocol.unclassified()” 1

Also,R = X − L, whereX is a frequent itemset, then, an association rule can
be written as L→X − L. For each frequent itemsetX and non-empty subset
L ⊂ X , an association rule is generated. Moreover, an association rule has a
confidence3, which is the probability of finding the R in transactions under
the condition these transactions also contain L. The confidence is calculated
as confidence(L→ R) = support(L ∪ R) / support(L). Given a set of itemsets and
a minimum confidence (for short, we call min-conf ) indicating the minimum
accepted confidence, association rules are produced:

find-assoc-rules(itemsets, min-conf) ⇒ returns the association rules in itemsets
with confidence ≥ min-conf

In our approach, we want to produce rules in the specific format Requests
→ Replacement, where Requestsmust include only itemsets with deleted calls,
and Replacement must include only itemsets with added calls. According to
the association rule definition in the previous paragraph, we can consider
that Replacement = X − Requests, thus, in our approach, X must include only
frequent itemsets with both deleted and added calls. Finally, for the gener-
ated association rules, we select the ones in the format of interest: Requests
→ Replacement. If more than one replacement is suggested for a request, we
present the one with greatest support and confidence, and which is not a
subset in the suggested replacement.

For example, in Table 5.1, only I3 is considered relevant to our approach,
since it satisfies the condition to include both deleted and added calls. Thus,
ifX is the frequent itemset I3, find-assoc-rules({I3}, 1) produces the following
rule with confidence4 = 1:

“deleted ClassOrganizer.default()”→ “added Protocol.unclassified()”

The overall process for generating rules in the format Requests→ Replace-
ment is sketched in Figure 5.4.

Usually the Apriori can generate a lot of association rules, many of them

3Other metrics such as lift could have been adopted, lift(L → R) = confidence(L → R) /
confidence(∅ → R). As we are not interested in every association rule, but only in the ones
where the antecedent is known, lift will be always 1, thus, not relevant in our study.

4i.e., 100% of the transactions that contain deleted ClassOrganizer.default() also contain added
Protocol.unclassified().
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relevant-assoc-rules(requests, min-supp, min-conf) {
transactions = select-deltas(requests);
frequent-itemsets = find-frequent-itemsets(transactions, min-supp);
relevant-itemsets = select the itemsets in frequent-itemsets that includes

both deleted and added calls;
rules = find-assoc-rules(relevant-itemsets, min-conf);
return rules }

Figure 5.4: Overall process to generate rules Requests→ Replacement.

confliting (A→ B and B→ A) or specialization/generalization of each other
(A, C→ B and A→ B). By adding constraints on the format of the rules (Re-
quests→ Replacement) we can eliminate many of these unwanted rules.

The rulesmay have very different support values since they are computed
only from the selected deltas, i.e., not directly from changes in the entire sys-
tem. This happens because the minimum support will be relative to the se-
lected deltas. Rules with small support (that can still be relevant to develop-
ers) would not be detected if they were computed directly from changes in
the entire system.

Furthermore, by adopting association rules, in particular, in the format
Requests → Replacement, our approach can produce one-to-one, one-to-many,
many-to-one andmany-to-many rules, involvingmethod replacement and sug-
gestion since it does not use deletion/addition of methods as the basis for
detecting rules, i.e., we focus on the addition and deletion of methods calls.

5.2.4 Creating a List of Rules

As stated in the begining of this section, there are twoways to generate rules:
on request and by listing the rules. On request rules are produced when re-
quests are provided to relevant-assoc-rules(. . . ) by the developer.

In contrast, a list of rules is producedwhen the requests are automatically
extracted from code history and provided to relevant-assoc-rules(. . . ) with-
out involving the developer. In this case, we consider as request the deleted
method calls from all deltas. Each request will have a number of occurrences,
which is the number of times it occurred over the deltas.

For example, from the deltas in Figure 5.3, two requests can be automat-
ically extracted, both with number of occurrences = 1:
R1: {“ClassOrganizer.default()”}
R2: {MooseModel.root()”, “MooseModel.add(MooseModel)”}

When provided to relevant-assoc-rules(. . . ), the requests produce the fol-
lowing rules, which in fact describe their real changes in source code:

RuleR1: “deleted ClassOrganizer.default()”→ “added Protocol.unclassified()”
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RuleR2: “deletedMooseModel.root()”, “deletedMooseModel.add(MooseModel)”→
“added MooseModel.install()”

In real systems, the number of requests (and consequently the number of
rules) generated may be large. Thus, to filter the most relevant requests, we
can rank them by the decreasing order of number of occurrences, and produce
rules for themost frequent requests. Notice that the number of occurrences here
is not related to the support described in the previous subsection.

5.2.5 Tool Support

Our approach is supported by the tool APIEvolutionMiner [HEA+14] shown
in Figure 5.5. The developer can (i) provide requests (1. Input pane) in order to
receive as output an association rule (2. Association rule pane), or (ii) access
a list of automatically generated rules. In both cases, by selecting the associ-
ation rule, the developer is able too see a list with all the deltas in which the
rule was found (3. Delta pane). Each delta is linked to a source code change.
Thus, by selecting a delta, the tool displays source code examples (4. Exam-
ple helper pane) that clarify how the framework adapted to its own changes
or clients adapted to the framework changes as well as a description of the
delta with the class, method, author and date of the change.

Figure 5.5: Tool support with APIEvolutionMiner.

5.3 Research Questions and Case Studies

In this section we present our research questions (Subsection 5.3.1) and the
context of our experiment, detailing our case studies (Subsection 5.3.2).
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5.3.1 Research Questions

In the experimentswe validate the list of rules automatically generated by our
approach. We assess the rules validity according to assessment of experts,
and whether our approach is able to produce rules one-to-one, one-to-many,
many-to-one, and many-to-many involving method replacement and sugges-
tion, i.e., the types of rules generated. Therefore, we propose two research
questions:

RQ1 Are the generated rules valid to experts?

RQ2 Which types of rules are generated?

5.3.2 Case Studies

The context of the experiment is real systems for which source code history is
available. We need real systems to ensure that our experiment is meaningful,
and we need source code history to extract our rules. Moreover, it is funda-
mental to have access to the experts of the systems under analysis to receive
real assessment about the rules.

We selected five open-source Smalltalk systems to perform our empir-
ical studies: Pharo [BCDL13, BDN+09], Moose [DAB+11, NDG05], Glam-
our [Bun09]5, Roassal, and Seaside [DLR07]. They are large, real-world and
non-trivial systems, with relevant number of developers as well as relevant
source code history. Moreover, they have different missions working in
different domains:

Pharo is an open-source Smalltalk-inspired dynamically language and
environment (it is described in the Chapter 4 in Subsection 4.3.2). We study
two evolutions of this system, one from version 1.4 to 2.0 (for short, we call
Pharo2), and the other from version 2.0 to 3.0 (for short, we call Pharo3).

Moose is an open-source platform for software and data analysis (it is
described in Chapter 4 in Subsection 4.3.2).

Glamour is an engine for building dedicated browsers.
Roassal is an agile visualization enginewhich graphically renders objects

with interaction facilities.
Seaside is an open-source framework for developing web applications (it

is described in Chapter 3 in Subsection 3.3.2).
Table 5.2 shows an overview about the six case studies. It shows the num-

ber of classes and lines of code in the last version, the number of contributors
(commiters), dates of the first and the last analyzed revisions, the number of
revisions, and the number of deltas, i.e., method deltas in which at least one
call is deleted and one is added.

5http://www.moosetechnology.org/tools/glamour

http://www.moosetechnology.org/tools/glamour
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Table 5.2: Case studies overview.Cont. represents the number of contributors.

System Classes KLOC Cont. First rev. Last rev. Revisions Deltas
Pharo2 3,246 374 37 12/2011 03/2013 435 3,196
Pharo3 3,844 412 37 09/2012 11/2013 483 4,729
Moose 2,617 210 21 05/2008 11/2013 512 2,848
Glamour 1,117 81 24 02/2009 11/2013 598 1,807
Roassal 411 29 6 07/2011 11/2013 379 1,559
Seaside 1,122 97 18 11/2007 11/2013 862 3,962

Furthermore, we have access to experts of most of these systems, which is
hard to find for real-world systems and is fundamental to receive real assess-
ment about the rules to answer research question RQ1. The experts selected
to help us assessing the rules are all core developers or creators of the sys-
tems under analysis. We had the help of 2 experts for Pharo2, 4 for Pharo3, 4

for Moose, 1 for Glamour, and 1 for Roassal. We have no close access to Sea-
side experts, so the rules of this system were validated by the authors of this
study.

5.4 RQ1. Are the generated rules valid to experts?

5.4.1 Experiment Design

In this experiment we will evaluate the validity of the rules produced as de-
scribed in Subsection 5.2.4 (list of rules) based on the expert assessment. We
attempt to produce rules for each request with number of occurrences > 5, set-
ting amininum support and confidence of 50%. Thus, we asked the experts to
classify the rules on: valid, don’t know or invalid. The correctness of the rules
are then assessed using precision, i.e., the percentage of valid rules over all
generated ones, which is commonly adopted by related studies. Rules classi-
fied as don’t know are not used to compute the precision. For the Seaside case
study, the rules will be validated only by the authors of this study with the
support of code examples and documentation.

Notice that, in previous related studies (e.g., [MWZM12,WGAK10]) the
validation is always done by the authors of the paper themselves. We believe
that a validation by experts, which is harder to be done, increases the confi-
dence of the results.
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5.4.2 Experiment Results

Table 5.3 shows the number of valid, invalid, and don’t know rules as classified
by experts of the systems under analysis. We see that the precision remained
between 46% (for Pharo2) and 86% (for Moose).

We note that for Pharo2 and Pharo3, 25 and 3 rules, respectively, were
classified as don’t know by the experts. This reinforce the importance of the
validation by experts: some rules are hard to be evaluated and involve specific
knowledge about some parts of the system. In fact, Pharo2 is a legacy system,
so the experts were not confident to point rules as valid or invalid; as a result,
the precision for this system was low (46%). Pharo3 is a very large system,
and, naturally, some rules were classified as don’t know; for this system the
precison is 74%. In Moose, Glamour and Roassal, the experts were confident
to point the valid and invalid rules; in these cases the precision remained be-
tween 65% and 86%. Seaside was the only system in which the rules were
evaluated by the authors of the study and it has a precision of 80%.

Table 5.3: RQ1. Evaluation of the rules.

System Requests Rules Valid Invalid Don’t know Precision
Pharo2 77 62 17 20 25 46%
Pharo3 114 95 68 24 3 74%
Moose 54 50 43 7 0 86%
Glamour 31 23 15 8 0 65%
Roassal 43 36 28 8 0 78%

Seaside 93 76 61 15 - 80%

The invalid rules were mostly noisy rules. These rules occur when they
are extracted from large deltas (i.e., noisy deltas which include large number
of deleted and added calls). Smaller deltas tend to produce less noise [LZ05,
MWZ11]. Thus, a solution to decrease the amount of invalid rules is to con-
straint the size of the deltas. This has the drawback of producing less rules.

For the next experiment, we do not take into account the rules classified
as invalid.

5.5 RQ2. Which types of rules are generated?

5.5.1 Experiment Design

In this experiment we will verify which types of rules are generated by our
approach in order to classify them in one-to-one, one-to-many,many-to-one, and
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many-to-many. We also verify whether the rules involve (i) method replace-
ment, or (ii) method suggestion. A rule is about suggestion methods when
the methods in both the right and the left side are still present in the last ana-
lyzed version of the case study. This will allow us to discuss the types of rules
generated by our approach with the ones generated by related studies.

5.5.2 Experiment Results

Table 5.4 shows the number of rules in each category. Our approach is the
first to generate rules for the four types of rules.

More specifically, 53% of the rules are concentrated in the category 1 (i.e.,
method replacement one-to-one), which is covered by previous studies. Cat-
egories 1 and 2 (i.e., one-to-one) represent 84% while categories 1 and 3 (i.e.,
rules aboutmethod suggestion) represent 56%of the rules. Category 3, which
represents 3%, is the lowest in number of rules; this result is comparable to the
results provided by [MWZM12] in which this category represented only 1%
of their rules. Each of these three categories are separately covered by some
previous studies, but none of them cover categories 1, 2 and 3 together (cf.
Section 2.3.2). Furthermore, category 4 (i.e., method suggestion one-to-many,
many-to-one, many-to-many) represents 13% of the rules; this category is not
covered by any previous study.

Table 5.4: RQ2. Number of rules in each category.

System Rules
one-one

one-to-many, many-to-one
many-to-many

(1) suggestion (2) replac. (3) suggestion (4) replac.
Pharo2 42 17 (40%) 16 (38%) 1 (2%) 8 (19%)
Pharo3 71 23 (32%) 26 (37%) 3 (4%) 19 (27%)
Seaside 61 41 (67%) 15 (25%) 3 (5%) 2 (3%)
Moose 43 27 (63%) 14 (33%) 0 (0%) 2 (5%)
Glamour 15 7 (47%) 7 (47%) 0 (0%) 1 (7%)
Roassal 28 23 (82%) 2 (7%) 0 (0%) 3 (11%)
Total 260 138 (53%) 80 (31%) 7 (3%) 35 (13%)

5.6 Complementary Discussion

In this section we discuss three complementary topics. First we discuss and
show examples of rules about method replacement and suggestion in order
to better understand the differences between them (Subsection 5.6.1). Second,
we discuss the effort to produce valid rules with a classical data-mining ap-
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proach (Subsection 5.6.2). Third, we discuss how distributed are the changes
(which could be described as rules) over different revisions, and whether
rules based on these changes would support developers finding violations
(i.e., inconsistencies in source code that should be fixed as stated by the rule)
in the case studies themselves (Subsection 5.6.3). Finally, we compare the ap-
proach presented in this chapterwith the one presented in the previous chap-
ter (Subsection 5.6.4).

5.6.1 Rules about Method Replacement and Suggestion

Method replacement rules. These rules involve removed, renamed or explic-
itly deprecated methods. In general, the left side of the rule is likely to be in-
valid orwill be invalid soon (in the case of explicitly deprecatedmethods and
classes). Note that, to discover rules related to explicitly deprecatedmethods,
one could think about interpreting their deprecation messages. These anno-
tations can include a deprecation message that gives a recommendation for
the replacement. However, in practice, recommendations are often missing
or unclear on how to replace the deprecated methods or classes [RLR12].
This highlights the importance of extracting rules from code history. There is
also cases in which methods are simply renamed without deprecation. For
example, in the Moose migration to Pharo 3.0, a client developer noticed
this issue and commented6: “In FileSystem, ensureDirectory()was renamed to
ensureCreateDirectory()without a deprecation”, the language developer then
answered: “Fill up a bug entry andwewill add this deprecation. Good catch”.
In fact, in some case, asking in mailing lists is the only alternative for client
developers7. Our approach described such case as the rule ensureDirectory()
→ ensureCreateDirectory(), so we are able to help developers in similar cases.

Method suggestion rules. These rules are related to how systems use
some APIs either due to usage convention or to adapt to a better API. In gen-
eral, these rules ensure consistency in source code or the right side of the
rule is simply a better option (e.g., improving performance, code legibility,
portability). Again, currently, client developers may use mailing lists for co-
ordination8. Next, we discuss some examples, which are shown in Table 5.5.

Pharo2. Rule 1, intersect(*)→ intersectIfNone(*,*), replaces a method with
a more robust one, that allows one to provide a different behavior when the
intersection is empty.

Pharo3. Rules 2 and 3 improve code legibility, as it replaces two method

6http://goo.gl/jKrHPb
7Examples of mailing coordination involving API changes about method replacement:

http://goo.gl/k9Fl0K and http://goo.gl/UVO910.
8Examples of mailing list coordination involving API changes about method suggestion:

http://goo.gl/50q2yZ, http://goo.gl/SkMORX and http://goo.gl/ZgvsVF.

http://goo.gl/jKrHPb
http://goo.gl/k9Fl0K
http://goo.gl/UVO910
http://goo.gl/50q2yZ
http://goo.gl/SkMORX
http://goo.gl/ZgvsVF
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Table 5.5: Examples of rules about method suggestion.

System Rule
Pharo2 1 intersect(*)→ intersectIfNone(*,*)

Pharo3

2 isNil().ifTrue(*)→ ifNil(*)
3 Scanner.new().scanTokens(*)→ parseAsLiteralToken()
4 UserManager.default().currentUser()→ Smalltalk.tools().userManager()
5 keys().do(*)→ keysDo(*)

Seaside
6 beginsWith(*)→ beginsWithSubCollection(*)
7 registerAsApplication(*)→WAAdmin.registerAsApplicationAt(*,*)

Moose 8MooseModel.root().add(*)→ install()
Glamour 9 assert(equals(*,*))→ assertEquals(*,*)

Roassal
10 ifEmpty(*)→ isEmpty().ifTrue(*)
11 Character.cr()→ ROPlatform.current().newLine()

calls by a single, clearer one. Rule 4 is about using the class Smalltalk as a cen-
tral entry point to the system; in fact, Smalltalk class acts as a facade to access
the system. In Rule 5, keys().do(*) → keysDo(*), the use of keysDo(*) avoids
creating an extra collection in the iterating process (thus, saving memory) as
pointed by an expert.

Seaside. Rule 6, beginsWith(*) → beginsWithSubCollection(*), is a conven-
tion to support Seaside and its clients to be platform-independent. Rule 7 is
a convention to make the call more explicit by using a static method.

Moose. Rule 8, MooseModel.root().add(*)→ install(), represents an evolu-
tion of the API to deal with the addition of models. Even if both options are
valid, the latter is clearer and improves code legibility.

Glamour. Rule 9, assert(equals(*,*))→ assertEquals(*,*), represents the use
of a better suited unit test API.

Roassal. In the Pharo language, one expects the rule isEmpty().ifTrue(*)→
ifEmpty(*) to test empty objects in conditional statements. However, in Roas-
sal, the convention is the opposite, so it generated the Rule 10: ifEmpty(*)→
isEmpty().ifTrue(*). The expert pointed that Roassal adopts this usage con-
vention because the system (and its clients) should be portable over different
Smalltalk platforms, and as ifEmpty(*) is Pharo-specific, it should not be used.
Finally, Rule 11, Character.cr() → ROPlatform.current().newLine(), is about a
newway to represent the carriage return also to ensure portability of platform.

5.6.2 Effort to Produce Rules

In this subsection we discuss the effort to produce valid rules with our ap-
proach andwith a classical data-mining approach. In our approach,we apply
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two steps: first frequent itemset mining, and second association rules generation
on some selected itemsets during the rule discovering process (see Subsec-
tion 5.2.3). In contrast, using the classical data-mining approach to discover
rules would mean to apply these steps on all itemsets.

In order to generate rules using the classical approach, we compute asso-
ciation rules directly from the changes of the entire system. In this case, we
only considered associations rules in which the left side contained deleted
calls and the right side contained added calls since this is the format used
in our work (i.e., Evidences→ Replacement). If all formats were considered,
very few or even no valid rules would be produced in this approach given
the great amount of rules generated by large datasets. Thus, we ranked the
rules in decreasing order of support and confidence values.

For each case study, we evaluated the same number of rules of our experi-
ment (see Table 5.3). For example, for the Pharo2 case study, there are 62 rules,
thus, we evaluated for the classical approach the first 62 association rules in
the ranking, i.e., the top-62. We reused the validation of the experts to vali-
date the rules obtainedwith the classical approach; for the cases in which the
classical approach produced a rule not previously validated by the experts,
the authors of the study validated them with the support of code examples
and documentation.

Table 5.6 shows the number of valid rules for each approach9. We see that
our approach generated more valid rules for all the case studies. Overall,
the classical approach performs worse because, for large frequent changes
(i.e., changes that have more than one deleted or added calls), many rules
are created that are permutations or subsets of the elements of the itemset,
thus, generating noisy rules. On the other hand, for the case of large frequent
changes, our approach filters noisy rules keeping only the largest change it-
self (cf. Subsection 5.2.3).

When there is no large frequent changes, both approaches can be equiva-
lent in terms of rules they can find (recall that we applied an extra filter to the
classical approach to avoid producing rules in the wrong format “Replace-
ment→ Evidences”, which would be meaningless). For example, for Moose,
even if our approach generated more rules (i.e., 43 against 39), the difference
is small. However, this was not the case for the other five case studies; e.g.,
only 4 rules were found in Glamour for the classical approach while our ap-
proach found 15.

In Table 5.6 we also see in parentheses the number of rules only detected
by the classical approach. It shows that the rules generated by the classical

9In this experiment, we also consider as valid the rules classified as dont’t know by the
experts. Notice that it does not impact the results of this experiment since this consideration
is done for both approaches.
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Table 5.6:Number of valid rules both classical data-mining and our approach.
In parentheses the number of rules only detected by the classical approach.

Pharo2 Pharo3 Seaside Moose Glamour Roassal
Rules 62 95 76 50 23 36
Classical approach 23 (0) 28 (1) 45 (5) 39 (0) 4 (0) 19 (2)
Our approach 42 71 61 43 15 28

approach were mostly the ones found by our approach. For example, from
the 45 rules detected using the classical approach in Seaside, 5 rules were not
detected by our approach. In Pharo2, Moose and Roassal there were no rule
only detected by the classical approach while in Pharo3 and Roassal there
were 1 and 2 rules, respectively.

Finally, Figure 5.6 compares the evolution of the precision in the top-x
rules. Overall, for our approach, precision remains mostly constant (with
variations when very few rules are considered). Furthermore, it clearly con-
firms that the precision of our approach is better than that of the classical
approach.

5.6.3 Change Analysis

In this subsection we verify how distributed are the changes, which could
be described as rules, over different revisions. Then, we verify whether rules
created from these changes would support developers in the task of finding
violations (i.e., inconsistencies in source code that should be fixed as stated
by the rule) in the case studies themselves.

Change Distribution Analysis

Figure 5.7 shows the distribution of the changes over different revisions.
More specifically, we see the number of revisions versus the number of
changes in two levels of granularity. In the outer chart, changes are shown
by revisions while in the inner chart, we consider two categories: changes
occurring in a single revision and changes occurring in several revisions.

The outer chart shows that a great amount of changes occur in only one
revision. In fact, this happens thanks to refactoring tools found in current
IDEs. However, it is also true that many changes are spread over time in dif-
ferent revisions. For instance, in Pharo3, we see a change that occurs over 13

revisions, and in Moose another change occurs over 17 revisions. The inner
chart shows that when revisions are grouped by one vs. several (i.e., >1) revi-
sions, the latter becomes more noticeable. More specifically, the group with
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Figure 5.6: Precision (y-axis) in the top-x rules (x axis) for both classical data-
mining and proposed approach.
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several revisions represents 45% of the rules for Pharo2, 42% for Pharo3, 39%
for Seaside, 60% for Moose, 47% for Glamour, and 57% for Roassal.
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Figure 5.7: Revisions and changes in two levels of granularity. Outer chart:
revisions are shown individually. Inner chart: revisions are grouped in 1 or
>1.

Figure 5.8 details the data shown in Figure 5.7 with a box plot10 of the
changes distribution over the revisions. In the box plot, we identify the
Pharo3 change over 13 revisions and the Moose change over 17 revisions
depicted as the dot at the top (outliers are shown as dots in a box plot). The
third quartile (top of the box in the box plot) is 3 for Pharo2 and Moose, and
2 for the other systems, i.e., 25% of the same changes occurred in 3 or more
revisions for Pharo and Moose while in 2 or more revisions for the other
systems. The top whisker (which marks the highest number of changes in
different revisions that is not considered an outlier) is 5 revisions for Pharo2,
6 for Moose and 3 for the other systems.

Thus, we verify that the same changes are found in different revisions,
meaning that they are incrementally fixed by developers. Next, we see how
our approach can alleviate this issue for the case studies themselves, and
avoid the spread of changes.

Gain Analysis

A rulewould support a developer finding violationswhen, from themoment
it is created, the change proposed by the rule continues to occur in different
revisions of the system. Thus, a rule could have been used to support the
developers in the task of finding such violations, and avoided the spread over
revisions.

10Computed with R.
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Figure 5.8: Box plot of rule fixes over revisions.

In order to investigate that, let us consider that a change is frequent
enough to be considered as a rule when it occurs more than 5 times. After
that, when a rule is created, it is able to detect inconsistencies in source code
that should be fixed as stated by such rule.

The box plot of Figure 5.911 shows the distribution of (a) the number of
methods for which the rules detected violations, and (b) the number of days
they took to be fixed for all the case studies. The top whisker is 5 for the
impacted methods and 12 days for the adaptation time. The third quartile
(top of the box in the box plot) is 2 for the impactedmethods, and 5.5 days for
the adaptation time. In other words, 25% of the same rule violations occurred
in 2 or more methods, and they took 5.5 or more days to be fixed. Thus, our
approach can alleviate this problem, and avoid similar large spread in both
number of impacted methods and adaptation time.

Notice that we investigated the gain that our rules could have provided in
the case studies themselves. As the analyzed case studies are large, there was
a relevant gain. In this context, in the case a similar analysis is performed
in client systems, we expect an even more noticeable gain in terms of im-
pacted methods and adaptation time (since, for example, client developers
may be not aware or do not closely follow the frameworks and libraries evo-
lution). Such investigation, at a large-scale ecoystem level, is covered by the
next chapter.

5.6.4 Comparison with the Previous Approach

In this chapter we focus on the extraction of rules to support client systems
while in the previous chapter the goal is to detect system-specific conven-

11For legibility, we filter outliers.
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Figure 5.9: Box plots for (a) impactedmethods and (b) adaptation time of rule
violations.

tions.
On the one hand, system-specific conventions are produced because we

only take into account rules that occur in two or more revisions (cf. Sub-
section 4.2.3). In addition, another characteristic that favors the creation of
system-specific conventions is the presence of the argument value for primi-
tive types in the deltas (cf. Subsection 4.2.2).

On the other hand, we support clients because we consider all rules ex-
tracted from frameworks/libraries as proposed by previous studies in this re-
search area [DR08,SJM08,WGAK10,MWZM12], independently of the num-
ber of revisions the rules occur.

Notice that, by definition, the approach presented in this chapter is more
flexible (because it relies on data-mining) than the one presented in the pre-
vious chapter (because it is based on patterns). Thus, the approach presented
here is able to produce the rules of the previous chapter, at the cost of pro-
ducing more noise, since it neither filters rules over revisions nor uses the
argument value for primitive types in the deltas. A comparison experiment
between both approaches with respect to the rules they generate remains fu-
ture work.

5.7 Threats to Validity

5.7.1 Construct Validity

The construct validity is related to whether the measurement in the study
reflects real-world situations. In our study, the main threat is the validation
of the generated rules.

As an error in this process would bias the results, the rules were mostly



82 Chapter 5. Supporting Client Systems with History-based Rules

validated by experts of the systems under analysis, which is hard to have for
real-world systems, ensuring more confidence to our results.

In two cases (i.e., the rules generated for Seaside and the ones only pro-
duced by the classical approach in Subsection 5.6.2), the rules were manually
validated by the authors of the studywith the support of documentation and
code examples. Previous related studies (e.g., [SJM08,MWZM12,WGAK10])
do not adopt the validation with experts, i.e., the authors of the studies vali-
date the rules themselves.

5.7.2 Internal Validity

The internal validity is related to uncontrolled aspects that may affect the
experimental results. In our study, the main threat is the possible errors in
the implementation of our approach.

Our tool has been (i) used by several members of our laboratory to sup-
port their own problems with frameworks evolution, and (ii) divulged in
an open-source software reengineering mailing list12 such that developers
of this community can use it. Thus, we believe that these tasks reduce risks
of this threat.

5.7.3 External Validity

The external validity is related to the possibility to generalize our results. In
our study, the main threat is the representativeness of our case studies.

We studied six case studies of different size. They are credible case stud-
ies as they are open-source, real-world and non-trivial systems with rele-
vant number of developers. They also come from different domains and in-
clude a large number of revisions and deltas. Despite this observation, our
findings — as usual in empirical software engineering — cannot be directly
generalized to other systems, specifically implemented in other languages.
Moreover, closed-source systems, due to differences in the internal processes,
might have different properties in their commits.

5.8 Summary

In this study, we proposed a novel approach to generate evolution rules by
monitoring changes applied in source code during the framework or library
evolution. Rules are mined from source code history taking into account
the changes between revisions, and they follow the types one-to-one, one-to-
many, many-to-one and many-to-many. Furthermore, our approach provides
either on request rules or automatically generated rules, and our tool is able

12http://www.moosetechnology.org

http://www.moosetechnology.org
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to show code examples of the rules that clarify how the framework/library
adapted to its own changes.

Our approach was evaluated on five open-source systems, and the rules
were assessed with the help of experts with respect to their validity. The re-
sults showed that valid rules were extracted from source code history and
many were related to method suggestion. Moreover, we provided two com-
plementary discussions around the effort to select correct rules and the gain
provided by them. We reiterate here the most interesting conclusions we de-
rived from our study:

1. In the evaluation by the experts the precision remained between 46%
and 86%. For two case studies, the experts were not confident to eval-
uate some rules (thus, this decreased the precision). This suggests the
importance of the validation by experts: some rules are hard to be eval-
uated and involve very specific knowledge. For the cases were the ex-
perts were confident the precision remained between 65% and 86%.

2. Our approach is the first to produce rules one-to-one, one-to-many,many-
to-one and many-to-many involving method replacement and sugges-
tion, thus, improving the spectrum of rules generated by current stud-
ies.

3. Using the classical approach to discover rules in changes of the entire
system was not as effective as using our approach. Our study was able
to produce more valid rules and a better precision, thus, reducing the
effort to find valid ones.

4. The same changes were found in different revisions, meaning that in
many cases they are incrementally fixed by developers. Our approach
can alleviate similar issues by describing changes as rules, thus, avoid-
ing the spread of the changes over time.

The validation presented in this chapter was performed in the systems
under analysis themselves, such as existing work in this research area (e.g.,
[DR08, SJM08, WGAK10, MWZM12]). In practice, a software system is fre-
quently part of a bigger software ecosystem [Lun09]. The analysis of software
evolution and its impact at large-scale level can help developers to better un-
derstand its real extension and what can be done to alleviate such impact. In
the next chapterwe verify the impact of the rules extractedwith the proposed
approach in a large-scale software ecosystem.
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6.1 Introduction

As frameworks evolve, client systems often need to adapt their source code
to use the updated API. To facilitate this time-consuming task, approaches
have been developed to help client developers. This can be done, for exam-
ple, with the support of specialized IDEs [HD05], the help of framework de-
velopers [CN96], or with evolution rules [DR08,SJM08,WGAK10,MWZM12,
HEA+14], as described in the previous chapter.

Commonly, these approaches are evaluated on small case studies such as
individual systems. In practice, a software system is frequently part of a big-
ger software ecosystem,which often exists in large companies, organizations,
or open-source communities [Lun09]. Software ecosystems consist of multi-
ple systems, often interrelated between each other. In this context, it is hard
to predict how systems are used by their clients. For example, developers of
a large corporation pointed to us that sometimes changes in the API of their
core systems would break other systems that they were not expecting. In an-
other case, the evolution of an API affected thousand of clients, but only a
minority of these clients were aware and updated their source code [RLR12].
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These scenarios suggest that the impact of API evolution on large-scale soft-
ware ecosystems may be large and sometimes unknown; managing API evo-
lution is, in this context, a complex and risky task [BCP+13].

To support developers to better understand the real impact of API evolu-
tion and how it could be alleviated, researchers should also support develop-
ers working in software ecosystems. In that respect, a large-scale study was
performed by Robbes et al. [RLR12] to verify the impact of deprecated APIs
on a software ecosystem.

Naturally, API evolution is not restricted to method deprecation. It may
state the use of a better API to improve, for example, code legibility, porta-
bility, performance, etc., or any other replacement not necessarily involving
API deprecation, aswe have seen in the previous chapter. But are client devel-
opers aware about such API replacements? How often and how broad is the
impact on clients?While studies (e.g., [WGAK10,DJ05]) state that some frame-
work changesmayhave consequences (e.g., compile errors) on clients, the real
extension is not known. The awareness of clients with respect to new/better
APIs needs therefore to be investigated; an ecosystem analysis allows us to
verify on the actual clients.

In this chapter, we analyze the impact of API evolution, not related to
API deprecation, of frameworks and libraries on their actual client sys-
tems [HRA+15]. We set out to discover (i) whether API changes cause
propagation in their client systems, and (ii) whether the clients are aware
about these API changes. Our goal is to better understand, at the ecosystem
level, to which extent client developers are affected by the evolution of
frameworks and libraries, and to reason about how it could be alleviated.
Thus, we investigate the following research questions to support our study:

• Frequency. RQ1: How often do API changes cause propagation in the
ecosystem?

• Magnitude. RQ2: How many systems react to the API changes in the
ecosystem and how many developers are involved?

• Duration. RQ3: How long does it take for systems to react and adapt to
the API changes?

• Extension. RQ4: Do all the systems in the ecosystem react to the API
changes?

• Consistency. RQ5: Do the systems react to an API change in the same
way? RQ6: How followed are the API changes by the ecosystem?

In this study we cover the Pharo software ecosystem, which is composed by
systems implemented with the Pharo programming language. It has about
3,600 distinct systems, more than 2,800 contributors, and six years of evolu-
tion. We analyzed 118 important API changes and we detected that: (i) more
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than half of the API changes impacted client systems; (ii) many API changes
impacted the ecosystem in terms of systems, packages, classes, methods, and
developers; (iii) client developers need some time to discover and apply the
new API; (iv) the number of affected systems were much higher than those
that actually react to API changes; (v) replacements were not resolved in an
uniform manner in the ecosystem.

This work extends the study of Robbes et al. [RLR12] that focused on the
analysis of methods marked as deprecated. Thus, this will allow us to com-
pare our results with the ones provided by that study to better understand
how two distinct types of API evolution affect their actual clients. We de-
tected, for example, that the API changes analyzed in our study take more
time to be adopted by clients, and that clients are less aware about them.

The main contributions of this chapter can be summarized as follows:

1. We provide a large-scale study, at the ecosystem level, to better under-
stand to which extent client developers are impacted by API changes of
frameworks and libraries.

2. We provide a comparison between our results and the ones of a previ-
ous work on API deprecation.

Structure of the Chapter

We introduce our ecosystem in Section 6.2. We describe our methodology
in Section 6.3. We present and discuss the results of the experiments in Sec-
tions 6.4 to 6.9. We present the implications of our study in Section 6.10. Fi-
nally, we discuss the threats to the validity of our experiments in Section 6.11,
and we conclude the chapter in Section 6.12.

6.2 The Pharo Ecosystem

6.2.1 Choice of the Pharo Ecosystem, and Alternatives

Weneed to select an adequate ecosystem that is relevant and provide support
for answering our research questions. This step is critical, since determining
which system is part of the ecosystem can be a challenge, if there is no clear
inclusion criterion. For instance, some communities may be spread overmul-
tiple websites that need to be individually analyzed [RLR12]; the initial step
of gathering the list of projects being part of the ecosystem in that case may
be difficult in itself – independently of the subsequent task of gathering the
actual data.

For this study, we select the ecosystem built around the Pharo open-
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source development community. It is hosted by the SqueakSource1 and by
the SmalltalkHub2 source code repositories, which store a large number of
distinct systems. Our analysis included six years of evolution (from 2008

to 2013) with 3,588 systems and 2,874 contributors. There are two factors
influencing this choice. First, the ecosystem is concentrated on two repos-
itories, SqueakSource and SmalltalkHub, which gives us a clear inclusion
criterion. Second, we are interested in comparing our results with the work
of [RLR12]; using the same ecosystem facilitates this comparison.

As an alternative to our choice of ecosystem, we could have selected a
development community based on a more popular language such as Java or
C++. However, this would have presented several disadvantages. First, de-
ciding which systems to include or exclude would have been much more
challenging. Second, the potentially very large size of the ecosystem could
prove impractical. We consider the size of the Pharo ecosystem as a “sweet
spot”: with about 3,600 distinct systems and more than 2,800 contributors,
it is large enough to be relevant, but does not necesitate a large amount of
processing power as the Java Maven ecosystem would [RvDV13].

6.2.2 Pharo, and the Pharo Ecosystem

Pharo is an open-source, Smalltalk-inspired language and environment.
Pharo includes the implementation of all features inherent to an object-
oriented language (collections, exceptions, primitive types, etc.). It provides
a distribution of Smalltalk with a large set of frameworks and libraries as
well as an IDE and several tools.

Pharo is currently used in many industrial and research projects3. For
example, the Seaside web-development framework4, a competitor for Ruby
on Rails as the framework of choice for rapid web prototyping, is developed
by the Pharo community. Moose, an open-source platform for software and
data analysis, is also based on Pharo; this platform is currently supported
by several research groups around the world and adopted in industrial
projects5. Phratch6, a visual and educational programming language, is a
port of Scratch to the Pharo platform. Many other projects are developed in
Pharo and hosted in SqueakSource or SmalltalkHub.

1http://www.squeaksource.com
2http://www.smalltalkhub.com
3http://consortium.pharo.org
4http://www.seaside.st
5http://www.moosetechnology.org/docs/publications
6http://www.phratch.com

http://www.squeaksource.com
http://www.smalltalkhub.com
http://consortium.pharo.org
http://www.seaside.st
http://www.moosetechnology.org/docs/publications
http://www.phratch.com
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6.2.3 The SqueakSource and SmalltalkHub Large-scale Reposito-
ries

SqueakSource and SmalltalkHub repositories are the basis for the software
ecosystem that the Pharo community have built over the years. They are the
de facto platform for sharing open-source code for this community. Therefore,
the large majority of Pharo developers use SqueakSource or SmalltalkHub as
their source code repository. This means that these repositories offer a nearly
complete view of the Pharo software ecosystem.

The SqueakSource repository is also partially used by the Squeak7

open-source development community. SmalltalkHub was created after
SqueakSource by the Pharo community to be a more scalable and stable
repository. As a consequence, many Pharo projects migrated from Squeak-
Source to SmalltalkHub, and nowadays, new Pharo projects are concentrated
in SmalltalkHub. We address this transition between the repositories in our
experiments.

6.3 Methodology

In this section we present the methodology to generate and validate the list
of API changes used in our study.

6.3.1 Selecting frameworks and libraries

The frameworks and libraries from which we extract the API changes come
from the Pharo language itself. They provide the set of APIs that come with
Pharo by default, including collections, files, sockets, unit tests, streams, ex-
ceptions, graphical interfaces, etc.; they are Pharo’s equivalent to Java’s SDK.

We took into account all the versions of Pharo since its initial release, i.e.,
versions 1.0, 1.4, 2.0, and 3.0. Table 6.1 shows the number of classes and lines
of code in each version. The major development effort between versions 1.0

and 1.4 was focused on removing outdated code that came from Squeak, the
Smalltalk dialect Pharo is a fork of, explaining the drop in number of classes
and lines of code.

Table 6.1: Pharo versions size.

Version 1.0 1.4 2.0 3.0

Classes 3,378 3,038 3,345 4,268
KLOC 447 358 408 483

7http://www.squeak.org

http://www.squeak.org
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6.3.2 Generating a list of API changes

We adopted our previous approach [HEA+14], described in Section ??, to
generate a list of API changes. We set out to produce rules with a minimum
support of 5, and a minimum confidence of 50%. The minimum support at 5

states that a rule has a relevant amount of occurrences in the framework or
library, and theminimum confidence at 50%yields a good level of confidence
(as an example, [SJM08] use a confidence of 33% in their approach to detect
evolution rules). Moreover, the thresholds reduce the number of rules to be
manually analyzed.

This process produced 344 rules that were manually analyzed with the
support of documentation and code examples to filter out incorrect or noisy
ones. For example, the rule SortedCollection.new()→ OrderedCollection.new()
(i.e., Java’s equivalent to SortedSet and List, respectively) came out from a spe-
cific refactoring of an analyzed framework but clearly we cannot generalize
this change for clients, so this rule was discarded. This filtering produced 148

rules describing API changes.

6.3.3 Filtering the list ofAPI changes by removingAPI deprecation

Naturally, some of the API changes generated by our approach are related to
API deprecation. As in this work we do not take into account API changes re-
lated toAPI deprecation, they need to be removed fromour list of rules. To do
that, we extracted all methods marked as deprecated found in the analyzed
evolution of Pharo; this produced 1,015 API deprecation. We detected that
fromour list of 148API changes, 30were aboutAPI deprecation. For example,
the API change FileReference.asReference() → FileReference.asFileReference()
is about API deprecation because FileReference.asReference() was marked as
deprecated, so this rulewas discarded. By discarding theAPI changes related
to API deprecation, our final list includes 118 API changes, which are adopted in
this work.

From these API changes, 59 are about method suggestion (i.e., bothmeth-
ods are available to be used by the client; cf. Subsection ??) and 59 are about
method replacement (i.e., the old method is removed, so it is not available to
be used by the client).

Furthermore, 10 out of the 118 API changes involved the evolution of in-
ternalAPIs of the frameworks and librarieswhich, in theory, should not affect
client systems. By internal API, we mean a public component that should
only be used internally by the framework or library, i.e., not by client sys-
tems. For instance, in Eclipse, the packages namedwith internal include pub-
lic classes that is not part of the API provided to the clients [DJ05].

Table 6.2 resumes the types of API changes. In our experiments, we assess
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the use of API changes about method replacement and suggestion as well as
about internal APIs.

Table 6.2: Types of API changes.

Total API changes 118
Replacement 59
Suggestion 59

Internal 10
Public 108

In Table 6.3, we present some examples of the API changes. The first API
change improves code legibility, as it replaces two method calls by a single,
clearer one. The second example replaces a method with a more robust one,
that allows one to provide a different behaviorwhen the intersection is empty.
The third is a usage convention: Pharo advises not to use Object.log() meth-
ods, to avoid problems with the log function. Finally, the fourth one repre-
sents a class and method replacement due to a large refactoring: ClassOrga-
nizer.default() does not exist anymore; ideally, it should have been marked as
deprecated.

Table 6.3: Example of API changes.

id API change (old-call→ new-call)

1 ProtoObject.isNil() and Boolean.ifTrue(*)→ ProtoObject.ifNil(*)
2 Rectangle.intersect(*)→ Rectangle.intersectIfNone(*,*)
3 Object.logCr(*)→ Object.traceCr(*)
4 ClassOrganizer.default()→ Protocol.unclassified()

6.3.4 Assessing reactions of API changes in the ecosystem

When analyzing the reaction of the API changes in the ecosystem, we do not
consider the frameworks and libraries from which we discovered the API
changes.

To detect a reaction to API change in client systems, we analyze every
source code commit in which the same method removes method calls to
the old API and adds method calls to the new API, according to one of
the rules selected above. For example, Figure 6.1 shows an example of
a client (Seaside) commit reacting to the API change ProtoObject.isNil()
and Boolean.ifTrue(*) → ProtoObject.ifNil(*), i.e., the method calls Pro-
toObject.isNil() and Boolean.ifTrue(*) are removed while the method call
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ProtoObject.ifNil(*) is added.

Diff of method RRRssRoot.styles() between two
revisions:
− if (styles.isNil().ifTrue()) {...
+ if (styles.ifNil()) {...

Figure 6.1: Example of a client (Seaside) reaction to the API change ProtoOb-
ject.isNil() and Boolean.ifTrue(*)→ ProtoObject.ifNil(*).

6.3.5 Addressing the transition between SqueakSource and
SmalltalkHub

As stated in the previous section, there was a transition of some projects from
SqueakSource to SmalltalkHub.We detected that 211 projects migrated from
SqueakSource to SmalltalkHub while keeping the same name and copying
the full source code history. We count these projects only once: we only kept
the projects hosted in SmalltalkHub, which hosts the version under develop-
ment and also the full source code history.

We also investigated the possibility that some projects changed names in
the transition (e.g., “Seaside” in SqueakSource, and “SeaSide” in Smalltalkhub);
that could be a source of noise for our treatment. In theory, the migration
was done automatically by a script provided by SmalltalkHub developers,
thus keeping the meta-data such as project name. However, to increase our
confidence in the data, we calculated the Levenshtein distance between the
projects in each repository to detect cases of similar but not equal project
names. We detected that 93 systems had similar names (i.e., Levenshtein
distance = 1). By manually analyzing each of these systems, we detected that
most of them were in fact distinct projects, e.g., “AST” (from abstract syntax
tree) and “rST” (from remote smalltalk). However, 14 systems were the same
project with a slightly different name, e.g., “Keymapping” in SqueakSource
was renamed to “Keymappings” in SmalltalkHub. In these cases, again, we
only kept the projects hosted in SmalltalkHub, as they represent the version
under development and include the full source code history.

6.3.6 Presenting the results

Sections 6.4 to 6.9 present the results of our experiments. Each section is or-
ganized in three parts:

1. General results. It answers the research questions and discusses the re-
sults.
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2. Time-based results. It analyzes the most important results taking into ac-
count the age of the API changes, where earlier API changes are the older
ones and later API changes are the recent ones when they are sorted by
their creation date. This is done because we want to verify whether the
age of an API change influences the analysis. For such comparison, we
use the Mann-Whitney test for assessing whether one of two samples
(earlier and later API changes, in our case) of independent observa-
tions tends to have larger values than the other. This test is used when
the distribution of the data is not normal and there is different partic-
ipants (not matched) in each sample. As is customary, the tests will be
performed at the 5% significance level. We also report effect size which
indicates themagnitude of the effect and is independent of sample size.
Effect size value 0.1, 0.3 and 0.5 are considered small,mediumand large
effects, respectively.

3. Comparison with API deprecation. It compares our results with the ones
provided by [RLR12] onAPI deprecation. This is done in order to better
characterize the phenomenon of change propagation at the ecosystem
level. The comparison is possible because, in most of the cases, the re-
search questions are equivalent for both studies.

Results will be presented, when it is possible, using box plots in confor-
mance with the previous study on API deprecation [RLR12].

6.3.7 Experiment replication

The empirical study presented in this chapter is a replication of the study
provided by Robbes et al. [RLR12]. In our study, we perform an internal repli-
cation [SSS08], which is undertaken by one of the original experimenters, i.e.,
we repeated our own experiments. This study can also be classified as a close
replication [SSS08].

Regarding the method of analysis, our study analyzed rules coming from
frameworks and libraries while the original study analyzed rules coming
from deprecated methods.

Due to such fact, there is also a difference on the task of our replication.
We assess commits in the ecosystem that applied the prescribed API change
(i.e., the removals and additions of method call according to the rule we in-
ferred). In the original study, the authors were primarily interested in the
removals of the deprecated methods, but did not specify their replacement.
Thus, by definition,we aremore rigorouswhen assessing a reaction to anAPI
change. This comes at the cost of not considering alternative reactions to the
API change, i.e., reactions different of the ones extracted from the analyzed
frameworks and libraries.
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Finally, there is also a small difference on the subject under analysis: we
studied a larger ecosystem (SmalltalkHub and SqueakSource) while the orig-
inal work studied only SqueakSource.

6.4 Frequency of Change Propagation

Next, we present the results of our first research question about the frequency
of change propagation.
RQ1. How often do API changes cause propagation in the ecosystem?

6.4.1 General results

From the 118 API changes, 62 (53%) caused reactions that impacted at least
one system in the ecosystem while 56 (47%) did not cause any reaction. This
means that when doing any change on such APIs, the developers should
be aware that there is roughly 50% chances that this change will impact the
clients.

Moreover, from the API changes that caused reactions, 5 are internal,
meaning client developers also use internal parts of frameworks and libraries
to access functionalities not available in the public interfaces [DR08,BR06].

The other API changes that did not cause reactions could only be used
internally by the frameworks and libraries; alternatively, the clients could
still be unaware of the API change. In fact, we see in the next research ques-
tions that many systems take time to react to API changes. Hence, some API
changes may not have been applied by all systems yet.

6.4.2 Time-based results

The proportion of reactions in the ecosystem may be also influenced by the
age of the API changes. We may expect recent API changes to cause less re-
actions than older ones. In that respect, we verify whether there is a higher
proportion of earlier API changes that cause propagation.

Considering the 1/3 earlier API changes (i.e., 39 out of 118), 21 (54%)
caused reactions while 18 (46%) did not cause any reaction. In contrast, con-
sidering the 1/3 later API changes, 16 (40%) caused reactions while 24 (60%)
did not cause any reaction. This result confirms that earlier API changes
caused more reactions than later ones, thus, clients that did not react may
do later.

6.4.3 Comparison with API deprecation

In the API deprecation study, 12% (93 out of 762) of the deprecated entities
caused reactions in the ecosystem.We cannot make a direct comparison with
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our results because such study considers all possible API deprecation while
in our study we do not analyze all possible API changes (i.e., we set out a
threshold and analyze the most important ones).

However, both studies demonstrate that there are reactions at the ecosys-
tem level. The low reaction in the API deprecation work suggests that frame-
work developers follow defensive practices by deprecating even entities used
only internally and that clients are unaware [RLR12], similarly to what hap-
pens in our study. Furthermore, even if both results are not directly compa-
rable, one could try to investigate these two results to confirm whether there
is such a difference.

6.5 Magnitude of Change Propagation

In this section we present the results of our second research question about
the magnitude of change propagation.
RQ2. How many systems react to the API changes in the ecosystem and how many
developers are involved?

6.5.1 General results

In this research questionwequantify the reactions to theAPI changes in num-
ber of systems, packages, classes, methods and developers.

To determine the magnitude of a change propagation, we need to detect
when the changewas available to be used by client systems.We consider that
an API change is available from the first moment it was used internally in the
framework or library. All commits after this moment that remove a method call to
the old API and add a method call to the new API are considered to be reactions to
the API change.

Table 6.4: Magnitude of change propagation.

Systems Packages Classes Methods Developers

Total 178 252 503 796 134
Avg. 4.9 5.6 9 13.4 4.4

As shown in Table 6.4, 178 client systems reacted to API changes and on
average 4.9 systems reacted to a change causing propagation; these changes
involved 134 distinct developers (i.e., distinct commit authors). We analyze
the distribution of such data (i.e., the API changes that caused change prop-
agation) in the box plots shown in Figures 6.2 and 6.3. Moreover, in research
question 4, we discuss the relative distribution of such data.
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Reacting systems and packages

Figure 6.2a shows the distribution of reacting systems: the 1st quartile is 1

(bottom of the box), the median is 2 (middle of the box), the 3rd quartile is 5

(i.e., 25% of the API changes cause reactions in 5 or more systems, forming
the top of the box in the box plot), and the maximum8 is 11 (i.e., it marks the
highest number of reacting systems that is not considered an outlier, form-
ing the top whisker of the box). The API change isNil().ifTrue(*) → ifNil(*),
for example, caused the largest reaction, 41 systems reacted; this change is
depicted as the dot at the top of the box plot in Figure 6.2a (in a box plot all
outliers are shown as dots).

For packages (Figure 6.2b), the 1st quartile is 1, the median is 2, the 3rd
quartile is 7, and the maximum is 16.
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Figure 6.2: Box plots for (a) systems and (b) packages reacting toAPI changes.

Reacting classes and methods

The figures at the level of classes and methods also follow similar distribu-
tions. For classes (Figure 6.3a), the 1st quartile is 1, the median is 3, the 3rd
quartile is 13, and the maximum is 23. Finally, for methods (Figure 6.3b), the
1st quartile is 2, the median is 6, the 3rd quartile is 17, and the maximum is
39.

These results show that some systems reacted several times to the same
API change: the median system reaction is 2 while the median method reac-
tion is 6. Overall, the impact is localized per system (few classes reacted for
each system) whereas it is spread over several systems. For example, the API
change isNil().ifTrue(*)→ ifNil(*) caused reaction in 41 systems, 46 packages,
69 classes, and 89 methods.

8We adhere to the naming used in [RLR12].
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Figure 6.3: Box plots for (a) classes and (b) methods reacting to API changes,
and (c) affected developers.

Reacting developers

The number of developers involved by the change propagation is shown in
Figure 6.3c, as the number of commit authors that react to the API changes.
In this case, the 1st quartile is 1, the median is 2, the 3rd quartile is 5, and
the maximum is 11. The median at 2 shows that many change propagations
involve few developers while the 3rd quartile at 5 shows that some of them
involve several developers. The API change isNil().ifTrue(*)→ ifNil(*), for ex-
ample, involved a large number of developers: 37.

Overall, the distribution of developers involved in the change propaga-
tion is similar to the number of systems, implying that it is common that
only one developer involved in the same system reacts to the API changes.

6.5.2 Time-based results

The number of reactions in the ecosystem may be also influenced by the age
of the API changes. That is to say, it is intuitively expected that a recent API
change has less reactions than an older one. In this context, we investigate
whether earlier API changes are the ones with larger propagations.

Figure 6.4 shows the reacting systems with the API changes that caused
change propagation separated in two groups: earlier changes and later
changes. For the earlier changes, the median is 2, the 3rd quartile is 6.5, and
the maximum is 13 whereas for the later changes, the median is 2, the 3rd
quartile is 4, and the maximum is 8. Comparing both earlier and later give
a p-value > 0.05 and effect size = 0.01. While the median is equal for both
groups of changes, the 3rd quartile and maximum show that earlier API
changes have more reactions. Consequently, reactions to more recent API
changes may be yet to come; we investigate this issue in the next research
question.
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Figure 6.4: Box plots for the reacting systems separated by earlier and later
API changes.

6.5.3 Comparison with API deprecation

Our result is different when we compare to API deprecation. In our study
there are 62 API changes reacting while in the API deprecation case there are
93 deprecated entities reacting, i.e., 50%more. However, the median of reac-
tions in our study in 2, whereas it is 5 to the API deprecation, meaning 150%
more reactions. Itmeans that there aremore reactions to theAPI deprecation.
As expected, this is facilitated since deprecated methods produce warnings
to developers with recommendation replacements while in our API changes
nowarning is produced; the problem is only fixed by adeveloper aware about
the API change.

Another difference relies on the number of developers involved in the re-
action. In our study, it is common that only one developer reacts to the API
changes while in the API deprecation study it was more common that sev-
eral developers of the same system reacted. One possible explanation is that
the changes involving deprecated methods are often accompanied by rec-
ommendation messages, thus, in theory, they can be performed by any client
developer. In contrast, the API changes evaluated in this work can only be
performed by developers aware about them. This confirms that reacting to
an API change is not trivial, so sharing this information among developers is
important.

6.6 Duration of Change Propagation

Next, we present the results of our third research question about the duration
of change propagation.
RQ3. How long does it take for systems to react and adapt to the API changes?
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6.6.1 General results

A quick reaction to API changes is desirable for clients to benefit sooner from
the new API. Moreover, individual systems should adapt at once to an API
change, and not over a long period, as they are in an inconsistent state during
that time. Next, we evaluate the reaction and adaptation time of the ecosys-
tem.

Reaction time

We calculate the reaction time to an API change as the number of days be-
tween the starting time and the first reaction in the ecosystem to the API
change. As shown in Figure 6.5a, the minimum is 0, the 1st quartile is 5, the
median is 34, the 3rd quartile is 110, and themaximum is 255. The 1st quartile
at 5 days shows that some API changes see a reaction in only some days: this
is possible if developers, work both on frameworks and on client systems,
or coordinate API evolution via mailing lists9, as suggested by [?]. In con-
trast, the median at about 34 days and the 3rd quartile at 110 days indicate
that someAPI changes take a long time to be applied. In fact, as Pharo is a dy-
namically typed language, someAPI changeswill only appear for developers
at runtime, not in compile time, which can explain the long timeframe.
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Figure 6.5: Box plots for reaction time of (a) all API changes and (b) separated
by method suggestion and replacement, both in number of days.

In addition, we analyze the reaction time considering the two cate-
gories of API changes, method suggestion and replacement, as shown in
Figure 6.5b. For the API changes about method suggestion, the 1st quartile
is 10, the median is 47, the 3rd quartile is 255, and the maximum is 351. In

9Examples of API change coordination via mailing lists: http://goo.gl/50q2yZ,
http://goo.gl/SkMORX, http://goo.gl/ZgvsVF.

http://goo.gl/50q2yZ
http://goo.gl/SkMORX
http://goo.gl/ZgvsVF
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contrast, for the API changes about method replacement, the 1st quartile is
1, the median is 20, the 3rd quartile is 59, and the maximum is 110.

We notice that the reaction time for the API changes about method sug-
gestion is longer than the ones about replacement, implying that the former
is harder to be detected by client developers. This is explained by the fact
that in the API changes about method suggestion, even if the new method
uses a better API, the old method is still valid, so client developers are not
forced to update their code. Ideally, client developers would benefit if such
API changes were presented to them beforehand. In practice, many develop-
ers are simply not aware about them or see no reason to change their running
code.

Adaptation time

For a large system, adapting to a simple API change may not be trivial due to
their source code size. Thus, we computed the adaptation time for the change
propagation on a per-system basis. Wemeasure the interval between the first
and the last reaction to the change propagation on the same system.

We detected that 86% of the adaptations occur in 0 days, indicating that
the majority of the systems fix an API change extremely quickly. This may
occur with the help of refactoring tools found in current IDEs. Figure 6.6a
shows the distribution for the other 14% of adaptations: the 1st quartile is 12

days, the median is 71, the 3rd quartile is 284, and the maximum is 662 (we
filter outliers for legibility). The median at 71 days shows that 50% of these
systems take more than two months to adapt to certain API changes; some
systems may even take years.
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Figure 6.6: Box plots for adaptation time of (a) all API changes and (b) sepa-
rated by method suggestion and replacement, both in number of days.

In Figure 6.6b we analyze the adaptation time considering the two cate-
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gories of API changes. For the API changes about method suggestion, the 1st
quartile is 7.5, the median is 121, the 3rd quartile is 334.5, and the maximum
is 662. For the API changes about method replacement, the 1st quartile is 16,
the median is 18, the 3rd quartile is 201, and the maximum is 211. Again,
similarly to the reaction time, the adaptation time for the API changes about
method suggestion is longer than the ones about replacement. This suggests
that the former takes more time to be adopted in the same system by client
developers.

In summary, the results show that the reaction time of API changes is not
quick. Client developers, naturally, need some time to discover the new API
change and apply them; this time is longer for API changes about method
suggestion. In contrast, the adaptation of API changes in most of the systems
occurs quickly. Still, some large systems may take a very long time to com-
pletely adapt.

6.6.2 Time-based results

The age of the API changesmay also influence the adaptation time.We inves-
tigate whether earlier API changes have a longer adaptation time, i.e., more
systems notice and react, making adaptation time longer.

Figure 6.7 shows the adaptation time (for the 14% of the adaptations that
occur in more than 0 days) separated in the groups earlier and later API
changes. For the earlier changes, the 1st quartile is 32, the median is 284, and
the 3rd quartile is 454. For the later changes, the 1st quartile is 5, themedian is
18, and the 3rd quartile is 133. Comparing both earlier and later give a p-value
< 0.01 and effect size = 0.39. Thus, we confirm that earlier API changes have
a longer adaptation time, and that the variable time also plays an important
role in the adaptation of a system.

earlier changes later changes

0
10
0

20
0

30
0

40
0

50
0

60
0

adaptation time (time analysis)

nu
m

be
r o

f d
ay

s

Figure 6.7: Box plots for the adaptation time separated by earlier and later
API changes.
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6.6.3 Comparison with API deprecation

The reaction time of the API changes presented in our study is different
when we compare to the reaction time of API deprecation. In the API dep-
recation case, the 1st quartile is 0 days, the median at 14 days, and the 3rd
quartile is 90 days (compared to 5, 34 and 110 days, respectively, in our API
changes). Clearly, the reaction to deprecated APIs is faster than in the case of
API changes. This is facilitated by the warning messages produced by dep-
recated methods.

The adaptation time of the API changes reported in our study is compa-
rable to the adaptation time of API deprecation in which most of the systems
adapt quickly while some systems may take a long time. For both studies,
the same explanation can be considered. First, some of the largest systems
on SqueakSource and SmalltalkHub are software distributions, where the
large size of the system and the amount of developers make it comparable to
a small-scale ecosystem. Second, due to the fact that Pharo is a dynamically
typed language, some large and even small systems may miss to update the
API, and keep in such state for a long time.

6.7 Extension of Change Propagation

In this section we present the results of our fourth research question about
the extension of change propagation.
RQ4. Do all the systems in the ecosystem react to the API changes?

6.7.1 General results

In the previous subsection we have seen that some systems take a long time
to react to an API change. We see in this subsection that other systems do not
react at all. To determine whether all systems react to the API changes, we investigate
all the systems that are potentially affected by them, i.e., that feature calls to the old
API.

Table 6.5 shows that 2,188 systems are potentially affected by the API
changes and on average 127 systems are potentially affected by a API change.

Moreover, we detected that 112 API changes (from the 118 analyzed API
changes), including the 10 internal API changes, potentially affected systems
in the ecosystem. In the rest of this subsection, we analyze the distribution of
such data.

Affected systems and packages

Figures 6.8 (a) and (b) show the distribution of systems and packages affected
byAPI changes in the ecosystem.Wenote that the number of affected systems
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Table 6.5: Extension of change propagation.

Systems Packages Classes Methods Developers

Total 2,188 6,322 45,186 107,549 1,579
Avg. 127 220.7 582.5 1,020.6 100.5

and packages are much higher than those that actually react to API changes
(as shown in Figure 6.2). The 1st quartile of affected systems is 15 compared to
only 1 system reacting (packages: 19.5 compared to 1). Themedian of affected
systems by an API change is 56.5 compared to only 2 systems reacting to it
(packages: 82 compared to 2). The 3rd quartile of affected systems is 154.5

compared to 5 systems reacting (packages: 244.5 compared to 7).
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Figure 6.8: Box plots for (a) systems and (b) packages affected byAPI changes.

Affected classes, methods and developers

We also analyze the distribution of affected classes, methods as well as devel-
opers. For classes (Figure 6.9a), the 1st quartile is 29.5, the median is 176, the
3rd quartile is 473, and themaximum is 1,029 (we filter outliers for legibility).
For methods (Figure 6.9b), the 1st quartile is 59, the median is 253, the 3rd
quartile is 744.5, and the maximum is 1,650 (we filter outliers for legibility).
For the developers (Figure 6.9c), the 1st quartile is 13.5, the median is 49, the
3rd quartile is 125.5, and the maximum is 291. Note again that the number of
affected classes, methods and developers as presented in Figure 6.9 aremuch
higher than those that actually react to API changes (as shown in Figure 6.3).
In order to better understand this difference, next we analyze the reactions
in the context of the affected systems.
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Figure 6.9: Box plots for affected (a) classes and (b) methods, and (c) devel-
opers.

Relative analysis

The relative analysis of reacting and affected systems produce a better
overview of the impact. In that respect, comparing the ratio of reacting
systems to the ratio of affected systems gives the distribution shown in
Figure 6.10a. It shows that a very low number of systems react: the median
is 0%, the 3rd quartile is 3%, the maximum is 7%. We investigate possible
reasons for this low amount of reactions.
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Figure 6.10: Box plots for ratios of: (a) reacting affected systems; (b) reacting
alive systems; and (c) reacting alive systems, removing counter reactions.

In a software ecosystem, a possibly large amount of the systems may be
stagnant, or even dead systems [RLR12]. Thus, we first investigate the hy-
pothesis in which systems that did not react either died before the change
propagation started or were stagnant. A system is dead if there are no com-
mits to its repository after the API change that triggered the change propa-
gation. A system is stagnant if a minimal number of commits (less than 10)
have been performed after the API change. Thus, removing dead or stagnant
systems (i.e., keeping alive systems only) produces the distribution shown in
Figure 6.10b: 1st quartile is 0%, the median is 2.5%, the 3rd quartile is 12%,
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and the maximum is 27%.

A second reason why a system would not react to a change is when it is
using another version of the library or framework changing its API, one in
which the API did not change. This may occur when a system does not have
the manpower to keep up-to-date with the evolution and freezes its relation-
ship with a version that is sufficient for it [RLR12]. To estimate this effect,
we measure the number of systems that actually add more calls to the old
API change, i.e., they are counter reacting to the API evolution. Thus, remov-
ing these systems from the alive ones gives the distribution shown in Fig-
ure 6.10c: the 1st quartile is 0%, the median is 9%, the 3rd quartile is 44%,
and the maximum is 100%.

To further detect inactive systems we analyze each repository, Squeak-
Source and SmaltalkHub, separately. Since SmalltalkHub repositorywas cre-
ated by the Pharo community, we expect that developers are more active in
such repository in the recent years. Thus, in Figure 6.11 we perform, for each
repository, the three ratio comparisons shown in Figure 6.10. Firstly, in the
ratio of reacting and affected systems, shown in Figure 6.11a, the median is
0%/0% (for SqueakSource/SmalltalkHub, respectively), the 3rd quartile is
1%/7%, and the maximum is 2%/16%. Secondly, in the ratio of reacting and
alive systems, shown in Figure 6.11b, themedian is 0%/0%, the 3rd quartile is
7%/22%, and the maximum is 16%/50%. Finally, in the ratio of reacting and
alive without counter reacting systems, shown in Figure 6.11c, the median is
0%/0%, the 3rd quartile is 22%/50%, and the maximum is 55%/100%. These
results show that the community in SmalltalkHub is in fact more active, so
reactions are more common in such repository, but, relatively, they are still
low.
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Figure 6.11: Box plots, separated by repository, for ratios of: (a) reacting af-
fected systems; (b) reacting alive systems; and (c) reacting alive systems, re-
moving counter reactions.
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6.7.2 Time-based results

The age of the API changes may also influence the number of affected sys-
tems. We investigate whether earlier API changes affect more systems.

Figure 6.12 shows the number of affected systems separated in the groups
earlier and later API changes. For the earlier changes, the 1st quartile is 18.5,
the median is 55.5, and the 3rd quartile is 212 while for the later changes, the
1st quartile is 5.5, the median is 59, and the 3rd quartile is 130. Comparing
both earlier and later give a p-value = 0.14 and effect size = 0.13. Earlier
API changes affect slightlymore systems. Even if the difference between both
groups is small, the number of potentially affected client systems by the API
changes tends to increase over time. Consequently, as time passes, it will be
more complicated for these clients to migrate to new/better APIs.

earlier changes later changes

0
20
0

40
0

60
0

80
0

10
00

12
00

affected systems (time analysis)

nu
m

be
r o

f a
ffe

ct
ed

 s
ys

te
m

s

Figure 6.12: Box plots for the affected systems separated by earlier and later
API changes.

6.7.3 Comparison with API deprecation

The presented ratio comparison is very different when compared to the API
deprecation study. For the ratio of reacting and affected systems, the 1st quartile
is 13%, the median is 20%, and the 3rd quartile is 31% in the API deprecation
case (compared to 0%, 3% and 7%, respectively, in our API changes), which
confirms the difference between both types of API evolution. These percent-
ages increase in the other ratio comparisons. For the ratio of reacting and alive
without counter reacting systems, the 1st quartile is 50%, themedian is 66%, and
the 3rd quartile is 75% for API deprecation (compared to 0%, 9% and 44%,
respectively, in our API changes). Overall, even if the majority of the systems
affected does not react in both our API changes and in API deprecation, the
latter clearly presents more reactions.

In summary, aminority of systems that aremoderately active update their
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source code to keep up-to-date with the API evolution. In contrast with the
API deprecation case, amajority of systems that aremoderately active update
their source code. Moreover, in both studies many systems do not update
either because they are dead or stagnant systems, or because they froze their
dependency to an old version of the library or framework. As a consequence,
the effort of migrating to newer versions becomes more expensive over time
due to change accumulation.

6.8 Consistency of Change Propagation (1)

Next, we present the results of our fifth research question about the consis-
tency of change propagation.
RQ5. Do the systems react to an API change in the same way?

6.8.1 General results

Ideally, an API change should provide a single replacement, making the
adaptation simpler for client developers. In that respect, the API changes
analyzed in the previous research questions described the main way the
analyzed frameworks and libraries evolved. However, some API changes
may have more complex solutions, allowing multiple replacements [RLR12].
For example, Table 6.6 shows three examples of API changes extracted from
the analyzed frameworks and libraries, and their reactions by the ecosystem.

Table 6.6: Examples of API changes; the numbers show the confidence of the
replacement in the ecosystem.

Old call
New call

Framework/library Ecosystem reaction

doSilently() suspendAllWhile() 80% suspendAllWhile()

Pref.standardMenuFont() StandardFonts.menuFont()
40% StandardFonts.menuFont()
40% ECPreferences.menuFont()

SecHashAlgorithm.new() SHA1.new()
63% HashFunction.new()
30% SHA1.new()

The first API change, doSilently()→ suspendAllWhile(), is mostly followed
by the ecosystem, presenting a confidence of 80% (i.e., 80% of the commits
that removed the old call also added the new call). For the secondAPI change,
Preferences.standardMenuFont() → StandardFonts.menuFont(), the ecosystem
reacts with two possible replacements, both with confidence of 40%. For the
third API change, SecureHashAlgorithm.new() → SHA1.new(), the ecosystem
also reacts with two possible replacements: a main one with confidence of
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63% and an alternative10 one with 30%. Notice that, in this case, the main
replacement is not the one extracted from the analyzed framework/library,
i.e., it is HashFunction.new() instead of SHA1.new().

To better understand such cases, we analyze the consistency of the API
changes by verifying the reactions of the ecosystem.

Consistency of main and alternative replacements in the ecosystem

Figure 6.13a presents the confidence distribution of the main and alternative
replacements in the ecosystem. For the main replacement, the 1st quartile
is 36%, the median is 60%, and the 3rd quartile is 100%. For the alternative
replacement, the 1st quartile is 20%, the median is 25%, and the 3rd quartile
is 31%.

This results show that alternative replacements can be found in the
ecosystem (such as the second and third examples in Table 6.6), but with less
confidence than the main ones. Therefore, alternative replacements explain
a minority of the cases where affected systems do not react to the prescribed
API changes.
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Figure 6.13: Box plots for the confidence of (a) the reaction in the ecosystem
(main and alternative replacements) and (b) the reactingAPI changes (frame-
works/libraries and ecosystem).

Consistency of API changes in the frameworks/libraries and in the ecosys-
tem

Figure 6.13b compares the confidence distribution of the 62 reacting API
changes both in the analyzed frameworks/libraries and in the ecosystem.

10Main and alternative replacements of API changes in the ecosystem are determined by
verifying how the ecosystem replaces the old calls. This is done by applying our approach
described in Section ?? in the ecosystem itself instead of the frameworks/libraries.
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In the analyzed frameworks/libraries, the minimum is 53%, the 1st quartile
is 81%, the median is 95%, and the 3rd quartile is 100% (recall that a mini-
mum confidence of 50%was adopted to generate the rules from the analyzed
frameworks/libraries as described in Subsection 6.3.2). In the ecosystem, for
the sameAPI changes, theminimum is 2%, the 1st quartile is 28%, themedian
is 60%, and the 3rd quartile is 100%. Two observations can be derived from
such distributions.

First, there is clearly a difference in the confidence: the API changes are
more consistently followed by the frameworks/libraries than by the ecosys-
tem. This suggests that many replacements are not resolved in a uniform
manner in the ecosystem: client developers may adopt other replacements
in addition to the prescribed ones (such as the second and third examples
in Table 6.6); method calls may be simply dropped, so they disappear with-
out replacements; and developers may replace the old call by local solutions.
Thus, this result provides evidence that API changes can bemore confidently
extracted from frameworks/libraries than from clients (i.e., the ecosystem).

Second, confidence of the reacting API changes in the ecosystem (Fig-
ure 6.13b right side) is mostly equivalent to the main replacement reactions
(Figure 6.13a left side). This implies that, in the majority of the cases, the API
changes proposed by the frameworks/libraries are the main replacement in
the ecosystem. In other words, it means that API changes such as the first one
in Table 6.6 (i.e., where the ecosystem follows the framework/library) repre-
sent the majority of the cases. In contrast, API changes such as the third one
in Table 6.6 (i.e., where the ecosystemdoes not follow the framework/library)
represent the minority of the cases.

6.8.2 Time-based results

The age of the API changes may also influence the consistency of reactions.
We investigate whether earlier API changes are more heterogeneous in their
reactions (more reactions, more opportunity to diverge). Figure 6.14 presents
the distribution shown in Figure 6.13b separated by earlier and later API
changes.

In the frameworks and libraries (Figure 6.14a), the median is 95% for the
earlier changes and 100% for the later changes. Comparing both earlier and
later give a p-value > 0.05 and effect size = 0.06. Even though, the difference
between the median is small, earlier API changes present overall less confi-
dence, implying that their reactions are slightlymore heterogeneous than the
later ones.

In the ecosystem (Figure 6.14b), the difference between earlier and later
API changes are clearer. In this case, for the earlier changes, the 1st quartile
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is 21%, the median is 35%, and the 3rd quartile is 60%. For the later changes,
the 1st quartile is 61%, the median is 85%, and the 3rd quartile is 100%. Com-
paring both earlier and later give a p-value < 0.01 and effect size = 0.46. This
confirms that, in the ecosystem, earlier API changes are more heterogeneous
in their reactions. We can conclude that as old API changes produce more re-
actions over time (as shown in the time-analysis of RQ3), such reactions are
more likely to diverge.
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Figure 6.14: Box plots for the confidence of earlier and later reacting API
changes in the (a) frameworks/libraries and (b) ecosystem.

6.8.3 Comparison with API deprecation

For the main replacement in the API deprecation study, the 1st quartile is
46%, the median is 60%, and the 3rd quartile is 80% (compared to 36%, 60%,
and 100%, respectively, in our study). Even if the API changes do not pro-
duce warnings to alert the developer, the median at 60% shows that the dis-
tribution of the main replacement is mostly equivalent for API changes and
deprecation.

Alternative replacements are not analyzed in the API deprecation study,
so we cannot compare with our results.

6.9 Consistency of Change Propagation (2)

Finally, we present the results of our last research question, which is also
about the consistency of change propagation.

RQ6. How followed are the API changes by the ecosystem?



6.9. Consistency of Change Propagation (2) 111

6.9.1 General results

In the previous research questionwe have seen that the ecosystemmay adapt
with other replacements instead the main one prescribed by the frameworks
and libraries. Even if such cases happen in practice, ideally, a single replace-
ment should be provided and adopted by clients.We verify how followed are
the API changes by the ecosystem, classifying them in three categories:

• Rarely followed: confidence is ≤ 10%.

• Somewhat followed: confidence is between 10% and 50%.

• Mostly followed: confidence is ≥ 50%.

Figure 6.15a shows the distribution of the classification for the 62 reacting
API changes. The minority of the API changes, 4 (6%) are rarely followed; 21

(34%) are somewhat followed; and 37 (60%) aremostly followed— from such,
18 (29%) are totally followed with a confidence of 100%.

Figure 6.15b presents that only 13 (21%) API changes have multiple re-
placements in the ecosystem. Thus, this explains roughly half of the cases
where the API changes are not consistently followed by the ecosystem (i.e.,
the rarely and somewhat categories). The other half of the cases where the API
changes are not consistently followed is due, for example, the drop ofmethod
calls with no replacement, or the use of local solutions by the client develop-
ers. This investigation remains future work.
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Figure 6.15: (a) How client developers follow the API changes, and (b) num-
ber of single and multiple replacements in the ecosystem.

6.9.2 Time-based results

In this subsection we investigate whether earlier API changes are more or
less followed. Figure 6.16a shows that, for the earlier API changes, 4 (13%) are
rarely followed; 16 (52%) are somewhat followed; and 11 (35%) aremostly fol-
lowed. In contrast, for the later API changes, 0 are rarely followed; 5 (16%) are
somewhat followed; and 26 (84%) are mostly followed. Figure 6.16b shows
that 11 (35%) earlier API changes and 2 (6%) later API changes have multiple
replacements.
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In summary, earlier API changes are less followed than the later ones.
Moreover, as API changes become old, other replacements are adopted by
the ecosystem than the ones prescribed by the frameworks and libraries.
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Figure 6.16: Time analysis for (a) how client developers follow the API
changes, and (b) number of single and multiple replacements in the ecosys-
tem.

6.9.3 Comparison with API deprecation

Such experiment was not performed by the API deprecation study.

6.10 Implications

The previous analysis allowed us to better understand, at the ecosystem level,
to which extent client developers were impacted by API evolution of frame-
works and libraries. Thus, the answers to our research questions allow us to
formulate the following implications of our study.

API changes have a large impact on the ecosystem

Our study shows that 53% (62 out of 118) of the analyzedAPI changes caused
reaction in 178 systems and affected 134 developers. A single API change
impacted 41 systems and 37 developers. Overall, the reaction time of API
changes is not quick. Client developers, naturally, need some time to discover
and apply the new API; this time is even longer for the API changes about
method suggestion. In contrast, the adaptation of the API changes in most
of the systems occurs quickly. However, large systems may take a very long
time to completely adapt.

A large amount of systems are potentially affected by the API changes.
We show that 2,188 systems may be affected by the API changes with an av-
erage of 127 systems per API change. In fact, the number of affected systems,
packages, classes, methods, and developers are much higher than those that
actually react to API changes, i.e., the majority of the systems do not react at
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all. This could be due to several reasons: either because they are unaware or
dormant systems, or because they follow a specific framework/library ver-
sion. A minority of this lack of reactions is explained by client developers
reacting in a way different of the one proposed by our API changes (i.e., they
are not following themain recommendation of the frameworks and libraries).

Time plays an important role on the analysis of API evolution

Our time-based results show that the age of an API change should be taken
into account in the analysis. For all research questions, we observed distinct
distributions between earlier and later API changes. Overall, earlier API
changes have more propagation, cause slightly more reactions, have longer
adaptation time, and affect slightly more systems. Moreover, earlier API
changes cause more heterogeneous replacements, and are less followed.
Therefore, such results show in large-scale level that as time passes: (i)
the frequency, magnitude, duration and extension of the reactions tend to
increase, and (ii) the reactions tend to be less consistent.

Deprecation mechanisms should be more adopted

Half of the API changes analyzed in this work (59 out of 118) were about
method replacement. It means that such API changes were probably miss-
ing to use explicit deprecation mechanisms. Ideally, they should have been
marked as deprecated by the framework and library developers. In fact, in
large frameworks, developers may not know whether their code is used by
clients: this may cause a growth [RLR12] or a lack in the use of depreca-
tion [WGAK10,DJ05].

In our study, this lack of deprecation was mainly due to large refactor-
ings in the frameworks and libraries. For instance, the library for dealingwith
files completely changed11 after Pharo 1.4. As a result, some APIs missed to
be marked as deprecated; e.g., in the Moose migration to Pharo 3.0, a devel-
oper noticed this issue and commented12: “In FileSystem, ensureDirectory()
was renamed to ensureCreateDirectory() without a deprecation”, the library
developer then answered: “Fill up a bug entry and we will add this depreca-
tion. Good catch”. In fact, for such cases, asking in mailing lists is the current
alternative for client developers13, confirming that mailing lists are popular
tools developers use to satisfy their ecosystem-related information needs [?].

11http://stackoverflow.com/questions/15757529/

porting-code-to-pharo-2-0
12http://forum.world.st/moving-moose-to-pharo-3-0-td4718927.html
13Examples of mailing coordination involving API changes about method replacement

found in our work: http://goo.gl/k9Fl0K, http://goo.gl/UVO910.

http://stackoverflow.com/questions/15757529/porting-code-to-pharo-2-0
http://stackoverflow.com/questions/15757529/porting-code-to-pharo-2-0
http://forum.world.st/moving-moose-to-pharo-3-0-td4718927.html
http://goo.gl/k9Fl0K
http://goo.gl/UVO910
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Another reason to the lack of deprecation is the adoption of naming con-
ventions (e.g., moving methods to a package named “deprecated”) instead
of adopting explicit deprecation mechanisms, which is a better solution for
clients. An in-depth investigation to detect and avoid forgotten API depreca-
tion remains future work.

Client developers use internal parts of frameworks or libraries

All the internal API changes (i.e., 10) analyzed in this work affected client
systems. From such internal API changes, 5 caused the clients to react as in
the frameworks or libraries. Thus, our results reinforce (at large-scale and
ecosystem level) previous studies [DR08,BR06,Bus13,BSvdB13] in the sense
that even if client systems should only use public APIs, they also use internal
parts of frameworks or libraries to access functionalities not available in the
public interfaces for a variety of reasons.

For example, some internal APIs used in the ecosystem are related to in-
ternal parts of the Pharo language such as its graphical interface, AST engine,
hash algorithm implementation, versioning system, among others, which,
ideally, should not be used by clients.

Replacements are not resolved in a uniform manner

Many replacements are not resolved in a uniform manner in the ecosystem.
Client developersmay adopt other replacements in addition to the prescribed
ones; method calls may be simply dropped; and developers may replace the
old call by local solutions. As a result, in our case study, API changes can be
more confidently extracted from frameworks/libraries than from clients. In
fact, there is no clear agreement on this topic: while some studies propose
the extraction of API changes from frameworks/libraries (e.g., [DR08]) other
adopt the extraction from clients (e.g., [SJM08]). This study reinforces frame-
works/libraries as a more reliable source to extract API changes.

Reactions to API changes can be partially automated

As we observed, many systems do not react to the API changes because they
are not aware. Moreover, in the case of large client systems, the adaptation
may take a large time and is costly if done manually. In practice, most of
the API changes that we found in this work can be implemented as rules
in current static analysis tools such as FindBugs [HP04], PMD [Cop05], and
SmallLint [RBJ97]. Thus, these rules (attached to a confidence level) could
help client developers to keep their source code up-to-date with the new
APIs. Other API changes are more complex [SJM08] than the ones investi-
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gated in this work, involve complex refactorings, and are not easy to auto-
mate [CW12].

In addition, the comparison with API deprecation allow us to formulate
the next implications:

API changes are less visible than API deprecation

Our comparisons show that API deprecation cause more reactions in the
ecosystem thanAPI changes. Also, in theAPI deprecation two ormore devel-
opers involved in the same systems normally react while in the API changes
only one developer is involved in the reaction. This shows that the knowl-
edge about our API changes is more concentrated, so spreading it among
developers is important.

Moreover, the reaction to deprecated APIs is faster than to the API
changes. This occurs because deprecated methods produce warnings to
developers with recommendation replacements while, in the API change
case, developers need time to discover and apply the new API.

API changes are not as followed as API deprecation

Our comparisons show that the majority of the affected systems do not re-
act neither in our API changes nor in API deprecation. However, the former
clearly presents less reaction. When considering only systems that are mod-
erately active, a majority updates their source code in the API deprecation
case while only a minority updates their source code in the API change case.

As a result, the effort of porting to newer versions becomes more expen-
sive in both approaches due to change accumulation, especially in the API
change case. This reinforces the need of an automated approach to keep client
developers aware about API changes of frameworks and libraries.

6.11 Threats to Validity

6.11.1 Construct Validity

The construct validity is related to whether the measurement in the study
reflects real-world situations. In our study, the main threat is the quality of
the data we analyze and the degree of manual analysis that was involved.

Software ecosystems present some instances of duplication (around 15%
of the code [SLR12]), where packages are copied from a repository to another
(e.g., a developer keeping a copy of a specific library version). This may over-
estimate the number of systems reacting to an API change.
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With respect to the API changes used in our study, they were manually
validated by the authors of thesis with the support of documentation and
code examples to eliminate incorrect and noisy ones.

Smalltalk (and Pharo) is a dynamically typed language, so the detection
of API change reaction may introduce noise as systems may use unrelated
methods with the same name. This means that an API change that uses a
common method name make change propagation hard to be detected. This
threat is alleviated by our manual filtering of noisy API changes.

Another factor that alleviates this threat is our focus on specific evolution
rules (i.e., a specific replacement of one or more calls by one or more calls).
For research questions 1 to 3, we include only commits that are removing
an old API and adding a new API to detect an API reaction. Requiring these
two conditions to be achieved, decreases—or in some cases eliminates—the
possibility of noise. For research question 4, we require the presence of the
methods that contain a call to the old API. In this case, the noise could have
been an issue, however, this threat is reduced since we discarded the API
changes involved with common methods, i.e., the noisy ones.

6.11.2 Internal Validity

The internal validity is related to uncontrolled aspects that may affect the
experimental results. In our study, the main threat is the possible errors in
the implementation of our approach.

Our tool to detect API changes has been (i) used by several members of
our laboratory to support their own problems with frameworks evolution,
and (ii) divulged in the Moose reengineering mailing list, so that developers
of this community can use it; thus, we believe that these tasks reduce the risks
of this threat.

6.11.3 External Validity

The external validity is related to the possibility to generalize our results. In
our study, the main threat is the representativeness of our case studies.

We performed the study on a single ecosystem. It needs to be replicated
on other ecosystems in other languages to characterize the phenomenon of
change propagation more broadly. Our results are limited to a single com-
munity in the context of open-source; closed-source ecosystems, due to dif-
ferences in the internal processes, may present different characteristics. Still,
our study detects API change reactions in thousands of client systems, which
makes our results more robust.

The Pharo ecosystem is a Smalltalk ecosystem, a dynamically typed
programming language. Ecosystems in a statically typed programming lan-
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guage may present differences. In particular, we expect static type checking
to reduce the problem of noisy API changes for such ecosystems.

Our study considers API changes that were not marked as deprecated. In
the previous work of [RLR12], the authors consider only changes that were
marked as deprecated. Thus, there is no overlap between the changes investi-
gated in this work and the ones investigated by that study. In fact, these stud-
ies complement each other in order to better characterize the phenomenon
of change propagation at the ecosystem level.

6.12 Summary

This chapter presented an empirical study about the impact of API evolution,
in the specific case of methods unrelated to API deprecation. The study was
done in the context of a large-scale software ecosystem, Pharo, with about
3,600 distinct systems. We analyzed 118 important API changes from frame-
works and libraries, and we found that many impacted other systems. We
reiterate the most interesting conclusions from our experiment results:

• Many API changes can have a large impact on the ecosystem in terms
of projects, packages, classes and methods affected as well as develop-
ers. Moreover, client developers need some time to discover and apply
the new API, and the majority of the systems do not react at all. Such
analysis can be influenced by the age of the API change.

• API changes can not be marked as deprecated because framework de-
velopers are not aware of their use by clients, which may be aggravated
by large refactorings in the frameworks. Moreover, client developers
can use internal parts of frameworks to access functionalities not avail-
able in the public interfaces.

• Replacements can not be resolved in a uniform manner in the ecosys-
tem. Thus, API changes can be more confidently extracted from frame-
works/libraries than from clients.

• Most of the analyzed API changes can be implemented as rules in static
analysis tools in order to reduce the adaptation time or the amount of
projects that are not aware about a new/better API.

• Information about API changes can be concentrated in a small amount
of developers. It is important to share it among more developers, sim-
ilarly to what happens for API deprecation. Overall, API changes and
deprecation can present different characteristics, for example, reaction
to API changes is slower and less clients adapts.
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7.1 As a Conclusion

Software evolution is naturally a complex task. The impact of software evolu-
tion may be large and sometimes unknown. We need to ensure that changes
are consistently propagated to dependent systems.

We reviewed several approaches to support software evolution. We orga-
nized them in three parts: (i) analysis of generic and expert-based rules, (ii)
extraction of history-based rules, and (iii) analysis of software ecosystems.
Existing approaches lack of a deep understanding of the benefits provided
by expert-based rules, a better use of source code history to extract history-
based rules, and an analyze of the impact of source code changes in the actual
clients.

In this thesis, we argue for the need to analyze and improve rules as to bet-
ter support developers keeping track of source code changes. We cover three
aspects: (i) benefits of expert-based rules, (ii) improvement of history-based
rules, and (iii) the impact of source code changes in a software ecosystem.

We provide (i) new experiments on the relationship between violations
generated by expert-based rules and defects [HADA12], (ii) two novel ap-
proaches to extract history-based rules from code repository to better support
evolving systems and their clients [HADV13,HEA+14,HAE+15b,HAE+15a],
and (iii) a large-scale study, at the ecosystem level, to understand towhich ex-
tent client developers are impacted by source code evolution [HRA+15].

We evaluated each approach with the use of research questions that were
answered when necessary with the use of statistical tests. The experts also
played an important role in our validation, assessing the extracted history-
based rules.

Next, we present a summary and we reiterate the most interesting con-
clusions we derived from our study.
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Benefits of Expert-based Rules

This work reported on a systematic study to investigate the relation between
generic or system-specific violations and observed defects. The study was
performed on Seaside, a real world-system, that has been used and main-
tained for years, and for which system-specific rules were created by experts.
To the best of our knowledge, this study is the first to use system-specific
rules created by experts to defect prevention. For the case study under analy-
sis, generic rules were not effective enough to be used for defect prevention,
confirming results of previous publications. In contrast, system-specific rules
provide more relevant information on how to avoid defects, and, therefore,
they are more effective to be used for defect prevention. We expect system-
specific rules to be created and used by developers in complement to generic
ones for defect prevention [HADA12].

Supporting System-specific Conventions with History-based Rules

In this study, we proposed to automatically extract system-specific conven-
tions from source code history. In this process, we extract data from incre-
mental revisions in source code history, and the rules are based on prede-
fined patterns and filtered by their occurrence over different revisions. We
validated our approach on open-source systems with the help of an expert,
which was very valuable to provide assessment about the change rules. A
relevant amount of rules (62%, 28 out of 45) were correct to the expert in our
case study, pointing to real violations in source code. In total, 15 rules gener-
ated violations, producing a total of 58 violations from which 47 (81%) were
real ones. The discovering of 28 new system-specific rules represents a signif-
icant addition to the set of rules provided by the static analysis tool SmallLint
since it contains only 19 generic change rules [HADV13,HAE+15b].

Supporting Client Systems with History-based Rules

This study provided a novel approach to generate evolution rules by mon-
itoring changes applied in source code during the framework or library
evolution. Rules are also mined from source code history taking into account
the changes between revisions, and they follow four types of method re-
placements. Furthermore, our approach provides either on request rules or
automatically generated rules, and our tool is able to show code examples
of the rules that clarify how the framework/library adapted to its own
changes. This study was evaluated on five open-source systems, and the
rules were assessed with the help of experts with respect to their valid-
ity. For the cases were the experts were confident the precision remained
between 65% and 86%. This work is the first to produce rules one-to-one,
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one-to-many, many-to-one and many-to-many, involving method replacement
and suggestion, thus, improving the spectrum of rules generated by current
studies [HEA+14,HAE+15a].

Impact of Software Evolution on Ecosystems

This work reported on an empirical study about the impact of API evolu-
tion, in the specific case of methods unrelated to API deprecation. The study
was done in the context of a large-scale ecosystem, Pharo. We analyzed 118

API changes, and we found that many impacted other systems. Our findings
can be summarized as follows: (i) API changes from frameworks can have
a large impact on the ecosystem in terms of projects, packages, classes and
methods affected as well as developers; (ii) time variable plays an important
role on the analysis of API evolution; (iii) deprecationmechanisms should be
more adopted; (iv) client developers can use internal parts of frameworks to
access functionalities not available in the public interfaces; (v) replacements
are not resolved in an uniform manner; (vi) reactions to API changes can be
partially automated; and (vii) API changes and deprecation can present dif-
ferent characteristics, for example, reaction to API changes is slower with less
clients adapting. The results of this study help to characterize the impact of
API evolution in large software ecosystems [HRA+15].

7.2 Future Work

There are some open issues that were not addressed in this thesis, but should
be explored in future work.

Extracting Other Types of Rules

In this thesis, we focus on the extraction of rules that involve the replacement
of methods. In Section 4.5.3, we pointed some solutions to extract other types
of rules from source code. For example, rules can also be related to simply-
deleted calls (methods that in general should not be called), method pairs
(methods that normally should appear together in a class) or method call
pairs (methods that normally should be called together).

Even if previous studies address some of these types, there is no effort in
the literature to provide them as a set of rules to developers. Based on that,
as a future work it is interesting an approach to unify such types of rules as
well as the one adopted in this thesis to better support developers.
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Better Characterization of API Evolution

Many approaches are proposed to deal with API evolution. In order to pro-
duce rules, these approaches need to mine code repositories. In this context,
while some studies, including ours, are dedicated to mine commits from
source code history (e.g., [DR08,MWZM12]) others mine releases of software
systems (e.g., [SJM08,WGAK10]). The mining at the commit level seems to
be more adopted by the literature, however, the exact gain provided by this
alternative is not clear.

The same analogy can be performed at other levels, for example, is it bet-
ter to extract data from frameworks or clients? Is it better to compare versions
of classes or methods? The benefit provided by each alternative should be
better investigated in order to help researchers in the task of choosing the
best suited level of analysis.

Ecosystem Analysis

In this thesis, we focused on the analysis of a dynamic ecosystem, Pharo.
This was done due to many reasons such as the fact that this ecosystem is
concentrated in two repositories and we were interested in comparing our
results with the work of Robbes et al. [RLR12] (as described in Section 6.2).
Still, other ecosystems should be tested, for example, the ones provided by
statically typed programming languages.

It is particularly relevant to compare dynamically and statically typed
ecosystems. Due to the own nature of dynamic ecosystems, it is expected
that many problems related to API evolution is detected in runtime instead
of compile time, then increasing the time projects remain inconsistent. How-
ever, it is not clear whether this issue comes more from the nature of the
language itself or from the fact that dealing with API evolution is a complex
task. In other words, by comparing both type of ecosystems, one could verify
to which extent the dynamic nature of the ecosystem influences on the API
evolution reaction.

7.3 Collaboration

During the Ph.D, I had the opportunity to collaboratewith theASERG/UFMG
group (Belo Horizonte, Brazil) and with the Siemens Research & Technology
Center (Erlangen, Germany).

ASERG/UFMG group

In this collaboration I visited such group two times (December/2011 and De-
cember/2012). We have mainly worked in the context of bug-detection and
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prevention as well as architecture conformance. From from collaboration,
seven papers were published in conferences and journals [MVT+15,CVP+14,
CPV+13,MVB+13a,MVB+13b,HAD+12,AAHD12].

Siemens Research & Technology Center

In this collaboration I visited such center one time (October and Novem-
ber/2014). We have mainly worked in the context of API evolution, by apply-
ing the approach described in Chapter 5 in C# Siemens systems. Moreover,
we have also worked with the evolution of other software artifacts (e.g., XML
files). The goal was to support automatic API migration and documentation
generation.
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