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Numéro d’ordre : 41414



Copyright c© 2014 by Camillo Bruni

RMoD
Inria Lille – Nord Europe
Parc Scientifique de la Haute Borne
40, avenue Halley
59650 Villeneuve d’Ascq
France
http://rmod.inria.fr/

This work is licensed under a Creative Commons Attribu-
tion–ShareAlike 4.0 International License.

http://rmod.inria.fr/
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/


Acknowledgments

I would like to thank my thesis supervisors Stéphane Ducasse and Marcus
Denker for allowing me to do a Ph.D at the RMoD group.

I thank the thesis reviewers and jury members Christophe Dony, Gaël
Thomas and Laurence Tratt for kindly reviewing my thesis and providing
me valuable feedback.

I would like to express my gratitude to Igor Stasenko for providing Benzo
and NativeBoost, and Guido Chari for allowing me to use Waterfall for
validation purposes.

I thank Camille Teruel for helping me translate the abstract of this thesis.

For remarks on earlier versions of this thesis I thank Stefan Marr and Damien
Pollet.





Abstract

High-level languages implement reflection which allows a language runtime
to inspect and alter its own execution and state. These high-level languages
typically run on top of virtual machines (vms) which have been built to cre-
ate an abstraction layer over hardware. Due to the isolating nature of the vm,
reflection is generally limited to the language-side. Several research vms over-
come this separation and provide a unified model where there is no more a
clear distinction between language-side and vm-side. In such a language run-
time it is possible to reflectively modify vm components from language-side
as they reside on the same abstraction layer.

In this dissertation we follow the same global direction towards a unified
language-runtime or self-aware vm. However, instead of looking for a holistic
solution we focus on a minimal approach. Instead of using a custom tailored
language runtime we use dynamic native code activation from language-side
on top of an existing vm.

We first present Benzo our framework for dynamic native code activation.
Benzo provides a generic but low-level interface to the vm internals.

Based on this framework we then evaluate several applications that typ-
ically require direct vm support. We show first how Benzo is used to build
an efficient ffi interface, allowing for a more structured access to vm internal
functions. To evaluate the limitations of Benzo we target two more appli-
cations: dynamic primitives and a language-side jit compiler. Both of them
require a tight interaction with the underlying vm

Keywords:. Virtual machine, high-level low-level programming, high-level
language, dynamic native code generation.





Résumé

Les langages de haut-niveau supportent des operations réflectives qui per-
mettent à l’ environenment d’exécution d’un langage d’inspecter et de
changer son propre état et sa propre exécution. Ces langages de haut-niveau
s’exécutent normalement sur une machine virtuelle (vm) qui ajoute une
couche d’abstraction au-dessus du matériel. À cause de cette séparation,
peu d’opération réflectives sont disponibles pour inspecter et modifier la
vm. Plusieurs vms expérimentales offrent de telles opérations réflectives en
proposant un modèle unifié qui ne distingue pas la couche vm de la couche
langage.

Dans cette thèse, nous suivons une approche similaire qui propose un en-
vironnement d’exécution unifié et auto-décrit. Nous nous intéressons à une
solution minimale. Au lieu de dépendre de modifications d’une vm, nous
générons dynamiquement du code natif depuis la couche langage.

Nous présentons Benzo, un framework pour la génération dynamique
de code natif. Benzo fournit une interface générique et de bas-niveau pour
accéder aux fonctionnalités fondamentales de la vm.

Grâce à Benzo, nous analysons plusieurs applications qui nécessitent un
accès direct à la vm. Nous montrons comment Benzo peut être utilisé pour im-
plémenter une librairie de Foreign Function Interfaces, permettant de faciliter
l’accès aux fonctionnalités bas-niveau de la vm. Pour évaluer les limitations
de Benzo, nous visons deux autres applications: la génération dynamique de
primitive et un compilateur jit (Just-In-Time). Ces deux applications doivent
changer le comportement de la vm. Pour cela, elles ont besoin d’une interac-
tion poussée avec la vm.

Mot clés:. Machine virtuelle, langage de haut-niveau, génération dynamique
de code natif
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Introduction

Chapter 1Contents
1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Artifacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Several high-level languages support dynamic reflection, the capability of a

language to reason about itself. In an extended form, reflection allows a pro-

gram to alter its own structures and execution at runtime. Many high-level

programming languages run on top of a virtual machine (vm) which pro-

vides certain advantages from running directly on the underlying hardware.

Many high-level language vms pursue a strict separation between language-

side and vm-side. vms for instance provide automatic memory management

or use platform agnostic instructions such as bytecodes. These properties

allow a programming language to develop independently from the under-

lying hardware. Originally vms are built in performance oriented low-level

programming languages such as C which on their own support little or no

reflection at runtime. Hence, rather incidentally, reflection is limited to the

language-side.

However, there are other vms that are implemented using high-level lan-

guages which support reflection themselves. More specifically we see that

metacircular vms encourage advanced reflective features and new ways of in-

teracting with the low-level vm world. Metacircular vms are implemented in

the same language they support. Typically this enables a more flexible build-

ing process where more high-level structures survive the compilation pro-

cess. The final language-runtime can profit from this and support high-level

low-level programming [25]. This term was coined by the use of Java to describe

low-level components in the memory management toolkit of the Jikes vm. In

several research vms this concept is used to implement typically isolated vm

components at language-side. But instead of generating a native version at

vm generation time, these components are evaluated at language-side, with

the only difference that they have the capability to directly interact with low-

level code. This means that the original separation of language-side and vm

is no longer evident.

A language-runtime where vm components are implemented at language-

side also enables extended forms of reflection. With the same reflective tools

it is now possible to inspect and alter vm-level objects. However, this ap-
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proach requires substantial effort as the vm has to be designed from ground

up in a new way. In this thesis we would like to follow a different approach

with the same goals in mind. Instead of a holistic approach, we want to iden-

tify a minimal interface for performing high-level low-level programming

or even extend reflection down to the vm. We look for an approach which

works on top of an existing high-level language vm.

To answer these questions we propose the high-level low-level program-

ming framework Benzo written for Pharo. In the core Benzo allows us to

dynamically activate native code from language-side. This adds a primitive

yet generic interface to the low-level vm world. To validate Benzo we describe

three distinct applications built on top of it.

ffi: The first one is an efficient foreign function interface (ffi) library that is

built at language-side without additional vm support. Our ffi library

outperforms existing solutions on Pharo.

Dynamic Primitives: The second applications uses Benzo to dynamically

generate and modify Pharo primitives by reusing the metacircular vm

sources. By combining high-level reflection and Benzo’s low-level per-

formance we outperform pure Pharo-based primitive instrumentation.

Language-side jit: As a third, prototype application we show how Benzo

is used to build a language-side jit. Our prototype shows the limits of

possible vm interactions using the Benzo framework.

1.1 Problem Statement

Following the problem description listed in the above introduction we iden-

tified the following abstract concerns with existing reflective languages and

their vms.

• Reflection and in special behavioral reflection comes at a significant cost

due to reification overhead.

• Intercession is limited to language-side. vms are not accessible from

language-side and they are usually have no reflective properties at run-

time.

• Existing approaches to a unified model between the vm and the

language-side are holistic, there is no intermediate solution available.

Out of these general problems concerning reflection in high-level languages

we see that they have a low-level root. To address the unification of the

language-side and vm-side we have to grant more access to the language-

side. This includes interacting directly with low-level native instructions.
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A similar problem has been solved by applying high-level low-level pro-

gramming in a more static environment [1, 25]. The approach outlined by

Frampton et al. uses a high-level framework to generate native code at

compile-time. We see that their approach has not yet been applied in a more

dynamic environment where native code has to be generated at runtime.

Hence we focus on the following concrete problems we wish to solve in this

thesis.

Problem 1: High-level low-level programming is not available at runtime

and from language-side.

Problem 2: Intercession is limited to language-side. vms are not accessible

from language-side and they are usually have no reflective properties

at runtime.

Problem 3: High-level low-level programming has not yet been provided as

an incremental extension to an existing language runtime.

1.2 Contributions

To support high-level low-level programming in a dynamic context we iden-

tify that native code generation at language-side is essential. Hence we val-

idate this concept by implementing a language-side framework for native

code generation and execution with minimal vm changes. Using this frame-

work we identify the limitation of such an approach by evaluating several

typical vm-level applications.

1.3 Artifacts

We present now our contributions of this dissertation addressing the previ-

ously identified problems concerning high-level low-level programming in a

dynamic language:

Benzo is a high-level low-level programming framework written in Pharo1.

The core functionality of Benzo is to dynamically execute native-code

generated at language-side. Our framework requires minimal changes

to an existing vm and three custom primitives to support dynamic

code activation, the majority of Benzo is implemented as accessible

language-side code. Benzo allows us to directly communicate with

the low-level world and thus hoist typical vm-level applications to the

language-side.

1http://pharo.org/

http://pharo.org/
http://pharo.org/
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NativeBoost is a Benzo-based foreign function interface (ffi). NativeBoost

generates customized native code at language-side, both being flexible

and efficient at the same time. NativeBoost outperforms other existing

ffi solutions on the Pharo platform, making it an ideal evaluation for

the Benzo framework.

Nabujito is a prototype jit compiler based on Benzo. Nabujito generates the

same native code as the vm-level jit by compiling the high-level byte-

code intermediate format at language-side. Our Benzo-based jit pro-

totype reuses existing vm-level infrastructure and focuses only on the

dynamic code generation. However, since there is no well-defined inter-

face with the vm Nabujito requires an extended vm with an improved

jit interface to dynamically install native code.

AsmJit is a assembler framework written in Pharo. AsmJit is the low-level

backend for the previously mentioned Benzo framework. We extended

the existing assembler framework to support the full 64-bit x86 instruc-

tion set.

1.4 Outline

Chapter 2 sheds light on the context of this work. We present a quick

overview of language-side reflection followed by a development of vm-

level reflection. We find that mostly metacircular vms provide limited

vm-level reflection and thus we present several high-level language vms

falling into this category. We conclude that there is only two research

vm that has a uniform model for vm and language-side. Among them

is Pinocchio a research Smalltalk vm we contributed to previous to

working on this dissertation.

Chapter 3 describes a high-level low-level programming framework named

Benzo. The core functionality of Benzo is to dynamically execute native-

code generated at language-side. Benzo allows us to hoist typical vm

plugins to the language-side. Furthermore we show how code caching

makes Benzo efficient and users essentially only pay a one-time over-

head for generating the native code.

Chapter 4 presents NativeBoost, a stable foreign function interface (ffi)

implementation that is entirely written at language-side using Benzo.

NativeBoost is a real-world validation of Benzo as it combines both

language-side flexibility with vm-level performance. We show in detail

how NativeBoost outperforms other existing ffi solutions on Pharo.

Chapter 5 focuses on two further Benzo applications. In the first part we

present Waterfall a framework for dynamically generating primitives
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at runtime. Waterfall extends the concept of metacircularity to the

running language by reusing the same sources for dynamic primitives

that were previously used to generate the static vm artifact. In a first vali-

dation we show how Waterfall outperforms other reflective language-

side solutions to instrument primitives.

In a second part of Chapter 5 we present Nabujito a prototype jit com-

piler that is based on Benzo. Nabujito shows the limitations of the Ben-

zo approach as it required a customized vm to communicate with the

existing jit interface for native code. Our prototype implementation

generates the same native code as the existing vm-level jit, however, it

is currently limited to simple expressions. Nabujito shows that for cer-

tain applications a well-define interface with the low-level components

of the vm is required.

Chapter 6 summarizes the limitations of Benzo and its application. Further-

more we list undergoing efforts on the Benzo infrastructure and future

work.

Chapter 7 concludes the dissertation.
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Introduction

In this chapter we present the related work to this dissertation. We first

present a quick overview of language-side reflection followed by a descrip-

tion how reflection developed for vms.

In the context of this thesis we are mainly interested in behavioral reflec-

tion that requires strong support from the underlying vm. We identify that

this form of reflection is rather costly, namely due to its late binding that does

not allow for static optimizations. Following to this, we present how different

techniques of partial behavior reflection are used to limit the cost of reflection.

We see that reflection can be more efficient with more vm support available.

At this point we outline the evolution of reflection in high-level languages

with an ultimate goal being a language that has full control over its own vm

and thus blurring the line between language-side and vm-side.

The second part of this background chapter focuses on different kinds of

vms and how they are built. We find that metacircular vms provide a good

match to our idea of unified language runtime. After presenting several re-

cent metacircular vm projects we conclude that most of them limit reflection

at the vm-level to compile time. Only a couple of research vms have a uni-

form model that spans across all abstraction levels. Among them is Pinoc-

chio a research Smalltalk vm we contributed to previous to working on this

dissertation.

This chapter finishes by presenting a detailed description of the problem

statement and a final outlook of the upcoming chapters in the light of the

found problems.
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2.1 Reflection

In this section we give a quick overview of the core features of reflection.

A system is said to be reflective if it is capable to reason about itself. Typi-

cally we distinguish two forms of reflective access: structural and behavioral

[34]. Structural reflection is concerned with the static structure of a program,

while behavioral reflection focuses on the dynamic part of a running pro-

gram. Orthogonally to the previous categorization we distinguish between

introspection and intercession. For introspection we only access a reified con-

cept, whereas for intercession we alter the reified representation.

Structural Reflection means to access the static structure of a program. A

typical example1 is to access the class of an object at runtime.

’a string’ class.

An example of structural intercession is to reflectively modify an in-

stance variable of an object.

aCar instVarNamed: #driver put: Person new.

Behavioral Reflection means to directly interact with the running program.

For instance this includes reflectively activating a method.

#Dictionary asClass perform: #new

Another more complex example to dynamically switch the execution

context and resend the current method with another receiver.

thisContext restartWithNewReceiver: Object new

Accessing the receiver of the current method through the execution

context is an example of behavioral introspection.

thisContext receiver.

There is not always a clear separation between the two types of reflection pos-

sible. For instance it is possible to add new methods which requires structural

reflection. At the same we alter the future program execution which also im-

plies that the action was behavior reflection. Typically we see that behavioral

reflection stops at the granularity of a method. For instance in Pharo by de-

fault it is not possible to directly alter execution on a sub-method level [22].

Additional to separating reflection upon the representation it accesses, we

distinguish what actions are performed on the reified representations. Both

of the following properties can apply for structural and behavioral reflection.

1Throughout this dissertation we use Pharo code examples. The syntax and the basic se-

mantics are explained in Section A.1
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Introspection is the form of reflection that does not alter the reified repre-

sentation. An example of this is the previous code excerpt where we

access the class of an object.

Intercession implies that the underlying representation is altered. Going

back to the previous example that would for instance mean to change

the class of an existing object.

MyClass adoptInstance: anObject.

These four categories summarize the general properties of reflection. In the

following text we use the term "reflection" or "dynamic reflection" as a short

form of unanticipated behavioral and structural reflection both for perform-

ing intercession and introspection. In the course of this dissertation we will

introduce an additional category to distinguish between reflection that hap-

pens at language-side accessible by the developer and reflection that happens

inside the vm.

From now on we use a circular arrow ( ) to symbolize dynamic reflection

in a figure.

2.1.1 Scoping Reflection: Partial Reflection

Reflection brings great power to a programming language. However, espe-

cially behavioral reflection is linked to a significant overhead. For instance

the previous example of the reified execution context in Smalltalk requires

restricts the optimizations at vm-level. And more general, most reification

comes at great costs [35]. Hence already from a performance point of view it is

natural to limit the scope of reflective behavior. For instance, using wrapped

methods to alter execution has a wide-spread effect on the system. Thus,

there is also a motivation to limit the effect on evaluation introduced by re-

flection. We will now discuss several axes along which we can limit the use

of reflection.

Time: Of course the most obvious axis is time itself. Behavioral reflection

implies that the reflective properties are accessed or modified dynam-

ically. This implies that the use of reflection changes over the course of

evaluation. By dynamically adding or removing the reflective code we

have time-delimited reflection.

Type: Another natural delimiter for reflection is the type of an object. In an

typical object-oriented system this is the common case. Methods are

implemented on different classes which themselves define the type of

their instances. Custom methods that are added to a class alter the be-

havior of all its instances.
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Reference: Starting from the concept of a proxy object we find another possi-

bility to limit reflection by reference. Arnaud et al. describe a modified

Pharo runtime where the concept of a reference is fully reified as a so

called handles [6]. Handles allow programmers to install new behavior

and even state on a single reference, without influencing the rest of the

system.

Context: The effects of reflection can also be limited by the dynamic ex-

ecution context [44]. An example of that is the concept of tower of

interpreters. During the development of Pinocchio an intermediate

version of the Smalltalk interpreter featured this special execution

scheme [51]. It allows the programmer to switch the current interpreter.

This way an expression is evaluated with altered semantics. The solu-

tion presented in Pinocchio does not globally replace the interpreter

but only for the given expression. Hence once the expression returns,

the modifications and the implied overhead are gone.

Tanter et. al. describe Reflex [45] a partial behavioral reflection system on

top of Java. We see similar limitation mechanisms for the applications of as-

pects [32], which resembles intercession. However, typically the systems us-

ing aspects have to prepared statically upfront with little means to change

them at runtime. Aspects can be used to globally modify a system and intro-

duced code snippets in defined points, for instance before each method invo-

cation. Though they share an interesting concepts of limiting the introduced

overhead using a pointcuts. These are conditionals that are dynamically be-

fore evaluating aspects.

Both Reflex and aspects require the underlying system to be prepared up-

front. Unanticipated behavioral reflection is not directly possible. Typically

it is only possible to enable or disable the reflective features that have been

prepared upfront. Röthlisberger et al. propose Gepetto a system [42] that en-

ables true unanticipated behavioral reflection on top of Smalltalk. Gepetto

provides a high-level api to install behavior reflection.

2.1.2 Reflection in vms and Language Runtimes

So far we have given a basic introduction to the different types of reflection

and how the effects of reflection can be limited by certain properties. We omit-

ted how reflection is provided in the first place in a language runtime. For

instance, simple cases involve giving access to the class of an object or the

possibility to reflectively invoke a method at runtime. In very reflective lan-

guages the vm provides access to the current execution context for introspec-

tion and even modification. The latter one has a significant influence on the

underlying vm architecture preventing certain low-level optimization which
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would shadow the access to certain context information. What we see is that

the meta-level enables reflection but usually is not reflective by its own.

Following the principle that everything is an object one might assume

that this also includes the vm as it is already highly involved in supporting

reflection. Typically the vm is implemented in C or C++ which have no re-

flection. However, the jit is common exception as it has to interact dynami-

cally with the language-side. For instance the jit has to be aware of classes

and the methods within. In dynamic and reflective system the jit has to be

made aware of language-side changes to properly update or invalidate the

generated native code. What we see is that the jit accesses structural infor-

mation from the language-side. However, the language-side is not capable of

accessing vm-level information. The closest vm interaction point typically is

the bytecode generated at language-side and handed over to the vm for exe-

cution. Yet, this provides only a crude one-way interaction [29]. Certain vms

provide debugging or inspection interfaces which are used by external tools

to access or modify the vm internals. Even though technically the same vm

debugging interface can be used by the language itself it is not common.

For highly reflective and dynamic languages we see a certain mismatch.

On the one hand, it is possible to virtually change and modify everything at

language-side. On the other hand, it is generally not possible to reflectively

alter the vm from language side. The underlying vm tends to ensure security

by isolation for instance by using a defined bytecode set as execution base.

However, the border to the vm can be crossed in several ways. For instance,

not all operations are implemented with safety in mind but performance, and

thus might expose the vm. Another edge-case is the use of external native

libraries which are used for performance critical functionality and tend to be

run without the same protection as bytecode-based code.

Thus we see that the boundary to the vm can be crossed in several ways.

Proper separation is possible for a static language which restricts the reflec-

tive power or prohibits the use of custom external libraries. However, this

is clearly not the case for contemporary dynamic programming languages.

Since arbitrary code changes are possible at language-side the vm-level

boundary for reflection seems incidental. Furthermore, research suggests

that this separation is a limiting factor when focusing on low-level interaction

with external functionality [30]. Reflection down to the vm level is possible if

we leave certain security and performance concerns aside.

To further analyze this hypothesis we need to track the evolution of dy-

namic reflection in programming languages. In our analysis we omit lan-

guages that do not run on top of a vm. Typically low-level or system pro-

gramming languages fall into this category which implies unrestricted oper-

ations. For instance C or even assembler is used to generate self-modifying
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programs. Another example might be C++ which supports compile-time re-

flection, but again does not run on top of a vm. We are interested in language

runtimes that are built around a vm which introduces the aforementioned

separation of high-level language-side and low-level vm.

a) b) c) d) e) f)Language:

vm:

Reflectiveness:

Figure 2.1: Evolution of reflection in high-level language runtimes starting

from a non-reflective language in a) and ending in a self-aware system f)

where reflection transcends the vm-language barrier. Circular arrows denote

the use of reflection.

a) Language-side without reflection: A language in this category requires

a vm to run but has no reflective properties. This includes early-stage

languages such as the original Pascal-P system [39]. This is rather an

exception, since typically languages without reflection also lack the un-

derlying vm and are compiled to native code. Even with portability in

mind it is possible to use for instance C as intermediate language which

compiles under most platforms.

b) Language-side with limited reflection: The next step in the evolution

of reflection is a language runtime with a vm that support only cer-

tain static reflection. This might include structural reflection whose re-

quired information can be prepared upfront during the compilation

phase. Such a system has no support for unanticipated reflection as

there is no support from the vm to dynamically reify concepts. A vm

with a jit in this category can perform strong optimizations and take

full advantage of the runtime information.

c) Language-side extended reflection: The third category of high-level

language runtimes has extended reflection with strong support from

the underlying vm. We put Pharo, Smalltalk implementations or Self

in this category of languages. The vm supports complex reification of

otherwise non-accessible concepts. These language runtime support

extended behavioral reflection, for instance accessing and modifying

the execution context. The supported reflective capabilities can not be

anticipated, and thus require strong support from the underlying vm.

At this stage the vm-level optimizations are a balance between restrict-

ing the supported language or sacrificing speed.
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d) Language-side introspection of the vm: The vm support for reflection

is highly extended compared to the previous category. Instead of a hid-

den property, certain vm-level concepts are made explicitly accessible

to the running language. Up to some extent this is similar to language-

side structural reflection as the vm only supports only a restricted in-

terface which is defined at compile-time. In this category the language

can only read (introspect) vm properties. This might include reading

out jit related properties such as performance counters or type annota-

tions. Typically these operations are supported by vms running in de-

bug mode, which enables remote introspection. However, this does not

imply that the language-runtime is capable of doing so reflectively.

e) Limited language-side intercession of the vm: The previous category

allows the language-side to safely read vm-level properties. If we follow

the same path as the language-side evolution of reflection the next step

is to allow for modification at vm-level. Such a language-runtime has a

dynamic interface to change certain properties of the vm. However, the

vm is still not fully reflective in the sense that not all vm concepts are rei-

fied. This essentially limits the language-side to simple interactions and

changes to the vm itself. At this point the vm can no longer guarantee

safety by isolating the language-side from all the low-level details.

f) Self-aware vm: We classify in the last category dynamic language-

runtimes that have no longer a clear separation of vm and language-

side. The same reflective properties equally apply to language-side and

the vm. The way to achieve this is by flattening out the intermediate vm

and let the language-side directly control everything. Currently there

are several research vms which can be classified as self-aware vms: The

Pinocchio vm [50] is partially self-aware but in control of the underly-

ing execution and the Klein vm is fully reflective [48]. Unsurprisingly

we find that these vms are built metacircularly, they are written in a

subset or the same language they support. In the following Section 2.2

we will discuss in more details metacircular vms.

From this overview of the evolution of reflection in high-level languages and

their vms we see that there certain language runtimes that provide a form

of vm-level reflection. Which is a clear indicator that the clear separation be-

tween language-side and vm-side is mostly incidental. However, we see that

there is only little research about self-aware vms or reflective vms. Accord-

ing to our overview, only a few research language runtimes would classify as

self-aware. Combined with the previous two categories d and e, we see that

metacircular vms encourage extended reflection. In the following Section 2.2

we are now going to describe in more detail how metacircular vms are built
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and what their contribution to the high-level low-level interaction is.

2.2 High-level Languages and vms

High-level language vms are inherent complex pieces of software. They have

to combine two rather extreme goals: abstraction and performance. We have

seen that the required abstraction for the running high-level language has a

strong influence on the vm design. At the same time the hard performance

requirement requires precise interaction with the underlying hardware. This

goes even so far that specialized hardware is conceived to match the perfor-

mance requirements [20, 36, 43, 46].

The early vms focused on interpreting an abstract instruction set (byte-

codes). The benefits are twofold. On the one hand the bytecodes guarantee

certain platform independence by abstracting away from the cpu specific in-

struction set. On the other hand bytecodes allow to encode complex opera-

tions into little space both serving the hard memory constraints of the hard-

ware and simplifying the design of a compiler. Obviously this abstraction

gain comes at a cost and ever since the first vms were built research and in-

dustry strive to reduce the interpretation overhead. An efficient way to im-

prove performance is to use a just in time compiler (jit) that dynamically

generates native code from the bytecode [23]. In this case the bytecode be-

comes an intermediate representation (ir) for a bigger compiler infrastruc-

ture. However, jit compilers are notoriously complex as they crosscut many

vm components. At the same time they crosscut all abstraction layers; they

have to access high-level information from the running bytecodes and man-

age native code at the same time. Similar complexity applies to the automatic

memory management present in most high-level language vms. Garbage Col-

lectors (gc) evolved from simple helpers to complex software artifacts that for

instance support concurrent garbage collection [20].

The increased complexity of the vms lead to more novel approaches on

how to build vms. vms are still build for a big part in C or C++ for perfor-

mance reasons. However, there are more high-level approaches that try to

simplify creating vms by using building blocks [26]. In the following sections

we are shedding light on metacircular vms which are programmed in the

same language they in the end support.

2.2.1 Metacircular vms

The ever growing complexity of vms and the abstraction mismatch between

the vm definition language and the final interpreted language lead to a new

movement that tried to reduce complexity. Among the vms using higher-level

languages or frameworks to reduce the development effort the metacircular
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building process stands out. Unlike the classical vm which is built in C and

compiled to the a binary, a metacircular vm is written in the same language

that it provides in the end. The following figure highlights the most evident

differences between a classical and a metacircular approach.

c)b)a)

vm vm vm’cc vm’’

1) 3) 4)2)2)

Classical vm Compilation

a) vm sources typically written in C or C++
b) Compilation of the vm sources using a C or C++ compiler
c) Final Binary

Metacircular vm Compilation

1. vm sources written in a high-level language, the same as the final

vm supports
2. Compilation of the vm sources happens by evaluating the vm

sources, allowing for compile-time reflection
3. New vm’ binary built using an existing version of the vm

4. The new vm Binary can be used to compile again a new vm”

Using the same language for developing the vm has several advantages. Usu-

ally the vm is in great contrast to language-side libraries on the same platform.

This is due to the low-level nature of the vm. Using a high-level language

certain implementation details can be hidden. Furthermore the metacircular

approach provides the vm developer with the same tools as a language-side

programmer. Typically this leads to faster development.

Inside the metacircular vm community we see different approaches with

varying levels of abstractions and reuse. When compared, we find differences

in how metacircular vms build vm components (gc, jit) and how the bootstrap

or compilation of the new vm works. We see metacircular vms that use the

high-level language as an advanced macro systems. In a sense an extended

version of C++’s templates. Other approaches use the full reflective power

of the high-level runtime to simplify code. And even more advanced system

automatically provide the vm developer with gc or a jit compiler. We will

now elaborate in more detail how metacircular vms are constructed.

Language Property Synthesis. In the classical C-based vm approach all vm

components have to be explicitly build. Each vm is a one of a kind with custom

interpreter and a specialized memory manager. Using high-level vm frame-

works it is possible to provide the vm developer with prefabricated compo-
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nents. For instance it is possible to simply parametrize a premade gc to re-

duce development effort. Looking at the evolution of metacircular vms we see

both approaches. For instance pseudo metacircular solutions like the Squeak

vm [28] work more like a high-level C macro system. The high-level language

is used to generate C code which is then further compiled to the final vm

binary. vm components are declared in a very explicit style, again not much

different from C++. Memory for vm-level structures has to be managed in the

same way as its C++ counterpart by explicitly allocating and freeing objects.

On the other side we have vm frameworks like PyPy for the Python language

that provide automatic gc and jit support. Here the developer writes a new

vm in almost the same way as a normal Python program. In the ideal case

only certain hints are necessary to create a jit.

Bootstrap Process. A crucial step during the development with the metacir-

cular vms is the bootstrap of the new vm. We distinguish mainly between two

approaches, indirect bootstrap and direct bootstrap.

vm’ vm vm’cc

Indirect Bootstrap Direct Bootstrap

vm .c

Figure 2.2: The indirect bootstrap on the left uses generated sources (.c) to

compile a new vm’ with a C compiler (CC). The direct bootstrap on the right

directly creates a new binary without the use of an intermediate low-level

language.

Indirect Bootstrap: Metacircular vms with an indirect bootstrap use an in-

termediate language to compile a new vm binary. A typical example of

this approach is Squeak and PyPy using C. Both of these system imply

a complete C compilation stack. The advantage of this approach is the

that C is heavily optimized thus reducing the development effort for

the vm framework. However, C already hides a lot of low-level details

away. Typically the vm framework has to work around these limitations

when working directly with native code for instance in the jit. We have

explicitly seen these limitations while working on the Pinocchio vm.

Direct Bootstrap: Metacircular vms with a direct bootstrap are directly in

charge of generating the native code for the final binary. We have seen in

Pinocchio that many C-level optimizations have only limited impact on

the final speed. A major speedup is achieved by using a native stack and

directly generating native code instead of using a bytecode interpreter.
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Hence the vm will probably require an assembler framework which in

return can be used for the direct bootstrap. This means that only lim-

ited additional efforts are necessary for a direct bootstrap. As a result

the direct bootstrap allows full control of how the final binary will look

like.

2.2.2 Compile-time Reified vms

After presented the technical background of metacircular vms we are present-

ing several concrete implementations in more detail. In this first part present

vms that focus on compile-time reflection. In Section 2.2.3 we will then fo-

cus on a list of vms that reify their components and allow for a more close

interaction with the language-side.

Squeak Smalltalk vm

The Squeak vm [28] is of importance in the context of this work. Its core build-

ing system is still in active use for the Cog vm2 which extends Squeak with

a jit. The Cog vm is used as default by the Pharo3 programming language.

Squeak is built around a Smalltalk dialect called Slang that is exported to

C to be compiled to the final vm binary. Additionally the Slang sources can

be interpreted to provide an interactive simulator of the vm, including full

graphical support.

Slang is limited to the functionality that can be expressed with standard

C code. Slang in this case is mostly a high-level C preprocessor. Even though

Slang basically has the same syntax as Smalltalk it is semantically con-

strained to expressions that can be resolved statically at compilation or code

generation time and are compatible with C. Hence Slang’s semantics are

closer to C than to Smalltalk. Unlike later metacircular frameworks Squeak

uses little or no compile-time reflection to simplify the vm designs. However,

class composition help structuring the sources. Next to the Slang source

which account for the biggest part of the interpreter code some os-related

code and plugins are written in C. To facilitate the interaction with the pure

C part Slang supports inline C expressions and type annotations.

A great achievement of the Squeak vm is a simulator environment that

enables programmers to interact dynamically with the running vm sources.

The simulator is capable or running a complete Squeak Smalltalk image

including graphical user interface. This means that programmers can change

the sources of the running vm and see the immediate effects in the simulator.

The simulator itself works by setting up a byte array which servers as native

2http://www.mirandabanda.org/cogblog/
3http://pharo.org/

http://www.mirandabanda.org/cogblog/
http://pharo.org/
http://www.mirandabanda.org/cogblog/
http://pharo.org/
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memory. Then the vm sources written in Slang are interpreted by the vm of

the development environment.

We see that Squeak is a pseudo metacircular vm that uses an indirect boot-

strap process. The newly created vm does not absorb any features from the

host environment. Yet according to long-time vm programmers the Squeak

infrastructure is more productive than a comparable C++ or pure C project.

Jikes: High-level low-level Programming in with mmtk

Jikes (former Jalapeño)is an early metacircular research vm for Java [2]. The

Jikes vm features several different garbage collectors and does not execute

bytecodes but directly compiles to native code. With metacircularity in mind

Jikes does not resort to a low-level programming language such as C for these

typically low-level vm components. Instead they are written in Java as well

using a high-level low-level programming framework.

The Jikes vm had performance as a major goal, hence direct unobstructed

interaction with the low-level world is necessary using a specialized frame-

work. High-level low-level programming [25] is mentioned the first time in

the context of the Jikes vm project. The goal of high-level low-level program-

ming is to provide high-level abstractions to simplify low-level program-

ming. Essentially this is the same motivation that drives the metacircular vm

community.

Frampton et al. present a low-level framework packaged as org.vmmagic,

which is used as system interface for Jikes, an experimental Java vm. Ad-

ditionally their framework is successfully used in a separate project, the

memory management toolkit (mmtk) [10] which is used independently in

several other projects. The org.vmmagic package introduces highly con-

trolled low-level interaction in a statically type context. In their framework,

methods have to be annotated to enable the use of low-level functionality.

Maxine Java vm

Maxine is a metacircular Java vm [55] focused on an efficient developer expe-

rience. Typically vm frameworks focus on abstraction at the code-level which

should yield simpler code and thus help reducing development efforts. How-

ever, in most situations the programmer is still forced to use existing unspe-

cific tools for instance to debug the vm. In contrast to that, the Maxine vm

provides dedicated tools to interact with the vm in development. Maxine uses

abstract and high-level representations of vm-level concepts and consistently

exposes them throughout the development process. Inspectors at multiple

abstraction levels are readily available while debugging, giving insights to

the complete vm state. Maxine provides and excellent navigation for gener-
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ated native code by providing links back to language-side objects as well as

other native code and symbols.

Even though the Maxine projects follows an approach where reflection

is only used at compile-time, the development tools themselves provide a

live interaction with the running vm artifact. However, the vm itself is not re-

flective as it is not directly built to reason about itself. This means that when

debugging the vm it behaves almost like a life Smalltalk image where a com-

plete interaction with the underlying system is possible. We identify this as

crucial, as most of the time is spent debugging, notably on inadequate tools

like gdb due to lack of alternatives. Hence having a specific debuggers and

inspectors greatly improve the interaction with the vm artifact.

PyPy Toolchain

PyPy4 is a Python-based high-level vm framework [41]. PyPy’s major focus

lies on an efficient Python interpreter. However, it has been successfully used

to build vms for other languages including Smalltalk [12]. Interpreters are

written in a type-inferable subset of Python called RPython. The underly-

ing PyPy infrastructure automatically provides memory management and

jit compilation. Instead of explicitly providing these features, a vm developer

hints certain information to the PyPy framework to improve the generation

of a gc or jit.

PyPy follows a different approach from the previously presented vm gen-

eration frameworks. For instance, in Squeak and Jikes the final vm imple-

mentation is not much different from an implementation done directly in

a low-level language. The programmer specifies all the components of the

vm explicitly, either by implementing them directly or using a provided li-

brary. Compared to the more static C ans C++ these vm generation frame-

works make the compilation phase more tangible. Smalltalk in Squeak or

Java in Jikes or Maxine fulfill the purpose of the template system in C++ or

the restricted macro system in C. For the explicit implementation part PyPy is

no different. However, certain features for the final vm are directly absorbed

from the underlying PyPy infrastructure. For instance, the jit support or the

gc are not explicitly implemented but provided by the PyPy framework itself.

This is a big difference to the other vm frameworks as it allows programmers

to write the vm in a more high-level fashion. For instance in Squeak memory

allocation, even for vm-level objects, has to be performed explicitly. Whereas

in PyPy the garbage collection is left to the underlying vm building infras-

tructure. This approach allows RPython vms to behave like standard Python

programs.

4http://pypy.org/

http://pypy.org/
http://pypy.org/
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Much like the automatic memory management, PyPy provides a tracing

jit generator [11]. By default the vm programmer does not write an explicit jit

in PyPy. Instead the vm code is annotated to guide the underlying tracing jit

generator. This means a vm compilation time a specific tracing jit is created

for the given meta information. As a result, the jit can track high-level loops

in the final interpreted language. Again, this is similar to PyPy’s gc, both are

provided as a service and do not have to be programmed explicitly. Instead,

the vm programmer tweaks parameters of the jit or gc.

2.2.3 Runtime Reified or Self-aware vms

The vms presented so far have little or no self-awareness. vm generation

frameworks allow a high amount of reflection at vm compile time. This meta

information is typically compiled away. This is somewhat similar to what

happens with templates in a C++-based vm. The vm frameworks themselves

behave like a static language on their own. As a result, the final vm artifact

has no access to the underlying definition anymore.

As an example we might have several vm components represented as

high-level objects at compile or vm generation time. These objects have a class

and methods attached, information that is reflectively accessible. However,

once the vm is compiled down to native code, most of this information is lost.

What is left is native code with low-level instructions that allow little or no

reasoning about the original high-level structure.

We have shown in Section 2.1.2 how a potential evolution of reflection in a

high-level language looks. We concluded that the evolution of language-side

reflection implies a similar evolution at vm-level. More behavioral reflection

at language-side requires more concepts to be reified in the vm itself. This

requirement is conflicting with the previously described loss of reification at

vm-level.

We are now going to present vms that behave significantly different. Un-

like the previous ones, they no longer make a clear distinction between the

static vm and the dynamic language-side.

DwarfPython

DwarfPython [30] is a Python implementation that aims at a barrier-free

low-level interaction. It emerged from an earlier Parathon which used

Dwarf debugging information from external libraries to facilitate foreign

function interfaces. DwarfPython takes this idea further. Additionally to

describe low-level code, DwarfPython uses the Dwarf metamodel to de-

scribe Python code and data. This is depicted in Figure 2.3. This approach

has the advantage that the very same debugging mechanism applies for
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vm.c cc

Dwarf 
Data

Dwarf 
Data

Figure 2.3: DwarfPython reifies the low-level vm by using the Dwarf De-

bugging at runtime. The Dwarf information is generated by the default C

compiler (CC) for C debuggers.

low-level code, for instance written in C, and for high-level Python code.

Thus DwarfPython essentially unifies the previously decoupled vm with the

language-side.

Pinocchio vm

Pinocchio [52] is a research Smalltalk environment that directly uses native

code instead of bytecodes. The only execution base is native code which is

directly generated by the language-side compiler.

Pinocchio is built from a kernel derived originally from a Pharo image.

For the bootstrap classes, objects and methods are exported into binary, na-

tive images and linked together with a standard C linker to a final executable.

For simplicity we also rely on a very small part of C code to provide essential

primitive, for instance used for file handling. Additionally we specified part

of the bootstrap for the Smalltalk object model in plain C code. However, be-

sides that, all the other code is written and developed directly in Smalltalk.

vm’ldvm .o

.c ccC-Kernel

Smalltalk-Kernel

Figure 2.4: Pinocchio’s Bootstrap directly generates binary images (.o) and

combines them with a simple kernel compile from C sources using a standard

C linker (LD).

An important aspect of Pinocchio is that the method lookup is expressed

in terms of normal Smalltalk code. Typically this code statically resides in

the vm, thus at a different meta-level. Hence this implies for most systems

that the lookup can not be modified without altering the vm itself. However,

expressing the lookup in terms for normal language-side code introduces

a recursive dependencies during the bootstrap. In order to run the lookup
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code expressed in Smalltalk code, we have to perform message sends. These,

in return, require an already working lookup mechanism. Hence, without a

taking special care, a language-side lookup method will lead to infinite re-

cursion during startup. We resolved this problem in Pinocchio by directly

interacting with the low-level execution format which among other things

relies on inline caches to improve performance. The important property of

inline caches is that they bypass the slow language-side lookup by directly

jumping to the last activated method at a send-site. This is exactly the behav-

ior we need to prevent recursion during the startup. Hence, when generating

the native code for the bootstrap, we prefill all the inline caches of the meth-

ods required to perform a full method lookup. As a result, when running

requiring the first real method lookup, the lookup code itself is running per-

fectly on the prefilled inline caches. What we achieve is a flexible connection

between the low-level world and the high-level language-side. During execu-

tion the vm jumps freely between what previously was native vm-level code

and interpretation of language-side code.

From an architectural point of view, Pinocchio is performing almost a di-

rect bootstrap. Besides the small C kernel, the language-side code is directly

compiled to native code. As a result, Pinocchio only requires a single com-

piler for native code, during bootstrap and at runtime. Hence, a separate jit

implementation is not required.

The most obvious shortcoming of Pinocchio is the lack of its own garbage

collector. Instead of investing time into a separate well-defined gc Pinocchio

relies on the conservative Boehm gc5 built for C programs. The Boehm gc is

sufficiently fast to run Pinocchio as a prototype. Pinocchio lacks the neces-

sary reification at level of the object layout to properly implement a gc. All the

notion about the object layout in memory are hard-coded in the compiler in

several places. Work was undertaken to put first-class object layouts in place

and delegate memory allocation and field access to these meta objects. Yet,

at the current state Pinocchio has not incorporated this in the compiler core.

Pinocchio is self-aware in the sense that it controls native code generation

and lookup at a single abstraction level. There is no distinction between vm-

level code and language-side code.

MIST a C-less Smalltalk Implementation

MIST6 is another prototype Smalltalk vm that follows similar goals as the Pi-

nocchio vm. As well, it no longer uses a bytecode interpreter but only relies

on native code. However, it goes one step further than Pinocchio by not rely-

ing on any C-based infrastructure. MIST implements its own linker to build

5http://www.hpl.hp.com/personal/Hans_Boehm/gc/
6http://mist-project.org/

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://mist-project.org/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://mist-project.org/
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the final executable. Hence unlike Pinocchio it does not require kernel primi-

tives written in C. MIST brings its own implementation to directly perform

system calls from within the language.

Klein vm

Klein7 is a metacircular vm for the Self programming language that has

no separation into vm and language [48]. Klein performs a direct bootstrap

(see Figure 2.2) much like the aforementioned Pinocchio or MIST vm. Hence

Klein does not use an intermediate low-level language to bootstrap the

system.

It is important to point out that the reification of the vm-level survives

the code generation or compilation time. Instead the vm structures are repre-

sented as real Self objects. Hence the Klein vm supports true vm-level reflec-

tion since there is only a single code base.

Additionally to the advances in reflection and metacircularity, Klein fo-

cuses on fast compilation turnarounds to allow for a responsive development

process. Which is unlike for instance the Squeak vm where a full vm boot-

strap takes an order of minutes on modern hardware. Klein also supports

advanced mirror-based debugging tools to inspect and modify a remote vm.

Development on the Klein vm stopped in 2009 and left the Klein vm in

fairly usable state. Like Pinocchio it currently lacks a dedicated gc. Yet, it

proved that it is possible and build a language-runtime without the classi-

cal separation of the language-side and the vm. From the literature presented

about the Klein project we see a strong focus on the improvements of the

development tools. The fact that the language-runtime allows vm-level re-

flection to change the vm dynamically is not directly mentioned in the litera-

ture. While we see the practical limitations of changing the vm at runtime we

would like to open the doors to this new form of reflection.

2.3 High-level Low-Level Applications

In a high-level language and its vm we find several applications that span

across multiple abstraction levels. We are discussing now two applications,

Foreign Function Interfaces and the jit compiler in more detail. Both explic-

itly require strong low-level interactions to perform their task. For instance,

the Maxine vm presented in Section 2.2.2 explicitly implements these appli-

cations using high-level low-level programming. This makes these two ap-

plications an interesting target for the evaluation of our dynamic approach

to high-level low-level programming.

7http://kleinvm.sourceforge.net/

http://kleinvm.sourceforge.net/
http://kleinvm.sourceforge.net/
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2.3.1 Foreign Function Interfaces (ffi)

Typical Smalltalk system are isolated from the low-level world and provide

only limited interoperability with C libraries. However there are notable ex-

ceptions: Étoilé and Smalltalk/X.

Chisnall presents the Pragmatic Smalltalk Compiler [19], part of the

Étoilé project, which focuses on close interaction with the C world. The main

goal of this work is to reuse existing libraries and thus reduce duplicated

effort. The author highlights the expressiveness of Smalltalk to support this

goal. In this Smalltalk implementation multiple languages can be mixed

efficiently. It is possible to mix Objective-C, Smalltalk code. All these op-

erations can be performed dynamically at runtime. Unlike our approach,

Étoilé aims at a complete new style of runtime environment without a vm.

Compared to that, NativeBoost is a very lightweight solution.

Other dynamic high-level languages such as Lua leverage ffi performance

by using a close interaction with the jit. Luajit8 for instance is a very efficient

Lua implementation with a tracing jit. Luajit is interesting in terms of ffi

implementations as it directly inlines ffi callouts into the jit compiled code.

Similar to NativeBoost this allows one to minimize the constant overhead by

generating custom-made native code. The Luajit runtime is mainly written

in C which has clearly different semantics than Lua itself.

On a more abstract level, high-level low-level programming [25] encour-

age to use high-level languages for system programming. Frampton et al.

present a low-level framework which is used as system interface for Jikes, an

experimental Java vm. However their approach focuses on a static solution.

Methods have to be annotated to use low-level functionality. Additionally the

strong separation between low-level code and runtime does not allow for re-

flective extensions of the runtime. Finally, they do not support the execution

and not even generation of custom assembly code on the fly.

Kell and Irwin [30] take a different look at interacting with external li-

braries. They advocate a Python vm that allows for dynamically shared ob-

jects with external libraries. It uses the low-level dwarf debugging informa-

tion present in the external libraries to gather enough metadata to automati-

cally generate ffis.

2.3.2 Just-in-time Compilation

There is a vast amount of scientific literature when it comes to jit optimizers.

However, they focus on the optimization opportunities itself such as different

compilation strategies or an efficient gc interaction. In the context of our work

8https://github.com/jmckaskill/luaffi/

https://github.com/jmckaskill/luaffi/
https://github.com/jmckaskill/luaffi/
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compiler-based optimizations are of second importance since we focus on the

hybrid nature of a system that interacts with the low-level vm world.

Jan Vraný et al. present a Smalltalk with an explicit meta-object-protocol

allowing for method lookup customization at language-side [53]. Their cus-

tomized Smalltalk/X vm has an extended lookup mechanism where each

class can specialize the lookup with a user definable LookupObject. Hence

for each message send the vm first checks if the receiver’s class provides a

LookupObject. By default this is not the case and the vm falls back to the

standard hierarchical Smalltalk method lookup which is hard-coded in the

vm. However, if the receiver class returns a proper LookupObject the vm

delegates the lookup to this user-defined object. The LookupObject is in-

voked with context information about the message send including access to

the low-level lookup cache. While the other context information is important

for new lookup schemes, the exposed cache provides an simplistic interface

for the jit. If the language-side lookup uses the provided cache it is still pos-

sible to implement efficient caching at vm-level.

A similar, albeit simpler approach, was provided in the research Small-

talk vm Pinocchio [50]. There the message lookup is fully implemented at

language-side, but unlike the Smalltalk/X solution only the context infor-

mation required for a standard Smalltalk lookup is provided. More explic-

itly, Pinocchio does not provide access to an internal cache which could be

used for speeding up more elaborate lookup customizations.

The two projects presented only implicitly deal with the jit interaction.

However, they provide evidence about high-level customizations for a part

of the execution. In both projects it is possible to dynamically customize a

static core vm concept. While it is possible to modify the lookup mechanism

in many vm generation frameworks, this does not extend to the runtime

2.4 Problem 1: Dynamic High-level Low-level Pro-

gramming

We have seen in the presented vms that a tight integration with the low-level

code is indispensable. Relying on an intermediate solution such as C with in-

lined assembler expressions does not scale well. Typically it is troublesome to

circumvent the aggressive optimizations applied by the C compiler in order

to get the desired native code.

When working with metacircular vms it is natural to implement a frame-

work for maintaining the low-level code. Such high-level low-level program-

ming [25] is used at compile time or vm generation time to create the nec-

essary native code. However, we have seen that the same frameworks are

not directly available in the final language-runtime. The jit might make use
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of such a framework at runtime, though that part is hidden in the vm itself.

Hence we see an opportunity to use high-level low-level programming in a

dynamic context and at language-side to implement new functionality.

2.5 Problem 2: Extending Reflection by High-level

Low-Level Programming

In the case of the classical separation of the vm from the language-side, reflec-

tion stays isolated at language-side. However, this is different in a self-aware

language-runtime supporting a reflective language. Due to the lack of clear

separation between language-side and vm-side, the same or almost the same

reflective properties should apply to both sides. Though this is a rather ide-

alistic goal, as we have identified only few research vms that have a unified

model and thus are self-aware.

We have identified that for instance the Klein vm would be perfectly capa-

ble of performing reflection on components that typically belong to the vm.

However, to our best knowledge we could not identify any publicly available

work that leverages this fact.

2.6 Problem 3: Minimal Interface for High-level Low-

level Programming

We have seen in this chapter that several research vms provide a unified

model where there is no longer a distinction between language-side and vm-

side. In these systems vm components can be changed with the same reflec-

tive tools as language-side objects. These are whole language-runtime solu-

tions, typically this is not a feature that can be added to an existing vm without

big changes to the runtime.

In the context of this thesis we identify a minimal interface for high-level

low-level programming. Instead of providing a new vm we want an incre-

mental solution that extends the existing language-runtime.

2.7 Summary and Outlook

In this chapter we gave an overview of the related work of this thesis. We

started by outlining the concepts of reflection and what implications it has on

the performance. We have shown have partial behavioral reflection is used to

limit the costs of reification. Out of this we have seen that for many reflective

features specific vm support is required. Thus we presented in Section 2.1.2 a

detailed description on how the evolution of reflection affects the vm. At the
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end of the scale we describe a language-runtime that has no longer a clear dis-

tinction between language-side code and an isolated vm. In such a self-aware

vm or unified language runtime, reflection equally affects the language-side

and the vm.

In the second part of this chapter we discussed existing vm implemen-

tations. We focus on metacircular vms as they are already a good match to

a unified language runtime. They use reflection at compilation time to sim-

plify the process of building a vm. However, even though reflection is widely

used in these frameworks, it is restricted to the compile time. The final vm

artifact has no reflective capabilities, it only provides the necessary interface

to enable reflection at language-side. Hence, we present in a second group

vms that focus on a unified model.

We addressed the identified problems in the following way:

Chapter 3 describes a dynamic high-level low-level programming frame-

work named Benzo. The core functionality of Benzo is to dynamically

execute native-code generated at language-side.

Chapter 4 presents NativeBoost, a stable foreign function interface (ffi)

implementation that is entirely written at language-side using Benzo.

NativeBoost is a real-world validation of Benzo as it combines both

language-side flexibility with vm-level performance.

Chapter 5 focuses on two further Benzo applications that extend the reflec-

tive capabilities of Pharo using high-level low-level programming. In

the first part we present Waterfall a framework for dynamically gener-

ating primitives at runtime. Waterfall extends the concept of metacir-

cularity to the running language by reusing the same sources for dy-

namic primitives that were previously used to generate the static vm

artifact.

In a second part of Chapter 5 we present Nabujito a prototype jit com-

piler that is based on Benzo. Nabujito shows the boundaries of the Ben-

zo, yet we are able to interact with a vm internal component.
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Introduction

In this chapter we present Benzo a framework developed by Igor Stasenko

that connects the low-level vm world with a reflective and dynamic language-

side library. Unlike more classical approaches Benzo does not resort to vast

set of customized vm primitives or plugins. Instead it relies on a generic pri-

mitive to activated native code that is generated at language-side.

Benzo provides a unique experience of being low-level yet using high-

level concepts at the same time.This is possible since the framework is imple-

mented at language-side and tightly integrated into the Pharo development

environment. In this chapter we present in detail how Benzo interacts with

Pharo and what the difficulties are. The key components of Benzo are:

• A generic primitive to activate native code,
• AsmJit A language-side assembler,
• A language-side library for installing and activating native code.

Based on Benzo we outline 3 unique applications in Section 3.3:

• Foreign Function Interfaces (in more detail in Chapter 4)
• Dynamic Primitives (in more detail in Chapter 5)
• Language-side jit (in more detail in Chapter 5)

3.1 Background

High-level low-level programming [25] encourages to use high-level lan-

guages such as Java to build low-level execution infrastructures or to do
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system programming. It is successfully used in experimental high-level

self-hosted virtual machines (vms) such as Jikes [3]. Frampton et al. present

a framework that is biased towards a statically typed high-level language,

taking strict security aspects into account. Their approach promotes to ad-

dress low-level system programming tasks with the tools and abstractions

of high-level languages. However, their solution has reduced applicability

in a dynamic and reflective context. By reflective, we refer to the combined

capabilities to inspect (introspection) and change (intercession) the same

execution concepts at runtime [34].

From a reflective point of view it seems natural to dynamically modify

the vm at runtime and not just at compile-time. If we are able to modify the

vm from language-side we blur the line between these two distinct worlds,

becoming indistinguishable to talk about the vm or the language-side. Hence

throughout this chapter we use the term language runtime to refer to the

running vm combined with the language-side application.

3.1.1 Requirements

Extending the vm is only one particular case of modifying or extending the

complete language runtime. Language-side libraries, reflective capabilities,

vm extensions or hybrid approaches are other possibilities which we discuss

in detail in Section 3.5. All these typical extension mechanisms are not suffi-

cient if we want to modify the vm from language-side, or in our terminology,

to reflectively modify the language runtime. Furthermore these mechanisms

are based on the fact that there is a clear barrier between language and vm. A

solution that crosses these barriers requires the following properties:

1. It must be reflective in the sense it must support dynamic changes of the

language runtime (vm) without requiring a system restart.

2. It should imply minimal changes to the existing low-level runtime to

considerably reduce development efforts.

3.1.2 Benzo a Framework for Reflective High-level Low-level Pro-

gramming

High-level low-level programming is a powerful technique for system pro-

gramming without resorting to static low-level environments [25,55] that al-

most fulfills our requirements. However, in a reflective setup it fails to com-

ply with the first requirement mentioned in the previous paragraph: it does

not allow reflective changes at runtime. Our approach for overcoming this

limitation consists of Benzo, a lightweight and reflective framework that dy-

namically generates native code from language-side and allows its execution

on the fly. It relies only on a small set of generic vm extensions described in



3.2. The Benzo Framework 31

Section 3.2.1, whereas the vast majority of the framework is implemented as

a language-side library.

Benzo originally evolved from the work done by Igor Stasenko on the Na-

tiveBoost which we will describe in more detail in the following Chapter ??.

Initially Benzo itself was not considered as a separate application but a core

of the ffi framework. We extracted the core concepts — dynamic high-level

low-level programming – into a separated framework, Benzo.

3.1.3 Benzo Applications

In Section 3.3 we advocate the contribution of Benzo by providing three dif-

ferent incremental examples that heavily use the framework. Unlike typical

implementations that would focus on writing them as vm extensions, we im-

plement them completely at language-side using Benzo:

Language-side ffi A complete language-side Foreign Function Interface

(ffi) implementation, described in Section 3.3.1 and in more detail in

Chapter 4.

Dynamic Primitives A language-side compilation toolchain that replaces

system primitives at runtime with customized code, described later in

Section 3.3.2 and in more detail in Section 5.1.

Language-side jit Compiler A jit compiler that works at language-side

and interacts with the vm for code synchronization, described in

Section 3.3.3 and in more detail in Section 5.2.

Illustrated by these three distinct examples, the contributions of this chapter

are:

1. A reflective high-level low-level programming framework that encour-

ages the extension of high-level language runtimes on the fly without

the overheads imposed by pure high-level solutions.

2. A proof of concept of the proposal with the implementation and de-

scription of three different tools that heavily use reflective low-level

programming and covers distinct scenarios.

3.2 The Benzo Framework

Benzo is implemented in Pharo1, a Smalltalk inspired language. Pharo

comes with all the reflective capabilities known from Smalltalk where

most language-side components can be altered dynamically. Benzo is im-

plemented at language-side and only requires the help of two simple and

1http://pharo.org/

http://pharo.org/
http://pharo.org/
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generic primitives to activate native code and resolve the entry point address

position of referenced C functions.

3.2.1 vm Context

Pharo emerged from the Squeak project [28]. The Pharo vm (Cog) imple-

mentation [38] also evolved from the original Squeak bytecode interpreter.

The current vm uses a moving Garbage Collector (gc) with two generations

and uses a jit that applies basic register allocation to reduce stack load. This

situation is not a direct requirement for Benzo but it is assumed as given and

thus not further discussed in detail. However, Benzo requires certain features

that were not supported in the existing implementation of the Cog vm. Mainly

our requirement is being able to generate executable code and activate it at

runtime. This is general and essential so it applies to any vm that wants to

support dynamic code execution managed at language-side.

Executable Memory. We chose to follow a very lightweight approach to dy-

namically execute native code at runtime. Since we use Pharo as our host

language it is a natural choice to manage the native code at language-side

and use as few vm features as possible. Hence we use normal Pharo objects

to hold the generated native code.

However, by default the object memory is not executable. This leaves two

choices, either mark the whole object memory executable or move the objects

with the native code to a special executable memory region. We took the path

of least resistance and marked the whole object memory as executable. The

other solution requires substantial changes for memory management.

The gc of the Pharo vm uses a moving semi-space approach with two

generations. Additionally there is a fixed sized executable region used for

the jit as a buffer for runtime generated native code. The jit space uses its

own small garbage collection strategy which is decoupled from the rest of

the object memory. This also means that the jit space does not hold normal

Pharo objects but special low-level structures. As mentioned before, the jit

space is limited in size and eventually fills up, causing the jit to spill older

code structures from there.

The jit-space is built for holding native code objects. However, since the jit

objects are volatile this is not the place to keep long-living language-side ob-

jects holding native code. Instead we opt for the completely executable object

memory option and store all the executable code in standard Pharo objects.

As the vm has a moving gc, it gives us certain restrictions on what kind of na-

tive code we can run directly from the language-side. As we will describe in

Section 3.2.1, we can access high-level Pharo objects only via an indirection

from low-level code.
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vm Interaction. The standard way in Pharo to execute low-level code is to

use a tag in the method definition. The following example shows the multi-

plication method on the Float class.

* aNumber

<primitive: 49>

^ aNumber adaptToFloat: self andSend: #*

Here we use the primitive 49 to call a vm function which efficiently multiplies

two floats. Figure 3.1-a describes the case where the primitive is successfully

executed. However, if the primitive is unable to do the operation, for instance

if the argument aNumber is not a float, it will signal a failure which causes

the vm to execute the fallback Pharo code in the method body. Figure 3.1-b

describes it. In the floating point multiplication example the fallback code

uses a slow conversion method to polymorphically convert other objects to

floats and defer the multiplication.

BytecodesBytecodes

<           ><           >PrimitivePrimitive <            ><            >PrimitivePrimitive

!!vmvm

BytecodesBytecodes

a)a) b)b)

vmvm !!

Figure 3.1: Generic primitive methods in Pharo: a) By default a primitive

completely bypasses the bytecode, b) A failing primitive executes the byte-

code as fallback.

Benzo uses the primitives as a gate to enter the low-level world from the

language-side. Our custom primitive then executes the generated native code

and returns to language-side. This code is appended inside the compiled

method object. When the primitive is activated, it accesses the currently ex-

ecuted compiled method via a vm function. Figure 3.2 shows the structure

of a Pharo compiled method that has native code attached to it. We see the

primitive tag on top, followed by the literal frame which holds references to

symbols and classes used in the method. The subsequent Pharo bytecode is

the fallback code executed only if the primitive fails. Only then appears the

native instructions. A marker at the end of the compiled method called trailer

type is used to flag methods that actually have native code attached to them.

Since compiled methods are first-class objects it is possible to modify them

at runtime and append the native code. The primitive primitiveNative-

Call, which is implemented by Benzo, is the responsible of running the na-

tive instructions in a Pharo method. The code example interrupt3 shows

a very basic application of our infrastructure.
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Native 
Instructions
Native 
Instructions

Pharo
Bytecodes
Pharo
Bytecodes

Trailer TypeTrailer Type

PrimitivePrimitive

Pharo
Bytecodes
Pharo
Bytecodes

Trailer TypeTrailer Type

NormalNormal

LiteralsLiterals

<             ><             >

Figure 3.2: A standard Pharo compiled method on the left and a method with

appended native instructions generated by Benzo.

interrupt3

<primitive: ’primitiveNativeCall’

module: ’Benzo’ >

Benzo generate: [ :asm | asm interrupt3 ]

Code Example 3.1: Pharo method using Benzo for very basic low-level de-
bugging.

The primitive named primitiveNativeCall on the first line tries to run

the native instructions appended to the compiled method. When there is no

native code yet the primitive fails and on return it evaluate the rest of the

Pharo code in the method. In Section 3.2.2, through more detailed examples,

we describe how Benzo uses Pharo code to generate the native instructions

Figure 3.3 shows the resulting compiled method in full detail.

Native Code Trailer TypeNative Code Trailer Type

<                               ><                               >primitiveNativeCallprimitiveNativeCall

01 <42> pushLit: Benzo
02 <8F 01 00 03> new Closure
06  <10> pushTemp: 0
07  <D3> send: #interrupt3
08  <7D> blockReturn
09 <E1> send: #generate:
10 <7C> returnTop

01 <42> pushLit: Benzo
02 <8F 01 00 03> new Closure
06  <10> pushTemp: 0
07  <D3> send: #interrupt3
08  <7D> blockReturn
09 <E1> send: #generate:
10 <7C> returnTop

#generate:
Benzo
#interrupt3

#generate:
Benzo
#interrupt3

11 <CC> int3 11 <CC> int3 

Figure 3.3: Example of Pharo method with native code which calls the low-

level debug exception handler INT3. The bytecode references objects such

as symbols for messages sends indirectly via the literal frame residing at the

beginning of the method.
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Native Code Platform Interaction. To ensure that the code is compatible

with the current platform a vm specific marker is expected at the beginning

of the native code on the compiled method. Upon activation Benzo compares

this marker with the one from the current vm. If they do not match, Benzo

signals a failure that causes the vm to evaluate the fallback Pharo code. With

this elegant approach Benzo regenerates native code lazily on new platforms.

Moreover, it does not have to flush the native code when the application is

restarted on the same platform.

Garbage Collector Interaction. Compiled methods in Pharo have a special

section, the literal frame, which stores objects referenced in the bytecodes.

Bytecodes then only have indirect access to these objects by indexing into

the literal frame. This simplifies the implementation of the garbage collector

as it only has to scan the beginning of each method for possible references

to objects. So the gc only tracks Pharo objects when they are in the method

literal frame. The moving gc of the vm used for Pharo has a significant im-

pact on the low-level code we can generate using Benzo. For instance it is not

possible to statically refer to language-side objects from native code as object

addresses change after each garbage collection. Modifying the gc to support

regions of non-moving objects would solve this problem. However, we chose

to minimize the number of low-level vm modification necessary to run our

experiments and opted for a simpler solution.

Pharo
Bytecodes
Pharo
Bytecodes

Native
Instructions

Native
Instructions

External 
Roots

External 
Roots

Object 1Object 1

Object 2Object 2

Object 4Object 4

Object 3Object 3
<           ><           >

Trailer TypeTrailer Type
vmvm

PrimitivePrimitive

Figure 3.4: Pointers to objects registered as external roots are pinpointed at

fixed offset in global vm-level object.

Benzo accesses language-side objects through an indirection. For indirectly

accessing objects the Pharo vm already features a special structure, named

external roots. This array has a fixed-location in memory which can be used

to access moving language-side objects. The gc updates the addresses in this

vm structure after each run. Hence we have the static address of the external

roots object as an entry point to statically access Pharo objects. Summariz-

ing, for accessing Pharo objects within native code we first register it as an
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external root object and access it only indirectly. This means that for native

code, instead of a method-local literal array we share a global literal array as

shown in Figure 3.4. Benzo only adds an Array to the external root objects

which is managed from language-side and administers all references.

jit Interaction. When the Pharo vm starts the execution of dynamic gener-

ated code the execution environment changes slightly. Similarly, when en-

tering primitives or plugin code, the managed execution mode is left and

a normal C-level execution environment is reestablished until the primitive

finishes and the vm jumps back to the jitted code. These context switches im-

pose an overhead and can be avoided in the case of calling native code. For

this reason we extend the vm to support inlining of native code in the jit phase

following the same strategy as other existing primitives which are inlined at

jit-level. Figure 3.5 shows how the native code from a Benzo enabled method

ProloguePrologue EpilogueEpilogue

PharoPharo

jit Codejit Code asmasm

Benzo MethodBenzo Method

jit Codejit Code

Figure 3.5: Benzo inlining language-side native code into jitted mode.

is inlined into the jit infrastructure. The Benzo prologue and epilogue used

for managing the low-level stack are replaced by an adapted version for the

jit. The performance boost of this optimization is further discussed in Sec-

tion 3.4.

Error Handling. Benzo provides an error handling facility that allows one

to return high-level error messages from the low-level code. The native code

builder provides a helper method calledfailWithMessage: that generates

the proper assembler instructions to return a full error message. The follow-

ing code shows an example application of this behavior.

failWithErrorMessage

<primitive: ’primitiveNativeCall’

module: ’Benzo’ >

Benzo x86 generate: [ :asm :helper |

helper failWithMessage: ’Value is not 0’ ].

Under the hood, Benzo reuses the existing built-in error mechanism of

Pharo primitives. However, primitives only allow for error number to be re-

turned which limits the expressiveness of the error messages. To circumvent

this limitation Benzo assigns a unique error number for each error message

pass to failWithMessage:. The mapping between the two error message
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representation, its error number and the message string itself, happens at

language-side. Benzo simply reuses the existing infrastructure to improve

the debugging tasks and promote a better interaction with developers.

3.2.2 Benzo’s Language-Side Implementation

As a key design decision, we determine to keep the interface to the low-level

world minimal. The following describes the features of Benzo at the high-

level language-side.

Code Generation. Benzo delegates native code generation to a full assembler

written in Pharo. The following example shows how to use the assembler to

generate the native code for moving 1 into the 32-bit register EAX.

Benzo x86 generate: [ :asm |

asm mov: 1 asUImm to: asm registers EAX ].

The implementation first creates a slightly more abstract intermediate format.

The abstract operations can be extended by custom operations that may ex-

pand to several native instructions.The full features of the high-level environ-

ment are available when generating native code. Hence complex instruction

sequences can easily be delegated to other objects. In the following exam-

ple we use a vm helper to instantiate an array. It is worth noting that all are

standard message sends:

Benzo x86 generate: [ :asm :helper | | register |

register := helper classArray.

register := helper

instantiateClass: register

indexableSize: 10

asm mov: register to: asm resultRegister ].

The vm helper exposes a basic, low-level interface to access objects and

its properties. Additional methods cover the access to the external roots

described in Section 3.2.1. In this case the #instantiateClass:index-

ableSize: will generate the proper native code to call to a vm function and

make sure that the side-effects of a possible gc run are handled properly. By

default the value in the result register is returned back to the language-side.

On x86 this defaults to EAX. In Section 3.3 we introduce more substantial

applications based on Benzo.

Code Activation. So far we only broadly described how Benzo activates the

native code. In a nutshell, we generate native code using our own language-

side assembler and then we attach the native instructions to compiled meth-

ods as shown in figure Figure 3.3. Additionally we mark the method to use
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a primitive defined Benzo plugin. The Benzo primitive is responsible for the

native code activation which consists of three main steps:

1. Check if there is native code in the actual compiled method and if it is

compatible with the current platform.
2. Generate native code if necessary.
3. Activate the native code for execution.

The first time a method with Benzo-based native code is activated the linked

Benzo primitive will fail and run the normal Pharo code in this method (see

Section 3.2.1). This is where the actual native code generation happens. As

shown in previous examples, the native code is expressed in standard Pharo

code using our language-side assembler. Once the whole code is generated, it

is appended to the compiled method body leaving the existing Pharo byte-

codes intact. Behind the scenes Benzo adds some more information to the

code as the previously mentioned platform marker. After the native code is

installed in the compiled method, we still run Pharo code to restart the same

Benzo-enabled method again. For clarification we visualize the code activa-

55NativeNative

Pharo

Method

Pharo

Method

<   ><   >
enterenter

returnreturn

restartrestart
<      ><      >

Primitive 
Failure

Primitive 
Failure

11

22

33

Figure 3.6: Native code activation with Benzo: The first call triggers the code

generation written in Pharo. Then the method is restarted and the cached

native code executed.

tion process in Figure 3.6 and the following list describes the separates steps

in more detail:

Activation: In the first step (cf. ❶) the Benzo primitive is activated. The pri-

mitive checks if the compiled method actually contains native code.

Code Generation: On the first activation there is no native code available

yet. Hence the primitive will fail and the Pharo body (cf. ❷) of the Ben-

zo-enabled method gets evaluated. This is where we use the Benzo api

and write native instructions as shown in previous examples.

Code Installation: After installing the native code in the method trailer, the

Benzo-enabled method is reactivated with the original arguments (cf.

❸). For activation Benzo uses Pharo’s #perform:withArguments:

to reflectively restart the method.
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Method Reactivation: Again we end up in the Benzo activation primitive (cf.

❹). However, this time native code is present and thus the Benzo jumps

to native code attached to the compiled method (cf. ❺ and returns the

generated result.

3.3 Benzo in Practice

In this section we present the outline 3 distinct solutions built on top of Ben-

zo: A ffi, dynamic primitives and a jit (Chapter 4 and Chapter 5 provide more

detailed insight). Typically these implementations would require a custom-

tailored vm or specialized plugins. However, we show that it is possible to

implement them using the generic functionality provided by Benzo.

The chosen applications, starting with the ffi, are increasingly more vm

bound. Whereas the typical ffi implementation is based on an separate plu-

gin, dynamic primitives or a jit require persistent changes in the underlying

vm.

3.3.1 NativeBoost: Benzo-based Foreign Function Interface

ffis enable a programmer to call external functions without the need to im-

plement additional vm extensions. NativeBoost [14] is a production-ready ffi

for Pharo, developed on top of Benzo. For a detailed discussion of the im-

plementation of NativeBoost see Chapter 4. An ffi implementation consists

of two main parts: calling external functions and converting data between

the two environments. Typically a big percentage of these two parts are im-

plemented at vm-level with statically defined bindings. Relying on Benzo’s

capability to dynamically generate and execute native code we developed a

complete ffi at language-side. This way the vm no longer requires to have a

specific ffi extension.

vm

External
Native Library

NativeBoostNativeBoost BenzoBenzo

Figure 3.7: NativeBoost generates native code at language-side with Benzo

to perform an ffi callout to an external function.

A very simple example to illustrate the functionality of NativeBoost is

to access the current environment variables with the getenv C function.

getenv takes a name as single argument and returns the value of that envi-

ronment variable as a string:
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getenv: name

^ NativeBoost call: ’String getenv(String name)’

In this example NativeBoost automatically detects, using reflection, that the

argument for the Pharo method corresponds to the one of the low-level C

function. The most important aspect about this example is that it is written

with standard Pharo code, a property that extends to almost the complete

implementation. NativeBoost, additionally to the native code activation, re-

lies on two simple primitives provided by Benzo to retrieve addresses of ex-

ternal functions (dlsym) and to load external libraries (dlopen).

NativeBoost generates the glue code to call external functions dynam-

ically at run time. It relies on Benzo’s features presented in Section 3.2.2 to

generate and activate native code at runtime. This gives NativeBoost a signif-

icant advantage over static approaches: the generated native code is specific

to the callout. For instance in the getenv example, the marshalling code for

converting from the internal Pharo strings to C strings is written a small as-

sembler routine. In this specific context, the assembler code is faster than any

language-side code. Yet NativeBoost is very flexible since all these conver-

sion routines are defined at language-side. Each language-side library can

define its own highly efficient conversion routines for types that are used in

ffi callouts, which is not directly possible to do with a vm extension.

3.3.2 Reflective Primitives

Waterfall is the second application we use to validate Benzo. This project

has been developed by Guido Chari and allows a programmer to dynami-

cally replace primitives at language-side, essentially reflectively altering the

vm. This is a step further than previously presented Benzo-based ffi which al-

lows us to call external functions by generating the callout code at language-

side. From an abstract point of view we replace language-side methods with

native routines. NativeBoost does not directly synthesize new features but

only makes external functionality available to the language itself.

vm

Primitive Definition
in Slang

Primitive Definition

in Slang
WaterfallWaterfall

gcc vm Primitivevm Primitive

Figure 3.8: Waterfall reuses the definitions of vm primtives written in Slang

and compiles them dynamically. The same primitive definition is used for

generating the static primitive at vm compilation time.
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As explained previously in Section 3.2.1 Benzo uses Pharo’s primitives

to activate native code. Since Pharo is an open system we can extend this be-

havior to existing methods. Instead of simply adding new methods which call

native code we present Waterfall, a solution that modifies existing primitive

methods and replaces them with Benzo-based native code. Instead of manu-

ally generating the sources for the primitives we reuse existing code. The vm

used for Pharo is metacircular, the vm sources are written in the same lan-

guage, in our case in a simplified subset of Pharo called Slang. Hence, the

complete definition of the vm including the primitives can be made acces-

sible at language-side by loading the vm sources. Waterfall then takes the

primitive definition written in Slang and compiles it to native-code.

As Figure 3.8 illustrates, Waterfall extends the lifetime of the metacir-

cular vm definition to the actual language runtime. By default the primitive

definitions written in Slang are only used to generate the vm source in an

intermediate step. A C-compiler such as gcc generates the final binary. By

doing so the high-level primitive definitions are absorbed by the interme-

diate compiler infrastructure. The final binary has no reflective capabilities

anymore. From within Pharo we can only activate primitives but the abstract

definition is no longer accessible. Hence, we can not directly modify primi-

tives directly without the original vm sources loaded.

Waterfall provides a complete metacircular infrastructure for primi-

tives. We use Waterfall to modify primitives on the fly. For instance it

becomes possible to instrument the crucial basicNew primitive, something

that is almost impossible to achieve with pure language-side reflection.

Since this primitive is used for object creation, each attempt to monitor

this primitive is doomed. If the monitoring code itself would create a new

object, infinite recursion would be inevitable. In Section 5.1 we explain in

more detail the difficulty of such a task along with promising performance

evaluations.

3.3.3 Nabujito jit Compiler Prototype Outline

In this section we present Nabujito, a Benzo-based approach for a language-

side jit compiler. Nabujito goes even further than Waterfall using almost the

same techniques. However, instead of focusing on primitives, Nabujito gen-

erates native executable code for standard Pharo methods. Primitives tend

to be more low-level, whereas Nabujito focuses on high-level Pharo code.

The Pharo vm (originally Cog vm2) already comes with a jit that translates

bytecodes to native instructions. It transforms Pharo methods into slightly

optimized native code at runtime. The most complex logic of the jit infras-

tructure deals with the dynamic nature of the Pharo environment. Methods

2http://www.mirandabanda.org/cog/

http://www.mirandabanda.org/cog/
http://www.mirandabanda.org/cog/
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vm

NabujitoNabujito

Pharo MethodsPharo Methods

Jitted MethodsJitted Methods

vm jitvm jit

Figure 3.9: Nabujito compiles standard Pharo methods with the help of Ben-

zo to the same format the vm jit uses.

and classes can be changed at runtime and that has to be addressed by the

jit infrastructure. This implies that an efficient jit infrastructure needs sub-

stantial access to language-side structures; in our case classes, methods. This

information is readily accessible in Pharo through the standard reflective api.

However, at vm-level this requires more effort, and thus imposes strong re-

quirements on the design of classes and methods at language-side. The jit

infrastructure is a hybrid between vm logic and language-side reflection.

The jit compiler, by which we refer in this context to the transformation of

bytecodes to native code, represents a small part of the whole jit infrastruc-

ture. There exists more important stages as an additional register allocation

pass to reduce the number of stack operations [37,38]. The existing jit infras-

tructure is implemented in Slang [9, Ch. 5] as the rest of the vm. We believe

that a hard-coded static and low-level implementation is not optimal for sev-

eral reasons:

• Optimizing Pharo code requires strong interactions with the dynamic

environment.

• Accessing language-side properties from the vm-side is hard.

• Changing the jit compiler requires changes at vm-level.

• The jit reimplements primitives for optimization reasons resulting in

code duplication.

Implementing Nabujito with Benzo. Motivated by the aforementioned im-

plications of a vm-level jit we conceived Nabujito a prototype jit compiler

based on Benzo. Nabujito is an experimental jit implementation which re-

places the bytecode to native code translation of the existing jit infrastructure

with a dynamic language-side implementation. Nabujito is implemented as

a visitor over the existing intermediate bytecode representation. Addition-

ally we reimplemented vital native routines for the jit which are not directly

exported by the vm using Benzo. Nabujito relies on the following vm-level

infrastructure to manage and run native code for any Pharo method:
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• Fixed native code memory segments.

• Routines for switching execution contexts.

• Native stack management.

Dynamic Code Generation. For standard methods Nabujito takes the byte-

codes and transforms them to native code. It also applies optimizations such

as creating low-level branches for Pharo level branching operations like if-

True:. Optimizations for additional methods are all implemented flexibly at

language-side. Wherever possible, we reimplement the same behavior as the

existing native jit compiler. Eventually the native code is ready and Benzo

attaches it to the existing compiled method. When the language-side jitted

code is activated Benzo ensures that we do not have to leave the jit execution

mode, and thus we can call methods at the same speed as the existing jit.

Section 5.2 gives a more detailed insight of the design and performance of

Nabujito.

3.4 Performance

In this section we discuss the general performance characteristics of Benzo

for the three example applications outlined in the previous section. A more

detailed validation is presented later in Section 4.3 (ffi), Section 5.1.4 (Water-

fall) and Section 5.2.3 respectively.

One-time Code Generation Overhead. Benzo allows the generation of spe-

cialized and thus efficient native code. In Section 3.2 we explained how Benzo

causes only a one-time overhead for native code generation. Thereafter it is

cached for later activations. The three use case presented in Section 3.3 heav-

ily benefit from this fact. Generating code at language-side poses a signifi-

cant overhead compared to invoking a precompiled native implementation.

However, this is only a one time overhead. For instance the Benzo-based ffi

implementation presented in Section 3.3.1 outperforms a vm-level ffi-plugin

due to a more flexible language-side implementation which generates spe-

cialized code for each ffi callout. These results are shown in the following

Table 3.1.

As an example performance evaluation we present is for NativeBoost the

Benzo-based ffi. Compared to a static plugin-based ffi implementation Na-

tiveBoost has only a one-time startup overhead. Generating the native code

at language-side is substantially slower than directly setting up all the con-

versions and calling the external functions from C code. In certain cases the

penalty for the language-side code generation of NativeBoost is as high as a

factor of 100 compared to classic approaches. Under the assumption that the
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method is called several times this overhead may be considered negligible.

An in-depth evaluation of NativeBoost comparing against other solutions

is presented later in Chapter 4. The following table contains a performance

comparison of three different ffi implementations for Pharo that represents

the typical use case.

Call Time [ms] Relative Time

NativeBoost 65.34± 0.46 1.00

Alien 175.77± 0.62 ≈ 2.69

C-ffi 148.77± 0.42 ≈ 2.27

Table 3.1: Different ffi implementations in Pharo evaluating abs(int). Al-

ien does marshalling at language-side while ffi does everything in vm plugin

written in C.

Table 3.1 measures the accumulative time of 100’000 ffi calls. Included in

these numbers is at least one additional Pharo message send to activate the

NativeBoost method containing the actual call to the C function. NativeBo-

ost outperforms the existing language-side ffi (Alien) and the implementa-

tion (C-ffi).

The existing language-side C-ffi has a generic plugin to call C-functions

and performs type-conversions at language-side. However, converting Pharo

objects from and into low-level data is comparably expensive. In NativeBo-

ost this happens directly in custom generated native code and is thus signifi-

cantly faster. The plugin-based C-ffi is also slower than NativeBoost since it

still has generic conversion function for Pharo objects, albeit written in C and

thus faster than in Alien. However, NativeBoost custom tailored asm code is

still faster than the hard-coded C counterpart.

This simple ffi evaluation already highlights the core benefit of Benzo

to generate very customized native code when needed. Yet we have to em-

phasize that NativeBoost is based on the Benzo infrastructure whereas the

other solutions require both a vm plugin whose sole purpose is to enable the

ffi functionality. Furthermore NativeBoost benefits from the jit interaction

described in Section 3.2.1. This optimization is especially an important op-

timization factor when calling out small helper routines where the context

switch from jitted mode is no longer negligible.

3.5 Extending the Language Runtime

In the context of Benzo we see a variety of related work spawning different

abstraction levels. On a more abstract scale Benzo allows for a new way of

extending the complete language runtime, hence we classify the related work
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according the following categories show in Figure 3.10: general language-

side extensions, extensions using reflection, vm-level extensions, and hybrid

approaches.

We present now an overview of the approaches used to extend a lan-

guage runtime and expose their limits. High-level languages are in general

sustained by a vm and a vast set of libraries written in the language itself.

Extending or improving the existing language runtimes is a difficult task. In

most cases the vm is considered as a black box. Additionally the vm is written

in a completely different language using another abstraction level than the

one it supports. Typically high-level language vms are written in C or C++.

To address extensions in this context there exist some known approaches:

Language-side Library based on implementing a new or existing library.
Reflective Extension relying on reflective features of the language.
vm Extension by writing plugins or changing the core of the vm.
Hybrid Extension by accessing external libraries using ffi.

The relation between the side concerning the abstraction and implementation

levels (vm vs. language) of these extensions is illustrated in Figure 3.10.

vm

LanguageLanguage

(a) Language running on a standard,
unmodified vm.

vm

LanguageLanguage

ExtensionExtension

(b) Language-side implementation of
an extension.

LanguageLanguage

vm

vm Extensionvm Extension

(c) Language using features from a vm

extension.

vm

LanguageLanguage

vm Pluginvm Plugin

(d) Language using features from a
separate vm plugin.

Figure 3.10: Comparison of different extension mechanisms

3.5.1 Language-side Library

The most straight forward solution for extending a language is to write li-

braries within the language itself. This option provides the advantage that the
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aggregate behavior is accessible and evolvable for any language developer.

However, language-side libraries are constrained by the underlying managed

language runtime. The vm separates the language from the low-level inter-

nal details. As a consequence language-side libraries are not feasible for all

feature requirements. For instance the previously mentioned example of in-

strumenting the language runtime is not possible as a standard language-

side extension without a considerable performance loss. So, even though we

prefer extensions and optimizations at language-side, there are certain lim-

itations of a managed language runtime that can not be circumvented. If all

language-side optimization opportunities have been exhausted it is exposing

the need to resort to lower level approaches.

Language-side libraries are constrained to the capabilities of the

underlying vm and thus not general enough. Additionally not all

performance bottlenecks can be addressed at language-side.

3.5.2 Language-side Reflective Extensions

This is a specialization of the previous approach but in the context of re-

flective environments. For instance, Meta Object Protocols (mop) [31] based

on reflection [34] are used to define certain control points in the system to

change the language. By composing meta objects it is possible to even mod-

ify the semantics of the language. Several languages such as Pharo, Small-

talk, Python3, Ruby4, and others provide reflective capabilities with differ-

ent depths [4,49]. However, most modern programming languages only have

very limited support for intercession. Hence the possibilities for dynamically

changing language semantics or features are limited. Furthermore reflective

capabilities are hard to implement efficiently. Reflection imposes substantial

performance penalties on most computations by postponing bindings [35].

Nevertheless, there are exceptions for a subset of reflective behavior which

are implemented efficiently using a high-level MOP [53]. Though these ap-

proaches remain as a few exceptions. In the typical low-level vm it is difficult

to gain reflective access to language-side objects. Similar to the previous case,

our goal is to extend language features in a general way and it was shown that

this is only partially possible by reflective extensions.

Reflective capabilities are not enough for general extensions. Even

when suitable, they usually pose a significant performance over-

head up to the point where they become unfeasible.

3http://python.org/
4http://www.ruby-lang.org/

http://python.org/
http://www.ruby-lang.org/
http://python.org/
http://www.ruby-lang.org/
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3.5.3 vm Extensions / Plugins

Another approach to extend add new features to a programming language is

to extend the vm. At this level we differentiate between two extension mecha-

nisms: vm plugins and modified vms itself. Plugins are direct bindings to ex-

ternal libraries described at vm-side or libraries linked to the vm executable [9,

Ch. 5]. They provide a performance boost in comparison to pure language-

side solutions. Using highly optimized native libraries it is straightforward

to outperform code written at language-side. Typically, even very complex

vms such as the Self vm [47] provide a clean interface to write plugins. Miss-

ing high-level concepts make them harder to maintain than language-side

code. Depending on the added feature the plugin interface may prove to be

too inflexible and the only choice is an modified vm. Such a fork comes at

an even higher cost of maintenance. In the following paragraph we will ex-

plain the these two main limitations we found when working with plugins: a

certain abstraction mismatch compared to host language and the limitations

imposed by a clean plugin interface.

Problem: Abstraction Mismatch

Plugins are commonly written in the same language as the vm, at a low ab-

straction level. The abstraction difference compared to a language-side exten-

sions makes it difficult for standard programmers to modify or write vm plu-

gins. Few exceptions are self-hosted languages [41,48,55]. To support a fluent

development process, vms should come with an infrastructure for building

extensions at same abstraction level as the provided language. Instead vms

tend to be rather complex which includes the whole development cycle. For

example, only a few vms have high-level debugging facilities [28, 48, 55]. It is

more common to be stuck in the compilation step waiting for the debugging

binary to be ready.

vm Generation Framworks. The lack of abstraction for vm-level extensions

can is addressed by vm generation frameworks in general. They try to ab-

stract away the complexity of the vm and use high-level languages as com-

piler infrastructure. A very successful research project is Jikes Research vm5

(former Jalapeño) [3]. It uses Java to metacircularly define a Java environ-

ment which then generates the final vm. A similar framework is PyPy6 [41]

a vm framework including an efficient jit. PyPy uses a restricted subset of

the Python language named RPython which is then translated to various

low-level backends such as C or llvm code. There exist several different high-

level language vm implementations on top of PyPy such as Smalltalk [12]
5http://jikesrvm.org/
6http://pypy.org/

http://jikesrvm.org/
http://pypy.org/
http://jikesrvm.org/
http://pypy.org/
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or Prolog. However, its main focus lies on an efficient jit generator mainly

for a Python interpreter, and not on a direct, language-side assembler inter-

face. PyPy encourages to use reflection at compile-time which helps to write

a maintainable code base.

Problem: Plugin Limitations

Once a programmer is fluent at vm-level a clean plugin interface is a big aid

in terms of maintenance. However, certain functionality can not be added by

simply creating a separate plugin that encapsulates the new feature. Promi-

nent examples are jit support, immutability or first-class handles [6]. In all

these examples core pieces of the vm have to be modified: the vm has to be

forked. From a vm maintenance point of view, forks have to be avoided if pos-

sible and should only be used for critical performance issues that can not be

properly addressed at language-side or with plugins.

From our experience with Pharo, even promising vm experiments are not

maintained for a long time. An example for that is the modified vm support-

ing back-in-time debugging implemented for an early version of Pharo and

Squeak [33]. The features would improve debugging without a doubt. How-

ever, the vm evolved in the mean time adding new features required by newer

versions of Pharo. As a result the back-in-time enabled vm is no longer com-

patible with Pharo. Presumably it would be easier to port the back-in-time

debugger to a new Pharo version if it were implemented purely at language-

side.

High-level Low-level Programming. High-level low-level programming

[25] encourage to use high-level languages for system programming. Framp-

ton et al. present a low-level framework packaged as org.vmmagic, which is

used as system interface for Jikes, an experimental Java vm. Additionally their

framework is successfully used in mmtk [10] which is used independently

in several other projects. The org.vmmagic package is much more elabo-

rate than Benzo but it is tailored towards Java with static types. Methods

have to be annotated to use low-level functionality. Additionally the strong

separation between low-level code and language-side application does not

allow for reflective extensions of the language runtime. Finally, they do not

support the execution nor generation of custom assembly code in the fly.

VM extensions provide good performance at the cost of main-

tainability. Moreover this approach implies resorting to pure low-

level development where tools and abstraction advantages from

high-level languages are restricted.
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3.5.4 Hybrid Extensions

The last approach is to reuse an existing library usually implemented in a for-

eign language. The languages interact through a well-defined Foreign Func-

tion Interface (ffi). ffi-based extensions are a hybrid approach between pure

language-side extensions and vm-side ones. Interaction with native libraries

is supported by a dedicated vm functionality for calling external functions.

This allows for a smooth interaction of external code and language-side code.

ffi-based extensions share the benefits of a maintainable and efficient lan-

guage-side library with modest implementation efforts. However, ffi is only

a bridge or interface for allowing the interaction of different languages. It is

not possible to directly synthesize new native features from language-side.

For this purpose we have to interact with a custom-made native library. From

an extension point of view this is close to the vm extensions discussed previ-

ously.

Additionally to the interface limitations, there exists a performance over-

head in ffi for making the interaction between different languages possible.

This is due to marshalling arguments and types between both languages

[24, 40].

Other high-level languages such as Lua leverage ffi performance by us-

ing a close interaction with the jit. Luaffi7 for instance is an efficient Lua

implementation that inlines ffi calls directly into the jit compiled code. Sim-

ilar to Benzo this allows us to minimize the constant overhead by generating

custom-made native code. Luajit is mainly written in C which has clearly dif-

ferent semantics than Lua itself. Compared to our approach the efficient vm

implementation suffers from the shortcomings described in Section 3.5.3.

Kell and Irwin [30] take a different look at interacting with external li-

braries. They advocate a Python vm that allows for dynamically shared ob-

jects with external libraries. It uses the low-level Dwarf debugging informa-

tion present in the external libraries to gather enough metadata to automat-

ically generate ffis. However, they do not focus on the reflective interaction

with low-level code and the resulting benefits.

Quicktalk [8] follows a similar approach as the dynamic primitives in

Waterfall. However, Ballard et al. focus mostly on the development of a com-

plex compiler for a new Smalltalk dialect. Using type annotations Quicktalk

allows for statically typing methods. By inlining methods and eliminating

the bytecode dispatch overhead by generating native code Quicktalk out-

performs interpreted bytecode methods. Compared to Waterfall Quicktalk

does not allow to leave the language-side environment and interact closely

with the vm. Hence it is not possible to use Quicktalk to modify essential

7https://github.com/jmckaskill/luaffi/

https://github.com/jmckaskill/luaffi/
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primitives.

A notable exception to the metacircular vms mentioned earlier is the Self

implementation Klein [48]. Unlike typical other metacircular approaches it

does not strictly separate compile-time and runtime. The reified vm concepts

are available at runtime, which is a result from implementing the typical vm

pieces at language-side. Compared to our approach, Klein’s bridging efforts

are much more complete. However, Klein is built on a completely new vm

infrastructure, whereas Benzo requires only few changes to achieve its func-

tionality.

Hybrid extension are the most promising. They allow for a seam-

less interaction from high-level language-side to low-level func-

tionality. However, most existing solutions target only specific use

cases and can not be reused for other applications.

3.6 Limitations of Benzo

In this section we will point out the current limitations of the Benzo frame-

work. As we outlined in Section 3.4 Benzo is a promising alternative to build-

ing vm-plugins. Our prototype use cases, the dynamic primitives and the

language-side jit compiler, even suggest that Benzo can be used as a replace-

ment for certain vm-level modifications. However, throughout the develop-

ment of these tools we also noticed certain drawbacks and limitations of the

current Benzo implementation. We will now discuss the following three main

issues in more detail: robustness, debuggability and portability.

3.6.1 Robustness

The first immediately visible flaw of Benzo is that there is currently no sup-

port for running the native code in a protected environment. Benzo directly

transfer the execution context to the generated native code without protec-

tion. Whilst this makes sense from a performance point of view for a stable

piece of native code, it is nuisance during development. The most common

errors we noticed during development were cause due to stack misalignment

and access to invalid memory region. The latter one is also typical for C de-

velopment, whereas creating a misaligned stack in pure C is not possible.

Benzo x86 generate: [ :asm |

"Push the EAX register on the stack"

asm push: asm EAX ]

Code Example 3.2: Simple Benzo code possibly leading to an unbalanced
stack.
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Benzo x86 generate: [ :asm |

"Puhs the value of the location EAX points to

asm push: asm EAX ptr ]

Code Example 3.3: Benzo code possibly leading memory access violation.

In Pharo it is possible to willingly corrupt the stack by for instance injecting

a wrong sender as illustrated with following the code example.

"Store an invalid object in a context variable used

by the JIT and the VM"

thisContext instVarNamed: #closureOrNil put: 1.

The context is exposed as first-class object to the language and thus we can re-

flectively modify it. However, at the same time there it has to fulfill a contract

with the jit which maps it to a native stack frame for performance reasons. In

the current Cog vm reflective accesses to the current context/stack frame are

not checked. Hence we can use it to inject a wrong object, in our case a small

integer. This would require additional checks at the jit to properly read the

small integer. However, for performance reasons this is not done, resulting

in a wrongly read value and a subsequent crash of the vm.

In Benzo the standard developer will most probably be more familiar

with Pharo than with C or even Assembler, which will easily lead to the

aforementioned errors. Which means that we have to be prepared for these

common errors. Currently the active operating system process will be killed

when the misaligned stack eventually lead to an invalid memory access. From

a Pharo point of view this is unacceptable behavior. Typically every error is

revealed in Pharo by opening a debugger, giving the programmer a chance to

figure out the problem at hand. Enabling debugging support for the low-level

Benzo code is not that easy as we will show in the following Section 3.6.2.

As a first step we should provide a debug mode for Benzo where the

low-level errors do not terminate the main process. The most simple way to

achieve this is by forking the whole vm process at the moment the native

Benzo code is activated. However, the current implementation of the Pharo

vm does not support clean forking, even so close implementations such as

Squeak supports forking with a specific vm plugin8. Implementing a debug-

ging version of the Benzo plugin to activate native code in a forked process

would solve this issue, though at the cost of an additional primitive and the

use of an old vm.

Addressing faulty stack management requires more effort. One possibil-

ity is to use an existing asm simulation framework and run the code in there

and check for unbalanced stack operations. This difficulty leads us the second

issue with Benzo.

8http://wiki.squeak.org/squeak/708/

http://wiki.squeak.org/squeak/708/
http://wiki.squeak.org/squeak/708/
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3.6.2 Low-level Debugging

The second main limitation of Benzo is the lack of a dedicated debugger.

Pharo inherits the long standing tradition of Smalltalk to provide an excel-

lent debug interaction for programmers.

The Pharo debugger shows the stack, the current receiver along with the

temporary variables and argument. However when working with Benzo this

important tool is no longer available. Currently the only way to debug Ben-

zo code is to launch the vm upfront in a C debugger such as gdb or lldb.

However, the debug interaction is rather limited compared to Pharo. Not

only does the programmer have to resort to an external tool, but there are

only a handful mostly proprietary standalone debuggers available.

For a better low-level debugging experience we have to rely on a com-

plete ide such as Eclipse or Xcode, a rather cumbersome overhead to standard

Pharo programming.

Besides using these external tools there is no simple alternative. The only

way to provide a seamless debugger is to either build on the fork solution pre-

sented in the previous Section 3.6.1 or a separate simulator. System libraries

such as ptrace enable debugging for an external process. It would be possible

to write bindings to this library with an ffi from within Pharo and debug a

Benzo-enabled method this way.

Even so this would be a great step forward compared to the current infras-

tructure it implies that the programmer anticipates debugging. Something

that is very uncommon in Pharo as the debugger is tightly integrated into

the standard development environment. A potential solution to this prob-

lem would be to install low-level signal handlers which try to backtrack from

signals triggered by memory access violations such as SIGBUS and SIGSEGV

under Linux.

Pharo
Stack

Pharo
Stack

Native
Stack

Native
Stack

!!22

primitiveNativeCallprimitiveNativeCall

!!
11

SIGSEGVSIGSEGV

Signal
Handler
Signal
Handler

33

Benzo

Failure

Benzo

Failure
44

Figure 3.11: Outline of a low-level debugging mechanism to transform low-

level errors into a high-level exception using a designated signal handler

which walks the stack until it finds the primitiveNativeCall activation.

The following list explains the detailed steps of Figure 3.11.
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1. Standard Pharo method activating a Benzo-enabled method through

the primitiveNativeCall primitive.

2. Native code causing a memory access violation (for example SIGSEV)

which can not be handled by Pharo directly.

3. Low-level signal handler is activated by the operating system and tries

to walk back the native stack up to the primitiveNativeCall acti-

vation.

4. After successfully finding the primitiveNativeCall the signal han-

dler sends a Benzo failure back to Pharo.

We assume that with the outlined mechanism an important fraction of the

occurring memory access violations could be handled adequately in Pharo.

However, since there is no real protection in the native code, there is no guar-

antee that the main Pharo vm can continue working. Faulty native code might

have corrupted the main Pharo stack or heap beyond repair. Nevertheless,

this scheme could bring approximate a high-level user experience for native

Benzo code.

3.6.3 Platform Independence

The previous two issues discussed, robustness and debuggability, both tar-

get the integration into the existing Pharo development environment. This

third issue on the other hand is related to the system integration: platform

independence.

The Intel x86 instruction set is widely distributed and supported by a

variety of operating systems and thus the primary choice as native backend

for Benzo. Since the generated code is independent of C functions it works

on all platforms with x86 support. However, other architectures such as arm

start to be more widespread and inevitable Benzo has to be ported on other

platforms. In contrast to Pharo itself, Benzo does not work on arm platform

since all the low-level code is written in terms of x86 instructions. While there

is no way around a arm version of the underlying assembler, we think that

porting all existing Benzo routines is too costly. Instead we suggest to use an

intermediate format that is platform independent more high-level than direct

assembler instructions. We call this intermediate format VirtualCpu and it

has the following properties:

• High-level three-address-code (tac) instructions
• Automatic stack-management

Along with the ongoing work for this thesis we already started implementing

VirtualCpu as a fork of the original compiler infrastructure of the Pinocchio

vm.
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VirtualCpu. In this following paragraph we are going to highlight the ben-

efits and usage of this intermediate format. VirtualCpu is based on a tac

to simplify the adoption of optimizations such as ssa. These tac instructions

take the following form:

result := argument1 OP argument2

There are three operands involved, result, argument1 and argument2,

from which the name of this instruction format originates. Based on this as-

sumption, each standard VirtualCpu instruction returns a temporary vari-

able which can be used for further operations. The following code example

outlines the basic usage of VirtualCpu:

Benzo vcpu x86 generate: [ :asm | | temp1 temp2 |

temp1 := asm memoryAt: 16r12345.

temp2 := asm uint: 2.

asm return: temp1 + temp1 ]

Code Example 3.4: Basic VirtualCpu Example

Which corresponds to the same functionality expressed in the following x86

instructions:

Benzo x86 generate: [ :asm |

asm mov: 16r12345 ptr to: asm EAX.

asm add: asm EAX with: 2.

asm return ]

To get to the final native instructions the VirtualCpu infrastructure compiles

the high-level instructions to the specific backend. The current compiler is

divided into the following passes:

• Platform Specific Transformation
• Register Allocation
• Superfluous Assignment Remover
• Platform Specific Assembler

Applying these compiler passes to the example in Listing 3.4 yields the fol-

lowing native instructions with explicit register assignments:

mov 6 --> EDX

mov 2 --> ECX

add EDX, ECX

mov ECX --> EAX

return

With a properly parametrized register allocator and a separate constant fold-

ing pass the result could be greatly improved.

3.7 Conclusion and Summary
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In this chapter we presented Benzo, an integral approach for reflective

high-level low-level programming. Benzo consists of three core parts: AsmJit

a language-side assembler, a set of primitives to activate native code and

language-side library to handle dynamic code installation and activation.

Benzo promotes a smooth and powerful interaction with the low-level

world by dynamically generating native code from language-side. This en-

ables to exploit the underlying platform capabilities when strongly needed

without leaving the host development platform. Most of the Benzo infras-

tructure is implemented at language-side and thus susceptible to modifica-

tion. As a result, Benzo advocates the use of development tools and abstrac-

tion level of the high-level language for as much as possible or desired.

Benzo Applications. Based on Benzo we outlined in this chapter three ex-

ample applications: an ffi in Section 3.3.1, dynamic primitives in Section 3.3.2

and a language-side jit compiler in Section 3.3.3. Typically all these applica-

tions require either a modified vm or a dedicated plugin while our imple-

mentations are based on a central framework for low-level interaction. In this

chapter we only outlined these application to stress the fact that they use

Benzo and only the following chapters will shed light on the implementa-

tion details of these three applications.

Benzo Performance. Using the three Benzo-based applications we evaluate

the performance of Benzo compare to a typical vm-level implementation. In

summary we note that Benzo’s code generation at language-side is slow com-

pared to a single invocation the final native code. However, this is only a one-

time overhead since Benzo caches native code transparently at language-side.

Additionally we generate specific native code for each different application

we easily outperform a static solution. This becomes evident with the ffi im-

plementation that is based on Benzo. Our mature ffi implementation out-

performs an existing C-ffi implementation by a factor of 1.5 even though we

control every aspect from language-side.

By combining high-level reflection capabilities with efficient low-level

code we manage to do dynamic primitive instrumentation and reuse the

code for primitive operations which is duplicated on the standard jit ap-

proach. We also show that since our jit compiler poses only a one-time

overhead when generating native code.

Benzo’s Limitiations. Even though Benzo allows us to implement the three

example applications at language-side, the complete development interac-

tion requires improvement. Currently there is not protection against faulty

assembler code nor support for a low-level debugger. To clearly support the
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theory of boundary-less low-level interaction a basic debugging infrastruc-

ture is required as outlined in Section 3.6.

Benzo Outlook. Benzo shows that promoting clear interfaces for controlling

low-level code completely from language-side produces efficient solutions

for system programming without resorting to pure low-level solutions. Our

set of Benzo-based applications shows that it our approach is feasible and

efficient. At the first sight Benzo is a simple application to invoke native

code but we think that it opens doors for a new kind of language runtime.

In this envisioned system there is no longer a clear barrier between vm and

language-side. This might seem far fetched but becomes more apparent

when having a look at the jit of Pharo which reimplements a performance

critical set of primitives in its own native code. Essentially this is code dupli-

cation since the primitives already exist as normal C code in the vm sources.

With Benzo and the described dynamic primitives we should reuse the same

code base for creating the jit representation of the primitive.

After presenting the basis of our high-level low-level programming frame-

work in Pharo we will focus on its application in the following chapters.
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Introduction

In the previous Chapter 3 we presented Benzo, a framework that spans over

several abstraction layers to enable low-level programming. Benzo is the ge-

neric backend for a variety of applications we outlined in the previous chap-

ter: a Foreign-Function-Interface ffi, a prototype for dynamic primitives and

a prototype for a language-side jit compiler. In this chapter we present the

most mature Benzo application, the ffi which is success fully used in pro-

duction in Pharo 2.0 and newer.

ffis are a prerequisite for close system integration of a high-level lan-

guage. With ffis the high-level environment interacts with low-level func-

tions allowing for a unique combination of features. This need to intercon-

nect high-level (Objects) and low-level (C functions) has a strong impact on

the implementation of a FFI: it has to be flexible and fast at the same time.

NativeBoost is a language-side approach to ffis developed by Igor

Stasenko that only requires minimal changes to the vm. NativeBoost directly

creates specific native code at language-side and thus combines the flexibility

of a language-side library with the performance of a native plugin.
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4.1 Background

Currently, more and more code is produced and available through reusable

libraries such as OpenGL1 or Cairo2. While working on your own projects

using dynamic languages, it is crucial to be able to use such existing libraries

with little effort. Multiple solutions exist to achieve access to an external li-

brary from dynamic languages that are executed on the top of a virtual ma-

chine (vm) such as Pharo3, Lua4 or Python5. Figure 3.10 depicts four possi-

bilities of dealing with new or external libraries in a high-level language.

Language-side Library. One solution is to re-implement a library completely

at language-side (cf. Figure 3.10.a). Even though this is the most flexible so-

lution, this is often not an option, neither from the technical point of view

(performance penalty), nor from the economic point of view (development

time and costs).

vm Extension. The second one (Figure 3.10.b) is to do a vm extension pro-

viding new primitives that the high-level language uses to access the native

external library. This solution is generally efficient since the external library

may be statically compiled within the vm. However a tight integration into

the vm also means more dependencies and a different development environ-

ment than the final product at language-side.

vm Plugin. The third solution (Figure 3.10.c) is similar to the previous one

but the extension is factored out of the vm as a plugin. This solution implies

again a lot of low-level development at vm-level that must be done for each

external library we want to use. Additionally we have to adapt the plugin for

all platforms on which the vm is supposed to run on.

ffi. A higher-level solution is to define Foreign Function Interfaces (ffis) (cf.

Figure 3.10.d). The main advantage of this approach is that once a vm is ffi-

enabled, only a language extension (no vm-level code) is needed to provide

access to new native libraries. From the portability point of view, only the

generic ffi vm-plugin has to be implemented on all platforms.

Implementing an ffi library is a challenging task because of its antagonist

goals:

1http://www.opengl.org/
2http://cairographics.org/
3http://pharo.org/
4http://lua.org/
5http://python.org/

http://www.opengl.org/
http://cairographics.org/
http://pharo.org/
http://lua.org/
http://python.org/
http://www.opengl.org/
http://cairographics.org/
http://pharo.org/
http://lua.org/
http://python.org/
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• it must be flexible enough to easily bind to external libraries and also

express complex foreign calls regarding the memory management or

the type conversions (marshalling);

• it must be well integrated with the language (objects, reflection, garbage

collector);

• it must be efficient.

Existing ffi libraries of dynamic languages all have different designs and im-

plementations because of the trade-offs they made regarding these goals and

challenges. Typical choices are resorting purely to the vm-level and thus sacri-

ficing flexibility. The inverse of this approach exists as well: ffis can be imple-

mented almost completely at language-side but at a significant performance

loss. Both these pitfalls are presented in more detail in Section 4.3.

This chapter presents NativeBoost-ffi6 an ffi library at language-side for

Pharo that supports callouts and callbacks, which we present in Section 4.2.

There are at least two other existing ffi libraries in Pharo worth mentioning:

C-ffi and Alien. Nevertheless, they both present shortcomings. C-ffi is fast

because it is mostly implemented at vm-level, however it is limited when it

comes to do complex calls that involve non-primitive types or when we want

to define new data types. On the opposite, Alien ffi is flexible enough to

define any kind of data conversion or new types directly at language-side

but it is slower than C-ffi because it is mostly implemented at language-side.

In essence, NativeBoost-ffi combines the flexibility and extensibility of Al-

ien that uses language-side definition for marshalling and the speed of C-ffi

which is implemented at vm-level. The main contributions of NativeBoost-ffi

are:

Extensibility: NativeBoost-ffi relies on as few vm primitives as possible (5

primitives), essentially to call native code. Therefore, most of the im-

plementation resides at language-side, even low-level mechanisms.

That makes NativeBoost-ffi easily extensible because its implementa-

tion can be changed at any time, without needing to update the run-

time (vm). It also presents a noticeable philosophical shift, how we want

to extend our language in future. A traditional approach is to imple-

ment most low-level features at vm-side and provide interfaces to the

language-side. But that comes at cost of less flexibility and longer de-

velopment and release cycles. On the opposite, we argue that extending

language features, even low-level ones, should be done at language-

side instead. This results in higher flexibility and without incurring

high runtime costs which usually happen when using high-level lan-

guages such as Pharo.
6http://code.google.com/p/nativeboost/

http://code.google.com/p/nativeboost/
http://code.google.com/p/nativeboost/
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Language-side extension: Accessing a new external library using Native-

Boost-ffi involves a reduced amount of work since it is only a matter of

writing a language-side extension.

Performance: Despite the fact it is implemented mostly at language-side,

NativeBoost-ffi achieves superior performance compared to other ffi

implementations running Pharo. This is essentially because it uses au-

tomatic and transparent native code generation at language-side for

marshalling.

4.2 NativeBoost-ffi: an Introduction

This section gives an overview of the code that should be written at language-

side to enable interactions with external libraries.

4.2.1 Simple Callout

Listing 4.1 shows the code of a regular Pharo method named ticksS-

inceStart that defines a callout to the clock function of the libc.

NativeBoost imposes no constraint on the class in which such a binding

should be defined. However, this method must be annotated with a specific

pragma (such as <primitive:module:>) which specifies that a native call

should be performed using the NativeBoost plugin.

ticksSinceStart

<primitive: #primitiveNativeCall

module: #NativeBoostPlugin>

^ self

nbCall: #(uint clock ())

module: NativeBoost CLibrary

Code Example 4.1: NativeBoost-ffi example of callout declaration to the
clock function of the libc

The external function call is then described using the nbCall:module:

message. The first parameter (#nbCall:) is an array that describes the sig-

nature of C function to callout. Basically, this array contains the description

of a C function prototype, which is very close to normal C syntax. The return

type is first described (uint in this example7), then the name of the function

(clock) and finally the list of parameters (an empty array in this example

since clock does not have any). The second argument, #module: is the

module name, its full path or its handle if already loaded, where to look up

7The return type of the clock function is clock_t, but we deliberately used uint in

this first example for the sake of simplicity even if it is possible to define a constant type in

NativeBoost.



4.2. NativeBoost-ffi: an Introduction 61

the given function. This example uses a convenience method of NativeBoost

named CLibrary to obtain a handle to the standard C library.

4.2.2 Callout with Parameters

abs: anInteger

    <primitive: #primitiveNativeCall 

     module: #NativeBoostPlugin 

     error: errorCode>

    ^ self 

        nbCall: #(uint abs(int anInteger)) 

        module: NativeBoost CLibrary

abs: anInteger

    <primitive: #primitiveNativeCall 

     module: #NativeBoostPlugin 

     error: errorCode>

    ^ self 

        nbCall: #(uint abs(int anInteger)) 

        module: NativeBoost CLibrary

11
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Figure 4.1: Example of the general NativeBoost-ffi callout syntax

Figure 4.1 presents the general syntax of NativeBoost-ffi through an example

of a callout to the abs function of the libc. The abs: method has one argu-

ment named anInteger (cf. ❶). This method uses the pragma <primi-

tive:module:error:> which indicates that the #primitiveNative-

Call of the #NativeBoostPlugin should be called when this method is

executed (cf. ❷). An errorCode is returned by this primitive if it fails and

the regular Pharo code below is executed (cf. ❸). The main difference with

the previous example is that the abs function takes one integer parameter.

In this example, the array #(uint abs(int anInteger)) passed as ar-

gument to #nbCall: contains two important information (cf. ❹). First, the

types annotations such as the return type (uint in both examples) and argu-

ments type (int in this example). These types annotations are then used by

NativeBoost-ffi to automatically do the marshalling between C and Pharo

values as illustrated by the next example. Second, the values to be passed

when calling out. In this example, anInteger refers to the argument of the

abs method, meaning that the value of this variable should be passed to the

abs C function. Finally, this abs function is looked up in the libc whose an

handle is passed in the module: parameter (cf. ❺).

4.2.3 Automatic Marshalling of Known Types

Listing 4.2 shows a callout declaration to the getenv function that takes one

parameter.

getenv: name

<primitive: #primitiveNativeCall

module: #NativeBoostPlugin>

^ self

nbCall: #(String getenv(String name)
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module: NativeBoost CLibrary

Code Example 4.2: Example of callout to getenv

In this example, the NativeBoost type specified for the parameter is String

instead of char* as specified by the standard libc documentation. This is

on purpose because strings in C are sequences of characters (char*) but they

must be terminated with the special character: \0. Specifying String in the

#nbCall: array will make NativeBoost to automatically do the arguments

conversion from Pharo strings to C strings (\0 terminated char*). It means

that the string passed will be put in an external C char array and a \0 char-

acter will be added to it at the end. This array will be automatically released

after the call returned. This is an example of automatic memory management

of NativeBoost that can also be controlled if needed. Obviously, the opposite

conversion happens for the returned value and the method returns a Pharo

string. This example shows that NativeBoost-ffi accepts literals, local and in-

stance variable names in callout declarations and it uses their type annotation

to achieve the appropriate data conversion. Table 4.1 shows the default and

automatic data conversions achieved by NativeBoost-ffi.

Primitive Type Pharo Type

uint Integer

int Integer

String ByteString

bool Boolean

float Float

char Character

oop Object

Table 4.1: Default NativeBoost-ffi mappings between C/primitive types and

high-level types. Note that oop is not a real primitive type as no marshalling

is applied and the raw pointer is directly exposed to Pharo.

Listing 4.3 shows another example to callout thesetenv function. The return

value will be converted to a Pharo Boolean. The two first parameters are

specified as String and will be automatically transformed in char* with

an ending \0 character. The last parameter is 1, a Pharo literal value without

any type specification and NativeBoost translates it as an int by default.

setenv: name value: value

<primitive: #primitiveNativeCall

module: #NativeBoostPlugin>

^ self

nbCall: #(Boolean setenv(String name,
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String value,

1)

module: NativeBoost CLibrary

Code Example 4.3: Example of callout to setenv

Another interesting example of automatic marshalling is to define the abs

method (cf. Figure 4.1) in the SmallInteger class and passing self as

argument in the callout. In such case, NativeBoost automatically converts

self (which is a SmallInteger) into an int. This list of mapping is not

exhaustive and NativeBoost also supports the definition of new data types

and new conversions into more complex C types such as structures (cf. Sec-

tion 4.4).

4.2.4 Supporting new types

The strength of language-side ffis appears when it comes to do callouts with

new data types involved. NativeBoost-ffi supports different possibilities to

interact with new types.

Declaring structures. For example, the Cairo library8 provides complex

structures such as cairo_surface_t and functions to manipulate this

data type. Listing 4.4 shows how to write a regular Pharo class to wrap a C

structure. NativeBoost only requires a class-side method named asNBEx-

ternalType: that describes how to marshall this type back and forth

from native code. In this example, we use existing marshalling mechanism

defined in NBExternalObjectType that just copies the structure’s pointer

and stores it in an instance variable named handle.

AthensSurface subclass: #AthensCairoSurface

instanceVariableNames: ’handle’.

AthensCairoSurface class>>asNBExternalType: gen

"handle iv holds my address (cairo_surface_t)"

^ NBExternalObjectType objectClass: self

Code Example 4.4: Example of C structure wrapping in NativeBoost

Callout with structures. Listing 4.5 shows a callout definition to the cai-

ro_image_surface_create function that returns acairo_surface_t*

data type. In this code example, the return type is AthensCairoSurface

directly (not a pointer). When returning from this callout, NativeBoost cre-

ates an instance of AthensCairoSurface and the marshalling mechanism

stores the returned address in the handle instance variable of this object.

8http://cairographics.org/

http://cairographics.org/
http://cairographics.org/
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primImage: aFormat width: aWidth height: aHeight

<primitive: #primitiveNativeCall

module: #Benzo

error: errorCode>

^self nbCall: #(AthensCairoSurface

cairo_image_surface_create (int aFormat,

int aWidth,

int aHeight) )

Code Example 4.5: Example of returning a structure by reference

Conversely, passing an AthensCairoSurface object as a parameter in a

callout makes its pointer stored in its handle iv (cf. Listing 4.6) to be passed.

Since the parameter type is AthensCairoSurface in the callout definition,

NativeBoost also ensures that the passed object is really an instance of this

class. If it is not, the callout fails before executing the external function be-

cause passing it an address on a non-expected data could lead to unpredicted

behavior.

primCreate: cairoSurface

<primitive: #primitiveNativeCall module: #Benzo >

^self nbCall: #(

AthensCairoCanvas cairo_create (

AthensCairoSurface cairoSurface))

Code Example 4.6: Example of passing a structure by reference

Accessing structure fields. In NativeBoost, one can directly access the fields

of a structure if needed, even if it is not a good practice from the data encapsu-

lation point of view. Nevertheless, it may be mandatory to interact with some

native libraries that do not provide all the necessary functions to manipulate

the structure. Listing 4.7 shows an example of a C struct type definition for

cairo_matrix_t.

1 typedef struct {

2 double xx; double yx;

double xy; double yy;

4 double x0; double y0;

} cairo_matrix_t;

Code Example 4.7: Example external type to convert back and forth with the
Cairo library

Listing 4.8 shows that the NBExternalStructure of NativeBoost-ffi can

be subclassed to define new types such as AthensCairoMatrix. The de-

scription of the fields (types and names) of this structure is provided by the

fieldsDesc method on the class side. Given this description, NativeBoost

lazily generates field accessors on the instance side using the field names.
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1 NBExternalStructure

variableByteSubclass: #AthensCairoMatrix.

3

AthensCairoMatrix class>>fieldsDesc

5 ^ #( double sx; double shx;

double shy; double sy;

7 double x; double y; )

Code Example 4.8: Example of NativeBoost-ffi definition of an External-

Structure

Listing 4.9 shows a callout definition to the cairo_matrix_multiply

function passing self as argument with the type AthensCairoMatrix*.

NativeBoost handles the marshalling of this object to a struct as defined in

the fieldsDesc.

1 AthensCairoMatrix>>primMultiplyBy: m

<primitive: #primitiveNativeCall

3 module: #Benzo

error: errorCode>

5

"C signature"

7 "void cairo_matrix_multiply (

cairo_matrix_t *result,

9 const cairo_matrix_t *a,

const cairo_matrix_t *b );"

11 ^self nbCall: #(void cairo_matrix_multiply

(AthensCairoMatrix * self,

13 AthensCairoMatrix * m ,

AthensCairoMatrix * self ) )

Code Example 4.9: Example of callouts using cairo_matrix_t

Memory management of structures. Table 4.2 shows a comparison between

C-managed and Pharo-managed structures. The first ones are allocated in

the C heap. Their addresses are fixed and they are passed by reference dur-

ing a callout. But the programmer must free them by hand when they are not

needed. The second ones are allocated in the Pharo object-memory. Their ad-

dresses are variable since their enclosing object may be moved by the garbage

collector. They can either passed by copy which is costly or by reference. Pass-

ing a reference may lead to problems is the C function stores the address and

try to access it later on since the address may changed.

4.2.5 Callbacks

NativeBoost supports callbacks from native code. This means it is possible

for a C-function to call back into the Pharo runtime and activate code. We

will use the simple qsort C-function to illustrate this use-case. qsort sorts
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Memory Address Marshalling Constraint

C-managed struct C heap fixed passed by reference must be freed

Pharo-managed struct Object memory variable
passed by reference may move

passed by copy costly

Table 4.2: Choice of Wrapping Structures in NativeBoost

a given array according to the results of a compare function. Instead of using

a C-function to compare the elements we will use a callback to invoke a Pharo

block which will compare the two arguments.

bytes := #[ 120 12 1 15 ].

callback := QSortCallback on: [ :a :b |

(a byteAt: 0) -- (b byteAt: 0) ].

self ffiQSort: bytes

length: bytes size

compareWith: callback

Code Example 4.10: Example of callout passing a callback for qsort

Code Listing 4.10 shows the primary Pharo method for invoking qsortwith

a QSortCallback instance for the compare function. In this example qsort

will invoke run the Pharo code inside the callback block to compare the ele-

ments in the bytes array.

To define a callback in NativeBoost we have to create a specific subclasses

for each callback with different argument types.

NBFFICallback

subclass: #QSortCallback.

NBFFICallback class>>signature

^#(int (NBExternalAddress a, NBExternalAddress b))

Code Example 4.11: Example of callback definition

Code Listing 4.11 shows QSortCallback which takes two generic external

addresses as arguments. These are the argument types that are being passed

to the sort block in Example Listing 4.10.

ffiQSort: base len: size compare: qsortCallback

<primitive: #primitiveNativeCall module: #Benzo>

"C qsort signature"

"void qsort(

void *base,

size_t nel,

size_t width,

int (*compar)(const void *, const void *));"
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^ self

options: #( optMayGC )

nbCall: #(void qsort (

NBExternalAddress array,

ulong size,

1, "sizeof an element"

QSortCallback qsortCallback))

module: NativeBoost CLibrary

Code Example 4.12: Example of callout passing a callback

The last missing piece in this example is the callout definition shown in Code

Listing 4.12. The NativeBoost callout specifies the callback arguments by us-

ing QSortCallback.

Callback lifetime. Each time a new callback is instantiated it reserves a small

amount of external memory which is freed once the callback is no longer

used. This is done automatically using object finalization hooks..

4.2.6 Overview of NativeBoost-ffi Internals

This section provides an overview of the internal machinery of NativeBoost-

ffi though it is not mandatory to know it in order to use it as demonstrated

by previous examples.

General Architecture. Figure 4.2 describes the general architecture of Na-

tiveBoost. Most code resides at language-side, nevertheless some generic

extensions (primitives) to the vm are necessary to activate native code. At

language-side, callouts are declared with NativeBoost-ffi which processes

them and dynamically generates x86 native code using the AsmJit library.

This native code is responsible of the marshalling and calling the external

function. NativeBoost then uses a primitive to activate this native code.

NativeBoost ffiNativeBoost ffiLanguage-side

vm-side

AsmJit AssemblerAsmJit Assembler

<                ><                >

jit Integrationjit Integration

PrimitivePrimitive

Figure 4.2: NativeBoost is implemented in Pharo using the language-side

assembler and then the Benzo primitive to activate native code.
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Callout propagation. Figure 4.3 shows a comparison of the resolution of a

ffi call both in NativeBoost-ffi and a plugin-based ffi. At step 1, a ffi call is

emitted. The NativeBoost-ffi call is mostly processed at language-side and it

is only during step 4 that a primitive is called and the vm effectively does the

external call by executing the native code. On the opposite, a plugin-based

ffi call already crossed the low-level frontier in step 2 resulting that part of

the type conversion process (marshalling) is already done in the vm code. In

NativeBoost-ffi, doing most of the ffi call processing at language-side makes

easier to keep control, redefine or adapt it if needed.

Prepare Call to 
External Function

Prepare Call to 
External Function

External 
Function
External 
Function

Type ConversionType Conversion Resolve External
Function

Resolve External
Function

NativeBoost-ffi NativeBoost-ffi 

Plugin-based ffi Plugin-based ffi PluginPlugin

Language-side LibraryLanguage-side Library

ffi Callffi Call1.1. 2.2. 3.3. 4.4. 5.5.

Figure 4.3: Comparison of ffi calls propagation in NativeBoost-ffi and a typ-

ical vm plugin-based implementation. NativeBoost resorts to vm-level only

for the native-code activation, whereas typical implementations cross this

barrier much earlier.

4.3 Performance Evaluation

In this section we compare NativeBoost with other ffi implementations.

Alien ffi: An ffi implementation for Squeak/Pharo that focuses on the lan-

guage-side. All marshalling happens transparently at language-side.

C-ffi: A C based ffi implementation for Squeak/Pharo that performs all

marshalling operations at vm-side.

Luajit: A fast Lua implementation that has a close ffi integration with jit

interaction.

Choice of ffi Implementations. To evaluate NativeBoost we explicitly tar-

get ffi implementations running on the same platform, hence we can rule out

additional performance differences. Alien and C-ffi run in the same Pharo

image as NativeBoost allowing a much closer comparison. Alien ffi is imple-

mented almost completely at language-side, much like NativeBoost. How-

ever, as the following benchmarks will stress, it also suffers from performance

loss. On the other end there is C-ffi which is faster than Alien but by far not

as flexible. For instance only primitive types are handled directly. As the third

implementation we chose Lua which is widely used as scripting language in

game development. Hence much care has been taken to closely integrate Lua
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into C and C++ environments. Luajit integrates an ffi library that generates

the native code for marshalling and directly inlines C functions callout in the

jit-compiled code.

Evaluation Procedure. To compare the different ffi approaches we measure

100 times the accumulative time spent to perform 1′000′000 callouts of the

given function. From the 100 probes we show the average and the standard

deviation for a 95% confidence interval in a gaussian distribution. To ex-

clude the calling and loop overhead we subtract from each evaluation the

time spent in the same setup, but without the ffi call. The final deviation dis-

played is the arithmetic average of the measured deviation of the base and

the callout measurement.

The three ffi solutions that work in Pharo (NativeBoost, Alien, C-ffi)

are evaluated on the very same Pharo 1.4 (version 14458) image on a Pharo

vm (version of May 5. 2013). For the Lua benchmarks we use Luajit 2.0.1. The

benchmarks are performed under the constant conditions on a MacBook Pro.

Even though a standalone machine could improve the performance we are

only interested in the relative performance of each implementation.

Choice of Callouts. We chose a set of representative C functions to stress dif-

ferent aspects of an ffi implementation. We start with simple functions that

require little marshalling efforts and thus mainly focus on the activation per-

formance and callout overhead. Later we measure more complex C functions

that return complex types and thus stress the marshalling infrastructure.

4.3.1 Callout Overhead

The first set of ffi callouts show mainly the overhead of the ffi infrastructure

to perform the callout.

For the first ffi evaluation we measure the execution time for a clock()

callout. The C function takes no argument and returns an integer thus guar-

anteeing a minimal overhead for marshalling and performing the callout.

Call Time [ms] Relative Time

NativeBoost 492.1± 1.4 1.0

Alien 606.6± 4.8 ≈ 1.2

C-ffi 541.7± 1.8 ≈ 1.1

Luajit 343.0± 2.4 ≈ 0.7

Table 4.3: Speed comparison of an uint clock(void) ffi call (see

Code Listing 4.1).
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abs is a about the same complexity as theclock function, however accepting

a single integer as argument.

Call Time [ms] Relative Time

NativeBoost 65.34± 0.46 1.00

Alien 175.77± 0.62 ≈ 2.69

C-ffi 148.77± 0.42 ≈ 2.27

Luajit 9 2.04± 0.03 ≈ 0.03

Table 4.4: Speed comparison of an int abs(int i) ffi call (see Figure 4.1).

Evaluation. For measuring the calling overhead we chose the abs ffi callout.

This C function is completed in a couple of instructions which in compari-

son to the conversion and activation effort of the ffi callout is negligible. In

Table 4.4 we see that NativeBoost is at least a factor two faster than the other

Pharo implementation. Yet Luajit outperform NativeBoost by an impressive

factor 30. Luajit has a really close integration with the jit and this is what

makes the impressive ffi callout results possible.

4.3.2 Marshalling Overhead for Primitive Types

The third example calls getenv(’PWD’) expecting a string as result: the

path of the current working directory. Both argument and result have to be

converted from high-level strings to C-level zero-terminated strings. Strictly

speaking we do not measure the pure marshalling overhead, but we chose

methods that heavily depend on string arguments to be converted between

the internal type in Pharo and the external type expected by the C function.

Call Time [ms] Relative Time

NativeBoost 105.29± 0.48 1.0

Alien 1058.70± 4.00 ≈ 10.1

C-ffi 282.94± 0.48 ≈ 2.7

Luajit 10 97.00± 1.00 ≈ 0.9

Table 4.5: Speed comparison of an char * getenv(char *name) ffi call

(see Code Listing 4.2).

As a last evaluation of simple C functions with NativeBoost, we call printf

with a string and two integers as argument. The marshalling overhead is less

than for the previous getenv example as the strings passed and returned

9Downsampled from increased loop size by a factor 100 to guarantee accuracy.
10Downsampled from increased loop size by a factor 10 to guarantee accuracy.
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are smaller. However, printf is a more complex C function which requires

more time to complete: it has to parse the format string, format the given

arguments and pipe the results to standard out. Hence the relative overhead

of an ffi call is reduced.

Call Time [ms] Relative Time

NativeBoost 371.03± 1.02 1.0

Alien 1412.37± 1.58 ≈ 3.8

C-ffi 605.02± 0.46 ≈ 1.6

Luajit 202.40± 4.20 ≈ 0.6

Table 4.6: Speed comparison of an int printf(char *name, int

num1, int num2) ffi call

Evaluation. Table 4.3 and Table 4.4 call C functions that return integers for

which the conversion overhead is comparably low. However we see that Al-

ien compares worse in the case of more complex Strings. Table 4.5 and Ta-

ble 4.6 show this behavior. For the getenv a comparably long string is re-

turned which causes a factor 10 conversion overhead for Alien.

4.3.3 Using Complex Structures

To evaluate the impact of marshalling complex types, we measure the execu-

tion time for a callout tocairo_matrix_multiplydescribed in Listing 4.9.

In all cases, the allocation time of the structs is not included in the measure-

ment nor their field assignments. Table 4.7 shows the results.

Call Time [ms] Relative Time

NativeBoost 79.00± 0.54 1.0

Alien 753.82± 1.02 ≈ 9.5

C-ffi 380.80± 5.40 ≈ 3.6

Luajit 5.66± 0.30 ≈ 0.07

Table 4.7: Speed comparison of an cairo_matrix_multiply ffi call (cf.

Listing 4.9)

Evaluation. Table 4.7 shows that NativeBoost outperforms the two other

Pharo implementations.
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4.3.4 Callbacks

Table 4.8 shows a comparison of qsort callouts passing callbacks. Callbacks

are usually much slower than callouts.

Call Time [ms] Relative Time

NativeBoost 2300.00± 2.20 1.0

Alien 600.83± 0.70 ≈ 0.26

C-ffi NA NA

Luajit 46.13± 1.24 ≈ 0.02

NativeBoost with Native Callbacks 4.98± 0.42 ≈ 0.002

Table 4.8: Speed comparison of a qsort ffi call (cf. Listing 4.10)

Evaluation. The results show that NativeBoost callbacks are currently

slower than Alien’s ones. This is because Alien relies on specific vm support

for callbacks making their activation faster (context creation and stack pages

integration). On the opposite, NativeBoost currently uses small support

from the vm side and even do part of the work at image side. This qsort

demonstrates the worst case because it implies a lot of activations of the

callback. For each of these calls, NativeBoost creates a context and make

the vm switch to it. To really demonstrate that these context switches are

the bottleneck, Table 4.8 also shows the result of doing the same benchmark

in NativeBoost but using a native callback i.e. containing native code. We

do not argue here that callbacks should be implemented in native code but

that NativeBoost support for callback can be optimized to reach Alien’s

performance at least.

4.4 Implementation Details

The following subsections will first focus on the high-level, language-side

aspects of NativeBoost, such as native code generation and marshalling. As

a second part we describe the low-level interaction of NativeBoost with Ben-

zo.

4.4.1 Generating Native Code

In NativeBoost all code generation happens transparently at language-side.

The various examples shown in Section 4.2 show how an ffi callout is de-

fined in a standard method. Upon first activation the NativeBoost primitive

will fail and by default continues to evaluate the following method body.

This is the point where NativeBoost generates native code and attaches it
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to the compiled method. NativeBoost then reflectively resends the original

message with the original arguments (for instance abs: in the example Fig-

ure 4.1). On the second activation, the native code is present and thus the

primitive will no fail but run the native code. Section 3.2.2 will gave more

internal details about the code activation and triggering of code generation.

Generating Assembler Instructions. Figure 4.2 shows that NativeBoost re-

lies on AsmJit11, a language-side assembler. AsmJit emerged from an existing

C++ implementation12 and currently supports the x86 instruction set. In fact

it is even possible to inline custom assembler instructions in Pharo when

using NativeBoost. This way it is possible to meet critical performance re-

quirements. Typically Pharo does not excel at algorithmic code since such

code does not benefit from dynamic message sends.

Reflective Symbiosis. NativeBoost lives in symbiosis with the Pharo pro-

gramming environment. As shown in the examples in Section 4.2 and in

more detail in Figure 4.1 NativeBoost detects which method arguments cor-

respond to which argument in the ffi callout. To achieve this, NativeBoost

inspects the activation context when generating native code. Through reflec-

tive access to the execution context we can retrieve the method’s source code

and thus the argument names and positions.

Memory Management. NativeBoost supports external heap management

with explicit allocation and freeing of memory regions. There are interfaces

for allocate and free as well as for memcopy:

memory := NativeBoost allocate: 4.

bytes := #[1 2 3 4].

"Fill the external memory"

NativeBoost memCopy: bytes to: memory size: 4.

"FFI call to fill the external object"

self fillExternalMemory: memory.

"Copy back bytes from the external object"

NativeBoost memCopy: memory to: bytes size: 4.

NativeBoost free: memory.

Code Example 4.13: Example of external heap management in NativeBoost

Using the external heap management it is possible to prepare binary blobs

and structures for ffi calls. In the previous example Code Listing 4.13 the

11http://smalltalkhub.com/#!/~Pharo/AsmJit/
12http://code.google.com/p/asmjit/

http://smalltalkhub.com/#!/~Pharo/AsmJit/
http://code.google.com/p/asmjit/
http://smalltalkhub.com/#!/~Pharo/AsmJit/
http://code.google.com/p/asmjit/
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memory variable holds a wrapper for the static address of the allocated mem-

ory. Hence accessing it from low-level code is straight forward. However in

certain situations it is required to access a high-level object from assembler.

Pharo has a moving garbage collector which means that you can not refer

directly to a high-level object by a fixed address.

As explained in more detail in Section 3.2.1 Benzo uses a special array at a

known fixed address to deal with this problem. Unlike normal Pharo objects,

this array has a known, fixed address that contains pointers to high-level ob-

jects. The garbage collector keeps this external roots array up to date. Hence

it is possible to statically refer to a Pharo object using a double indirection

over the external roots.

4.4.2 Activating Native Code

In this section we present the vm-level interaction of NativeBoost. Even

though NativeBoost handles most tasks directly at language-side it requires

certain changes on vm level:

• executable memory,
• activation primitives for native code.

Since NativeBoost manages native code at language-side there is no special

structure or memory region where native code is stored. Native instructions

are appended to compiled methods which reside on the heap. Hence the heap

has to be executable in order to jump to the native instructions.

4.5 NativeBoost Limititations

After presenting NativeBoost with all its benefits in detail we also have to

shed some light on its limitations in this section. The problems and limita-

tions described in this section were discovered while using NativeBoost ex-

tensively in Pharo. Since NativeBoost is based on Benzo for the low-level

programming part, most of NativeBoost’s limitations are the limitations of

Benzo itself that were already presented previously in Section 3.6. In this

section we will focus on the high-level problems and leave out the low-level

limitations of Benzo as they are not the domain of NativeBoost. As such the

major issue with NativeBoost is the lack of a dedicated debugging infras-

tructure followed by a NativeBoost-specific approach to support platform

dependent code.

4.5.1 Difficult Debug Cycles

As a direct consequence from Benzo’s shortcomings is the limited debug-

ging support. Once NativeBoost generated the native code for the callout
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there is no possibility to interact with the code anymore. We Benzo described

in Section 3.6.1 that there is not special debugging mode available and na-

tive code is run unprotected. As a result, errors happening inside external

libraries have fatal consequences in NativeBoost: the process running the

Pharo image is terminated. The core of this problem has to be addressed at

Benzo-level and not directly in NativeBoost.

In a future version of NativeBoost, together with improvements of the

underlying Benzo debugging infrastructure (see Section 3.6.2), we envision

a seamless interaction with the external libraries. There should be no barrier

between Pharo and external code, a more sophisticated debugger could dy-

namically switch context and start displaying more C oriented information

in the external library. In the worst case we could still display native instruc-

tions and inspect the stack as we step through the external function. In best

case we could provide a gdb-like debugging experience with source code and

resolved symbol names.

4.5.2 Platform Independence

The second problem we would like to address is platform independence. This

is certainly a crucial issue for any framework that deals with native code and

as such a main concern of Benzo (see Section 3.6.3). However, the instruction-

level architecture support is of secondary importance for NativeBoost as it

interacts mostly on operating system level. Rewriting NativeBoost’s explicit

assembler routines in the platform independent intermediate representation

(VirtualCpu) presented in Section 3.6.3 would solve the cpu architecture de-

pendency.

Currently NativeBoost is used on three operating system: Linux, Mac OS

X and Windows. Internally NativeBoost already deals with different calling

conventions C-functions on the different platforms. Nevertheless, from a user

point of view it is mandatory to have a well defined way to deal with platform

specific ffi callouts. The current approach is to create a specific subclass for

each platform. A simple extension to NativeBoost to allow callout definitions

for multiple platforms in a single method would greatly improve this case.

The following code example illustrates a possible solution:

FFI

unix: [ :builder |

builder

nbCall: #(int setenv(

String name, String value, 1))

module: NativeBoost CLibrary ];

windows: [ :builder |

builder

nbCall: #(int SetEnvironmentVariableA(
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String name, String value))

module: #Kernel32

options: #(optStringOrNull) ].

This examples includes the platform specific version for accessing an envi-

ronment variable. In this case the difference of the two platforms is han-

dled by simply using a different native function. However, already in the

case of getenv function, Windows and unix implementations behave fun-

damentally different from Windows’ GetEnvironmentVariableA and a

small Pharo helper method is necessary to overcome the differences. In this

case it would be nice to mix Pharo code and ffi callouts more vividly and for

instance allow inline Pharo code in the example above.

4.5.3 Limited Expressiveness

NativeBoost has been designed to call a single external function per callout.

To our knowledge this is the standard in ffi implementations. For most of

the use cases this is sufficient but during development we found a peculiar

case, when using fork, where two C function consecutive calls have to be

made. fork creates a new process at os-level. It returns 0 in the newly forked

process and the new process id to the original parent process. Hence a typical

fork usage in C looks as follows:

1 pid_t pid;

2 int status = 0;

// spawn child process

4 if(!(pid = fork())) {

// execute code in the child process

6 ....

// stop the child process

8 exit(EXIT_SUCCESS);

}

10 // in the parent process wait for the child process

waitpid(pid, &status, 0);

Currently it is not possible to express this directly in NativeBoost due to the

vm. Imagine the following hypothetical NativeBoost-based implementation

of the previous example:

pid := FFI fork.

pid isZero

ifTrue: [

self childProcessMethod.

FFI exit: 0 ]

ifFalse: [

FFI waitPid: pid for: 10 seconds ]

The first two lines pose a significant problem, still ignoring the implementa-

tion details of the rest of the method. What happens when we call fork with
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an ffi callout? Essentially this creates a fork of the whole vm running Pharo

which has some side-effects since the resources between the child and the

parent vm process are shared. For instances the vm has a separate process

running for handling input events, which does not get forked automatically.

Additionally we see certain file handles that are not properly recreated for the

child process. In consequence when the ffi callout for fork finishes, the vm

continues interpreting Pharo code which in some cases stops to work due

to the aforementioned side-effects. This could technically be avoided if the

solve purpose of the child process is to execute some native code in the back-

ground and the exit. One would have to make sure that the sequence, fork,

pid check, exit happens all in native code without handing over execution to

Pharo in between. Which brings us back to the original observation that we

cannot create a combined ffi callout for multiple methods in NativeBoost.

To solve this we could allow NativeBoost to mix assembler instructions

(or the more abstract VirtualCpu instructions) with multiple callouts. Cur-

rently this almost possible by manually invoking the callout generator for

different C functions. However, there are certain side-effects with the stack-

management which require more work.

4.5.4 Startup Recursion

Starting with Pharo 3.0 we tried to slowly replace vm plugin functionality

with direct ffi callouts at language-side. This is an attempt to make language

more open and shift a part of the development done in C at vm-level to Pharo.

The driving motivation is the same as for NativeBoost itself: accessible and

flexible code.

The os environment implementation based on NativeBoost described

earlier was such an attempt. In return it allowed us to add functionality to

access to known directory locations under Linux by directly or indirectly

querying environment variables such as HOME. In a second refactoring the

functionality for opening the changes-file in Pharo containing the changelog

was made more flexible supporting more file locations. This last change in-

troduced a recursive dependency that is not visible on the first sight and il-

lustrated in the following figure. Essentially this meant that in certain cases

where NativeBoost required to compile the native code for callout it was im-

possible to start up Pharo. Once the native code was cached this recursion

chain was broken and subsequently Pharo started up well.

This particular issue was solved in Pharo by caching the argument names

in NativeBoost used for assigning the Pharo arguments to the callout pa-

rameters (see Section 4.2.2). The downside of this approach is that Native-

Boost reimplements part of Pharo’s existing reflection. Of course there are
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File locationFile location

Environment variableEnvironment variable

ffi getenv calloutffi getenv calloutNativeBoost code generationNativeBoost code generation

Method argument namesMethod argument names

Method sourcesMethod sources

Changes file initializationChanges file initialization

Figure 4.4: When using NativeBoost in critical Pharo components used dur-

ing the startup we run into a infinite recursion due to cyclic dependencies.

other possibilities to avoid the described situation: deferred startup logics,

lazy startup or storing the complete Pharo source code in the image. How-

ever, they would leave the general problem of using NativeBoost during

startup which will happen more often if more vm plugins are replaced with

ffi callouts. And even more general, how do we enable NativeBoost on a

system that does not allow dynamic code generation? The only solution to

this problem is to generate the ffi callouts upfront and make these binaries

available to the final product. In this case NativeBoost would need to modes:

an interactive development mode and a static deployment mode. The devel-

opment mode is how we describe NativeBoost so far, programmers can in-

teractively create callouts. In the static or deployment mode all the dynamic

callouts written using NativeBoost are replaced by Pharo plugin primitives.

Only that the plugins are generated from the original NativeBoost callouts

rather than compiled from standard C sources. At the current state of the ffi

<            ><            >PluginPlugin
b)b)

Static CalloutStatic CalloutDeploymentDeployment

nb Callout
De� nition
nb Callout
De� nition

<           ><           >PrimitivePrimitive

Native CodeNative Code

a)a)

Dynamic
Generation

Dynamic
Generation

Figure 4.5: Comparison of the callout actiation for a) the development mode

where native cod eis create on demand and b) the deployment mode where

we use pre-generated native code.

library and the underlying assembler from Benzo this is only feasible for the

x86 architecture while for instance arm support missing. Next to the addi-

tional assembler backends we also have to implement the platform specific
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binary formats such as elf under Linux or Mach-O under OS X. This would

work much similar to the implementation used in the research Smalltalk

implementation Pinocchio [50].

4.5.5 Performance

Even though NativeBoost shows good overall performance when it comes

to callbacks it does not keep up with other Smalltalk-based solutions. In

the current development phase not much attention was payed to callback

performance as it is not a common use case for ffi callouts. Fast callbacks

require close interaction and specific modifications at vm-level. However, ini-

tially NativeBoost kept the modifications to the vm at a minimum. We as-

sume that we can reach the same performance as Alien relying on the same

low-level implementation.

As a second issue we would like to address the callout overhead by using

an already existing jit integration of NativeBoost. Currently the vm has to

leave from jit-mode to standard interpretation mode when it activates an Na-

tiveBoost method. This context switch introduces an unnecessary overhead

for an ffi callout. A current prototype directly inlines the native code of a

NativeBoost method in the jit. Hence the cost for the context switch plus the

cost of activating the NativeBoost callout primitive can be avoided.

4.6 Conclusion

In this chapter we presented NativeBoost a novel approach to foreign func-

tion interfaces (ffi). Unlike other implementations NativeBoost does not

rely on specific plugins for doing ffi callout. Instead it is implemented on

top of the generic low-level programming framework Benzo which we pre-

sented earlier in Chapter 3. As such NativeBoost is implemented completely

language-side.

NativeBoost Performance. Using a in depth evaluation of NativeBoost

comparing against two other Smalltalk ffi implementations and Luajit we

showed in Section 4.3 that our language-side approach is competitive. Na-

tiveBoost reduces the callout overhead by more than a factor two compared

to the two closest Smalltalk solutions.

Compared to Luajit there is still space for improvements. We measured

a factor 30 lower calling overhead due to a close jit integration. However for

typical ffi calls the absolute time difference between NativeBoost and Lua is

roughly 30%. With a partial solution ready to integrate NativeBoost closer

with the jit we expect to come closer to Lua’s performance. We implemented
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already a jit enabled Benzo primitive that inlines the language-side native

code into the jitted code and thus avoids the overhead of the activating a

primitive each time. However, this requires certain changes when generating

native code in NativeBoost. Namely, we have to respect the register strategy

used by the jit. Due to these non-trivial changes we have not ported Native-

Boost to the jit-enabled Benzo primitive yet.

Furthermore we showed that NativeBoost essentially combines vm-level

performance with language-side flexibility when it comes to marshal com-

plex types. New structures are defined practically at language-side and con-

version optimizations are added transparently.

NativeBoost Limitations. Much of the limitations of NativeBoost are due

to shortcomings of the underlying Benzo framework. The most prominent

effects are the ones already mentioned earlier in Section 3.6 and concern the

debugging cycle. Currently the great performance and flexibility comes at

the price of hard crashes when writing faulty code. In support of NativeBo-

ost callouts we state that C code is equally prone to these bugs. A possible

solution would be a debugger that is also capable of stepping through native

code.

NativeBoost Outlook. We have shown that NativeBoost is a stable and

fast ffi framework and thus a clear validation of the underlying Benzo

framework. Much like Benzo, NativeBoost requires still some work to im-

prove the debugging cycle to provide a barrier free development experience

for Pharo programmers. However, we believe that with this language-side

approach changes to the ffi framework are much simpler to perform and

thus eventually will encourage more contributors to improve NativeBoost.

After presenting the validation of a real-world application of the Benzo

framework in this chapter we will now focus on two research applications in

the following chapter.



Benzo Prototype
Application
Validation

Chapter 5Contents
5.1 Waterfall: Dynamic Primitives . . . . . . . . . . . . . . . . . . . . . . 82
5.2 Nabujito: Language-side jit Prototype . . . . . . . . . . . . . . . . . . 93
5.3 Benzo Applications: Outlook and Summary . . . . . . . . . . . . . . . 106

Introduction
In Chapter 4 we presented NativeBoost, a mature language-side ffi imple-

mentation that makes heavy use of Benzo’s infrastructure. NativeBoost is

only one of three applications that are based on Benzo that were initially out-

lined in Section 3.3. While NativeBoost is considered stable, the two other ap-

plications are currently only prototypes: dynamic primitives and a language-

side jit. Hence we will present the two solutions combined in this chapter.

As first we will present Waterfall, dynamic primitives based on Benzo.

Waterfall takes advantage of the metacircular approach of Pharo’s vm and

makes the primitive definition available at runtime. This is a step forward

from the typical metacircular approach where the whole reflective power of

the host environment can only be used at compile-time. Once the vm is com-

piled, all the high-level definitions that existed at compilation time are no

longer accessible from language-side. Waterfall tries to make a fraction of

the original compile-time definitions accessible.
The second prototype, Nabujito a language-side jit compiler takes the

core idea of Waterfall even further. Waterfall is capable of defining new

primitives at runtime which are not reentrant: it is not possible to activate

Pharo methods from within primitives. However, this is what happens in

jitted methods: it is possible to switch seamlessly between native methods

and standard Pharo methods using bytecode evaluation. Much like the pri-

mitives, the jit can not be changed from language-side and this is where we

bring Nabujito into play. Nabujito reimplements the vm-level jit compiler at

language-side and uses Benzo to install the native code.
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5.1 Waterfall: Dynamic Primitives

In this section we present Waterfall, a compiler toolchain developed

by Guido Chari that allows primitives to be changed dynamically from

language-side. Waterfall in the core is a Slang compiler implemented

purely in Pharo relying on the existing Benzo infrastructure. In a separate

work [16] we show how Waterfall is capable of recompiling whole vm

plugins.

vm

Primitive Definition
in Slang

Primitive Definition

in Slang
WaterfallWaterfall

gcc vm Primitivevm Primitive

Figure 5.1: Waterfall uses the Slang definition of the vm to generate new

primitives on the fly, creating an incremental version of the default vm com-

pilation process that compiles the whole vm using a C compiler (gcc).

5.1.1 Background

Waterfall is our second application on top of Benzo after NativeBoost, the

complete ffi library previously presented in Chapter 4. NativeBoost uses

Benzo to generate the glue code between Pharo and the external library.

Even though NativeBoost is extendable it is not used to directly synthesize

new functionality, the main functionality is defined the external libraries typ-

ically written in a low-level language such as C. Interestingly, the NativeBo-

ost methods containing the callouts behave almost like the existing primi-

tive methods of Pharo. These primitives define a hook into vm-level native

functionality. In Pharo the same mechanism is also used to activate plugins

which are again similar to an ffi callout from language-side. However, pri-

mitives and plugins are statically defined and modifications happen outside

Pharo. This is where the domain of Waterfall begins.

Waterfall provides infrastructure to dynamically compile and install pri-

mitives on top of the Benzo infrastructure at language-side in Pharo. As we

will describe in more detail in the following sections, the Pharo vm is written

in a metacircular fashion. Hence the definition of plugins and primitives can

be loaded in standard Pharo. Typically this happens only at compile-time

of the vm, where these definitions are exported to C and compiled to the vm

binary. Once compiled, the original high-level description of primitives and

plugins is no longer accessible from Pharo. As a consequence, existing pri-

mitives or plugins can not be changed at runtime.
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Waterfall brings the static primitive definitions to live again. Just load-

ing the original definitions in Pharo does not bring them back to live, even

though we can now inspect the definition and browse the sources. Water-

fall compiles these definitions to native code and installs them with Benzo

as new primitives. With this infrastructure primitive and plugin modifica-

tions are not limited to vm compilation time.

A Metacircular vm Written in Slang. Waterfall is implemented in Pharo

which uses the Cog vm1, originating from the Squeak vm [28]. The vm itself is

written in a dialect of Smalltalk called Slang that is essentially limited to the

functionality that can be expressed with standard C code. Slang serves for

two purposes: a high-level C preprocessor, a interactive simulator of the vm.

The first point has severe consequences. Slang basically has the same syntax

as Smalltalk but is semantically constrained to expressions that can be re-

solved statically at compilation or code generation time and are compatible

with C. Hence Slang’s semantics are closer to C than to Smalltalk. This fact

is also visible in the simulator for the vm. If Slang were Smalltalk, separate

parts of the vm could be directly evaluated. However, since Slang is bound to

C expressions, the simulator sets up a byte array as memory. The simulated

vm then accesses this byte array as if it were the native memory.

In conclusion we see that the Pharo vm has an abstract representation of

the vm available for simulation. This abstract representation is then used to

generate C sources, already lowering the abstraction level. After compiling

the C sources the original representation of the vm is not directly accessible

anymore. For instance, even debug symbols are usually stripped from the

final binary for performance reasons. Of course this implies that the vm can

not be changed nor directly inspected from language-side.

Primitives in Pharo. Pharo is a highly reflective environment where classes

and methods can be changed at runtime, even the current execution context

is accessible. For instance this is used to implement an exception mechanism

purely at language-side in Pharo. However, some features can not be imple-

mented at language-side. Pharo uses primitive methods, that instead of eval-

uating Pharo-code switch to a vm routine. As already partially explained in

Section 3.2.1, whenever a method is compiled with the primitive pragma

as shown a flag is set on the CompiledMethod. If the vm tries to activate

such a method, instead of interpreting the bytecodes it calls the correspond-

ing function at vm-level [27]. We distinguish three categories of primitives

based on their functionality: certain parts of the language semantics, os-level

1http://www.mirandabanda.org/cogblog/

http://www.mirandabanda.org/cogblog/
http://www.mirandabanda.org/cogblog/
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functionality that can not be implemented in Pharo itself and a third less

important category where performance is critical.

As we mentioned in the previous paragraph, these primitives are bound

to the vm and can not be changed at runtime. However, for a certain subset of

these primitives we can write language-side substitutes in pure Pharo-code.

These primitives are called non-essential and are mainly used for optimiza-

tion purposes. In contrast there are essential primitives which are for instance

used during start up of the Pharo environment. Two prominent examples of

essential primitives are the ones used for creating new objects or activating a

block.

Instrumenting Primitives. In the context of Waterfall we are interested in

which parts of the system we can modify and thus we draw our attention to

these essential primitives. The only way to modify these primitives is by cre-

ating wrappers but that brings a new problem. Imagine that we wrap around

the primitive which creates a new object. What happens now if the additional

wrapper code needs a new object? It will call the very same primitive that we

just wrapped, without protection this causes infinite recursion. Since tech-

nically the wrapper code should live at a different abstraction level than the

original primitive we have find our selves mixing meta-levels [17].

The most radical approach to avoid this meta-recursion is to change the

primitive externally. In the case of Pharo this means changing the Slang

sources, exporting and compiling the primitive and restarting the Pharo

environment on top of this changed vm. However, this approach stands

in contrast to the reflective nature of Pharo where most functionality can

be changed at runtime. Also it is not always suitable to restart the Pharo

process to modify a small part of the system.

5.1.2 Waterfall’s Contribution

Following the implementation overview of the Pharo vm and the differen-

tiation of different primitives we identify two main benefits of changing vm

primitives at runtime with Waterfall:

1. Reducing vm complexity by implementing non-essential primitives re-

flectively at language-side.

2. Dynamic instrumentation of primitives.

Reducing vm Complexity. Low-level vm extensions are only justified in

the presence of strong performance requirements (see Section 3.5). All

non-essential primitives fall into this category since these primitives can be

implemented in Pharo without restrictions. However, in certain cases for
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performance a language-side implementation is unsuitable. Additionally

we already know that these primitives are available as Slang code at vm

generation time. Using Waterfall, these primitives can be implemented at

language-side based on the unmodified Slang sources. This means that these

primitives become first-class citizens of the high-level environment and thus

evolve with less effort. Thus, Waterfall opens new possibilities of changing

Pharo that were previously possible only with significant overhead.

Essential Primitives. For essential primitives the previous argument does

not hold since a static version is needed for a correct startup of the system.

These primitives can not be directly replaced by a language-side implemen-

tation using Waterfall. Even though Waterfall itself avoids meta-recursion

by generating low-level code with Benzo. However, Benzo itself relies on es-

sential primitives as it is written in Pharo. This imposes certain restrictions

how and when these essential primitives can be modified with Waterfall

during system startup. These restrictions are more related to the underly-

ing Benzo infrastructure than Waterfall. For instance already exposed sim-

ilar limitations with the Benzo-based ffi when used during startup (see Sec-

tion 4.5.4). Nevertheless, nothing prevents from replacing essential primi-

tives at runtime with customized versions, once the system startup is com-

pleted.

Extended Primitive Instrumentation. Instrumentation of essential primi-

tives from language-side is an error-prone task falling in many cases in

non-termination due to previously described meta-recursion. An example

of this behavior, can be observed when changing the essential basicNew

primitive, which is responsible for instantiating new objects. Only very lim-

ited instrumentation is possible at language-side, for instance counting how

many instances have been created. This only works since the vm internally

does not represent small integers as full objects. However, this is only true

up to some extent. Small integers bigger than 230 are transformed to a more

expensive object representation since they no longer fit in a machine word

of the 32-bit vm. These big integers will use the basicNew primitive again

as they are not implement in the vm but in at language-side. Thus, we are

back the original problem of running into meta-recursion. So even this very

simple example has unwanted side-effects that are not directly visible. More

complex instructions tasks will inevitably suffer from the same problems.

Using reflective techniques it is possible to escape from this meta-

recursion, however, with a considerable overhead. Waterfall avoids these

issues since the instrumentation code for primitives will be implemented at

the lowest level on top of Benzo. In Section 5.1.4 we show how Waterfall,



86 Chapter 5. Benzo Prototype Application Validation

the Benzo based approach for generating primitives on the fly, outperforms

the reflective solutions for primitives instrumentation.

5.1.3 Waterfall Implementation

Waterfall uses Benzo’s mechanism for replacing primitive methods with

customized versions that are nativized dynamically as described in Chap-

ter 3. The loophole described there is exploited by Waterfall to enable

dynamic modification of vm behavior and hence bring primitives to life at

language-side. From a high-level point of view Waterfall provides two

services which work transparently:

1. Compilation of Slang code on demand (lazily).

2. A clear interface for executing, at runtime and from language-side, the

native code generated.

The first item allows to change the code of primitives at language-side and

generate the corresponding native code when needed. It also provides the

possibility to write methods or functionality with the same Smalltalk syn-

tax but with a static semantic. It consists essentially of a transformation tool-

chain that transforms the Slang sources to native code using a Benzo-based

compilation toolchain.

The second item enables the execution of the dynamically generated na-

tive code. This includes for instance the finding of addresses of vm internal

symbols and all the effort to link the two worlds, Smalltalk and native. Wa-

terfall relies on Benzo for most of this low-level functionality. In particular

NativeBoost, the Benzo-based ffi presented in Chapter 4, is used for inter-

facing with C libraries (dlsym).

Architecture Overview. The Waterfall infrastructure is mainly divided in

the following two parts:

• the installed Slang sources,
• a Benzo-based compilation toolchain.

The Waterfall compiler transforms the Slang sources to native code through

various transformation steps as show in Figure 5.2. In order to work properly

Waterfall needs the complete Slang sources for compilation unit (primitive

or plugin) to be loaded upfront. Once loaded in the Pharo image the ast

of the Slang sources are available which form the input for the Waterfall

compiler. This means that it is possible to write custom plugins in Pharo and

transform them using Waterfall as long as the written Pharo code uses the

restricted Slang subset. As mentioned earlier, the major difference to normal
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Pharo code is the lack of real polymorphism since Slang is more like C with

a Smalltalk syntax.

Technically the Waterfall compiler takes over the part of the Slang to C

converter and of gcc in the normal vm compilation process. Waterfall, much

like the Slang to C converter, has to take care of certain type information

present in the Slang sources. For instance we extract from the type informa-

tion if arguments are used by value or reference. With this information we

generate native code using a simple stack based strategy for temporary vari-

ables. As for the part of gcc, Waterfall in its current state is of course far less

complex and the resulting the native code is inferior to gcc’s optimized out-

put. To simplify the prototype Waterfall only uses a simple stack strategy in-

stead of register allocation for temporaries. Additionally Waterfall does not

use intermediate representations (ir) such as static single assignment (ssa) to

perform elaborate optimizations [5, Ch. 1].

Compilation Steps. As shown in Figure 5.2 the Waterfall compiler trans-

forms the ast of the Slang input to Pharo primitives.

PrimitivePrimitive AssemblerAssembler Waterfall 
Compilation
Waterfall 

Compilation
Benzo

Activation
Benzo

Activation

ast’ast’

astast Slang
Cleanup

Slang
Cleanup

Pharo
Parser
Pharo
Parser

SlangSlang

Figure 5.2: Waterfall loads the Slang sources and lowers the ast to assem-

bler instructions. Using Benzo the binary code for a primitive is activated and

installed.

We divide the Waterfall compiler into four distinct steps:

Slang to ast: The first step is to access the ast of the Slang source method

which happens automatically by loading the Slang code in the Pharo

image. At this stage Waterfall also recursively collects the set of reach-

able Slang methods.

ast Purification: In a second step certain expressions of the original Slang

ast are transformed into custom Waterfall expressions that can be eas-

ier transformed later on. For instance Waterfall converts C macros that

are supported in Slang which of course only make sense when using a

standard C compiler.

ast to asm: The real native compilation happens in the third step where an

ast-visitor creates assembler instructions using Benzo’s AsmJit. At this

point external symbols are statically resolved and directly inlined in the

final asm code.
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asm to Primitive Although not strictly part of the compilation, in the fourth

step the final native instructions are installed as a primitive methods

using Benzo (see Section 3.2 for more details).

Dynamically Replacing Primitives. After explaining the general architec-

ture and the different compilation steps of Waterfall we shed some light on

how the primitives are actually installed. In reality we rely 100% on Benzo

for this feature. Once the native code is generated we transform the target

method to a special Benzo-enabled method that contains the native code.

This procedure is explained in detail in Section 3.2 where we show the im-

plementation details of Benzo.

From a user point-of-view we only have to make sure that the correspond-

ing Slang sources are available and then hand over that source method to

Waterfall to compile and install it. Once the installation is complete, the

resulting Benzo-enabled method will contain behave like a Slang primitive

compiled with the original approach using gcc.

Dynamically Replacing Plugins. In Pharo there is no real distinction be-

tween primitives and plugins as we illustrate with the following code snip-

pets. The first one depicts an essential primitive to allocate new objects. The

second code example shows the a plugin primitive to open a new file stream.

basicNew

<primitive: 70>

OutOfMemory signal.

Code Example 5.1: Object»#basicNew Primitive

open: pathString writable: writableFlag

"Open a file at the given pathString, and return

the file ID obtained."

<primitive: ’primitiveFileOpen’ module: ’FilePlugin’>

^ nil

Code Example 5.2: FilePlugin»#open:writeable: Plugin Primitive

The main difference between primitives and plugins is only how they are

distributed. Primitives are inlined in the vm and can not be loaded at runtime,

while plugins can be loaded dynamically and are bundled separately. That

also means that there is no difference in handling plugins for Waterfall, the

compilation and installation process is exactly the same.

5.1.4 Waterfall Validation

After explaining the implementation details of Waterfall we would like to

present a thorough evaluation of the Waterfall infrastructure. We split up
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the validation in two parts following the outlined applications of Waterfall

in the introduction. The first part describes the performance of Waterfall

when used for instrumenting primitives. This is the major field of application

for Waterfall as it stresses its dynamic nature. In contrast to that we evaluate

the performance of a Waterfall compiled plugin in the second part of the

validation. Evaluating a whole plugin puts more stress on the quality of the

generated code than the fact that we can dynamically modify primitives. A

more detailed analysis of Waterfall is also available separately [16].

Validation of Dynamic Primitives

In this first part of the Waterfall validation we compare the performance of

Waterfall generated primitives in Pharo. In the first part we simply measure

the speed of a dynamically replaced primitive, while in the second we add

instrumentation overhead. For the simple replacement we choose the simple

integer operation "greater than" (>) and for instrumentation the more com-

plex basicNew primitive.

Simple Dynamic Primitives. In this first validation we compare the speed

of the Waterfall generated code on a simple "greater than" primitive. The

primitive is rather simple as it only works on small integers arguments and

delegates the functionality for other types to its superclass. The code for the

SmallInteger operation looks as follows.

> aNumber

<primitive: 4>

^super > aNumber

The fallback code at the end of the method triggers a slower "greater than"

implementation on the super class Integer which mostly deals with the

multitude of possible arguments to >.

> aNumber

aNumber isInteger

ifFalse:[

^ aNumber

adaptToInteger: self andCompare: #> ]

self negative == aNumber negative

ifFalse: [ ^ aNumber negative ].

self negative

ifTrue: [ ^(self digitCompare: aNumber) < 0 ]

ifFalse: [ ^(self digitCompare: aNumber) > 0 ].

For comparing performance of the "greater than" primitive we use three dif-

ferent approaches:

1. the standard primitive provided by the vm,
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2. the fallback language-side implementation that is triggered whenever

the standard primitive failed,
3. the reimplementation with Waterfall (not instrumented).

We run the three approaches by measuring the cumulative time over one mil-

lion primitive activations averaged over 100 runs. The absolute numbers are

less important than the relative factor between them. We present the results

of this experiment in Table 5.1.

Running Time [ms] Relative Time

Unmodified 6.4± 2.8 1.0

Fallback 195.0± 3.2 ≈ 30.0

Waterfall 22.8± 3.4 ≈ 3.6

Table 5.1: Comparing running time of different implementations of integer

arithmetic primitive.

As expected Waterfall’s solution outperforms pure reflective one by factor

9 to 10. Waterfall clearly outperforms a purely reflective solution since all

the meta programming overhead for the intercession mechanism is avoided.

This results thus makes a whole new set of runtime extensions feasible that

were previously limited by their strong performance penalty. Furthermore

the performance penalty over a completely optimized vm solution that has

extreme optimization techniques, such as inlining and register allocation, is

less than a factor of 4.

Essential Primitive Instrumentation. As a second validation target for pri-

mitives we chose to instrument basicNew which is a critical primitive for

object allocation. Like the previous "greater than" primitive this belongs to

the set of essential primitives that are used during startup of the image. For

instrumentation basicNew is again a rather tricky target as wrong code eas-

ily leads to infinite recursion. However, this can be avoided with a rather

costly recursion guard. We chose a rather simple instrumentation method by

simply printing the address of the allocated object to the standard output

stream. We validate the four flavors of the basicNew primitive:

1. the unmodified primitive,
2. a reflectively instrumented primitive with a recursion guard written in

Pharo,
3. a Waterfall generated and instrumented version,
4. a Waterfall generated version without instrumentation.

We measure again with the same setup as for the previous validation of the

"greater than" primitive. The outcome of this validation is shown in Table 5.2.

Again the results present a similar picture as for the "greater than" validation.
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Time [ms] Relative Time

Unmodified 0.28± 0.32 1

Secure reflective instrumentation 27.72± 0.80 ≈ 99

Waterfall-based instrumentation 7.72± 0.54 ≈ 28

Waterfall-based non-instrumentation 7.08± 0.46 ≈ 25

Table 5.2: Slowdown comparison for instrumentation of the essential primi-

tive basicNew.

However, since we added instrumentation this time, the reflective Pharo is

significantly slower than the unmodified version of the primitive. This proves

our theory that in certain performance critical cases reflective solutions are

not sufficient. While we were able to circumvent the recursion problem rather

elegantly, the recursion guard is simply too slow to be used by default. Com-

pared to that, the Waterfall-based instrumentation is a factor 3 faster than

the reflective solution. We see that the instrumentation overhead compared

to the non-instrumented Waterfall version is in the range of only 0.7ms

whereas in the Pharo version the overhead is several magnitudes higher.

Unlike for the simpler "greater than" primitive Waterfall is slower: factor

25 instead of only a factor 3.6 previously. This shows that there is certainly

room for performance improvements for Waterfall.

5.1.5 Waterfall Limitations and Outlook

Waterfall is still a research prototype and thus there are several issues that

problems that require attention with the most obvious one being perfor-

mance. We have shown that Waterfall is fast enough to compete against

dynamic primitive instrumentation written at language-side, but when

compared to native solutions we are still up to two magnitudes slower. For

simplicity Waterfall currently does not apply any optimizations which

still leaves room for improvements. For instance we do not apply register

allocation yet. However, in our eyes it does not make sense to implement a

specific register allocator for Waterfall itself. Instead, we envision to use a

future platform independent intermediate representation of Benzo that we

presented in Section 3.6.3. This way most optimizations only require one

implementation from which all Benzo applications benefit. Using this new

ir would have very little impact on the current Waterfall compiler infras-

tructure as we would only have to replace the ast to asm compilation step.

Instead of generating the asm we use the Benzo ir and let Benzo generate the

native code for the primitives.

Waterfall is currently only a research prototype that is not used in pro-
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duction. Also we have seen that there is a significant overlap with the Native-

Boost ffi. For example, many plugins wrap around existing external libraries

and thus are perfect candidates for NativeBoost. Even though Waterfall

would add a lot of flexibility for such plugins, we believe that NativeBoost

is more intention revealing and less confusing that dealing with the semantic

differences of Slang code over Pharo code. Nevertheless, this still leaves the

big field of instrumentation open for Waterfall. Additionally, for documen-

tation purposes it makes sense to load the Slang definition of all the essential

primitives into the Pharo image. In this case Waterfall would be a perfect

way to bring these primitives to live for exploration purposes.
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5.2 Nabujito: Language-side jit Prototype

In this section we present Nabujito, a Benzo-based approach for a language-

side jit compiler that tries to replicated the behavior of the existing jit as

shown in Figure 5.3.

vm

NabujitoNabujito

Pharo MethodsPharo Methods

Jitted MethodsJitted Methods

vm jitvm jit

Figure 5.3: Nabujito tries to replicate the jit which resides in the vm. We use

Benzo to compile native versions of Pharo methods that match the results

generated from the existing jit.

We have presented two other Benzo applications so far: a ffi and previ-

ously the dynamic primitives. Both of these applications have in common

that the switch or call to native code happens at the end of the Pharo stack

as shown in Figure 5.4. We see that the Benzo primitive marks the enter and

Pharo
Stack

Pharo
Stack

Native
Stack

Native
Stack

Benzo PrimitiveBenzo Primitive

Figure 5.4: Waterfall and NativeBoost use native code at the end of the

Pharo stack.

exit point for native code. As a result the native is isolated from the rest of the

stack. However, this is no longer the case if we use Benzo to generate native

code for Pharo methods like the vm-level jit. Figure ?? shows how the Benzo-

based native code is embedded into the Pharo stack. Hence a Benzo-based

jit has to closely interact with the existing infrastructure since it is taking con-

trol over a part of the interpretation itself. For instance it is not possible to just

generate native code following a different stack usage than the internal jit. If

we would do so we would inevitably create a conflict. We will thus present

first the details of the existing jit used by the Pharo vm to shed light on the

difficult implementation of Nabujito.
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Pharo
Stack

Pharo
Stack

Pharo
Stack

Pharo
Stack

send: #selectorsend: #selector

Benzo PrimitiveBenzo Primitive

Figure 5.5: Nabujito generates native code for Pharo methods which can

themselves activate other methods. Hence, the Benzo lies in between Pharo

contexts.

5.2.1 Background

Nabujito goes even further than Waterfall using almost the same tech-

niques. However, instead of focusing on primitives, Nabujito generates

native executable code for standard Smalltalk methods. Primitives tend to

be more low-level, whereas Nabujito focuses on high-level Smalltalk code.

The jit of the Pharo vm. The Pharo vm (Cog) already comes with a jit that

translates bytecodes to native instructions. It transforms Smalltalk methods

into slightly optimized native code at runtime. The main speed improvement

comes from avoiding bytecode dispatching and by inlining certain known

operations and primitives [7]. The most complex logic of the jit infrastruc-

ture deals with the dynamic nature of the Smalltalk environment. Methods

and classes can be changed at runtime and that has to be addressed by the jit

infrastructure. The jit compiler, by which we refer in this context to the trans-

formation of bytecodes to native code, represents a small part of the whole

infrastructure. There exists more important stages as an additional register

allocation pass to reduce the number of stack operations [37, 38]. The exist-

ing jit infrastructure is implemented in Slang [9, Ch. 5] as the rest of the vm.

To understand the upcoming implementation issues of Nabujito we have

to dive into the details of Pharo’s jit. Pharo uses a flavor of the Cog vm which

evolved in several steps from a simple bytecode interpreter. A successful and

fast jit implies a vm that uses the native stack.

The original Smalltalk-80 blue book implementation foresees a spaghet-

ti-stack where all contexts are normal objects on the heap. This design sim-

plifies the vm implementation significantly since there is no special treatment

necessary for blocks. Also this makes it rather easy to implement Pharo’s fea-

ture to access the current context using the special thisContext variable.
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However, the down side of this implementation is that it puts stress on the gc

and prevents more aggressive optimizations on the stack. For each message

send a new context has to be allocated and on each return contexts have to be

reclaimed. It would naturally be more efficient to use the native stack which

allows for cheap allocation and precise reclaiming of method context. While

this mapping can be done rather easily there are three properties of Pharo

that make this hard: blocks, non-local returns and the mentioned thisCon-

text. Eliot Miranda eventually succeeded to implement an efficient map-

ping scheme for the Cog vm that is based on the original work done by Peter

Deutsch and Allan Schiffman [23].

Even so the basic concepts of the native stack mapping are easy to un-

derstand the final implementation is tricky details. Real closures that out-

live their outer method activation context make the mapping difficult. At the

same time all the reflective capabilities to modified the stack from within

Pharo have to be supported. This, in return, limits the optimization oppor-

tunities. Cog chose a path in between where most reflective modifications of

the stack are permitted. However, in certain exotic edge cases the vm does not

support the operation.

After supporting the native stack the next optimization in line is the real

jit infrastructure where the vm generates native code on the fly. In Cog there

is a bytecode compiler that generates a simple intermediate representation

which then is used to generate the final native instructions. The ir makes it

easier to support new platforms next to the default 32-bit x86 implementa-

tion. Cog applies minor optimizations like a simple register allocation strat-

egy to lower the stress on stack usage. The most underestimated optimization

is the fact that all the native code for the jitted methods is stored in a compact

separate memory region. This lowers the chances of cache misses, an ever

growing problem on modern cpu architectures.

Figure 5.6 gives and overview of the memory separation used by Cog.

New objects are allocated in the young space which uses a fast semispace gc

jit Space Young SpaceYoung SpaceOld SpaceOld Space

Figure 5.6: Cog Memory Model Overview: Fixed-sized jit space, slow chang-

ing old space and fast young space.

with frequent reclaiming. Objects that survive a gc pass move to the old space

where infrequent reclaims happen. Separated from the two memory regions

where normal Pharo objects reside is the jit space dedicated for native code.

In Cog the jit space has its own gc strategy tailored to native code which
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is stored in a structure called CogMethod. Each jitted Pharo method has a

corresponding CogMethod with native code which resides in the jit space.

The CogMethod caches certain information such as the selector or number of

arguments. Again this improves code locality as all the frequently accessed

information resides in the jit space. Figure 5.7 gives an overview of the Cog-

Method. We see that additionally to the cached meta information there is re-

location information (method map) attached to the CogMethod. This is used

to update object reference, typically to selectors, form the native code in sync

with the objects that were moved in a gc pass. The same information is also

used to update jumps to other native code in the jit space if the dedicated jit

gc performs a compaction.

send #selectorsend #selector

#selector#selector

cog Methodcog Method

Cached MetadataCached Metadata

Method Map / Relocation MapMethod Map / Relocation Map

Native InstructionsNative Instructions

push #selector
CALL trampoline
push #selector
CALL trampoline

Compiled MethodCompiled Method

Figure 5.7: Cog Method: Compiled method representation at jit-level resid-

ing in the jit memory space.

So far we explained how Cog uses native stack mapping for performance

reasons and how the basic jit compiler works. The limit the stress on the cpu

cache only the most used methods are jitted. Cog uses a hierarchy of inline

caches to avoid the costly method lookup and checks if a method is already

jitted or not. Message sends from one jitted method to another hence hap-

pen with a very low overhead. However, due to the limited size of the jit

space that still means that infrequently used methods are evaluated using

the existing bytecode interpreter. Since Cog uses stack mapping this means

that the C-based bytecode interpreter runs on the same native stack with two

slightly different strategies. For instance, typically the C stack depth is lim-

ited to a predefined constant, whereas the Pharo stack can grow as big as

the whole heap. Which means that recursion in a Pharo program is not a

direct danger. In the bytecode interpreter the language-side recursion is not

directly present, since the interpreter only fetches and evaluates bytecodes

in a loop. Thus, switching from jit-mode to bytecode interpretation requires

some additional work to avoid negative side-effects. Essentially, Cog sepa-

rates the native stack for the jit and the bytecode interpreter. Each time Cog

has to switch execution mode it goes through a trampoline routine. The tram-

poline will exchange the two native stacks and jump to the proper location to

continue the execution of the bytecode interpreter from the native jit mode



5.2. Nabujito: Language-side jit Prototype 97

or vice versa. If Cog would simply call back to the C interpreter a new stack

frame would be allocated, notably on the existing native jit stack. This stack

frame would persist as the bytecode interpreter continues running normal

Pharo message sends.

Limitations of vm-level jit Compilers. In the context of Nabujito we split

the jit infrastructure into separate parts. The major part is to have a vm that

uses stack-mapping. In the case of a bytecode-based interpreter, we assume

that the vm provides routines to switch between a bytecode interpretation

context and a low-level native execution context. With Nabujito we move the

jit compiler,the part that generates native code at runtime, from the vm to the

image.Since the jit compiler is quite decoupled from the rest of the jit infras-

tructure we believe that a hard-coded static and low-level implementation is

not optimal for several reasons:

• Optimizing Smalltalk code requires strong interactions with the dy-

namic environment.

• Accessing language-side properties from the vm-side is hard.

• Changing the jit compiler requires changes at vm-level.

• The jit reimplements primitives for optimization reasons resulting in

code duplication.

Optimization Limitations for Pharo. In Smalltalk methods tend to be

very small and it is considered good practice to delegate behavior to other

objects. This implies that several common optimization techniques for static

languages do not work well. Dynamic method activation does not provide

enough context for a static compiler to optimize methods. Hence after inline

caches and register allocation the next optimization technique is inlining.

However, inlining in a dynamic context is difficult and requires hooks at

vm-level to invalidate native code when the language-side changes. Since

in Pharo, compiling a method to bytecode is handled completely with

language-side code most of the infrastructure to get notified about method

changes is already present.

Primitives in the Existing jit. The existing jit reimplements the most used

primitives at vm-level. This guarantees that the vm stays as long as possible

in the jit context (see Section 3.2.1 on page 36). Additionally this enables new

performance optimizations that for instance are hard to achieve with stan-

dard compliant C code. A typical example is the integer addition which has

to deal with overflow checks and conversion of tagged integers. In Section 5.1

we describe how Waterfall suffers a similar constraint. Waterfall manually
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defines such primitives in terms of native assembler instructions through the

language-side Benzo interface. Nabujito reuses the same optimized primi-

tives so we rely on a single optimized definition which is shared among all

native code libraries.

5.2.2 Nabujito Implementation

Nabujito is an experimental jit implementation which replaces the bytecode

to native code translation of the existing jit infrastructure with a dynamic

language-side implementation. Nabujito is implemented mainly with a vis-

itor strategy over the existing intermediate bytecode representation. Addi-

tionally we reimplemented vital native routines for the jit which are not di-

rectly exported by the vm using Benzo. Nabujito relies on the following vm-

level infrastructure to manage and run native code for any Pharo method:

• native stack management,
• routines for switching contexts,
• jit-level memory management for code segments.

The native stack mapping is an implicit requirement for an efficient jit. Since

this feature requires deep changes at vm-level we can not alter or reimplement

this at language-side. However, the routines for switching between jit and

non-jit execution context can be mostly reimplemented at language-side. We

only chose to implement a small subset of them with Benzo that were directly

required for performing message sends. Some of the helper routines’ C-level

addresses are easily accessible from language-side using dlsym. Hence we

reuse these for simplicity and only reimplemented the ones that are "hidden".

The last item we reuse, jit-level memory management, poses certain prob-

lems as we have little to no control over this from language-side. There is no

well-defined interface to interact with the jit from language-side in Pharo.

However, to properly interact with the jit we have to tell it where references

to language-side objects are located in the native code. To overcome this lim-

itation we chose to hack the current vm to better interact with the jit. More

details on this topic follow in the following paragraphs.

Nabujito Dynamic Code Generation. NativeBoost mainly consists of a vis-

itor over the bytecode-level ir that is provided by the Pharo compiler. Ad-

ditionally we reimplemented some of the aforementioned helper routines to

switch execution context in the vm. The main difficulty of the Nabujito com-

piler is the missing interface to the jit. For instance we did not have direct

control on which methods in Pharo are jitted or not, or to force-jit a method.

We added one additional primitive to be able to manually trigger jit compi-

lation.
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For standard methods Nabujito takes the bytecodes and transforms them

with a visitor to native code. It also applies simple optimizations such as

creating low-level branches for Pharo-level branching operations such as

ifTrue:. Optimizations for additional methods are all implemented flexi-

bly at language-side. Wherever possible, we reimplement the same behavior

as the existing native jit compiler.

Eventually the native code is ready and Benzo attaches it to the existing

compiled method. At this point we benefit from the jit integration of Ben-

zo itself. As a reminder, we have shown in Section 3.2 how Benzo-enabled

methods are treated like normal primitive methods. The vm triggers a Benzo

primitive which itself then jumps to the native code attached to the Benzo-

enabled method. By default the Cog jit can only directly inline the native

code for a known set of primitives. As we have shown in Section 3.2.1 that

the Cog’s jit was made aware of the special behavior of the Benzo primitive.

Hence, whenever a Benzo-enabled method is jitted its native code is directly

accessible to the jit and inlined. Thus we essentially remove the overhead of

activating Benzo-enabled methods since we do not have to leave the jit exe-

cution mode. As a result we call Benzo-enabled methods at the same speed

as the existing jit.

Talking to the jit. After the initial promising progress on building Nabujito

on top of Benzo we soon realized that is does not suffice to just generate the

equivalent native code as the vm internal jit. The first goal was to compile a

simple method that just returns a constant integer. Even at this stage it be-

came apparent that there is a missing interface to the jit. To explain that we

have a look at the standard stack frame setup of a jitted method in Cog shown

in Listing 5.3.

1 // push the current framepointer on the stack

2 push EBP

// use the stack pointer in ESP as new framepointer

4 mov EBP, ESP

// push the current jitted method on the stack

6 push 0x1f452b00<CogMethod>

// move the Pharo object nil to the EBX register

8 mov EBX, 0x1f500004<nil>

// push nil (stored in EBX) twice on the stack

10 push EBX

push EBX

Code Example 5.3: Cog jit Stackframe Setup

After finishing executing these setup instructions the stack frame looks as

depicted in Figure 5.8. As we can see there are already two references to nil

in the stack frame header. Already these two references pose a problem in
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Saved Instruction PointerSaved Instruction Pointer
Saved Frame PointerSaved Frame Pointer

Context: Context: 
Flag:Flag:
Cog Method:Cog Method:

Stack Pointer (ESP)Stack Pointer (ESP)

Frame Pointer (EBP)Frame Pointer (EBP)

0x1f500004<nil>0x1f500004<nil>

0x1f452b000x1f452b00

0x1f500004<nil>0x1f500004<nil>

Figure 5.8: Cog Stack Frame Header

a simple Nabujito setup, but for now we focus on the reference to the Cog-

Method. As we explained earlier the CogMethod is a meta object at jit-level

to make certain information of Pharo methods faster accessible. The vm cur-

rently keeps a pointer to the class, the selector or the number of arguments

cached in there. Having the information there improves locality and make

the assembler code required for the frequent querying simpler. Going back

to the native code in Listing 5.3 we see that we need the final address of the

CogMethod for the frame setup. However, at the moment where Nabujito

generates the native code the target method is not yet jitted. This again im-

plies that the corresponding CogMethod has not yet been allocated by the

jit. And since the native code has to be installed in the jit we inevitably have

to wait for Nabujito to finish compilation, we are stuck.

Instead of directly putting the absolute address of the meta-object in the

native code we add a call to a helper routine which will patch the original

code on the first activation. We can do so since we know the following things:

• CogMethod has a fixed size known upfront,
• we know the relative offset of the jitted method’s instruction to the start

of its CogMethod,
• we can access the instruction pointer with a helper routine.

With this information we modify Nabujito to generate the modified frame

setup show in Listing 5.4.

1 // push the current framepointer on the stack

push EBP

3 // use the stack pointer in ESP as new framepointer

mov EBP, ESP

5 // move the address of a helper function into EAX

mov EAX, 0x643d02e<pushCogMethodHelper>

7 // call the helper method

call EAX

Code Example 5.4: Nabujito Stack Frame Setup
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In the pushCogMethodHelper we access the instruction pointer from

where the call happened in the stack frame setup and deduce the start

of the CogMethod. Once the address of the CogMethod is retrieved the

pushCogMethodHelper patches the MOV and CALL instruction in the jitted

method. The result is shown in Listing 5.5.

1 // push the current framepointer on the stack

2 push EBP

// use the stack pointer in ESP as new framepointer

4 mov EBP, ESP

// patched instructions done by pushCogMethodHelper

6 push 0x1f452b00<CogMethod>

// patched ‘call EAX‘

8 nop

Code Example 5.5: Nabujito Patched Stack Frame Setup

By using this indirection we circumvent the missing interface to the jit. The

helper routine only imposes a one-time overhead, however we slow down

the final execution of the Nabujito method by a single NOP instruction. Yet,

looking at the Cog stack frame in Figure 5.8 we only dealt with finding the

reference to the CogMethod. So far we left out the gc interaction at jit-level,

which leads us to the following paragraph.

Overcoming the Missing vm Interface for the jit. Cog embeds references to

normal Pharo objects in its jitted methods. Most often this is the case for the

symbols used as selectors in message sends. This is different from the indi-

rect approach used in compiled methods for the bytecode interpreter. There

all objects used in the method are stored in a separate literal array and ref-

erenced by an index. Hence the bytecode can stay very compact and more

importantly does not have to be updated on each gc pass. While for space

consumption was the only concern on the early Smalltalk implementation

the jit only focuses on performance and thus avoids as many indirections

possible; hence the use of direct references in the jit. That implies that un-

like the bytecodes, the jit code is no longer independent of the location of the

referenced objects and thus has to be updated on each gc pass. Additional

to moved objects no the Pharo heap, the jit space itself moves a CogMethod

when compacting native code. Hence the gc has to also be aware of jumps

and reference to another CogMethod inside the native code. In Cog this ad-

ditional information is stored in the CogMethod itself, called method map. It

contains simple entries which describe the location of jumps, calls, references

to other CogMethod objects and references to Pharo objects.

The low-level design of Cog has significant implications on how Nabujito

has to interact with the vm. Nabujito has to provide the location of every refer-

ence and jump inside the native code. With the design of Nabujito so far, this
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cog Methodcog Method

Cached MetadataCached Metadata

Method Map / Relocation MapMethod Map / Relocation Map

push #selector
CALL trampoline
push #selector
CALL trampoline

Benzo-enabled MethodBenzo-enabled Method

ByteCodeByteCode

Benzo Native CodeBenzo Native Code

Nabujito Method MapNabujito Method Map

Figure 5.9: Nabujito can easily transfer a static version of the native code of

a Pharo method to the jit. However, there is no interface to pass the crucial

relocation information.

is not directly possible. So far Nabujito directly copies the native code from

the Benzo-enabled method to the CogMethod. Hence, Nabujito ignores all

the additional information required for the jit to work properly. To comply

with the jit we implemented a custom primitive for Nabujito with custom jit

support, essentially creating a fork of the vm. The newly added primitive is

a copy of the existing Benzo primitive with jit support. However, the Nabu-

jito adds support for the CogMethod relocation maps. At language-side the

Nabujito compiler stores a relocation map as the first literal in the compiled

method. In the customized jit code for the Nabujito primitive we read this

relocation information and forward it to the Cog jit infrastructure. Essen-

tially we replicate the information of the jit-level CogMethod inside a Ben-

zo-enabled Pharo method.

5.2.3 Nabujito Validation

After explaining the implementation details and challenges of Nabujito we

present a performance validation of our language-side jit compiler proto-

type. Our current prototype implementation is not complete yet, we envision

that the final compiler will produce the same native code as the existing jit

of the Cog vm. Based on that idea we focus our evaluation mainly on the

language-side code generation. Even though the underlying Benzo infras-

tructure caches the native code, the compilation step itself is several magni-

tudes slower than the native jit version. Hence we first evaluate in detail the

compilation speed of Nabujito, and only in the second part we focus no the

real execution speed of the generated native method.

Compilation Time

In this first part of the performance evaluation for our Benzo-based jit

compiler we focus on the language-side code-generation part. Nabujito

essentially generates the same native code as the vm-level jit, hence there is
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no performance difference at evaluation time. However, Nabujito is clearly

slower during the warm-up phase. Compilation of the native instructions

will take considerably more time compared to the vm-level implementation

of the same bytecode to assembler transformation. The cost of transforming

the bytecodes to native code at vm-level can be measured in native instruc-

tions, whereas the unit at language-side is bytecodes. However, we point out

again, that this is a one-time overhead. From the in-production experience

of NativeBoost, the Benzo-based ffi (see Section 4.3), we know that these

costs amortized, especially for long-term applications. Instead of focusing

on the final performance of the generated code, we present the compilation

time compared to the normal Pharo bytecode compiler, which also resides

at language-side.

Compilation Time [ms]

Pharo Compiler 71± 2

Nabujito 73± 2

Table 5.3: Compilation efforts of the standard Smalltalk compiler in Pharo

and Nabujito for the a simple method returning the constant nil.

In Table 5.3 we compare the compilation speed of the standard Pharo com-

piler and Nabujito. We measure the accumulated time spent to compile the

method 1000 times. The average and deviation are taken over 100 runs. The

Pharo compiler takes source code as input and outputs Smalltalk bytecodes.

Nabujito takes bytecodes as input and outputs native code.

We see that in the simple case displayed in Table 5.3 Nabujito’s compi-

lation speed lies within the same range as the standard Smalltalk compiler.

We expect that in the future we apply more low-level optimizations and thus

increase the compilation time of Nabujito. However, we have shown in the

performance evaluation for NativeBoost, the Benzo-based ffi, in Section 4.3

that even a rather high one-time overhead is quickly amortized. Furthermore

with Smalltalk’s image approach the generated native code is persistent over

several sessions. A subsequent restart of the same runtime will not cause the

jit to nativize the same methods it did during the last launch. Hence our ap-

proach is even valid for short-timed script-like applications as most of the

methods will already be available in optimized native code from a previous

run.

5.2.4 Nabujito Limitations and Future Work

Hidden vm Internals. The major obstacle found while implementing Nabu-

jito is the lack of a language-side interface to the jit. In Section 5.2.2 we al-
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ready showed how we circumvented most of the limitations. Our final con-

clusion was to extend the vm and add a customized primitive with its own jit

support. Strictly speaking this is against the principles of the Benzo frame-

work, where tools should be implemented transparently at language-side.

Even though the Nabujito is mainly implemented in Pharo, the required vm

modifications result in the problems already described in Section 3.5.3. vm ex-

tensions tend to be less maintainable, eventually Nabujito will take the same

path as many other research vm projects based on Pharo and stay unmain-

tained until the vm becomes incompatible.

Most of the problems described for Nabujito are being addressed with

Sista, a new adaptive jit compiler for the Cog infrastructure. Until now the

jit compiler for Cog is completely written in Slang and thus frozen at vm

compilation-time. Sista takes a different approach by implementing most jit

optimizations at language-side. Though the underlying approach is very dif-

ferent from Nabujito. Sista will require a new vm that supports querying the

status of the inline caches from Pharo code. Based on the retrieved informa-

tion Sista will apply standard optimization techniques like inlining. Instead

of directly generating native code at language-side Sista will encode addi-

tional information in an extended bytecode set. The vm is then capable of ex-

tracting the necessary information to generate optimized native code. Sista

essentially avoids the problems we described in Section 5.2.2 which occur

when directly injecting native code into the jit machinery. Sista’s flexibility

lies between the current jit present in Cog and the Nabujito prototype.

Debugging Cycle. While working on Nabujito we encountered the same de-

bugging limitations found in the other Benzo applications. However, the in-

teraction with the existing jit required already substantial debugging efforts,

mostly at assembler-level. Hence, Benzo’s missing high-level debugging fa-

cility does not have a big impact on the general development of Nabujito.

The main issue is that the vm itself lacks separate tests for the jit infrastruc-

ture. Even so the Cog branch supports a high-level simulator for running the

jit this is currently not supported under Pharo. Additionally the vm lacks

dedicated tests for the separate parts of the jit infrastructure. However, with

the previously mentioned Sista project, efforts are being made to enable the

existing vm debugging infrastructure on Pharo, along with dedicated tests.

Missing Optimizations. One major performance optimization missing in

both, the original Pharo vm-level jit and Nabujito, is inlining. By inlining we

are able to create methods that are potentially big enough for optimizations.

However, inlining is a difficult task in a highly dynamic language such as

Smalltalk or Self [15] when using a per method jit. A better match for this



5.2. Nabujito: Language-side jit Prototype 105

seems to a trace-based jit such as the one present in PyPy or Luajit. Efficient

inlining can only be performed with sufficient knowledge of the system.

Accessing this high-level information from within the vm is cumbersome

and requires duplication of language-side reflective features. The jit lives

on the same level as the information it needs relying on the already present

reflective features of Smalltalk.
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5.3 Benzo Applications: Outlook and Summary

In this chapter we presented two Benzo-based research projects: dynamic pri-

mitives and a language-side jit compiler prototype. We have shown in Sec-

tion 5.1 how the Waterfall toolchain allows us to modify Pharo primitives

on the fly. Waterfall uses the existing vm source code written in the Small-

talk subset Slang, thus simplifying the modification of existing primitives.

Using the same Slang sources Waterfall is also capable of compiling whole

plugins on the fly. In Section 5.1.4 we showed that Waterfall outperforms

a pure Pharo-based solution when instrumenting primitives. Waterfall is

up to one magnitude slower than native vm primitives leaving room for op-

timizations.

In the second part we presented Nabujito a language-side jit compiler

that uses Benzo for the code generation part. Even though Nabujito looks

promising, the current implementation does not go beyond the stage of a

prototype. We identified that a reasonable Benzo-based jit implementation

requires a well-defined interface to the otherwise isolated jit. We have shown

that the compilation time from bytecode to native code takes the same time

as the standard bytecode compiler. However, from a real-world point of the

view the current Nabujito setup is insufficient since it requires a customized

vm. A sufficient stable jit interface is required to efficiently implement Nabu-

jito.

Both of these applications are a further validation of the Benzo framework

and the concept of an open language-runtime without a clear distinction be-

tween language-side and vm-side. With the current setup we are capable of

hosting important vm parts such as non-essential plugins and primitives to

the language-side. However, again we encountered the typical limitations of

the Benzo framework: missing high-level debugging and hard-coded assem-

bler assumptions. As before we refer to the suggested Benzo improvement

presented in Section 3.6.

While working on Nabujito we realized that most important primitives

two different implementations. Once there is the default implementation

written in Slang using the C stack. Then there is an additional assembler-

level implementation for the jit. This is necessary to avoid frequent context

switches for primitives. However, with the current Benzo infrastructure it

might be possible to use the same definition of the primitive for both usages

and thus reduce code duplication.

The two Benzo research applications in this chapter have shown the lim-

itations of our framework. This will conclude our validation of Benzo itself

and we will focus on the future work to extend Benzo’s capabilities in the

following chapter.
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Introduction

In Chapter 2 we gave an overview of different concepts of reflection focusing

on the main distinction between language-side and vm-side reflection. While

language-side reflection is very well described in research and rather wide-

spread in dynamic languages, the vm-side counterpart is not. Compile-time

reflection is the center of many popular vm generation frameworks, but they

usually exclude the dynamic reflection aspect of the final binary. Neverthe-

less, it is always possible to introspect (structural reflection) the vm at a very

basic level. Additionally, there are tools like DTrace which provide a simple

way to instrument a binary with little prior setup required. Thus a limited

form of intercession is possible on the binary executable themselves. How-

ever, this still does not make the internal structural information of the vm

accessible that were available at compilation time. And the restrictions are

even more severe when it comes to vm-level intercession. It is foreseen for

languages to dynamically influence the underlying vm.

In the course of this thesis we presented tools that try to enter the field

of vm-level reflection – all based on Benzo, a common framework to activate

native code from language-side.

Waterfall’s dynamic primitives are a first step towards modifying

vm behavior from language-side in a rather controlled way. By bringing

the metacircular vm sources alive in Pharo we connect the former static

definition to the running artifact. Modification happen not by injecting

basic native instructions but at high-level by modifying and dynamically

compiling primitives.

In contrast to Waterfall we developed Nabujito, a jit compiler prototype,

that moves the original vm component to the language-side. While Nabu-

jito is defined as language-side compiler using familiar coding patterns, its

interaction with the vm is not clean. Unlike the plugins and primitives defined

by Waterfall the jit generates native code that is heavily depending on the
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low-level and internal execution model of the vm. Unlike Waterfall Nabu-

jito requires a modified vm to add a basic interface for manually injecting jit

code.

In this chapter we present possible solutions and an early prototype vm

that addresses the limitations we encountered while developing NativeBo-

ost, the Benzo-based ffi, Waterfall and Nabujito. We start by listing possible

improvements for the language-side part of the Benzo infrastructure such as

providing a well-defined high-level intermediate format. This will lead to a

description of required vm-level improvements to make applications such as

Waterfall or Nabujito feasible outside a research context.

6.1 Background

The improvements to the existing infrastructure Benzo and possible future

work is influenced by two research projects we described already in detail in

Section 2.2.3: the Pinocchio vm and the Klein vm. For this chapter we present

a small summary of these two metacircular vms with the focus on two things:

their own limitations compare to Benzo and their influence on improvements

and future work.

6.1.1 Pinocchio vm

The Pinocchio vm [52] presented in Section 2.2.3 is a direct predecessor of the

work presented in this thesis. The knowledge gained while participating on

Pinocchio had a great influence on the development direction of Benzo and

its applications.

Unlike Pharo running on the Cog vm the Pinocchio research vm has no

bytecode interpreter. The only execution base is native code which is directly

generated by the language-side compiler. At the current stage of development

Pinocchio has not yet support for a separate image as in Pharo. The runtime

image is currently defined by the bootstrap process where classes, objects

and methods are exported into binary images and linked together with a

primitive kernel to a final executable.

Going Native. We took from Pinocchio that language-side native code gen-

eration is not more complex than generating bytecodes. Instead we directly

embrace the native world. This means that in the core Pinocchio already uses

many concepts that are only introduced by the jit in the Cog vm. Hence,

Pinocchio does no longer distinct between jit mode and interpreter mode.

Here the gain for Pinocchio are twofold: we could boost the performance of

the language-runtime and simplify the design by not needing a dual compi-

lation pipeline for the jit and the bytecode.
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Going Meta. Even so Pinocchio directly uses native code as core execution

mode we avoided to directly write native code if possible. For instance the

method lookup in Cog is statically implemented at vm-side using Slang. We

described in Section 2.2.3 in detail how Pinocchio uses language-side code

instead for the lookup. Using the combination of low-level code to flatten out

meta recursion we still have full language-side control over the lookup while

maintaining good performance.

Missing Low-level Reification. The most obvious shortcoming of Pinocchio

was the lack of its own garbage collector. Instead of investing time into a sep-

arate well-defined gc Pinocchio relies on the conservative Boehm gc1 built

for C programs. The Boehm gc is sufficiently fast to run Pinocchio as a pro-

totype, however, due to its generic nature it is not as efficient as a specific

gc. However, Pinocchio lacked the necessary reification at level of the object

layout to properly implement a gc. All the notion about the object layout in

memory are hard-coded in the compiler in several places.

Missing C Independence:. The second negative point of Pinocchio is its

dependence from C. During the course of the Pinocchio development we

greatly reduced the quantity of C code. However, for simplicity we relied on

a small C Kernel for the complete bootstrap of the language. Additionally

some crucial primitives that required system calls were implemented in C.

6.2 Language-side Improvements

In this section we present the suggestion for improvements related mostly

tied to the language-side part of Benzo. Most of the solutions have been pre-

sented in the separate chapters of Benzo in Section 3.6, NativeBoost ffi in Sec-

tion 4.5 and the Benzo application prototypes (Section 5.1.5 and Section 5.2.4).

6.2.1 Improved Domain Specific Inspectors

Domain specific inspectors are important for an efficient development. Simi-

lar to the jit approach we have to optimize the frequent tasks during develop-

ment and provide a seamless integration. This becomes even more important

when working with low-level code and data that does not come with exist-

ing first-class structures. We noticed that using Benzo for Nabujito and Wa-

terfall that it is more convenient to rely on an existing low-level text-based

debugger such as gdb to inspect C-level structures.

1http://www.hpl.hp.com/personal/Hans_Boehm/gc/

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/


110 Chapter 6. Future Work

We have seen excellent use of inspectors in the vm development of the

Cog vm itself. The original simulator supports inspecting objects in simu-

lated raw memory. Cog added additional inspectors including disassembled

instructions for the jit development. However, with the recent changes the

advanced simulator does not yet run in Pharo and requires attention.

Lately we have seen a very similar approach for the Maxine research vm

[55]. It provides excellent low-level debugging interaction, switching seam-

lessly between low-level assembler views and high-level object inspectors.

We believe that it is an imperative requirement for a vm development ide

to support customizable inspectors that span from high-level to low-level.

Even though existing C-focused ides provide more and more support for inte-

grated inspectors the vm domain has different needs. C inspectors are tailored

towards fixed-sized objects whose types can be statically inferred. Whereas,

for vms we only have a handful types of object layouts and the real type is

only implicitly available. For instance in certain vms the class is encoded in

the header of an object instead of a simple full pointer to the class object. This

means that a minor interpretation pass is necessary to retrieve such informa-

tion. Which is why most C-focused ides are only partially sufficient for an

efficient vm development.

6.2.2 Virtual cpu an Assembler DSL

Benzo uses AsmJit as assembler backend which is currently limited to x86 in-

struction set. This choice is aligned with Pharo’s main development focus for

the most common operating systems. However, this choice of architecture al-

ready excludes mobile devices which currently focus on arm-based architec-

tures. To support this new architecture we have to extend the assembler back-

end in AsmJit. While the implementation effort for a new AsmJit architec-

ture is an implicit requirement the implications on Benzo-based applications

are more severe. For instance we already mentioned in Section 4.5.2 how the

NativeBoost ffi would suffer from code duplication. Essentially each newly

added cpu architecture has ripple-effects up to the final Benzo-based applica-

tions. Each Benzo application has to duplicate all native usage in and create

internally separate generates for each platform. We believe that this approach

is not the right path as it forces Benzo users into code duplication.

A much better solution is to provide a more abstract and platform inde-

pendent low-level intermediate format at Benzo-level. Ideally we can push

the platform specific code generation fully to the native backends in Benzo

itself. Benzo-based applications only have to focus on a single low-level in-

struction format reducing the development effort.

We also noticed that for actual testing the native instruction set is not op-
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timal. For instance the x86 instruction with all its modifier codes and variable

width instructions makes it tedious to implement a proper simulator. Writing

bindings for an existing simulator such as Bochs2 is a better choice. However,

even with a proper simulator ready for x86 we can not provide a very fluent

debugging process. For instance, the way assembler instructions are written

in Benzo require them to be fully generated before they can be interpreted.

We are used from Pharo that any code snipped is executable, a property that

we would like to bring to the low-level development as well.

VirtualCpu: A Low-level Intermediate Format. To reduce the aforemen-

tioned platform dependency of Benzo we developed a intermediate low-level

representation called VirtualCpu. It is based on a three-address-code (tac)

to simplify the adoption of optimizations such as static single assignment

(ssa) [21]. Additionally we chose to postpone register allocation to the final

code generation phase. By using a tac-based format and rewiring the inter-

nals we are even able to make the VirtualCpu code directly executable in

Pharo.

Before we go into the implementation details of VirtualCpu we show it is

used. VirtualCpu is based on tac instruction which take the following form:

result := argument1 OP argument2

There are three operands involved, result, argument1 and argument2,

from which the name of this tac format originates. Based on this assumption,

each standard VirtualCpu instruction returns a temporary variable which

can be used for further operations. This makes the information-flow much

more consistent. For instance the x86 instructions which sometimes have a

predefined result register and sometimes not.

The following code example outlines the basic usage of VirtualCpu:

Benzo vcpu x86 generate: [ :cpu | | temp1 temp2 |

temp1 := cpu memoryAt: 16r12345.

temp2 := cpu uint: 2.

cpu return: temp1 + temp1 ]

Code Example 6.1: Basic VirtualCpu Example

Which corresponds to the same functionality expressed in the following x86

instructions:

Benzo x86 generate: [ :asm |

asm mov: 16r12345 ptr to: asm EAX.

asm add: asm EAX with: 2.

asm return ]

2http://bochs.sourceforge.net/

http://bochs.sourceforge.net/
http://bochs.sourceforge.net/
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For this basic example we see that the two formats do not differ very much.

Though, already on the example of the return instruction it becomes obvi-

ous that the tac-based solution is more explicit. When using more complex

control structures the difference is apparent:

Benzo vcpu x86 generate: [ :cpu || a b c |

a := cpu uint: 1.

b := cpu uint: 2.

c := cpu uint: 3.

(a = b and: b = c)

ifTrue: [ c value: 5 ]

ifFalse: [ c value: 10 ] ]

VirtualCpu benefits from using explicit instruction objects to add a Pharo-

like DSL on top. The previous example looks fairly similar in plain Pharo

code:

| a b c |

a := 1.

b := 2.

c := 3.

(a = b and: b = c)

ifTrue: [ c := 5 ]

ifFalse: [ c := 10 ].

The DSL is transparently implemented by adding Pharo methods on the cor-

responding VirtualCpu instructions. Under the hood VirtualCpu will lower

the tac instructions to low-level asm instructions for the AsmJit backend.

VirtualCpu Implementation Overview. So far we presented the external

interface of the VirtualCpu format which works similar to the existing Ben-

zo assembler format. We will now shed lights on the internal implementation

details of VirtualCpu which is divided in three classes of objects: cpus, low-

level objects and instructions. The relationship between these main classes

are shown in Figure 6.1.

*

1

instructions
assembler

CPU

cpu
MachineObject

1...

description
result
operands

Instruction

1

Figure 6.1: VirtualCpu Overview

cpus: Source for values named cpu in the previous examples. The cpu object

will contain the list of instructions and for which backend it should gen-
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erate the native code. Additionally we provide specialized cpu objects

for debugging purposes or even immediate evaluation.

Low-level Objects or Values: A category of values or helper objects. For ex-

ample cpu uint: 1will create low-level word that contains the value

1. The corresponding high-level equivalent would be a variable. In the

final native code such a value object might be mapped to a register or

stack location. Another example is the special low-level object that is

the result of a comparison, for instance created by a = b. This object

holds the result of the comparison and implements the known boolean

messages such as ifTrue:ifFalse: or and:.

Instructions: Encapsulates an instruction type, operands and result value

according to the tac format. Much like in Pharo the programmer will

almost never directly interact with instructions but with the yielded

value. For example temp1 + temp1 yields a new VirtualCpu value

and internally records an add instruction in the cpu object that created

the value in temp1.

In VirtualCpu the main responsibility for the programming interface lies on

the machine objects. In contrast to that we see that in AsmJit the full interface

is defined on the asm itself. The intermediate values are almost never used,

and even registers only play the role of spectators. Hence, VirtualCpu takes

full advantage of the different types of values to define a simple DSL. This

way we are able to for instance create branches and loops following Pharo

semantics rather low-level jumps and labels.

cpu Types. Typically, the VirtualCpu programmer will only directly interact

with the machine objects. VirtualCpu instructions are tracked in the related

cpu object, but usually not accessed directly. However, the cpu objects play

an important role in the development process. By default each operation on

machine objects is dispatched over the corresponding cpu object as shown in

the following code example for the + operation.

MachineObject >> + machineObject

^ cpu add: self with: machineObject

So, in the examplec := a + b, the result object c is created in the cpu object

by invoking the add:with: method. This allows us to easily customize the

behavior of the cpu objects. Currently, we have two types of cpu objects in

use:

Generating cpu: This cpu delegates the addition to a low-level builder which

keeps track of the corresponding tac operation. After completing a rou-

tine, it will compile the tac instruction to native code using the specific

asm backend.
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Evaluating cpu: This cpu object does not keep track of the tac operations but

directly evaluates them. Typically we use this cpu type for debugging

purposes. The current setup includes a byte array simulating the native

memory. The evaluating cpu gives us a Pharo-like debugging behavior

with very little additional implementation costs.

VirtualCpu Optimizations. To get to the final native instructions the Vir-

tualCpu infrastructure compiles the high-level tac instructions to the specific

backend. The current compiler is divided into the following passes:

• Platform Specific Transformation
• Register Allocation
• Superfluous Assignment Remover
• Platform Specific Assembler

Currently VirtualCpu does not include more aggressive optimization tech-

niques such as constant folding or subexpression elimination that are asso-

ciated with a tac ir. The, idea is to move the existing Benzo applications to

this new VirtualCpu format and share the improvements across all tools.

Custom Machine Objects. Using first-class machine objects during for the

native code format in VirtualCpu has a secondary application that is not im-

mediately visible. At code generation time we can use other machine object

than the ones described so far. This finds a direct application in the NativeBo-

ost ffi when working with structs. Instead of manually delegating the code

generation for accessing fields of a struct to a mirror object we can use it natu-

rally inside VirtualCpu code. The following code example outlines this idea.

Benzo vcpu x86 generate: [ :cpu |

| address struct fieldValue |

address := cpu address: 16r1234.

struct := MyStructure pointer: address.

fieldValue := struct field1 ]

In this example thestruct field1message will create several instructions

hidden from the user. Typically, this involves dereferencing the pointer and

masking out the corresponding bits of field1 from the memory location.

The only visible artifact from the outside is the returned result.

6.2.3 Barrier-free Low-level Interaction

Shifting from vm development to the final language-runtime we see a similar

issue when it comes to tools that span abstraction levels. It is not directly

possible to inspect low-level objects from language-side. Focusing the on the

Benzo architecture what comes closes to inspecting low-level objects is the
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struct support for the NativeBoost ffi library described in Section 4.2.4. We

already use this approach for the Nabujito project to inspect vm internal meta

objects for debugging purposes. It is important to note that giving access to

the vm internal objects is not permitted in most languages. The previously

mentioned vm generation frameworks usually have first-class objects for all

the vm internal objects or provide mirror-like facilities to access objects from

raw memory. Usually, none of this structural information survives the vm

compilation phase. Essentially this leaves the final vm binary with little or

no means for introspection. Of course the same restrictions apply then for

language-side tools like Benzo that want to interact with the vm internals.

Customized vm mop. We have seen in Section 5.2.4 for Nabujito that the only

way to circumvent such issues is by creating modified vms which enable spe-

cific interaction points. There are other Pharo-based research projects [6,33]

that took the same path and created a modified vm. We, believe that with an

extended low-level mop the focus for research projects could shift from the

vm to the language-side. The final extreme is to have a system that works like

the described Klein vm where there is no longer a clear distinction of what is

vm-level and what is language-side.

Anticipated Debugging. For Benzo we have more modest intermediate

goals. The major drawback for a seamless developer experience is the lack

of a dedicate low-level debugging infrastructure. At this point, Benzo de-

velopers have to rely on 3rd-party C-centric tools for debugging. Hence, a

developer has to decide upfront at which abstraction level the debugging

should occur. Either at high-level without the possibility to deal with low-

level errors, or at low-level losing all the inspection capabilities. Besides the

shortcomings that either side of the decision will bring, already the fact that

the debugging direction has to be anticipated is inappropriate.

We outlined in Section 3.6.2 already several ways to improve the current

debugging situation for Benzo. The most important focus is on reducing the

cases where the programmer has to anticipate the debugging tool. Since we

have to deal with two very distinct abstraction levels we can not only rely on

a pure language-side solution to provide different debuggers [18]. The major

problem is the serious implications of a low-level error. Unlike user-level er-

rors they are not well-defined or even contained. It is astonishingly simple to

corrupt the vm memory while writing low-level code and thus breaking any

contract with the vm code. However, it is more common to access protected

memory due to a wrongly dereferenced pointer. Hence, the Benzo should

focus on this most common bug by following the solution outlined in Fig-

ure 6.2.
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Figure 6.2: Benzo Debugger Outline

1. Standard Pharo method activating a Benzo-enabled method through

the primitiveNativeCall primitive.

2. Native code causing a memory access violation (for example SIGSEV)

which can not be handled by Pharo directly.

3. Low-level signal handler is activated by the operating system and tries

to walk back the native stack up to the primitiveNativeCall acti-

vation.

4. After successfully finding the primitiveNativeCall the signal han-

dler sends a Benzo failure back to Pharo.

Missing Barrier-free Debugging. After proposing a solution to improve

Benzo’s bug recovery behavior we immediately encounter a second problem.

How do we debug low-level code? With the aforementioned solution we

are able to recover from certain low-level errors and signal them properly

at language-side. In a Smalltalk-like environment the debugger will pop

up on the location causing the error and thus allowing a programmer to

inspect stack and variables. To provide the same facility for Benzo we have

to plug into the existing low-level debugging utilities such as ptrace to

enable stepping over native instructions. The following Figure 6.3 outlines

the basics of a debugger that crosses the high-level / low-level barrier.

Native StackNative Stack

Pharo StackPharo Stack

22
33

11 forkfork

Figure 6.3: Benzo Crossover Debugger Outline

1. Point where a Benzo initiates a native call and the debugger switches

from a high-level Pharo stack to the low-level native stack. To properly

use low-level debugging tools we fork the complete vm process.
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2. The low-level debugger in Pharo switches the underlying debugging

interface. Instead of directly interacting with first-class Pharo context

we communicate to the the forked process with tools like ptrace.

3. The forked process is updated according to the actions initiated from

the Pharo side.

The outlined debugger will not work in certain cases where the native code

directly interacts with the outer image. The forked debugger process pro-

vides security from the main Pharo image by isolating it. However, for many

Benzo applications such as the ffi implementation this limitation would not

apply.
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6.3 vm-level Improvements

We have presented solutions to improve the code quality and the develop-

ment experience when working with Benzo that are focused on the language-

side. We concluded the previous section that the VirtualCpu intermediate

format brings a certain level of platform independence to native code writ-

ten with Benzo. At even higher-level, we pointed out how the lack of do-

main specific inspectors prevents a seamless development experience. The

last of the three points present was barrier-free low-level interaction from the

language-side point of view. We mainly focused on the debugger interaction

when working with low-level Benzo code. One part included the fact that

most debugging actions have to be anticipated when working with Benzo.

This is counter-intuitive to the default Pharo development workflow. How-

ever, the solution we presented already required certain vm-level support to

become feasible.

It becomes obvious that a more powerful Benzo implementation also re-

quires modification at vm-level. We explored the limitations of Benzo with

Nabujito jit compiler presented in Section 5.2. It is not possible to build a jit

compiler purely on top of Benzo, instead we had to fall back on a customized

vm with the necessary modifications. The goal of this section is to outline vm-

level improvements to push the envelope on dynamic changes that extend

down to the vm. We mainly focus on the reification of vm-level structure be-

yond compilation time. In this sense we follow the findings presented for the

Klein vm discussed in the related work Section 6.1 of this chapter.

6.3.1 Missing vm-level Reification

With Benzo we chose a non-invasive approach to make the low-level power

accessible to the language-side. Benzo is built around the simple capability

to dynamically invoke native code. Even though this is the basis for generic

interaction with the vm it is too unstructured. We have seen that for many

Benzo applications this is not a serious restriction. Yet, in the case where we

want to interact with the vm internals without modifying the vm we need

better access. We roughly distinct between two types of vm-level access that

require proper reification.

Static Part: When building metacircular vms using an intermediate language

such as C, the original high-level structure is lost. It is possible to par-

tially reconstruct the internal structures from the low-level debugging

information, such as Dwarf.

Dynamic Part: Next to the static part of the vm there is a more dynamic as-

pect linked to the language-side. In the case of C-based vm these are all
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the places where native code and memory is used directly.

We addressed some of the access earlier in this thesis. For instance Na-

tiveBoost features a vm proxy objects that exposes a public interface to the

vm. However, this does not cover real reflective access of the vm internal struc-

tures. In Section 5.1 we have shown how Waterfall reuses the sources of the

metacircular vm to generate primitives. This immediately makes structural

information accessible at runtime. For a truly self-aware system the situation

we found in the Pharo vm is not sufficient.

6.4 Summary

We have shown in previous chapters that the dynamic high-level low-level

programming framework Benzo is a valid option for a set of typical vm-level

components. However, its minimalist approach to generate native code at

language-side has clear limitation as we have shown Nabujito in Section 5.2.

Additionally Benzo’s current implementation lacks a seamless debugging

process. In this chapter we have outlined solutions for these problems.

Namely, we see that for an extended set of Benzo-based applications we

need sufficient reification at vm-level. On the language-side part of Benzo we

see the strong requirement of a more abstract representation of the native

code to build better development tools.
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Introduction

In this chapter we summarize this dissertation. We list the contributions, the

published papers and the created software artifacts and their impact.

Chapter 2 listed related work for this dissertation. We presented different

types of metacircular high-level language vms. As a result we found

only published results of two research vm that have a unified model.

Most other vms follow a clear separation between vm-side and and iso-

lated language-side.

Chapter 3 described a high-level low-level programming framework named

Benzo. The core functionality of Benzo is to dynamically execute native-

code generated at language-side. Benzo allows us to hoist typical vm

plugins to the language-side. Furthermore we show how code caching

makes Benzo efficient and users essentially only pay a one-time over-

head for generating the native code.

Chapter 4 presented a NativeBoost, a stable foreign function interface (ffi)

implementation that is entirely written at language-side using Benzo.

NativeBoost is a real-world validation of Benzo as it combines both

language-side flexibility with vm-level performance. We show in detail

how NativeBoost outperforms other existing ffi solutions on Pharo.

However, we observe that the underlying Benzo requires more effort to

simplify low-level debugging and improve platform independence.

Chapter 5 focused on two further Benzo applications: dynamic primitives

and a language-side jit compiler. The dynamic primitives show how a

metacircular infrastructure can be used dynamically and at runtime to

reify part of the vm necessary for compiling primitives. With the dy-

namic primitives we are able to alter a part of the execution seman-

tics embedded into the language. This concept is taken further with the
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language-side jit presented in the second part of this chapter. With the

jit we are able to control further aspects of the execution. We fully rely

on language-side generated code instead of bytecodes which have tied

interactions with the vm. vm-level jit, however, it is currently limited to

simple expressions. Our jit shows that for certain applications a well-

define interface with the low-level components of the vm is required.

Chapter 6 summarized the limitations of Benzo and its application, further-

more we list undergoing efforts on the Benzo infrastructure and future

work. We conclude that the Benzo approach for vm interaction requires

more support at vm-level. Namely, missing dynamically accessible vm-

level reification make it hard to communicate with vm internal com-

ponents. Based on this observation we present a summary of another

research vm which also tries to overcome the limitations identified with

the Benzo framework itself. Namely, the project is built around inspec-

tion and outside interaction during the complete development process.

7.1 Contributions

The main contributions of this thesis are:

• Description of the properties of an open and reflective language run-

time.

• Implementation of Benzo, a dynamic high-level low-level program-

ming framework for Pharo.

• An in depth validation of Benzo with NativeBoost, foreign function

interface implemented on top of Benzo. NativeBoost proves the fea-

sibility and efficiency of a dynamic high-level low-level programming

framework.

• A Benzo-based language-side jit compiler showing the boundaries of

Benzo.

• A road map for the future, bottom-up implementation of an open lan-

guage runtime with full vm-level reification using a platform indepen-

dent ir for low-level programming.

7.2 Published Papers

Flexible object layouts: enabling lightweight language extensions

by intercepting slot access

Slots and Layouts as described in this paper written as collaborator with Toon

Verwaest are used in Pharo 3.0 and newer. The original implementation pre-

http://dx.doi.org/10.1145/2048066.2048138
http://dx.doi.org/10.1145/2048066.2048138
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sented in this paper was implemented in an older Pharo 1.0 image and was

ported to Pharo 3.0 in 2013.

Abstract: Programming idioms, design patterns and application libraries often in-

troduce cumbersome and repetitive boilerplate code to a software system. Lan-

guage extensions and external dsls (domain specific languages) are sometimes

introduced to reduce the need for boilerplate code, but they also complicate the

system by introducing the need for language dialects and inter-language me-

diation. To address this, we propose to extend the structural reflective model

of the language with object layouts, layout scopes and slots. Based on the new

reflective language model we can 1) provide behavioral hooks to object layouts

that are triggered when the fields of an object are accessed and 2) simplify the

implementation of state-related language extensions such as stateful traits. By

doing this we show how many idiomatic use cases that normally require boil-

erplate code can be more effectively supported. We present an implementation

in Smalltalk, and illustrate its usage through a series of extended examples.

Authors: Toon Verwaest, Camillo Bruni, David Gurtner, Adrian Lienhard

and Oscar Nierstrasz.

Revenue: In Onward! 2011, Reno/Tahoe, Nevada, USA, 2011.

URL: http://dx.doi.org/10.1145/2048066.2048138

Language-side Foreign Function Interfaces with NativeBoost

This paper served as the basis for Chapter 4 and discusses the Benzo-based

ffi implementation NativeBoost in detail. NativeBoost is used in production

in the Pharo 2.0 and newer.

Abstract: Foreign-Function-Interfaces (ffis) are a prerequisite for close system inte-

gration of a high-level language. With ffis the high-level environment interacts

with low-level functions allowing for a unique combination of features. This

duality has a strong impact on the implementation of the ffi: it has to be flexible

and fast at the same time. We propose NativeBoost a language-side approach

to ffis that only requires minimal changes to the vm. NativeBoost directly

creates specific native code at language-side and thus combines the flexibility

of a language-side library with the performance of a native plugin.

Authors: Camillo Bruni, Luc Fabresse, Stéphane Ducasse and Igor Stasenko.

Revenue: In International Workshop on Smalltalk Technologies, Annecy,

France, 2013.

URL: http://hal.inria.fr/hal-00840781

http://dx.doi.org/10.1145/2048066.2048138
http://hal.inria.fr/hal-00840781
http://hal.inria.fr/hal-00840781
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7.3 Software Artifacts

During the work on this dissertation we produced several software artifacts.

Many projects emerged out of improving the infrastructure around the

Pharo development required to implement the core artifacts presented in

this thesis.

Collaboration on First-class Layouts and Slots: In a collaboration with To-

on Verwaest (scg, Switzerland) we built a first implementation of first-

class layouts and slots in a Smalltalk system [52]. In Collaboration with

Martin Días (rmod, inria) this initial version was ported to Pharo and

is now used in the current release candidate Pharo 3.01.

AsmJit 64-bit Assembler: To reuse the original research compilation pipe-

line built with Pinocchio [13,51] a 64-bit extension was necessary to the

initial AsmJit implementation for Pharo2. The extension is included in

the current stable Pharo release 2.03.

Collaboration on the Waterfall Dynamic Primitives: We collaborated on

Guido Chari’s (uba, Argentina) Waterfall Dynamic Primitive com-

piler, which resulted in paper currently under submission [16]. The

implementation is a prototype and is not used in production.

Collaboration on the Mate vm Prototype: In collaboration with Guido

Chari (uba, Argentina), Javier Pímas (uba, Argentina) and Clement

Bera (rmod, inria) several stages of a prototype vm were built. The

implementation mainly follows the concept of an dynamic language

runtime which controls every aspect at language-side. The current lan-

guage runtime is in a early prototype phase that allows us to explore

new vm and language concepts, however it is not production ready.

Guido Chari will further explore new concepts of Mate in his Ph.D.

Clement Bera, after finishing his engineering contract at rmod, will

continue to work as a Ph.D. on the same system.

VirtualCpu Compilation Toolchain: In collaboration with Clement Bera

(rmod, inria) and Igor Stasenko (rmod, inria) we built a prototype

compilation toolchain based on the original work of Pinocchio. The

current implementation is a working prototype. Plans exist to integrate

a streamlined version into Pharo to server as a platform independent

backend to our Benzo-based ffi implementation used in Pharo.

Nabujito Language-side jit Compiler: As a third case study for the Benzo

framework we implemented a language-side jit compiler. The current

1http://files.pharo.org/image/30
2http://smalltalkhub.com/#!/~Pharo/AsmJit
3http://files.pharo.org/image/20

http://files.pharo.org/image/30
http://smalltalkhub.com/#!/~Pharo/AsmJit
http://files.pharo.org/image/20
http://files.pharo.org/image/30
http://smalltalkhub.com/#!/~Pharo/AsmJit
http://files.pharo.org/image/20
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implementation is a prototype that is capable of directly transforming

simple methods to executable code. Unlike its vm-level counterpart it is

based as a simple visitor over the intermediate bytecode format already

present at language-side.

Inspector Framework for Pharo: An important part of reifying concepts is

the possibility to inspect and manipulate these objects. We wrote to-

gether with Clement Bera a new inspector framework which is used in

the latest Pharo release. It allows to quickly define new views on do-

main objects, an indispensable requirement for interacting with com-

plex data objects. Next to the everyday usage in Pharo it is actively

used for the Mate vm prototype where we need transparent access to

internal structures of the vm.

Command Line Test Interface for Pharo: In order to perform continuous

integration in a maintainable fashion we developed a new modular

command line interface for Pharo. It is used in production on the

Pharo build server4 alongside with simple installer scripts5.

Validation Framework: In order to improve the integration life cycle of

Pharo we developed together with Benjamin van Ryseghem and

Erwann Douaille a validation framework. Many changes in the core

Pharo were required to support the previously presented tools. To

encourage faster integration we validate each proposed change by

running lint rules and all unit tests. The tool generates a validation

report as separate website and interacts with the issue tracker.

7.4 Impact of the Thesis

Many engineering artifacts built during this dissertation are used in produc-

tion for Pharo. The inspector framework allowed us to create many specific

views on common objects in Pharo, improving the development in Pharo.

For instance the inspectors are tightly integrated into the debugger. Outside

the image, we have contributed to improve the Pharo continuous integration

work-flow. Identifying the limitations of the Benzo framework will trigger

more specific development efforts to improve the debugging capabilities.

Our dissertation helped to bootstrap the Mate research vm which even-

tually will cope with the limitations of the Benzo approach.

4http://ci.inria.fr/pharo/
5http://get.pharo.org/

http://ci.inria.fr/pharo/
http://get.pharo.org/
http://ci.inria.fr/pharo/
http://get.pharo.org/
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Appendix

Chapter A
A.1 Pharo Programming Language

Pharo is a Smalltalk inspired object-oriented and dynamically-typed

general-purpose language with its own programming environment. The

language has a simple and expressive syntax which can be learned in a few

minutes. Concepts in Pharo are very consistent, everything is an object:

classes, methods, numbers, strings, even the execution context.

Pharo runs on top of a bytecode-based virtual machine. Development

takes place in an image in which all objects reside. All these objects can be

modified by the programmer, this includes classes and methods. Hence, we

eliminate the typical edit/compile/run cycle and instead incrementally add,

remove or modify classes and methods. It is worth noting that all classes can

be extended with new methods in Pharo. For instance, one can add new

operations on integers or strings, classes that are treated as unchangeable

internal objects by many other high-level languages. For deployment and

debugging, the state of a running image can be saved at any point and

subsequently restored.
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A.1.1 Minimal Syntax

Reserved Words

nil the undefined object

true, false boolean objects

self the receiver of the current message

super the receiver, in the superclass context

thisContext the current invocation on the call stack

Literal Object Syntax

’a string’

#symbol unique string

$a the character a

12 2r1100 16rC integers twelve in decimal, binary and hex-

adecimal encoding

3.14 1.2e3 floating-point numbers

#(abc 123) literal array containing the symbol #abc

and the number 123

#[12 16rFF] literal byte array containing the bytes/in-

tegers 12 and 255

{foo . 3 + 2} dynamic array built from 2 expressions

Reserved Characters in Expressions

"a comment"

. expression separator (period)

; message cascade (semicolon)

:= assignment

^ return a result from a method (caret)

[ :p | expr ] code block with a parameter

| foo bar | declaration of two temporary variables

<pragma>, <primitive: 3> pragma or annotations used in methods,

for instances to declare a primitive method.

A.1.2 Message Sending

A method is called by sending a message to an object called the receiver. Each

message returns an object. Messages are modeled from natural languages

with a subject a verb and complements. There are three types of messages

with descending precedence: unary, binary, and keyword.

Unary messages have no arguments.
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Array new.

The first example creates and returns a new instance of the Array class,

by sending the message new to the class Array that is an object.

#(1 2 3) size.

The second message returns the size of the literal array which is 3.

Binary messages take only one argument and are named by one or more

symbol characters.

3 + 4.

The + message is sent to the integer object 3 with 4 as the argument.

’Hello’, ’ World’.

In the second case, the string ’Hello’ receives the message , (comma)

with the string ’ World’ as the argument.

Keyword messages can take one or more arguments that are inserted in the

message name.

’Smalltalk’ allButFirst: 5.

The first example sends the message allButFirst: to a string, with

the argument 5. This returns the string ’talk’.

3 to: 10 by: 2.

The second example sends to:by: to 3, with arguments 10 and 2; this

returns a collection containing 3, 5, 7, and 9.

A.1.3 Precedence

There is a fixed global precedence when evaluating expressions in Pharo:

Parentheses>unary> binary> keyword, and finally from left to right.

(10 between: 1 and: 2 + 4 * 3) not

Here, the messages+ and* are sent first, then between:and: is sent, and

finally not. The rule suffers no exception: operators are just binary messages

with no notion of mathematical precedence, so 2 + 4 * 3 reads left-to-right and

thus yields 18 and not the expected 14!
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A.1.4 Cascading Messages

Multiple messages can be sent to the same receiver with ;.

OrderedCollection new

add: #abc;

add: #def;

add: #ghi.

The message new is sent to OrderedCollectionwhich results in a new

collection to which three add: messages are sent with different arguments.

The value of the whole message cascade is the value of the last message sent

(here, the symbol #ghi). This example is the equivalent of first assigning

the new collection to a temporary variable and sending three separate add:

messages:

| newCollection |

newCollection := OrderedCollection new.

newCollection add: #abc.

newCollection add: #def.

newCollection add: #ghi.

To return the original receiver of the message cascade (i.e., the collection)

instead of the last result (i.e., #ghi), the yourself message is used:

OrderedCollection new

add: #abc;

add: #def;

add: #ghi;

yourself.

A.1.5 Blocks

Blocks are objects containing code that is executed on demand, (anonymous

functions or closures). They are the basis for control structures like condi-

tionals and loops.

2 = 2

ifTrue: [ Error signal: ’Help’ ].

The first example sends the message ifTrue: to the boolean true (com-

puted from 2 = 2) with a block as argument. Because the boolean is true,

the block is executed and an exception is signaled.
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#(’Hello World’ $!)

do: [ :e | Transcript show: e ]

The next example sends the message do: to an array. This evaluates

the block once for each element, passing it via the e parameter. As a result,

Hello World! is printed.

A.1.6 Methods

Methods are first-class objects in Pharo and can be inspected and modified

on the fly. Methods are created by saving expressions in the Pharo devel-

opment environment. Typically methods are printed with a special first line

indicating the class the method is installed on and the name or selector it is

given.

Array >> helpMethod

2 = 2

ifTrue: [ Error signal: ’Help’ ].

This example would denote a simple method with a unary selector on

the Array class. This method could be invoked by evaluating Array new

helpMethod.

Certain methods are marked with a pragma to use predefined primi-

tives from the vm. These are used for expressions that cannot be expressed

in Pharo. For instance the basicNew which allocates new objects uses the

primitive number 70:

Behavior >> basicNew

"Answer a new instance of this class"

<primitive: 70>

OutOfMemory signal.
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