
Université des Sciences et Technologies de Lille – Lille 1

Département de formation doctorale en informatique École doctorale SPI Lille
UFR IEEA

Visualizing, Assessing and
Re-Modularizing Object-Oriented

Architectural Elements

THÈSE

présentée et soutenue publiquement le 24 Novembre 2009

pour l’obtention du

Doctorat de l’Université des Sciences et Technologies de Lille

(spécialité informatique)

par

Hani Abdeen

Composition du jury

Président : Laurence Duchien

Rapporteurs : Marianne Huchard (Professeur – Université de Montpellier)
Françoise Balmas (Maitre de Conference – Université Paris 8)

Examinateurs : Manuel Oriol (Senior Lecturer – Université de York)
Laurence Duchien (Professeur – Université Lille I)

Directeur de thèse : Stéphane Ducasse (Professeur – Université Lille I)

Co-Encadreur de thèse : Ilham Alloui (Maitre de Conference – Université de Savoie)

Laboratoire d’Informatique Fondamentale de Lille — UMR USTL/CNRS 8022
INRIA Lille - Nord Europe

Numéro d’ordre: 40109

Mis en page avec la classe thloria.

Contents

List of Tables ix

Chapter 1 Introduction 7

1.1 Context: Object-Oriented Software Modularization 7

1.2 Problem: Software Re-Modularization Challenges 8

1.2.1 The Problem of Understanding Packages 9

1.2.2 The Problem of Modularization Optimization 10

1.3 Our Claim . 12

1.4 Contributions . 12

1.5 Structure of the Dissertation . 13

Chapter 2 Software Re-Modularisation:

Challenges and Approaches 15

2.1 Introduction . 15

2.2 Background and Terminology . 16

2.3 Package Understanding . 21

2.3.1 Quantitive Information . 23

2.3.2 Qualitative Information (cohesion vs. coupling) 23

2.3.3 Role and Contextual Information (central vs. peripheral) 25

2.3.4 Organizational Information (developers vs. team) 26

2.4 Challenges in Optimizing Modularization 26

2.4.1 Modularization Complexity . 26

2.4.2 Class Distribution over Packages 26

2.4.3 Package Optimization Trade-Offs 27

2.5 Existing Approaches to Understand Packages 29

2.6 Existing Approaches to Assess Package quality 32

i

Contents

2.7 Existing Approaches to Optimize Modularizations 34

2.8 A Combined Approach for The Maintenance of Software Modularization 37

Chapter 3 Package Blueprint:

Visually Understanding Package Structure and Interactions 39

3.1 Introduction . 39

3.2 Visualization Challenges . 40

3.3 Package Blueprint basic principles . 41

3.4 Package Blueprint Detailed Visualizations 42

3.4.1 Outgoing Reference Blueprints 42

3.4.2 Incoming Reference Blueprints 44

3.4.3 The Case of Inheritance . 46

3.5 An Example: The Network::Kernel Package 47

3.6 Packages Within Their Software System 49

3.6.1 Outgoing Reference Package Blueprint Analysis 49

3.6.2 Incoming Reference Package Blueprint Analysis 52

3.6.3 Inheritance Package Blueprint Overview 55

3.6.4 The views together . 56

3.7 Striking Shapes . 56

3.7.1 Shapes of Packages and Surfaces 56

3.7.2 Shapes of Classes . 59

3.8 User Case Study on Squeak Compiler 60

3.8.1 Experimental Setup . 61

3.8.2 Results . 62

3.9 Evaluation and Discussion . 63

3.9.1 Evaluation . 63

3.9.2 Discussion . 64

3.10 Related Work . 66

3.11 Conclusion . 66

Chapter 4 Package Fingerprints:

Visually Summarizing Package Interface Usage 69

4.1 Introduction . 69

4.2 Package Fingerprint Principles . 70

4.2.1 Terminology . 71

4.2.2 Fingerprint Intention . 72

4.2.3 Fingerprint Skeleton . 73

ii

4.2.4 Enriching the Fingerprint Skeleton Layout 74

4.3 Decorticating a Fingerprint . 76

4.4 Reading the Fingerprint From Far Away 79

4.5 Outgoing Fingerprint . 82

4.6 Relevant Visual Patterns . 85

4.6.1 Black Fill Pattern . 85

4.6.2 Arrow Pattern . 89

4.6.3 Mosaic Pattern . 92

4.6.4 Diverse Patterns . 96

4.7 Discussion and Evaluation . 98

4.7.1 Graphical concerns . 98

4.7.2 About Coupling and Hints at Improvements 99

4.7.3 Related Work . 101

4.8 Conclusion . 102

Chapter 5 Automatically Measuring and Optimizing Modularization Quality

103

5.1 Introduction . 103

5.2 Modularization Quality . 105

5.2.1 Measuring Modularization Quality 105

5.2.2 Measuring Package Quality . 106

5.3 Optimization Technique (Methodology) 107

5.3.1 Technique Overview . 107

5.3.2 Evaluating Modularization Quality (Fitness) 108

5.3.3 Modularization Constraints . 109

5.3.4 Deriving New Modularization (Neighbor) 110

5.4 Experiments and Validation . 112

5.5 Related Works . 119

5.6 Conclusion and Future Work . 121

Chapter 6 Conclusions and Future Work 123

6.1 Open Issues . 126

Bibliography 127

iii

Contents

iv

List of Figures

2.1 Example of two modularizations: different decompositions of the set
of classes {c1..c9} into 3 packages {p1,p2,p3}. 16

2.2 Explanation of Package Cycles within Modularization1 (Figure 2.1 (p.
16)). 19

2.3 An Example of Subsystem Notation: the subsystem subsystem1 con-
tains two packages (pkg1 and pkg2) and one subsystem (subsystem2).

. 21
2.4 Different package configurations over the same number of classes. . . 22
2.5 An example illustrating the propagations of package change impact. . 27
2.6 An example illustrating distinct impacts when optimizing package

structure. 28
2.7 An Example Illustrating the Kiviat Diagram [Pinzger et al., 2005]. 31

3.1 Consider P1 that references four classes in three other packages (a).
A blueprint shows the surfaces of the observed package as stacked
subdivisions (b). Small boxes represent classes, either in the observed
package (right white part) or in referenced packages (left gray part) (c). 42

3.2 Surface package blueprint detailed view (Outgoing Reference view for
P1). 43

3.3 To distinguish it from the outgoing reference blueprint (left), we rotate
the incoming reference blueprint (right) by 90°, so that the important
details are still read first; in the incoming view, the references are made
by the external classes, at the top, to the internal classes below them. . 45

3.4 Package blueprint detailed view (Incoming Reference view for P3
Figure 3.2 (p. 43)) . 45

3.5 Inheritance package blueprint. Orange bordered classes inherit directly
from external classes. 46

3.6 Analyzing the Network::Kernel Package. 47
3.7 Interacting with package blueprint: using the mouse and pointing at

the box shows, through a fly-by-help, the class and package names.
In this view, the mouse is pointing to the box representing HTTPSocket
and the fly-by-help shows, in addition to the class name, the name of
Network::Kernel classes that refer to HTTPSocket. 50

v

List of Figures

3.8 Outgoing reference blueprints of some packages of the Network system.
In this view, the Kernel package was selected in orange, surfaces with
Protocols package are highlighted in yellow, class HTTPSocket in red,
class SocksSocket in blue, class InternetConfiguration in green, and class
Password in fuchsia. 51

3.9 Incoming Reference global view in Network system. In this view, the
TelNetWordNet package was selected in orange, surfaces with RemoteDi-
rectory package are highlighted in green. 53

3.10 Inheritance global view in Network system 53
3.11 A Sumo Blueprint: the Critics package in ArgoUML. The view is in the

context of the subsystem argoUML::uml. 57
3.12 A Loner Blueprint: Url::Tests and MailSending packages in Network. 58
3.13 A Tower Blueprint: the Peer package in Azureus. The view is in the

context of the subsystem azureus::ui::swt::views. 58
3.14 Global view in Compiler system. In this view, the class Parser is high-

lighted in green, the class ParseNode in red and the class DecompilerCon-
structor in blue. 60

4.1 Terminology – An example of references between packages 71
4.2 Grouping incoming and outgoing references into In- and Out- interfaces. 71
4.3 The Incoming Fingerprint skeleton with P1 (Figure 4.2(a) (p. 71)). 73
4.4 Showing the Incoming Fingerprint of P1 (Figure 4.3 (p. 73)) with the

classes involved in the relations inside each cell. 75
4.5 The Incoming Fingerprint of the package render::renderer, from the theme

subsystem of Jboss. 77
4.6 The Incoming Fingerprint of renderer package (Figure 4.5 (p. 77)) zoomed-

out twice. 79
4.7 Interacting with the Fingerprint. 80
4.8 The Incoming Fingerprint of utils package, from plugins subsystem

(Azureus Application). 81
4.9 P1 Outgoing Fingerprint skeleton (Figure 4.2(b) (p. 71)). 82
4.10 Showing the Outgoing Fingerprint of P1 (Figure 4.2(b) (p. 71)) with the

classes involved in the relations inside each cell. 83
4.11 The Outgoing Fingerprint of impl::api::user package, from the subsystem

Jboss.portal.core. 84
4.12 Examples of Black Fill Fingerprints. 85
4.13 An example of the Black-White pattern: the Incoming Fingerprint of

invocation package, from Jboss system. 87
4.14 Arrow Pattern: the Incoming Fingerprint of UI package of the Squeak38::Monticello

subsystem. 88
4.15 Variations of Arrow pattern. 89
4.16 An example of the Mosaic pattern: the Incoming Fingerprint of Mor-

phic::Basic package, from Squeak38 system. 92
4.17 An example of the Mosaic pattern: the Incoming Fingerprint of model

package, from Argouml system. 93

vi

5.1 Package size and cohesion into ArgoUML original (dark gray) and
resulting (light gray) modularizations. Packages have the same order
in diagrams. 113

5.2 Package size, cohesion quality (CohesionQ) and cyclic dependency qual-
ity (CyclicDQ) into ArgoUML original (dark gray) and resulting (light
gray) modularizations. Packages have the same order in diagrams. The
constraints are: (1) the size of packages that entail more than 35 should not increase
(sizemax = 35); (2) the classes that are packaged in small packages (1 < psize < 6)
should not be moved (i.e., they are frozen). 117

vii

List of Figures

viii

List of Tables

5.1 Information about used software applications. 113
5.2 Package Quality in original modularizations 115
5.3 Optimizations on Inter-Package Connectivity. The top table shows the percent

of reduction of IPD, .. , IPCC (Table 5.1 (p. 113)) into resulting modularizations. The biggest

negative value is, the best optimization is. The bottom table shows these information when

distancemax is specified and limited to 5%. 115
5.4 Modifications on Package Size. The top table shows the percent of empty packages

(Table 5.1 (p. 113)), the biggest and the average package size into resulting modularizations.

The bottom table shows these information when distancemax is specified and limited to 5%. . . 116
5.5 Optimizations on Package quality. The top table shows the average optimizations

on package quality into resulting modularizations. Values are based on Table 5.2 (p. 115). The

biggest positive value is, the best optimization is. The bottom table shows these information

when distancemax is specified and limited to 5%. 116
5.6 Resulting Modularization Consistency. Table shows the average distance between

ten resulting modularizations for each application. 116
5.7 Modifications on Package Size for ArgoUML. It shows the percentage

of empty packages (Table 5.1 (p. 113)), the biggest and the average
package size into resulting modularizations. The constraints are: (1) the size

of packages that entail more than 35 should not increase (sizemax = 35); (2) the classes that are

packaged in small packages (1 < psize < 6) should not be moved (i.e., they are frozen). 118
5.8 Optimizations on Package Quality for ArgoUML. Values are based on

Table 5.2 (p. 115). The biggest positive value is, the best optimization
is. The constraints are: (1) the size of packages that entail more than 35 should not increase

(sizemax = 35); (2) the classes that are packaged in small packages (1 < psize < 6) should not be

moved (i.e., they are frozen). 118
5.9 Optimizations on Inter-Package Connectivity for ArgoUML. It shows

the percentage of reduction of IPD, .. , IPCC (Table 5.1 (p. 113)) into
resulting modularizations. The biggest negative value is, the best
optimization is. The constraints are: (1) the size of packages that entail more than 35

should not increase (sizemax = 35); (2) the classes that are packaged in small packages (1 <

psize < 6) should not be moved (i.e., they are frozen). 118

ix

List of Tables

x

Abstract

To cope with the complexity of large object-oriented software systems, developers
organize classes into subsystems using the concepts of module or package. Such
modular structure helps software systems to evolve when facing new requirements.
The organization of classes into packages and/or subsystems represents the software
modularization. the software modularization usually follows interrelationships
between classes. Ideally, packages should to be loosely coupled and cohesive to a
certain extent. However, Studies show that as software evolves to meet requirements
and environment changes, the software modularization gradually drifts and looses
quality. As a consequence, the software modularization must be maintained. It is
thus important to understand, to assess and to optimize the organization of packages
and their relationships.

Our claim is that the maintenance of large and complex software modularizations
needs approaches that help in: (1) understanding package shapes and relationships;
(2) assessing the quality of a modularization, as well as the quality of a single package
within a given modularization; (3) optimizing the quality of an existing modulariza-
tion.

In this thesis, we concentrate on three research fields: software visualizations,
metrics and algorithms. At first, we define two visualizations that help maintainers:
(1) to understand packages structure, usage and relationships; (2) to spot patterns;
and (3) to identify misplaced classes and structural anomalies. In addition to visual-
izations, we define a suite of metrics that help in assessing the package design quality
(i.e., package cohesion and coupling). We also define metrics that assess the quality
of a collection of inter-dependent packages from different view points, such as the
degree of package coupling and cycles. Finally, we define a search-based algorithm
that automatically reduces package coupling and cycles only by moving classes over
existing packages. Our optimization approach takes explicitly into account the origi-
nal class organization and package structure. It also allows maintainers to control
the optimization process by specifying: (1) the maximal number of classes that may
change their packages; (2) the classes that are candidate for moving and the classes
that should not; (3) the packages that are candidate for restructuring and the packages
that should not; and (4) the maximal number of classes that a given package can
entail.

The approaches presented in this thesis have been applied to real large object-
oriented software systems. The results we obtained demonstrate the usefulness of
our visualizations and metrics; and the effectiveness of our optimization algorithm.

Résumé

Pour faire face à la complexité des grands systèmes logiciels orientés objets, les
programmeurs organisent les classes en sous-systèmes en utilisant les concepts de
module ou de package. Une telle structure modulaire permet aux systèmes logiciels
d’évoluer face aux nouvelles exigences. L’organisation des classes dans des pack-
ages et / ou sous-systèmes, que nous appelons la modularisation du logiciel, suit
habituellement les relations entre les classes. Il est de usage de vouloir les packages
faiblement couplés et assez cohésifs. Cependant, les études montrent que quand les
systèmes logiciels s’adaptent aux exigences et aux modifications de l’environnement,
leurs modularisations dérivent et perdent progressivement leur qualité. En con-
séquence, la modularisation des systèmes logiciels doit être maintenue. Il est donc
important de comprendre, d’évaluer et d’optimiser l’organisation des packages et de
leurs relations.

Le point défendu dans la thèse est que le maintien des modularisations logiciels
de grande taille et complexes requiert des approches qui contribuent à: (1) la com-
préhension des packages et de leurs relations; (2) l’évaluation de la qualité d’une
modularisation, ainsi que la qualité d’un package dans le contexte d’une modularisa-
tion donnée; (3) l’optimisation de la qualité d’une modularisation existante.

Dans cette thèse, nous nous concentrons sur trois domaines de recherche: visu-
alisations de programmes, métriques et algorithmes. Dans un premier temps, nous
définissons deux visualisations qui aident les mainteneurs à: (1) la compréhension de
la structure des packages, et de leurs utilisations et leurs relations; (2) l’identification
des modèles; et (3) l’identification des anomalies structurelles. En plus de visualisa-
tions, nous définissons un ensemble de métriques qui aident à évaluer la qualité d’un
package (i.e., la cohésion et le couplage). Nous définissons également des métriques
qui permettent d’évaluer la qualité d’une collection des packages inter-dépendants.
Ceci en prenant en compte le degré de couplage et de cycles entre les packages.
Enfin, nous définissons une algorithme de recherche qui réduit automatiquement le
couplage et les cycles entre les packages, en déplaçant seulement les classes sur les
packages existants. Notre approche d’optimisation prend explicitement en compte
l’organisation des classes et la structure originale des packages. Il permet également
aux mainteneurs de contrôler le processus d’optimisation en spécifiant: (1) le nombre
maximal des classes qui peuvent changer leurs packages; (2) les classes qui sont
candidates pour se déplacer et celles qui ne doivent pas changer leurs packages; (3)
les packages qui sont candidates pour la restructuration et ceux qui ne doivent pas se
changer; et (4) le nombre maximal des classes qu’un package donné peut contenir.

Les approches présentées dans cette thèse ont été appliquées à des systèmes logi-
ciels orienté objets, réels et de grand taille. Les résultats obtenus démontrent l’utilité
de nos visualisations et métriques, et l’efficacité de notre algorithme d’optimisation.

To my parents...

3

4

Acknowledgments

Je vous remercie tous.

5

6

Chapter 1
Introduction

1.1 Context: Object-Oriented Software Modularization

"Modularity is the single attribute of software that allows a program to be
intellectually manageable. Myers 1978"

To cope with the complexity of large object-oriented software systems, program-
mers organize classes into subsystems using the concepts of module or package. The
organization of classes into packages and/or subsystems represents the software
modularization. The software modularization usually follows interrelationships
between classes, that the developers would like to maintain over the ineluctable
software system evolution.

Already, from more than thirteen years, researchers, such as Stevens, Myers and
Constantine during their studies on the design of software structure [Stevens et al.,
1974] and Parnas during his studies on the criteria to decompose software systems
[Parnas, 1972], have observed that the programs which are composed of simple
and independent modules are easier to implement and maintain. In that respect,
researchers in object-oriented programming, such as Brian, Fowler and Martin, have
found that: ideally, packages should keep as less coupling and as much cohesion as possible
[Briand et al., 1999a; Fowler, 2001; Martin, 2002a; Ponisio and Nierstrasz, 2006; Ponisio,
2006], claiming that a good organization of classes into identifiable and collaborating
subsystems eases the understanding, maintenance, test and evolution of software
systems [Abreu and Goulao, 2001; DeRemer and Kron, 1976; Myers, 1978; Ponisio and
Nierstrasz, 2006; Pressman, 1994; Yourdon, 1979].

In the context of this thesis, we define the concepts Package and Modularization as
follows:

Definition 1 (Package) Package is the name we use for a class container in object-oriented
software systems (e.g., Package in Smalltalk VW1, Package/Namespace in Java [Flanagan,
1999]).

Definition 2 (Modularization) Modularization is the name we use to refer to class orga-
nization into packages, in the context of a given object-oriented software system.

1For more information see: http://www.cincomsmalltalk.com/userblogs/cincom/blogView

7

Chapter 1. Introduction

"A central feature of the evolution of large software systems is that change
– which is necessary to add new functionality, accommodate new hardware
and repair faults – becomes increasingly difficult over time. Eick et al.
2001"

The studies of Eick [Eick et al., 2001] have proved that software code decays: as
software systems evolve over time to meet requirements and environment changes,
with the modification, addition and removal of new classes and dependencies, the
software systems inevitably become more complex and their modularization drifts
and looses quality [Lehman and Belady, 1985]. As a consequence, the software mod-
ularization must be maintained. In that respect, it is then inevitably important to
understand, to assess and to optimize the concrete organization of packages and their
relationships.

It is worth to note that the maintenance of a software modularization should not
change the concerned software behavior. Such a task should be done through perfective
changes which are intended to improve the software adaptability and changeability
without altering its functionality [Eick et al., 2001; Feathers, 2005]. In our context
(software modularization), the optimization of a software modularization is widely
known as software re-modularization: i.e., the re-organization of the software classes
into packages.

Over the last fifteen years of research effort, researchers in the software engi-
neering area have proposed several approaches for automatically re-modularizing
software systems [Abreu and Goulao, 2001; Bauer and Trifu, 2004; Doval et al., 1999;
Harman and Hierons, 2002; Liu et al., 2001; Lung et al., 2006; Lutz, 2001; Maini et al.,
1994; Mancoridis and Mitchell, 1998; Mancoridis et al., 1999; Mitchell and Mancoridis,
2006, 2008; Mitchell et al., 2004; Seng et al., 2005; Serban and l. G. Czibula, 2007]. These
approaches, while valuable, are not really satisfactory. We believe that the main
problem of these approaches is that they often produce new modularizations that
are completely different for the original ones. In such a case, it can be difficult for
a software engineer to understand the resulting structure and to map it back to the
situation he knows.

Another problem that those re-modularization approaches face, is that the existing
approaches for understanding the structure of packages and software modularization,
[Ducasse et al., 2005b; Laval et al., 2009; Lungu et al., 2006; Martin, 2002a; Ponisio
and Nierstrasz, 2006; Ponisio, 2006], fall short of providing a fine-grained view of
packages that would help maintainers understand the re-modularization efforts:
i.e., (1) understand package structure and interrelationships; (2) identify package
roles within a system; and (3) mapping back alternative modularizations to original
ones. Another problem that maintainers face: the lack of a real investigation in
the evaluation of the software modularization quality. Computing the software
modularization quality is particularly important when re-modularizing software
systems.

1.2 Problem: Software Re-Modularization Challenges

The maintenance of legacy software systems is a well-known challenge that the
software industry faces [Demeyer et al., 2002]. Most industrial object-oriented software

8

1.2. Problem: Software Re-Modularization Challenges

systems are large and complex. A reason of their complexity is that the source code is
composed of a large collection of inter-dependent classes that mutually co-operate
to achieve some desired services. Classes and their relationships represent the static
structure of the software system and maintainers need understanding this structure
for maintaining and upgrading software systems. For large and complex object-
oriented software systems, maintainers are overwhelmed by the large number of
classes and the high degree of inter-class dependencies.

In this thesis, we focus on object-oriented software systems since: many current
software systems are being (or already) implemented in object-oriented languages
(e.g., Java, C++ and Smalltalk); as a consequence, those systems will represent future
legacy software systems to maintain.

Object oriented languages, such as Java, Smalltalk and C++, provide the notion
of packages to support the decomposition of software systems into subsystems
[Martin, 1996, 2000]. The ultimate goal of packages is supporting the information-
hiding criterion for the decomposition of software systems into modules (i.e., packages
and subsystems) [Parnas, 1972; Sullivan et al., 2001]. The idea is to improve the quality
of software, e.g., adaptability and changeability, by decoupling design elements that
are likely to change so that they can be changed independently: the organization
of classes into identifiable, collaborating and loose-coupled subsystems is the way
for easily understanding, maintaining, testing and evolving large object-oriented
software systems [DeRemer and Kron, 1976; Myers, 1978; Pressman, 1994; Yourdon,
1979].

However, software evolves over time with the modification, addition and removal
of new classes, methods, functions, dependencies. A consequence is that some classes
may not be placed in suitable packages and the software modularization is broken
[Eick et al., 2001; Griswold and Notkin, 1993]. To improve the quality of software
modularization, optimizing the class organization into packages is required. There, a
well known problem is that, often there is no ideal modularization: often, there are
a variety of possible modularizations that are based on a variety of decomposition
criteria. In addition, the decomposition criteria are some times conflicting.

The following subsections introduce the software re-modularization challenges.

1.2.1 The Problem of Understanding Packages

Software re-modularization, as a software maintenance task, is done by maintainers.
Maintainers who need understanding the software structure and the class organiza-
tion into packages: (1) to take decisions –before changing the software modularization–
and also (2) to understand the software modularization and assessing its quality –
after the software re-modularization process. Otherwise, maintainers may introduce
anomalies and breakdown the software modularization, they thus may loose the
client’s trust [Feathers, 2005].

Packages, however, are not mere class containers. Packages are complex entities
that represent code ownership, feature containment, team organization, deployment
entities [Abreu and Goulao, 2001]. Packages provide or require services and they can
play different roles, some central to the system, others peripheral [Ducasse et al., 2007]:
some packages act as reference hubs, others as authorities. Packages have different
usage patterns, often depending on the clients that use them [Abdeen et al., 2008].

9

Chapter 1. Introduction

These multiple facets of packages do not ease the understanding and the maintenance
of inter-package relationships nor even quick identification of a package clients or
providers.

Although languages such as Java make dependencies between packages explicit
(i.e., via the import statement), maintainers lack tool support to understand the
concrete organization and structure of packages within their context.

Many approaches, mainly based on visualization techniques [Healey, 1992; Healey
et al., 1995; Tufte, 1997; Ware, 2000], have flourished to facilitate the construction of a
mental picture of the software structure [Dong and Godfrey, 2007; Ducasse et al., 2005b;
Langelier et al., 2005; Lanza, 2003; Laval et al., 2009; Lungu et al., 2006; Sangal et al., 2005;
Storey et al., 1997; Wettel and Lanza, 2007a,b; Wysseier, 2005]; to show how properties
are spread in a population of packages [Ducasse et al., 2006a,b]; to identify software
bugs and to understand software evolution [D’Ambros and Lanza, 2006a,b,c, 2007;
D’Ambros et al., 2006; Lanza, 2001]. Other approaches have also used metrics to assess
software design quality [Lanza and Ducasse, 2002; Laval et al., 2008; Martin, 2002a;
Pinzger et al., 2005; Ponisio and Nierstrasz, 2006; Ponisio, 2006]; to assess the effort of
maintaining package structure [Hautus, 2002].
Few of these approaches are for addressing the problem of package understanding
[Ducasse et al., 2005b; Laval et al., 2009; Lungu et al., 2006; Martin, 2002a; Ponisio and
Nierstrasz, 2006; Ponisio, 2006].
These approaches, while valuable, fall short of providing a fine-grained view of
packages that would help maintainers understand the re-modularization efforts: (1)
understanding package structure and size; (2) understanding package interrelation-
ships; (3) identifying misplaced classes and structural anomalies; (4) identifying the
functionalities that a package provides and/or requires; (5) identifying package roles
within a system, etc.
In that respect, we reveal the following question that we want to address in this
dissertation:

Research Question:

What do the maintainers need to better understand package structure, and
to better identify structural anomalies?

1.2.2 The Problem of Modularization Optimization

Another problem that maintainers face when maintaining packages and looking
for a good software modularization is that, often, there is no ideal modularization.
The organization of software classes is usually based on a variety of (sometimes
conflicting) criteria. Mitchell’s studies show that software modularization is a graph
partitioning problem [Mitchell, 2002; Mitchell and Mancoridis, 2008; Mitchell et al., 2004],
which is known to be a NP-hard problem [Farrugia, 2004]. As a consequence, searching
for good modularization using deterministic procedures or exhaustive exploration
of the search space is not feasible without additional heuristics [Chapman et al., 2001;
Mitchell and Mancoridis, 2008]. This is also the case of optimizing package structure in
large and complex object-oriented software systems because of the following reasons:

10

1.2. Problem: Software Re-Modularization Challenges

1. Large software systems contain thousands of heavily inter-dependent classes.
Many of the dependencies are between classes belonging to different packages,
which increases package coupling and, as a consequence, negatively impacts
the propagation of package changes.

2. Optimizing some modularization criteria may degrade others. For example,
increasing package cohesion by putting a very large number of classes in one
package effectively degrades the modularization quality: a software modular-
ization that consists of one package has no usefulness in software understanding
and maintenance.

3. In large software systems, classes are usually not well distributed over packages
and most software packages depend on some packages that contain a large set
of software classes.

4. Furthermore, it is difficult to determine an ideal number of classes that a pack-
age may entail, since that number may depend on external factors such as the
team structure, domain or coding practice.

Over the last fifteen years of research effort, many approaches have been proposed
for automatically re-modularizing software systems. They are mainly based on
clustering [Abreu and Goulao, 2001; Anquetil and Lethbridge, 1999; Bauer and Trifu,
2004; Lung et al., 2006; Mancoridis and Mitchell, 1998; Mancoridis et al., 1999; Mitchell,
2002; Mitchell et al., 2004; Serban and l. G. Czibula, 2007; Tzerpo and Holt, 1997] and
evolutionary or search-based algorithms [Doval et al., 1999; Harman and Hierons, 2002;
Harman and Tratt, 2007; Liu et al., 2001; Lutz, 2001; Maini et al., 1994; Mitchell and
Mancoridis, 2006, 2008; Mitchell et al., 2004; Seng et al., 2005]. These approaches, while
valuable, are not really satisfactory. We think that the main reasons behind their
failure to satisfy maintainers are:

1. Those approaches do not take into account the original class organization and
package structure. As a consequence, they often produce new modularizations
that are completely different for the original ones. In such a case, it can be
difficult for a software engineer to understand the resulting structure and to
map it back to the situation he knows.

2. Another problem is that most of these approaches have as unique goal to
maximize dependencies among classes belonging to the same package. As a
consequence, they produce modularizations that satisfy this goal regardless
other criteria for the concerned software modularization.

In that respect, we reveal the following question that we want address in this
dissertation:

Research Question:

What do maintainers need to better search for alternative modulariza-
tions that optimize inter-package coupling and satisfy distinct criteria?

11

Chapter 1. Introduction

1.3 Our Claim

The research questions, raised above, led to our claim:

Thesis: To maintain a large and complex software modularization, we need
visualizations that help to understand, the package structure, as well as the
structural anomalies. We also need an adapted approach that automatically
proposes alternative modularizations that optimize inter-package coupling.

Understanding package structure. To maintain a large and complex software modu-
larization, maintainers need visualizations that help in understanding the static
structure of packages. Since often there is no ideal modularization, but there
is a variety of good alternative modularizations, based on a variety of criteria,
the visualizations are important to assess the re-modularization results. Such
visualizations should help maintainers: (1) understand the relationships among
classes that are packaged together or belonging to different packages; (2) spot
package use/usage patterns; (3) identify package roles within the concerned
system; (4) identify misplaced classes and structural anomalies; (5) identify the
functionalities/services that a package provides and/or requires, etc.

Optimizing software modularization. The maintenance of a large and complex soft-
ware modularization needs an approach that automatically proposes alternative
modularizations. Such an approach should: (1) optimize the modularization
quality, i.e., reduce package coupling and cycles and optimize package cohesion;
(2) search good alternative modularization by doing near minimal modification
in the original organization of classes/packages; (3) take into account main-
tainer constraints. The maintainer constraints may concern: the classes that
should or should not change their packages; the packages that should not be
changed; the maximal modification that the optimization process may do in the
concerned modularization.

Assessing software modularization quality. To automatically search for alternative
modularizations we need metrics that compute the quality of the modulariza-
tion, from different perspectives: e.g., (1) inter-package coupling; (2) package
cycles; (3) package cohesion. We also need metrics that compute the quality of
a single package within the concerned modularization. Such metrics are impor-
tant to: (1) compute package design quality; (2) compute the impact of changes
within the modularization; (3) automatically identify candidate packages for
restructuring.

1.4 Contributions

In this dissertation we propose two visualizations, named Package Blueprint and
Package Fingerprint , that help in understanding package features in fine and coarse
grained level. To address the problem of assessing software modularization quality,
we also propose a suite of metrics that compute the quality of software modulariza-
tion. In addition, we propose a methodology, using our metrics, to automatically

12

1.5. Structure of the Dissertation

optimize package structure. All our tools (visualizations, metrics and the optimization
algorithm) are implemented over the Moose2 open-source reengineering environment
[Ducasse et al., 2005a], using the programming platform VW Smalltalk. Since Moose
software models are based on the FAMIX independent-language meta-model [Demeyer
et al., 2001], our tools work for mainstream object oriented programming languages.

We summarize the main contribution of this thesis as follows:

1. Package Blueprint [Ducasse et al., 2009, 2007]: a compact visualization reveal-
ing, in detail, package structure and dependencies. A package blueprint is
structured around the concept of a surface, which represents and details the de-
pendencies between the observed package and its provider and client packages.
Package Blueprint reveals the overall size and complexity of a package, as well
as its relations with other packages: it shows the distribution of dependencies
to classes within and outside the observed package.

2. Package Fingerprint [Abdeen et al., 2008, 2009a]: a compact, rich and zoomable
visualization to better support the understanding of package interfaces, relation-
ships and the co- usage/use of package classes (i.e., class conceptual coupling).
The goal of this visualization is to help maintainers during their early contacts
with unknown packages. We propose two complementary variants of the Pack-
age Fingerprint, structured around the distribution of use dependencies from
or to the classes of the analyzed package: (1) the incoming fingerprint shows
how the system uses the package classes, and highlights the cohesion of the
analyzed package, as defined by Ponisio [Ponisio and Nierstrasz, 2006]; (2) the
outgoing fingerprint shows how the package classes use the system.

3. Package-Modularization Metric Suite [Abdeen et al., 2009b]: we define a suite of
metrics, based on the principles of package design as described by Martin
[Martin, 2002a]: Common Closure Principle (CCP), Common Reuse Principle
(CRP) and Acyclic Dependencies Principle (ADP). The aim of those metrics is:
(1) to automatically assess the quality of a modularization; (2) to automatically
assess the quality of a package within a given modularization; (3) to identify
candidate packages for restructuring.

4. Automatically Reducing Package Coupling and Cycles [Abdeen et al., 2009b]: we
present an approach for automatically reducing package coupling and cycles
only by moving classes over packages. Our approach takes into account the
existing class organization and package structure. In our approach, maintainers
can define: (1) the maximal number of classes that can change their packages;
(2) the maximal number of classes that a package can contain; (3) the classes that
should not change their packages; (4) the packages that should not be changed.

1.5 Structure of the Dissertation

Chapter 2 analyses the problem of the maintenance of large and complex object
oriented software modularization. It also sets our terminology, and evaluates

2For more information about Moose see: http://moose.unibe.ch/

13

Chapter 1. Introduction

existing approaches that tried to solve a substantial body of the underlined
problem. The result of the survey is summarized in a list of requirements for the
maintenance of a large and complex software modularization: (1) understand-
ing package structure; (2) understanding package roles and usage; (3) assessing
the quality of a software modularization and packages; (4) automatically opti-
mizing existing software modularization, with respect to distinct principles of
package design quality.

Chapter 3 proposes a compact visualization, named Package Blueprint. The proposal
is to explicitly show the distribution of dependencies to classes within and
outside the observed package. The aim of the Package Blueprint is to help
maintainers in understanding the overall size and complexity of a package,
as well as its relations with other packages/classes. The Package Blueprint
visualization is structured around the concept of a surface. A surface represents
and details the dependencies between the observed package and its provider
and client packages. In this chapter: (1) we describe and show the utility of the
Package Blueprint visualization to analyze a package and its relationships; (2)
we identify a set of visual patterns that help to quickly spot the package shape
and the class organization.

Chapter 4 proposes a compact, rich and zoomable visualization, named Package Fin-
gerprint. The proposal is to help maintainers, during their early contacts with
unknown packages, in understanding package interfaces and the co- usage/use
of package classes (i.e., class conceptual coupling). We propose two complemen-
tary variants of the Package Fingerprint, structured around the distribution of
use dependencies from or to the classes of the analyzed package: (1) the incoming
fingerprint shows how the system uses the package classes, and highlights the
cohesion of the analyzed package, as defined by Ponisio [Ponisio and Nierstrasz,
2006]; (2) the outgoing fingerprint shows how the package classes use the system.
In this chapter, we describe and show the utility of the Package Fingerprint
visualization to analyze package coupling and cohesion (from the point of view
of its client and provider packages).

Chapter 5 proposes a suite of metrics for automatically assessing package and modu-
larization quality. In this chapter, we also present an approach for automatically
optimizing package structure: reducing package cycles and coupling. The
optimization approach explicitly takes into account the original organization of
classes, and allows maintainers to control the optimization process by defining
constraints on possible alternative modularizations.

In Chapter 6 (p. 123) we summarize how our proposals satisfy the requirements
identified in Chapter 2 (p. 15) (2.8), for the maintenance of large and complex software
modularizations. The chapter ends with an outlook on the opened future work.

14

Chapter 2
Software Re-Modularisation:
Challenges and Approaches

2.1 Introduction

"Complexity arises, then, when we have a large system and when the
system divides into a number of components that interact with each other
in ways that amount to something more than uniform, frequent elastic
collisions. Callebaut and Rasskin-Gutman 2005"

Although packages, as pointed-out in Chapter 1 (p. 7), are important to cope with
the complexity of large and complex software, it is frequent to have large object-
oriented software systems structured over large number of heavily inter-dependent
packages, where the rational behind packages is broken. We mean that, the modular-
ization of such software systems does not respect the information-hiding criterion for
decomposing software classes into packages [Parnas, 1972], where packages should
keep as less coupling and as much cohesion as possible [Briand et al., 1999a; Martin,
2002a; Ponisio and Nierstrasz, 2006].

However, even if software systems were originally well modularized, Griswold et
al. [Griswold and Notkin, 1993] and Eick et al. [Eick et al., 2001] show that, as software
systems evolve, to meet requirements and environment changes, their modularization
drifts and loose quality and the software systems inevitably become more complex;
as a consequence, the software system modularization must be maintained and
optimized.

On the other hand, Denker and Ducasse, during their experience while being re-
sponsible of the release of Squeak, a large open-source Smalltalk [Denker and Ducasse,
2007], and Abreu et al. in their work on software re-modularization [Abreu and Goulao,
2001], both point out that packages are important, but understanding and optimizing
package structure present hard challenges. They underline the fact that, (1) packages play
different development roles: e.g., code ownership, feature containment, team orga-
nization, deployment entities; (2) packages have also different usage patterns: e.g.,
packages act as reference hubs, others as authorities [Abdeen et al., 2008; Ducasse et al.,
2007]. In addition, optimizing a criterion of package structure may decrease another

15

Chapter 2. Software Re-Modularisation: Challenges and Approaches

criterion: e.g., maximizing package cohesion may break the system deployment by
introducing package cycles. Also, since packages are inter-dependent, optimizing the
structure of a given package may degrade the structure quality of another one: e.g.,
optimizing the cohesion of a package p1 by moving a class c from another package p2

to p1 may degrade the cohesion/coupling of p2.
Mitchell et al. consider that software re-modularization problem is a graph parti-

tioning problem [Mitchell and Mancoridis, 2008; Mitchell et al., 2004], which is known
to be a NP-hard problem [Chapman et al., 2001; Farrugia, 2004]. As a consequence,
searching for good modularization by using deterministic procedures or exhaustive
exploration of the search space is not feasible without additional heuristics [Chapman
et al., 2001; Mitchell and Mancoridis, 2008; Mitchell et al., 2004].

In this chapter we define our terminology and explain the software remodulariza-
tion problem. We then detail and discuss the most relevant existing approaches that
have been proposed to address this problem.

2.2 Background and Terminology

In this section, we introduce the terminology used in this thesis.

p1

c1

c2c3

c4

p2

c7c5

c6

 p3

c8

c9

Legend

internal
dependency

external
dependency

inter-package
connection

p1

c1

c2c3

c4

p2

c5

c6

p3

c8

c9

c7

Modularization1 Modularization2
moving c7

from p2 to p3

Figure 2.1: Example of two modularizations: different decompositions of the set of
classes {c1..c9} into 3 packages {p1,p2,p3}.

Modularization. LetC be the set of classes of a given object-oriented software system.
We define, then, the software modularizationM as a decomposition of C into a
set of packages P . In such a context, C represents the modularization classes
(denotedMC) and P represents the modularization packages (denotedMP).

16

2.2. Background and Terminology

Figure 2.1 (p. 16) shows two modularizations, both consists of 9 classes (|MC | =
9) distributed over 3 packages (|MP | = 3).

Package. We define Package as an entity that only contains classes. We denote the set
of classes that a given package p contains by pC . We denote the package of a
given class c by cp. We define package size (denoted psize) by the cardinality of
the set of its classes: e.g., in Figure 2.1 (p. 16), the size of p1 is equal to 4.

Inter-class dependencies. Every class c can be related to other classes through a
set of Dependencies (denoted cD). This set consists of two subsets: Outgoing
dependencies (denoted cOut.D) and Incoming dependencies (denoted cInc.D). We
denote a dependency d that goes from a class ci to another one cj by the pair
(ci,cj). In that context, we say that the c incoming dependencies relate c to its
client classes (denoted cCli.C); and the c outgoing dependencies relate c to its
provider classes (denoted cPro.C).

Examples. In Modularization1 (Figure 2.1 (p. 16)), the class c6 has 4 dependencies:
c6D = {(c7,c6) , (c6,c5) , (c3,c6) , (c6,c9)}. Two dependencies are incoming depen-
dencies: c6Inc.D = {(c7,c6) , (c3,c6)}; and two are outgoing dependency: c6Out.D

= {(c6,c9) , (c6,c5)}. As well, c6 has two client classes: c6Cli.C
= {c7 , c3}; and two

provider classes: c6Pro.C = {c9 , c5}.

Dependency kinds. Of all the kinds of dependencies that we can find in object-
oriented code we concentrate on the following kinds of dependencies: method
call, class access, class inheritance, or class extension. We describe these kinds as
follows:

1. method call: we say that there is a method call dependency that goes from
a given class class1 to another one class2 if there is at least one method
within class1 that invokes at least one method of class2.
Note that, in dynamic typed languages (e.g., Smalltalk), we often can
not statically determine the class of the invoked method (i.e., the class
of the target object in the run-time). Our strategy consists in creating
dependencies for every potential candidate class (i.e., every class within it
there is a method that has the invoked method signature).

2. class access: we say that there is a class access dependency that goes from
a class class1 to another one class2 if class2 (i.e., the name of class2) is
explicitly used in class1 code: e.g., class2 is used within class1 as a type
of an instance and/or a class variable; class2 is used within a method of
class1 as a variable/parameter type).

3. class inheritance: we say that there is a class inheritance dependency that
exits a class class1 and points to class2 if class1 is a subclass of class2.

4. class extension: a class extension is a method defined in a package, for
which the class is defined in a different package [Bergel et al., 2005]. Class
extensions exist in Smalltalk, CLOS, Ruby, Python, Objective-C and C#3.
They offer a convenient way to incrementally modify existing classes when
subclassing is inappropriate.

17

Chapter 2. Software Re-Modularisation: Challenges and Approaches

We say that there is a class extension dependency that goes from a package
pi to a class c, which is defined in another package pj , if a method m of the
c methods is defined in pi.

In the context of this thesis , we use Reference as a dependency kind to cover
the kinds method call and class access. As well, we say that a given class class1
refers to another class class2 if there is a method call or class access dependency
that goes from class1 to class2. In the same vein, we say that class2 is referenced
by class1.

Dependency scope. Every dependency is internal if it is related to two classes be-
longing to the same package. Otherwise, it is external.

Examples. In Modularization1 (Figure 2.1 (p. 16)) the dependency (c7,c6) is internal,
while the dependencies (c7,c1) and (c7,c2) are external.

For a given class c, we denote the set of c internal dependencies by cInt.D; and
denote the set of c external dependencies by cExt.D.

Package dependencies. The set of dependencies related to a package p (pD) is the
union of the dependency sets of p classes: pD = ∪c∈pC cD. In this context,
the union of the internal dependency sets of p classes represents p internal
dependencies (pInt.D): pInt.D = ∪c∈pC cInt.D; and the union of the external
dependency sets of p classes represents p external dependencies (pExt.D): pExt.D
= ∪c∈pC cExt.D.

The set pExt.D consists of two subsets: dependencies that are either exiting p
(pExt.Out.D) or that are pointing to p (pExt.Inc.D). The set pExt.Out.D relates p
to its provider packages, pPro.P ; while the set pExt.Inc.D relates p to its client
packages, pCli.P .

Examples. Modularization1 in Figure 2.1 (p. 16) shows that there is one dependency
exiting p1 and three dependencies pointing to p1: p1Ext.Out.D = {(c3,c6)}; p1Ext.Inc.D

= {(c7,c1) , (c7,c2) , (c8,c2)}. It also shows that p1 has one provider package and
two client packages: p1Pro.P = {p2}; p1Cli.P

= {p2 , p3}.

In the context of this thesis , when we say that a package pi depends on a class
cj , or cj is imported by pi, we mean that classes contained in pi depend on cj :
e.g., in Figure 2.1 (p. 16), Modularization1 shows that p3 depends on c2 and c2 is
imported by p3 and p2; while Modularization2 shows that p3 depends on c1, c2
and c6, where this last, c6, depends on p3.
In the same vein, we say that the p3 provider classes (p3Pro.C) are c1, c2 and c6,
where p3 is also a provider package for c6.

Package interfaces. In the context of a given package, we mean by Package Interfaces
the set of the package classes that are visible to the rest of the system: i.e.,
the package classes that communicate with the rest of the system via external
incoming and/or outgoing dependencies. In that respect, we define package
In-Interface and Out-Interface by the following:

Definition 3 (In-Interface) The In-Interface of a package p is the set of classes of p
that have external incoming dependencies.

18

2.2. Background and Terminology

pIn−Interface = {c | c ∈ pC Λ cExt.Inc.D 6= ∅}

Definition 4 (Out-Interface) The Out-Interface of a package p is the set of classes of
p that have external outgoing dependencies.

pOut−Interface = {c | c ∈ pC Λ cExt.Out.D 6= ∅}

As well, when we talk about reference dependencies, we then talk about package
reference interfaces. Also, we mean by In-Interface (Out-Interface) size, the
number of classes that are involved in that In-Interface (Out-Interface).

Connectivity in package level. As mentioned by Martin [Martin, 2000], importing
a class implies importing the complete package. Therefore importing two
classes from the same package is quite different from importing them from two
different packages –since in the latter case we import all the classes of the two
packages.

To determine connectivity at the package level (i.e., package interactions), we
say that there is a Connection that exiting a package pi and points to another one
pj if there is n (n > 0) dependencies of the set piExt.Out.D pointing to pj . In other
words, if pi is a client package of pj then there is a connection from pi to pj . We
denote such a connection by the pair (pi,pj). In this context, two packages, pi
and pj , can have at maximum two connections among them: (pi,pj) and (pj ,pi).

We denote the set of connections related to a package p by pCon. This set consists
of two subsets: connections that are either exiting p, Outgoing connections,
(pOut.Con) or that are pointing to p, Incoming connections, (pInc.Con).

Examples. Modularization1 in Figure 2.1 (p. 16) shows that there is one connection
exiting p1: p1Out.Con = {(p1,p2)}; and there are two connections pointing to p1:
p1Inc.Con = {(p2,p1) , (p3,p1)}; Modularization2 shows that the connection (p2,p1)
does not exist any more.

p1 p2 p3

cyclic1

cyclic2

cyclic4

cyclic3

[(c3,c6)]

[(c7,c1) , (c7,c2)]

[(c6,c9)]

[(c8,c2)]

Figure 2.2: Explanation of Package Cycles within Modularization1 (Figure 2.1 (p. 16)).

Package cycles. Dependencies can form cyclic connections between packages. Fig-
ure 2.2 (p. 19) shows the connection graph of p1, p2 and p3 within Modularization1

(Figure 2.1 (p. 16)). We note that within this graph, all the connections represent
cyclic-connections. We distinguish two categories of cyclic connections:

19

Chapter 2. Software Re-Modularisation: Challenges and Approaches

• Indirect cyclic-connections: the connections (p1,p2), (p2,p3) and (p3,p1) rep-
resent indirect cyclic connections between p1 and p3 –since p1 depends,
indirectly (via p2), on p3 and p3 depends on p1.

• Direct cyclic-connections: the connections (p1,p2), (p2,p1) represent direct
cyclic connections between p1 and p2 –since p1 and p2, both depend, directly,
on each other.

In that context, we say that a dependency d represent a cyclic dependency between
two packages packagei and packagej if d takes a part of a cyclic connection
between packagei and packagej .

Example 1, in Modularization1 (Figure 2.2 (p. 19)), since the connection (p1,p2)
represents an indirect cyclic connection between p1 and p3, thus all the depen-
dencies that exiting p1 and pointing to p2, which are {(c3,c6)}, represent indirect
cyclic dependencies between p1 and p3; similarly, we find that the dependencies
(c6,c9) and (c8,c2) represent indirect cyclic dependencies between p1 and p3.

Example 2, in Modularization1 (Figure 2.2 (p. 19)), since the connection (p2,p1) is
a direct cyclic connection between p2 and p1, thus all the dependencies that
exiting p2 and pointing to p1, which are {(c7,c1) , (c7,c2)}, represent direct cyclic
dependencies between p2 and p1; similarly, we find that the dependency (c3,c6)
is also a direct cyclic dependency between p2 and p1.

In the context of this thesis , when we say cyclic connection/dependency we
mean that it is a direct cyclic connection/dependency.

We denote the set of cyclic dependencies related to a package p by pCyc.D. The
set pCyc.D consists also of two subsets: cyclic-dependencies that are either exit-
ing p (pOut.Cyc.D) or pointing to p (pInc.Cyc.D).
Note that, pOut.Cyc.D and pInc.Cyc.D are dependencies causing cycles between
packages (and not classes) in the context of the client-provider relation.
Similarly, we denote the set of cyclic connections related to p by pCyc.Con:
pCyc.Con = pOut.Cyc.Con ∪ pInc.Cyc.Con.

Example, Modularization1 in Figure 2.1 (p. 16) shows that p1 has one outgoing
cyclic-dependency {(c3,c6)} and two incoming cyclic-dependencies {(c7,c1) ,
(c7,c2)}. Those cyclic-dependencies produce two cyclic-connections: p1Cyc.Con =
p2Cyc.Con = {(p1,p2) , (p2,p1)}.

Subsystem definition. We mainly define Subsystem as a collection of packages. To
cover the nesting notation, a subsystem can also contains other subsystems, but,
unlike the case of Java Packaging notation [Flanagan, 1999], a subsystem does not
contain classes: classes are defined only within packages.

For example, Figure 2.3 (p. 21) shows that the subsystem subsystem1 contains
two packages (pkg1 and pkg2) and one subsystem (subsystem2). It shows that
the subsystem subsystem2 contains also two packages (pkg3 and pkg4).

In the context of this thesis , when we talk about subsystem packages, we then
talk about all the packages that are in the scope of that subsystem: e.g., in
Figure 2.3 (p. 21), the packages of subsystem1 are pkg1, pkg2, pkg3 and pkg4.

20

2.3. Package Understanding

subsystem1

pkg2

subsystem2

pkg4

pkg1

cl1

cl2
pkg3

cl3
cl4

Figure 2.3: An Example of Subsystem Notation: the subsystem subsystem1 contains
two packages (pkg1 and pkg2) and one subsystem (subsystem2).

Similarly, when we talk about subsystem classes, we then talk about all the
classes of its packages.
By convention, to print nested package (subsystem) name we use the symbol (::)
for representing the nesting path: e.g., in Figure 2.3 (p. 21), the complete name of
pkg4 is subsystem1::subsystem2::pkg4.

In the next section we illustrate the challenges of understanding packages.

2.3 Package Understanding

Actually, packages reflect several organizations: they are units of code deployment
or units of code ownership; they can also encode team structure, architecture and
stratification. A package can interact with other ones in several ways: either as a
provider, or as a consumer or both. In addition some packages may have either a
lot of references to other packages or only a couple of them. If a package defines
subclasses, those can form either a flat or deep subclass hierarchy. A package may
define domain abstraction (i.e., containing the top super classes, abstract classes, of
the concerned domain), or domain implementer (i.e., containing classes that inherit
and specialize domain definer classes), All those multiple facets of packages led
us to say that understanding and maintaining packages represent crucial and hard
challenges.

Note that, understanding packages is also important in the context of automatic re-
modularization approaches, e.g., [Anquetil and Lethbridge, 1999; Mancoridis et al., 1999;
Mitchell and Mancoridis, 2006; Wiggerts, 1997]. There it is important to understand
how the proposed remodularisation compares with the existing code (i.e., the original

21

Chapter 2. Software Re-Modularisation: Challenges and Approaches

A1

B1

C1

D1

A2

B2

E2

C2

D2

p1

p2

(a)

A1

B1

C1

D1

A2

B2

E2

C2

D2

p1

p2

(b)

A1

B1

C1

D1

A2

B2

E2

C2

D2

p1 p3 p4

p2

(c)

A1

B1

C1

D1

A2

B2

E2

C2

D2

p1

p2

p3

(d)

Figure 2.4: Different package configurations over the same number of classes.

modularization). This problem is particularly stressed in presence of large legacy
software systems that consist of thousands of classes and hundreds of packages.

Figure 2.4 (p. 22) shows different situations involving the same group of classes.
For illustrating purpose, Figure 2.4 (p. 22) only shows inter-class references; the same
idea holds for inheritance between classes contained in different packages. In both
cases Figure 2.4(a) (p. 22) and Figure 2.4(b) (p. 22), there are only two packages but in
case Figure 2.4(a) (p. 22) most of the classes of p2 reference a class in p1, while in case
Figure 2.4(b) (p. 22) most classes of p2 reference internally the class B2. Revealing this
difference is important to the maintainer who wants to understand if s/he can change
the relationships between p1 and p2 during a refactoring process. In cases Figure 2.4(a)
(p. 22) and Figure 2.4(c) (p. 22), we have exactly the same relationships between
classes but the package structure is different. As mentioned by Martin, [Martin,
2000, 2002a], importing a class equals importing the complete package, therefore
importing two classes from the same package is quite different from importing them
from two different packages since in the latter case we import all the classes of the
two packages and we increase the number of inter-connected packages within the
concerned modularization.

Although languages such as Java offer a mechanism for modelling the depen-
dencies between packages (i.e., via the import statement), this mechanism does not
really help to understand the structure of a given package: e.g., package internal and
external dependencies; package interfaces; etc.

On the other hand, up to now, there are few works that illustrate and tackle the
problem of understanding package structure and relationships. Unfortunately, all
what we can find about package design in the literature is that good packages should
be self-contained, or only have a few clear dependencies to other packages [Arisholm
et al., 2004; Briand et al., 1999a; Lanza and Marinescu, 2006]. In addition to that, Martin
[Martin, 2000, 2002a], has recently provided and generally discussed other package
design principles related to package abstraction, stability and cyclic dependencies
(connections).

In the following subsections, we present a coarse list of useful pieces of informa-
tion that maintainer may need to understand packages. Our goal here is to identify
the challenges that maintainers are facing and not to define an exhaustive list of the
problems that a particular solution should tackle.

22

2.3. Package Understanding

2.3.1 Quantitive Information

To understand the packages of a system and their relevance in the general picture,
gathering quantitative information is a good way to offer a mental picture to the
maintainers [Lanza and Ducasse, 2003; Petre, 1995]. Here is a list of relevant questions:

• What is the general size of a package in terms of classes?

• How many internal dependencies that a given package has?

• How many external dependencies that a given package has?

• What is the density of the internal dependencies of a given class?

• What is the density of the external dependencies of a given class?

• How many packages depend upon a given package (client packages)?

• How many packages does a given package depend upon (provider packages)?

• How many classes, of a given package, are visible to the rest of the system
(package interfaces)?

These quantitive information are usually used to assess package design quality.
The next section explains the principles of package design.

2.3.2 Qualitative Information (cohesion vs. coupling)

Transforming or evolving an application follows natural boundaries defined by
coupling and cohesion [Arisholm et al., 2004; Briand et al., 1999a]. The question is then
to see the impact (if any) of the transformation on package cohesion and coupling.
Assessing these properties is then important.

In that respect, Martin, [Martin, 2000, 2002a], introduced some principles for
the design of software architecture and package, addressing by those principles the
different perspectives of package cohesion and coupling. The package cohesion
principles are:

Reuse-Release Equivalence Principle (REP). The granule of reuse is the granule of re-
lease.
Since packages are the unit of release, they are also the unit of reuse. Therefore a
good package should only contain a group of classes that are reusable together.

Common-Closure Principle (CCP). The classes in a package should be closed together
against the same kinds of changes.
To minimize the number of packages that are changed in any given release
cycle, it is better to group classes that change together into the same package.

Common-Reuse Principle (CRP). If you reuse one of the classes in a package, you reuse
them all.
Since a dependency upon a package is a dependency upon everything within
the package, classes that are reused together should be grouped together. This

23

Chapter 2. Software Re-Modularisation: Challenges and Approaches

way, in any given release, changing any class within a considered package will
have the same impact-propagation if maintainers change another class within
the same package. Thus the impact-propagation of the package changes is
always constrained to one graph.

Coupling is always used with cohesion to determine package quality and it is
generally defined as: if changing one package in a program requires changing another
package, then coupling between these two packages exists [Briand et al., 1998; Fowler, 2001].
Martin defines two types of coupling: Efferent Coupling and Afferent Coupling [Martin,
2000, 2002a].

Definition 5 (Efferent Coupling) A package px has an efferent coupling to another pack-
age py if px depends upon py.

Definition 6 (Afferent Coupling) A package py has an afferent coupling to another pack-
age px if px depends upon py.

In addition to the package cohesion principles cited above, Martin’s package
coupling principles are:

Acyclic-Dependencies Principle (ADP). Allow no cycles in the package dependency
graph.
To achieve the package quality which is desired by the package cohesion princi-
ples, especially the CRP and CCP, the dependencies between packages must
not form cycles.

Stable-Dependencies Principle (SDP). Depend in the direction of stability.
A package’s stability is related to the amount of work required to make a change
on it, it is thus related, in addition to the package internal size and complexity,
to the number of other packages which depend on it.

This way, a package with lots of incoming dependencies from other packages
is stable —since it is seen as responsible to those packages. In another hand, a
package that has not any incoming dependency is considered as independent
and very unstable.

Stable-Abstractions Principle (SAP). A package should be as abstract as it is stable.
It is clear that the more packages are hard to change, the less flexible the overall
design will be. Thus, to improve the flexibility of systems, architects should
compose those systems from unstable packages that are easy to change, and
stable packages that are easy to extend. In this context, the stable packages
should be highly abstract.

Cohesion and coupling metrics are among the most used metrics during perfective
maintenance, because they help identify which packages should be restructured
[Abreu and Goulao, 2001; Arisholm et al., 2004; Briand et al., 1999a; Lanza and Marinescu,
2006; Melton and Tempero, 2007; Rising and Calliss, 1992]. In general, good packages
should group classes that are needed for the same task [Ponisio and Nierstrasz, 2006],
and they should have a few clear dependencies to other packages: they should

24

2.3. Package Understanding

be highly cohesive and lightly coupled. However, cohesion and coupling metrics
alone do not help maintainers understand the structure, roles, or relationships of
packages. In particular, they do not indicate whether, why and how a package respects
Martin’s cohesion and coupling principles, nor do they help decide what to do if such
principles are not respected.

For this, maintainers need more detailed information. For example, it is important
to know if some classes in a package are always used together or not, and conversely the
proportion of package classes that uses the same set of classes/packages. Knowing
about the usage relations between a package and its clients and providers offers
another perspective on package cohesion, since that gives the maintainer information
on the package role and cohesion according to Common Reuse Principle [Ponisio and
Nierstrasz, 2006].

In addition to the qualitative information, maintainers need also to determine
package roles in the context of a given software system. The next section reveals the
information that maintainers need to determine package roles.

2.3.3 Role and Contextual Information (central vs. peripheral)

To determine package role within the system, two correlated pieces of information
are important:

1. does a package belong to the core of an application or is it more peripheral?

2. does a package provide or use functionality?

Answering these questions is mainly based on the package quantitive information,
in addition to the package relationships with the rest of the system. To answer the
first question (1), we usually need answers for the following questions:

• How many packages use the concerned package?

• Those client packages depend upon how many classes within the concerned
package?

• Do those client packages belong to one subsystem? or is its usage dispersed
over multiple subsystems and how many ones?

On the other hand, to answer the second question (2), we need also the answers
for the questions cited above but from both points of view: package outgoing and
incoming dependencies, and connections. In other words, we need measuring the
portion between: the package clients (client classes, packages and subsystems) and
the package providers (provider classes, packages and subsystems); the package
In-Interface size and Out-Interface size.

However, packages are not simply class containers and structural entities. Pack-
ages represent also team organization, and maintainers need to understand package
organizational information.

25

Chapter 2. Software Re-Modularisation: Challenges and Approaches

2.3.4 Organizational Information (developers vs. team)

Knowing who are the developers and maintainers of the application and packages
helps to: (1) understand the architecture of the application; (2) qualify package roles;
and, (3) know who among maintainers and developers should communicate during
the maintenance tasks [Gîrba et al., 2005; Pollet et al., 2007]. In that respect, Ducasse
provided a generic visualization, named Distribution Map [Ducasse et al., 2006a]. The
Distribution Map visualization is useful to show how properties are distributed over
design elements: e.g., how maintainers and developers are distributed over software
classes and packages.

2.4 Challenges in Optimizing Modularization

In addition to the challenges of understanding packages and their interrelationships,
the maintenance of software modularizations raises other challenges.

It is actually frequent to have large legacy object-oriented software systems that
entail some thousands of heavily inter-dependent classes, distributed over some hun-
dreds packages. In these systems, almost inter-class dependencies are among classes
belonging to different packages. In such cases, the rational idea behind software
modularization is mostly broken: package interfaces are not even clean, abstraction
advantages (i.e., minimizing the coupling between packages and maximizing pack-
ages internal cohesion) are not even present. Therefore, software modularization
must be optimized.

In the following subsections, we present a coarse list of problems that maintainers
face when maintaining the modularization of large legacy object-oriented software
systems:

2.4.1 Modularization Complexity

Large software systems are usually very complex, they contain thousands of heavily
inter-connected classes. Many of the dependencies are between classes belonging to
different packages, which increases the inter-package connectivity. In such situation,
the optimization problem is more difficult.

Figure 2.5 (p. 27) illustrates the problem of the maintenance of heavily inter-
connected packages. Figure 2.5 (p. 27) (b) shows that modifying the package p5, which
means modifying the subsystem subsystem2 in which p5 is nested, may directly
impact the packages p3 and p6 –since p3 and p6 depend directly on the modified
package p5. As a consequence, the packages p1, p2 and p7 may, in turn, be also
impacted –since these packages depend on the impacted package p3. Figure 2.5 (p.
27) (b) shows also that the impact propagation to p6 may be direct and indirect, since
p6 depend directly and also indirectly (via p7 and p3) on the modified package p5.

2.4.2 Class Distribution over Packages

In real software systems, classes usually are not well distributed over packages: some
packages contain few number of classes while others contain large sets of classes. As

26

2.4. Challenges in Optimizing Modularization

p4 p5

subsystem2

p1 p2

p3

subsystem1

p6 p7

subsystem3

p1 p2

p3

subsystem1

p4 p5

subsystem2

p6 p7

subsystem3

Modifying p5

(a)
Example of modularization that entails

7 packages organized over 3 subsystems.

(b)
The impact propagations of p5 modification.
points highlights direct propagations and
dashes highlights indirect propagations.

Figure 2.5: An example illustrating the propagations of package change impact.

consequence, most application packages depend on large packages (i.e., dominant
packages). In such cases, the reduction of coupling to dominant packages, should not
be done by increasing the size of those dominant packages: e.g., removing smaller
packages and moving their classes to dominant packages. In that respect, every
optimization process should take into account the modification of package size and
balances package size with package coupling and cohesion [Abreu and Goulao, 2001;
Harman and Tratt, 2007].

Furthermore, although researchers like Meyer suggest that the range of package
size is 5..40 [Meyer, 1989], we believe that it is difficult to determine an ideal package
size since it may depend on external factors such as the team structure, domain, or
coding practice, etc.

2.4.3 Package Optimization Trade-Offs

The multiple facets and roles of packages imply that the optimization process should
consider the trade-offs between the distinct features of package design, where optimiz-
ing some modularization criteria may degrade other ones. For example, minimizing
inter-packages dependencies/connections may increase the number of cyclic ones.

Figure 2.6 (p. 28) shows four modularizations that entail the same set of classes
{c1..c9}: the modularizations Modularization2, Modularization3 and Modularization4 are
resulting from simple modifications in Modularization1 (moving classes over existing
packages):

Example 1. The difference between Modularization1 and Modularization2 is c7 that
is moved from p2 to p3 in Modularization2. In Modularization2 there are 2 inter-package
cyclic dependencies {(c7,c6) , (c6,c9)} compared to 3 in Modularization1 {(c3,c6) , (c7,c1)

27

Chapter 2. Software Re-Modularisation: Challenges and Approaches

p1

c1

c2c3

c4

p2

c7c5

c6

 p3

c8

c9

p1

c1

c2c3

c4

p2

c5

c6

p3

c8

c9

c7

Modularization1 Modularization2

p1

c1

c2c3

c4

p2

c7

c5

c6

 p3

c8

c9

Modularization3 p1

c1

c2c3

c4

p2

c7c5

c6

c8

c9

Modularization4

(a)
A decomposition of the 9 classes [c1..c9]

into 3 packages [p1..p3]

(b)
The result modularization when moving

the class c7 to p3

(b)
The result modularization when moving

the class c7 to p1

(c)
The result modularization when moving
the class c9 to p2 and the class c8 to p1

Figure 2.6: An example illustrating distinct impacts when optimizing package struc-
ture.

, (c7,c2)}. Thus moving c7 has reduced the number of inter-package cyclic depen-
dencies. On the other hand, moving c7 has increased the number of inter-package
dependencies. In Modularization2, there are 6 inter-package dependencies compared
to 5 for Modularization1.

Example 2. The difference between Modularization1 and Modularization3 is c7 that
is moved from p2 to p1 in Modularization3. In Modularization3 there is no cyclic depen-
dency and there are 4 inter-package dependencies {(c7,c6) , (c3,c6) , (c6,c9) , (c8,c2)}
compared to 5 for Modularization1. Thus moving c7 to p1 has eliminated all inter-
package cyclic dependencies and reduced the number of inter-package dependencies.
On the other hand, moving c7 increases the size of p1, where it becomes more than 2
times bigger than p2 and p3.
Similarly, in Modularization4 c9 is moved from p3 to p2 and c8 is moved from p3 to
p1. In Modularization4 there are only 3 inter-package dependencies compared to 5
in Modularization1, but in Modularization4 there are only 2 packages (p1 and p2) com-
pared to 3 in Modularization1, i.e., p3 is empty in Modularization4, which may impact
the organization of developers/teams.

28

2.5. Existing Approaches to Understand Packages

2.5 Existing Approaches to Understand Packages

Since object-oriented languages do not really support all the information that is
important to understand packages; and since understanding packages is important
to understand the results of software re-modularization process, several approaches,
mainly based on visualization techniques and/or metrics, have been developed for
that respect. In this section we present the most relevant existing approaches to
understand packages and a software system modularization.

Understanding software system design and architecture

Already, in 1981, Steward et al. [Steward, 1981] have used the Dependency Structure
Matrix (DSM) technique to identify software component dependencies and manage
system design. Similarly, Sullivan et al. [Sullivan et al., 2001] used the DSM technique
to model software design. In Sullivan’s approach, the DSM of a given software
system represents the design space in terms of system design parameters, the design
parameter values and the dependencies among them; where they map a design
parameter as a choice to be made about some aspect (e.g., data structures, algorithms,
security aspect...) of the concerned design.

Originally the DSM technique has been developed for process optimization to
identify dependencies between tasks, but it is also used in the context of software
architecture analysis [MacCormack et al., 2006]. Recently, the DSM technique is used
to visualize and manage the static structure of software systems. Sangal et al. [Sangal
et al., 2005] used the DSM to provide the tool Lattix Inc’s Dependency Manager (LDM),
in which the inter-package dependencies are displayed using either binary values or
numbers presenting dependency strength. The positive side of the LDM tool is that:
(1) it shows well whether a given software system has a layered architecture or not,
and where are the dependencies that break the layering, if any; (2) it identifies and
spots the direct cyclic dependencies among packages. While the LDM limitations are
that: (1) it does not identify and show the cause of inter-package cyclic dependencies
–the classes and methods that cause those cyclic dependencies and the kind of those
dependencies; as a consequence it does not help maintainers to take decisions solving
package cycles; (2) it does not identify and show package classes, the number of
classes that have external dependencies, the spread of dependencies over classes,
package size, package internal dependencies...

To identify and show the cause of inter-package cyclic dependencies, Laval et al.
[Laval et al., 2009] proposed the enriched DSM (eDSM). In their proposal, they used the
principle of small multiples3 to show within the eDSM cells, where a cell represents
the intersection between two packages, additional contextual information such as: (1)
the dependency kind (e.g., class inheritance, reference); (2) the classes that are related
to cyclic dependencies. The main limitations of the eDSM are that: (1) the contextual
information shown within the eDSM cells is limited to cover package cycle causes,
which means that they do not include information about noncyclic dependencies, nor
about classes which do not cause package cycles; (2) another problem of the eDSM is
screen space limitation, where showing the contextual information within the cells

3The principle of small multiples is that once viewers decode and comprehend the design for one slice of
data, they have familiar access to data in all the other slices [Tufte, 1997].

29

Chapter 2. Software Re-Modularisation: Challenges and Approaches

requires, for all the eDSM cells (even cells that do not involve information), more
space size; in addition to the fact that DSM visualizations usually use a lot of useless
space when there are empty cells.

Exploring package relationships

Lungu et al. [Lungu et al., 2006] provide a visual approach to guide and augment
the exploration process of hierarchical package decomposition (i.e., nested packages)
with information about the worthiness of the various exploration paths. In their
approach, they propose a set of package patterns based on the package nesting and
on the number of package internal/external dependencies. Their patterns cover the
following relationship roles that a package can have: (1) silent package if the package
has not external dependencies; (2) consumer package if the package has outgoing
external dependencies; (3) provider package if the package has incoming external
dependencies; and (4) hybrid package if the package has outgoing and incoming
external dependencies. They then use those basic patterns to define patterns on
subsystems.

Storey et al. [Storey et al., 1997] offer a visualization technique with multiple
top-down views for exploring software system structure. Their technique presents
the software system structure as a nested graph consisting in composite nodes (e.g.,
packages or subsystems). The relationships among the composite nodes are presented
by arcs, where an arc may present any number of dependencies. The main limitation
of their proposed views is that they do not scale well with the number of packages
and package relationships. The views are hard to understand in cases of large and
complex software systems.

Lanza et al. [Lanza and Ducasse, 2003] offer the Polymetric views as a technique
to visualize summary about software entities, such as classes or packages, and the
connectivity among those entities. Their views are represented as graphs consisting in
rectangles and links connecting them. In their approach, the developer can associate
software entity attributes to the rectangle shape. For example, if the visualized entities
are packages, the developer can map the package size to the height of the rectangle
representing that package. However, those views are limited to show summary about
software entities.

Ducasse et al. [Ducasse et al., 2005b] present Butterfly, a radar-based visualization
that summarizes incoming and outcoming relationships for a package, but only gives
a high-level client/provider trend.

X. Dong et al. [Dong and Godfrey, 2007] present the High-level Object Dependency
Graph (HODG) that helps capturing, from a high-level point of view, possible usage
dependencies among coarse-grained software entities, namely packages. In their
approach, they interpret the usage dependencies between classes in the context of
their inheritance hierarchy and present a new graph of the system under analysis.
The given graph is helpful only for understanding the considered system from a
high-level point of view. Also, their graph visualization still difficult to be interpreted
by human eyes because within it, the visualized nodes have different sizes but the
node size does not map any information. The HODG has not visual semantics and it
uses numbers to visualize almost all information.

30

2.5. Existing Approaches to Understand Packages

Understanding class organization

Langelier et al. [Langelier et al., 2005] proposed a technique based on visualization for
quality analysis of object-oriented software systems. In their approach, the visualiza-
tion provides a graphic view of the relevant packages, where the visualization looks to
be a city observed from the sky: the classes represent the buildings and the packages
represent the layers under the buildings. Wettel et al. [Wettel and Lanza, 2007b] used
very similar aspects to visualize the hierarchy of package nesting, package classes
and class characteristics. These visualizations characterize packages by the classes
defined in them, for example, they show the number of classes defined within a
package, whether those classes are abstract or not, and the amount of methods that
are defined in each class. However, they do not visualize inter-package dependencies,
nor dependencies among classes.

Kuhn et al. [Kuhn et al., 2007, 2008] used information retrieval to exploit linguistic
information. They introduced semantic clustering to group source artifacts that use
similar vocabulary. They use vocabulary topics to reveal the intention of the code
and the similarity between its artifacts, then they provide a consistent visualization.
While the approach is valuable to identify similar classes (i.e., classes that use similar
vocabulary topics), it does not help visualizing and understanding dependencies
among classes and/or among packages.

Understanding package evolution

Pzinger et al. use Kiviat diagrams to present the evolution of package metrics [Pinzger
et al., 2005]. Kiviat diagram is a graphical method of displaying multivariate data in
the form of a two-dimensional chart of three or more quantitative variables. Figure 2.7 (p.
31) shows an example of the Kiviat diagram that displays the values of 6 metrics
M1,M2, ...,M6 for a given package ModuleA.

is plotted on its corresponding line. Dependencies between adja-
cent metrics are indicated by lines drawn between adjacent met-
ric values. Arranging metrics in a certain way results in recurring
diagram-patterns that indicate critical source code entities such as
god classes. With Kiviat diagrams users quickly can spot these in-
teresting entities.

m’1m’4

m’2 MAX

5
m’6

m’3

m’

M2

M4

M5 M6

M1

moduleA

M3

MIN

Figure 2: Basic Kiviat diagram with measures of 6 metrics
M1,M2,,M6 of moduleA.

The example depicted by Figure 2 demonstrates the usefulness
of Kiviat diagrams for visualizing metrics data. Certain require-
ments have to be met to prevent diagrams to become cluttered with
information: 1) normalization of metric values to a maximal draw-
ing length to prevent over-sized Kiviat diagrams; 2) using a minima
(i.e., an offset) that is added to computed values to prevent infor-
mation cluttering in the center of Kiviat diagrams. Computed met-
ric values are drawn with respect to these minimum and maximum
drawing range. We will see later on that the limitation in size is
necessary to link Kiviat diagrams to Kiviat graphs.

4.1 Visualizing n Releases

As stated in Section 3 the objective is to communicate the evolution
of metrics of source code entities and their relationships. Kiviat
diagrams as shown and described above are suitable to visualize i
metrics of an entity at a time but how can we visualize data of n
releases?

The two principles that allow RelVis to visualize data of several
releases are (1) normalizing metric values to the range determined
by the minimum and maximum of each metric and (2) using a met-
ric to encode the time-order of releases.

Reconsidering the evolution matrix RelVis computes the max-
ima of each metric for each source code entity type across the n
releases.

MAX(Mi) = max(m
′

i,m
′′

i , ...,m
n
i)

The minima of each metric can be considered 0. The effective draw-
ing length of each measure is computed by normalizing the value
by its maximum and adding an offset to it.

length(mn
i) = o f f set +

mn
i ∗ c

MAX(Mi)

The constant c specifies the maximum drawing size and together
with the o f f set constant is used to control the size of Kiviat di-
agrams. These constants can be configured by the user. The dif-
ferent values computed for a metric across n releases are plotted
in the diagram and adjacent measures of metrics of the same re-
lease are connected. The result is a diagram that per release shows
a polygon. Since values can also decrease from release to release,
the edges forming the polygons may overlap, obscuring informa-
tion. For instance, the information if a value of a metric increases
or decreases from release to release is not always clear.

RelVis handles this problem in two ways. One way is to encode
the time order of releases by using different colors per release for
drawing the lines of polygons. A second solution is to encode the
sequence of releases into a metric. For instance, the release number
or the number of changes made to a source code entity (nrMRs) can
be used. Values of both metrics indicate the chronological order of
releases. Based on such metrics increasing or decreasing of other
depicted metric values can be determined.

The evolution of metrics can be further highlighted by filling the
polygons emerged between two subsequent releases and adjacent
metrics with different colors. Using appropriate color gradients,
such as the rainbow colors, the order of releases is made transparent
and strong changes in metric values are highlighted.

Strong changes in metric values are further pointed out by
putting metrics belonging together side by side. Resulting sectors
contain metrics that quantify certain aspects of the implementation
or evolution respectively and their trends. For example, by group-
ing metrics that quantify in-coming and out-going uses relation-
ships in two separate sectors of the diagram users can categorize
modules into service providers and service consumers or both.

However, when filling the polygons with different colors the or-
der of releases have to be encoded in the diagram. Otherwise, the
number of colors used in the diagram explodes (i.e., when visualiz-
ing a high number of releases) which lowers comprehensibility of
computed Kiviat diagrams.

M6

M2

M1

moduleA

M5

M4

M3

release 2−3
release 1−2

Figure 3: Kiviat diagram with 6 metrics M1,M2, ...,M6 of 3 re-
leases of moduleA. M1 indicates the chronological order of re-
leases.

Figure 3 depicts an example of visualizing six metrics of
moduleA of three releases 1, 2, and 3. In this example M1 presents
the “number of changes” (nrMRs) metric specifying the chrono-
logical order of releases. Consequently, metric M2 is decreasing
whereas the values of remaining metrics increase from release 1 to
release 2. From release 2 to 3 the values of metric M2, M3, and M6
increase whereas M4 and M5 decrease.

4.2 Kiviat Graphs

As described above we use a Kiviat diagram per source code entity
to present measures of multiple metrics and their changes across
several releases. Although the diagrams provide quantitative mea-
sures they do not explicitly show the dependency relationships be-
tween source code entities. Therefore, RelVis links diagrams to
Kiviat graphs in which nodes represent source code entities and
edges the relationships between them. Figure 4 depicts an example
of a Kiviat graph with two modules.

Relationships between diagrams are drawn as filled rectangles.
To keep graphs understandable, relationships are drawn in the back-
ground with a smooth color with low contrast. With this technique
one type of relationship at a time (e.g. logical coupling) can be visu-
alized. RelVis supports the mapping of up to 3 relationship metrics

70

(a) Basic Kiviat diagram with measures of 6
metrics M1, M2, ..., M6 of the given package
ModuleA.

is plotted on its corresponding line. Dependencies between adja-
cent metrics are indicated by lines drawn between adjacent met-
ric values. Arranging metrics in a certain way results in recurring
diagram-patterns that indicate critical source code entities such as
god classes. With Kiviat diagrams users quickly can spot these in-
teresting entities.

m’1m’4

m’2 MAX

5
m’6

m’3

m’

M2

M4

M5 M6

M1

moduleA

M3

MIN

Figure 2: Basic Kiviat diagram with measures of 6 metrics
M1,M2,,M6 of moduleA.

The example depicted by Figure 2 demonstrates the usefulness
of Kiviat diagrams for visualizing metrics data. Certain require-
ments have to be met to prevent diagrams to become cluttered with
information: 1) normalization of metric values to a maximal draw-
ing length to prevent over-sized Kiviat diagrams; 2) using a minima
(i.e., an offset) that is added to computed values to prevent infor-
mation cluttering in the center of Kiviat diagrams. Computed met-
ric values are drawn with respect to these minimum and maximum
drawing range. We will see later on that the limitation in size is
necessary to link Kiviat diagrams to Kiviat graphs.

4.1 Visualizing n Releases

As stated in Section 3 the objective is to communicate the evolution
of metrics of source code entities and their relationships. Kiviat
diagrams as shown and described above are suitable to visualize i
metrics of an entity at a time but how can we visualize data of n
releases?

The two principles that allow RelVis to visualize data of several
releases are (1) normalizing metric values to the range determined
by the minimum and maximum of each metric and (2) using a met-
ric to encode the time-order of releases.

Reconsidering the evolution matrix RelVis computes the max-
ima of each metric for each source code entity type across the n
releases.

MAX(Mi) = max(m
′

i,m
′′

i , ...,m
n
i)

The minima of each metric can be considered 0. The effective draw-
ing length of each measure is computed by normalizing the value
by its maximum and adding an offset to it.

length(mn
i) = o f f set +

mn
i ∗ c

MAX(Mi)

The constant c specifies the maximum drawing size and together
with the o f f set constant is used to control the size of Kiviat di-
agrams. These constants can be configured by the user. The dif-
ferent values computed for a metric across n releases are plotted
in the diagram and adjacent measures of metrics of the same re-
lease are connected. The result is a diagram that per release shows
a polygon. Since values can also decrease from release to release,
the edges forming the polygons may overlap, obscuring informa-
tion. For instance, the information if a value of a metric increases
or decreases from release to release is not always clear.

RelVis handles this problem in two ways. One way is to encode
the time order of releases by using different colors per release for
drawing the lines of polygons. A second solution is to encode the
sequence of releases into a metric. For instance, the release number
or the number of changes made to a source code entity (nrMRs) can
be used. Values of both metrics indicate the chronological order of
releases. Based on such metrics increasing or decreasing of other
depicted metric values can be determined.

The evolution of metrics can be further highlighted by filling the
polygons emerged between two subsequent releases and adjacent
metrics with different colors. Using appropriate color gradients,
such as the rainbow colors, the order of releases is made transparent
and strong changes in metric values are highlighted.

Strong changes in metric values are further pointed out by
putting metrics belonging together side by side. Resulting sectors
contain metrics that quantify certain aspects of the implementation
or evolution respectively and their trends. For example, by group-
ing metrics that quantify in-coming and out-going uses relation-
ships in two separate sectors of the diagram users can categorize
modules into service providers and service consumers or both.

However, when filling the polygons with different colors the or-
der of releases have to be encoded in the diagram. Otherwise, the
number of colors used in the diagram explodes (i.e., when visualiz-
ing a high number of releases) which lowers comprehensibility of
computed Kiviat diagrams.

M6

M2

M1

moduleA

M5

M4

M3

release 2−3
release 1−2

Figure 3: Kiviat diagram with 6 metrics M1,M2, ...,M6 of 3 re-
leases of moduleA. M1 indicates the chronological order of re-
leases.

Figure 3 depicts an example of visualizing six metrics of
moduleA of three releases 1, 2, and 3. In this example M1 presents
the “number of changes” (nrMRs) metric specifying the chrono-
logical order of releases. Consequently, metric M2 is decreasing
whereas the values of remaining metrics increase from release 1 to
release 2. From release 2 to 3 the values of metric M2, M3, and M6
increase whereas M4 and M5 decrease.

4.2 Kiviat Graphs

As described above we use a Kiviat diagram per source code entity
to present measures of multiple metrics and their changes across
several releases. Although the diagrams provide quantitative mea-
sures they do not explicitly show the dependency relationships be-
tween source code entities. Therefore, RelVis links diagrams to
Kiviat graphs in which nodes represent source code entities and
edges the relationships between them. Figure 4 depicts an example
of a Kiviat graph with two modules.

Relationships between diagrams are drawn as filled rectangles.
To keep graphs understandable, relationships are drawn in the back-
ground with a smooth color with low contrast. With this technique
one type of relationship at a time (e.g. logical coupling) can be visu-
alized. RelVis supports the mapping of up to 3 relationship metrics

70

(b) Kiviat diagram with 6 metrics
M1, M2, ..., M6 of 3 releases of the given
package ModuleA.

Figure 2.7: An Example Illustrating the Kiviat Diagram [Pinzger et al., 2005].

Chuah and Eick use rich glyphs to characterize software artifacts and their evolu-
tion (number of bugs, number of deleted lines, kind of language...) [Chuah and Eick,

31

Chapter 2. Software Re-Modularisation: Challenges and Approaches

1998]. In particular, the time wheel exploits preattentive processing, and the infobug
presents many different data sources in a compact way.

D’Ambros et al. propose an evolution radar to understand the package coupling
based on their evolution [D’Ambros and Lanza, 2006b]. The radar view is effective at
identifying outliers but does not detail the structure.

Summary:

Those existing approaches, while valuable, they fall short of: (1) providing
a fine-grained view of packages that would help understanding the package
shapes and dependencies; (2) supporting the identification of package roles
within a software system: e.g., central or peripheral package, abstract or
implementer package.

2.6 Existing Approaches to Assess Package quality

To cope with software system complexity, Parnas et al. [Parnas, 1972] and Stevens et al.
[Stevens et al., 1974] have introduced the idea of decomposing software systems with
the intention of increasing module cohesion and minimizing inter-module coupling.
Since then, many metrics have been defined to compute the cohesion and coupling of
a module, where module concept is usually used to represent a composite software
entity (e.g., in object-oriented programming, a module may be a class or a package).

Cohesion. There exist many metrics on cohesion in structured programming and for
classes in object-oriented software systems. However, there are few cohesion
metrics devoted to packages [Allen and Khoshgoftaar, 2001; Fenton and Pfleeger,
1996; Martin, 2002a; Morris, 1989]. Emerson presents a metric to compute
cohesion applicable to modules in the sense of Pascal procedures [Emerson,
1984]. His metric is based on a graph theoretic property that quantifies the
relationship between control flow paths and references to variables. Bieman et
al. [Bieman and L.M.Ott, 1994] compute cohesion using slice abstraction of a
program based on data slices.

In object-oriented programming, there is a plethora of software metrics on class
cohesion. Chidamber et al. proposed a metric for class cohesion, named LCOM
(Lack of Cohesion in Methods) [Chidamber and Kemerer, 1994], criticized and
improved by Henderson-Sellers’s LCOM* [Henderson-Sellers, 1996]. Bieman et al.
[Bieman and Kang, 1995, 1998] proposed the metric TCC (Tight Class Cohesion)
that measures class cohesion using the number of pairs of methods in a class
that access common instance variables.

Hautus [Hautus, 2002] proposes a tool to analyze the structure of Java programs
and a metric to determine the quality of the package architecture. He defines a
new metric that indicates the percentage of changes to make a package structure
acyclic. Hautus’s metric does not indicate package cohesion. Patel et al. [Patel
et al., 1992] compute the cohesion of Ada packages based on the similarity
of its members (programs). The idea is to measure cohesion based on the

32

2.6. Existing Approaches to Assess Package quality

similarity of the subprograms. They use the keywords shared between the
subprograms. They consider only the specification of the package, not the
keywords present in the body, which are invisible from outside the package.
Similarly, Allen et al. define information theory-based (as opposed to counting)
coupling and cohesion measures for subsystems [Allen and Khoshgoftaar, 2001].
Their measures are applied to modules, which are represented as graphs. They
define cohesion in terms of intramodule coupling (i.e., the similarity between
the objects of the concerned modules). However these approaches do not take
into account classes and their relationships.

Misic adopts a different perspective and measures the cohesion of a package
as an external property [Mišić, 2001]. He claims that the internal organization
of a package is not enough to determine its cohesion. Morris follows this
line by computing module cohesion considering the usage of its contained
objects [Morris, 1989]. Similarly, Ponisio et al. introduced the notion of use
cohesion (or conceptual cohesion) [Ponisio and Nierstrasz, 2006]. They measure
the cohesion of a package considering the usage of the package classes from the
client packages. Their cohesion metric does not take into account the explicit
dependencies among the package classes (e.g., method call, class access or class
inheritance –Section 2.2 (p. 16)).

Recently, the most known metrics that are used to assess packages and mea-
sure package cohesion, are those proposed by Martin [Martin, 2002a]. Martin
proposed the Rational Cohesion metric that is supposed to measure one of the
package cohesion aspects. He defined his metric as the average number of pack-
age internal dependencies per class. The rational cohesion (H) for a package p
that entails N classes (N = psize) and R internal dependencies (R = |pInt.D|) is:

H =
R+ 1
N

Where the extra 1 in the formula prevents H = 0 when p entails only one class
(N = 1): i.e., in such a case R = 0.
However, Martin’s cohesion metric measures the connectivity among the inter-
nal classes of a given package, regardless the amount of dependencies that the
package classes have with external classes.

Coupling. As earlier mentioned in Section 2.3.2 (p. 23), coupling is always used
with cohesion to determine package quality, since analysis of coupling reveals
change impact propagation [Briand et al., 1999b]: i.e., changes in a package p
may impact all the packages that are coupled to p. On the other hand, coupling
between packages is necessary to delegate responsibility [Berard, 1993; Martin,
2002a]. As a consequence, the package design should balance between the
package cohesion and coupling. In that respect, Callebaut [Callebaut and Rasskin-
Gutman, 2005] suppose that: ”the frequencies of interaction among elements in any
particular subsystem of a system are (should be) two times greater than the frequencies
of interaction between the subsystems”.

However, there are few metrics that are devoted to assess package coupling. As
we underlined in Section 2.3.2 (p. 23), there are two kinds of package coupling:

33

Chapter 2. Software Re-Modularisation: Challenges and Approaches

efferent coupling (Ce) and afferent coupling (Ca). The Ce is to assess the coupling
degree between a package p and its provider packages. While the Ca is to assess
the coupling degree between p and its client packages.

Martin [Martin, 2002a] defines the Ce metric for a package p as the number
of p’s provider classes, and defines the Ca metric as the number of p’s client
classes. Recently, in 2005 [Martin, 2005], he redefines these metrics: p’s Ce is
the number of p’s provider packages, while p’s Ce is the number of p’s client
packages.

Summary:

Existing metrics for measuring package cohesion and coupling, while
valuable, they fall short of assessing modularization quality: i.e., assessing
the quality of the whole organization of classes and packages. This way,
maintainers should manually assess the modification impact each time
they modify a package within a given modularization.

2.7 Existing Approaches to Optimize Modularizations

Since software modularization is a graph partitioning problem [Mitchell, 2002; Mitchell
and Mancoridis, 2008; Mitchell et al., 2004] (Section 2.4 (p. 26)) and since this last is
known as a NP-hard problem [Farrugia, 2004], searching for good modularization by
using deterministic procedures or exhaustive exploration of the search space is not
feasible without additional heuristics [Chapman et al., 2001; Mitchell and Mancoridis,
2008]. Therefore, researchers have adapted heuristic search methods to the software
modularization problem [Clarke et al., 2003; Harman, 2007].

The existing approaches to re-modularize software systems or to optimize existing
modularizations are mainly based on clustering [Abreu and Goulao, 2001; Bauer and
Trifu, 2004; Lung et al., 2006; Mancoridis and Mitchell, 1998; Mancoridis et al., 1999;
Mitchell et al., 2004; Serban and l. G. Czibula, 2007] and evolutionary or search based
algorithms [Doval et al., 1999; Harman and Hierons, 2002; Liu et al., 2001; Lutz, 2001;
Maini et al., 1994; Mitchell and Mancoridis, 2006, 2008; Mitchell et al., 2004; Seng et al.,
2005; Tzerpo and Holt, 1997].

We distinguish two categories of these existing approaches: (1) approaches that
re-modularize software systems without taking into account the original organization
of classes (i.e., they do not take into account the existing packages); (2) approaches
that optimize the existing organization of classes by taking into account the existing
packages.

Remodularizing software systems

The most known tool in the software remodularization literature is Bunch tool,
where Mancoridis and Mitchell [Mancoridis and Mitchell, 1998; Mancoridis et al., 1999]
introduced a search-based approach based on hill-climbing clustering technique to
cluster software modules (classes in our context). Their approach starts with an initial
population of random modularizations or with an initial random partition of the

34

2.7. Existing Approaches to Optimize Modularizations

module dependency graph (MDG) which represents the graph of the software classes
(i.e., the software classes are nodes and the inter-class dependencies are edges). This
way, their approach can start with the system original modularization. The clustering
algorithm clusters each of the random modularization and selects the result with the
largest quality as the suboptimal solution. Recently, they used Simulated Annealing
technique to optimize resulting clusters [Mitchell and Mancoridis, 2002, 2006, 2008].
Their optimization approach creates new modularizations by moving randomly some
classes (a block of classes) to new clusters. The goal of their approach is increasing
cluster (package in our context) internal dependencies (i.e., decreasing inter-package
dependencies). They calculate the modularization quality (MQ) by summing the
cluster factor (CF) for each cluster of the partitioned MDG: the CF of a given cluster is
defined as a normalized ratio between the total weight of the internal dependencies
and half of the total weight of the external edges.

MQ. Let k be the number of packages within a given modularizationM and CFi
be the cluster factor of the package pi (pi ∈MC); and let µi be the sum of pi internal
dependencies (µi = |piInt.D|) and ωi be the sum of pi external dependencies (ωi =
|piExt.D |), then the MQ ofM is defined as follows:

MQ =
∑

1≤i≤k
CFi CFi =

{
0 µi = 0

2∗µi

2∗µi+ωi
otherwise

Similarly, Seng et al. [Seng et al., 2005] and Harman et al. [Harman and Hierons, 2002]
proposed genetic algorithms to partition software classes into subsystems (packages).
Their algorithms start with an initial population of modularizations. These algorithms
apply genetic operators on packages to modify current modularizations and/or
create new modularizations into the population. The goal of both works is increasing
package internal dependencies. Seng et al. [Seng et al., 2005] consider also cyclic
dependencies between packages as anti-pattern for package design quality. However,
their definition of the modularization/package quality (i.e., the fitness function that
computes the quality of resulting modularizations) is completely ambiguous. For
example, they define the fitness value for package cycles as "the summing-up of the
size of strongly connected component within the considered modularization" without
explaining what does that mean.

Abreu et al. [Abreu and Goulao, 2001] adapted an heuristic clustering approach to
(re-)modularize software systems. They used hierarchical agglomerative clustering
methods to decompose software classes into packages. Their clustering methods
start with a set of classes considering that each class is placed within a singleton
cluster. The goal of their approach is also increasing package internal dependencies
(i.e., package cohesion). In their approach, they define package cohesion as the Intra-
modular Coupling Density (ICD is the ratio of the package internal dependencies to the
package dependencies), where ICD should be maximized and ideally takes 1 as value:

ICD =
|pInt.D|
|pD|

In addition to the package cohesion, Abreu et al. [Abreu and Goulao, 2001] used
the dispersion of classes over packages (i.e., package size dispersion) as a factor to
measure the modularization quality. They claim that dispersion on package size

35

Chapter 2. Software Re-Modularisation: Challenges and Approaches

should be somehow constrained to avoid extremely skewed distribution of classes
(e.g., a modularization that entails only one package nesting all the modularization
classes, or a modularization that entails N packages, where every package contains
only one class, i.e., N = |MC |). Therefore, they firstly suppose that a modularization
must contain at less 2 packages and at maximum N −1 packages, where N represents
the number of classes. In this context, they define the Relative Module Dispersion (RMD)
metric, as a factor to measure the modularization quality, as follows:

RMD =
LargestPackageSize− SmallestPackageSize

AveragePackageSize

Optimizing existing software modularization

In the software (re-)modularization literature, there are few works addressing the
problem of optimizing existing software modularization without creating new pack-
ages/subsystems.

Harman et al. [Harman and Tratt, 2007] introduce a non-exhaustive hill climbing
approach to optimize and determine a sequence of class refactorings. They restricted
their approach to only move methods (classes in our context) over existing classes
(packages in our context). The goal of their approach is reducing the class cou-
pling, based on the Coupling Between Objects (CBO) metric [Briand et al., 1998]. To
avoid having a very large classes, they, similarly to Abreu et al. [Abreu and Goulao,
2001] approach, used the dispersion of methods over classes (the standard deviation
of methods per class metric) as a factor to measure the quality of resulting class
refactoring sequences.

Differently from all those approaches to (re-)modularize software systems, Tzerpo
et al. [Tzerpo and Holt, 1997] introduced a deterministic algorithm that assigns a
newly introduced resource (class in our context) to a subsystem (package in our
context). Their algorithm accommodates structural changes by considering the
existing resources as newly added. Their approach suffers from several limitations:
(1) to accommodate structural changes, the maintainers should specify the resources
which are considered as newly introduced; (2) in their approach, the criteria of
assigning a resource to a subsystem depends only on the relationships between
the considered resource and subsystem, without any consideration of the whole
modularization quality: the algorithm assign a resource r to a subsystem s if s is the
most related subsystem to r; (3) in addition, in their approach, assigning a resource
to a subsystem is consistent: which means that the algorithm definitively assigns a
newly introduced resource r to a subsystem s, without any consideration of newly
introduced resources that are not assigned yet to subsystems. Those resources may
radically change the overall subsystem structure. As a consequence, the assignment
of the resource r to s may finally appear inappropriate.

Summary:

Existing approaches to re-modularize software systems often change (to
various degrees) the existing package structure of the concerned software

36

2.8. A Combined Approach for The Maintenance of Software Modularization

system. These approaches do not take into account the original organiza-
tion of classes and the original package shape (i.e., package size); nor the
distance between the alternative modularizations and the original one. In
such a case, it can be difficult for a software engineer to understand the
resulting structure and to map it back to the situation s/he knows.
In addition, they do not allow maintainers to define any constraint on
alternative modularizations: e.g., (1) constraints on the maximal size of
a given package; (2) constraints on classes that should not change their
packages; (3) constraints on packages that should not be modified.
Finally, all those approaches do not take into account the connections
among packages. They limit their approaches to inter-class dependencies
without verifying the number of inter-dependent packages (i.e., the degree
of package coupling within the considered modularization); and similarly
for package cycles.

2.8 A Combined Approach for The Maintenance of Software
Modularization

A summary of this chapter is that the problem of (re-)modularizing software systems
is an old problem. During the last three decades, researchers tried to address this
problem from different perspectives: visualization, metrics, heuristic and search
based algorithms. In this chapter, after our analysis of the problems of the software
modularization maintenance and our analysis of the state of the art, we found that the
existing approaches suffer from several limitations. In that respect, we have identified
a set of open problems that we address in this thesis:

Understanding package structure. The maintenance of software modularization needs
detailed information about the concrete organization of classes for understanding:
package size, complexity and internal vs. external dependencies, regarding the different
kinds of dependencies (class inheritance and/or reference).

Understanding package role and the usage of their interfaces. The maintenance of soft-
ware modularization needs to capture the information about package interfaces, their
cohesion and their roles. For example, what are the cardinalities of the interfaces of a
given package? What are the functions that a package provide and to which packages
it provides them? What are the functionalities that a package require and from which
packages it requires them? Are the functionalities, that a given package provides, used
together or not?...

Assessing the quality of software modularization and packages. The maintenance of
software modularization needs to assess the quality of the concerned software modu-
larization. It also needs to assess the quality of a single package, with respect to the
concerned modularization. Therefore, we need to define metrics that compute the qual-
ity of a modularization/package from different perspectives (the principles of package
cohesion and coupling).

37

Chapter 2. Software Re-Modularisation: Challenges and Approaches

Automatically optimizing existing software modularization. In the case of a large and
complex software modularization, searching for good modularization using determin-
istic procedures or exhaustive exploration of the search space is not feasible without
additional heuristics. As a consequence, the approach of the maintenance of a software
modularization should provide an automatic, or semi-automatique, methodology that:
(1) detects candidate package fro restructuring; (2) proposes suitable changes in the class
organization; (3) optimizes the existing modularization, with respect to the principles of
package cohesion and coupling. In addition, the automatic optimization process should:
(1) take into account the original class organization; (2) search for good alternative
modularizations by doing a near minimal modification; (3) allow maintainers to specify
constraints on the alternative modularizations, such as the number of classes that are
allowed to change their packages, the allowed changes on package size...

38

Chapter 3
Package Blueprint:
Visually Understanding Package
Structure and Interactions

Note for the reader: this chapter makes heavy use of colors in the figures. Please obtain and read an
online (colored) version of this chapter to better understand the ideas presented in this chapter.

3.1 Introduction

Maintainers of large software systems face the problem of understanding how pack-
ages are structured in general and how they are in relation with each others in their
provider/client roles. This problem was experienced first-hand during two years by
Stéphane Ducasse, the supervisor of this thesis, while being responsible of the release
of Squeak, a large open-source Smalltalk [Denker and Ducasse, 2007]. In addition,
approaches that support software system remodularization succeed in producing
alternative views for system refactorings, but proposed changes remain difficult to
understand and assess [Anquetil and Lethbridge, 1999; Wiggerts, 1997]. Hence even if
there is a good support for the algorithmic parts, much work remains to help users
understand, compare and assess proposed solutions.

As we explained in Section 2.5 (p. 29), Several previous works, mainly based on
visualization techniques, provide information on packages and their dependencies,
by visualizing software artifacts, metrics, their structure or their evolution. However,
while those approaches are valuable, they fall short of providing a fine-grained view
of packages that would help understanding the package characteristics: the number
of classes it defines; the inheritance dependencies among its classes; how the package
classes inherit from and interact with classes packaged into other packages...

Contribution of the chapter

In this chapter, we propose the Package Blueprint, a compact visualization revealing, in
detail, package structure and dependencies. A package blueprint is structured around

39

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

the concept of a surface. A surface represents and details the connections between
the observed package and its provider and client packages. Package Blueprint reveals
the overall size and complexity of a package, as well as its relations with other packages, by
showing the distribution of dependencies to classes within and outside the observed package.
Package complexity is defined by the quantity of dependencies among the package
classes (i.e., internal complexity) and the quantity of dependencies between the
package classes and other classes (i.e., external complexity).

The content of this chapter is the object of our paper submitted to the IEEE
Transactions on Software Engineering (TSE) journal [Ducasse et al., 2009].

Structure of the chapter

Section 3.2 (p. 40) summarizes the properties that we expect from effective visualiza-
tions. Section 3.3 presents the structuring principles of a package blueprint, which
are then declined to support an outgoing reference view, an incoming reference view
and an inheritance view in Section 3.4 (p. 42). Sections 3.5 & 3.6 present the different
views of package blueprint at work. The next section presents the results of a lim-
ited case study with advanced developers. In sections 3.9 and 3.10, we discuss our
visualizations and position them w.r.t. related work before concluding.

3.2 Visualization Challenges

In addition to the challenges related to the difficulties of understanding packages
(Section 2.3 (p. 21)), the visualization itself raised challenges. Several work identified
the characteristics that an efficient visualization should hold [Bertin, 1983; Tufte,
2001; Ware, 2000]. As our focus is on providing a first impression of a package
and its context, we would like to exploit the gestalt principles of visualization and
preattentive processing4 as much as possible to help spotting important information
[Healey, 1992; Healey et al., 1993, 1995; Treisman, 1985; Ware, 2000].

We stress that our visualization should take into account the following properties:

Good mapping to reality. The visualization should offer a good representation of
the situation that the maintainer can trust and from which s/he can draw and
validate hypotheses.

We expect from the visualization to highlight the general tendency of a package
in terms of its internal size, internal and external references. In particular we
want to spot classes or dependencies that stand out in a given package.

4Researchers in psychology and vision have discovered a number of visual properties that are
preattentively processed. They are detected immediately by the visual system: viewers do not have to
focus their attention on a specific region in an image to determine whether elements with the given
property are present or absent. An example of a preattentive task is detecting a filled circle in a group of
empty circles. Commonly used preattentive features include hue, curvature, size, intensity, orientation,
length, motion, and depth of field. However, combining them can destroy their preattentive power (in a
context of filled squares and empty circles, a filled circle is usually not detected preattentively). Some of
the features are not adapted to our needs. For example, we do not consider motion as applicable.

40

3.3. Package Blueprint basic principles

Scalability and simple navigation. The maintainer should easily access the infor-
mation. The visualization should scale i.e., we should be able to have system
overview as well as focusing on a particular package. We target a visualization
that scales well with the number of packages and of dependencies, unlike those
using graph representations [Dong and Godfrey, 2007].

Low visual complexity. By being regular and well structured, i.e., reusing the same
conventions for color and position, the visualization should help the maintainer
learn it and understand it. In addition, while the visualization should offer a lot
of information, it should not be complex to analyze.

3.3 Package Blueprint basic principles

To meet most the requirements cited so far, we propose our compact visualization:
package blueprint. A package blueprint represents either how the package under
analysis references other packages, or how it is referenced by them. Figure 3.1 (p. 42)
presents the key principles of a package blueprint; these principles are realized slightly
differently according to the kind (references or inheritance) and the orientation of the
considered dependencies (incoming or outgoing class references).

The package blueprint visualization is structured around the ”contact areas”
between packages, that we name surfaces. A surface represents conceptually the
dependencies between the observed package and another package. In Figure 3.1(a)
(p. 42) the package P1 is in relation with three packages P2, P3, and P4, via different
dependencies between its own classes and the classes present in the other packages;
so P1 has three surfaces.

A package blueprint shows the observed package as a rectangle, vertically sub-
divided into parts representing its surfaces. Each surface between the observed
package and a referenced package is more or less tall, according to the strength of
the dependencies between them. In Figure 3.1(b) (p. 42), as P1 references three other
packages, its blueprint is formed from three stacked boxes. The box of the surface
between P1 and P4 is taller than the others because P1 references more classes in P4
than in P2 and in P3.

In each subdivision, we also show the classes involved in the corresponding
surface. By convention, we always show the classes in the referenced packages on
the leftmost gray-colored column of each surface, and the classes of the observed
package on the right. In Figure 3.1(c) (p. 42), the topmost surface shows that classes
D1 and E1 reference class B4, and that C1 references A4. If many classes reference the
same external class, we show them all on a horizontal row; we can thus assess the
importance of a class by looking at the number of classes on the corresponding row:
in Figure 3.1 (p. 42) (c), the row of B4 stands out because the two referencing classes D1
and E1 make it wider.

To display incoming references and inheritance, we define variants of the layout:
to distinguish incoming from outgoing references we rotate the layout (see Figure 3.3,
Section 3.4.2 (p. 44)), and to display inheritance we arrange hierarchies as trees instead
of rows (see Figure 3.5, Section 3.4.3 (p. 46)).

41

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

A1

B1

C1

D1

P2 P3 P4

P1: analyzed package
E1

A2 A3 A4 B4

(a) Analyzed package

P1surface between
P1 and P4

P4

P3

P2 P1

P1

P1

(b) Stacked sur-
faces

P1

A2 A1

A3 B1

A4 C1

B4 D1 E1

classes
in P1

external
classes

(c) With classes

Figure 3.1: Consider P1 that references four classes in three other packages (a). A
blueprint shows the surfaces of the observed package as stacked subdivisions (b).
Small boxes represent classes, either in the observed package (right white part) or in
referenced packages (left gray part) (c).

3.4 Package Blueprint Detailed Visualizations

To convey more information, we refine the basic layout previously described as
illustrated in Figure 3.2 (p. 43).

3.4.1 Outgoing Reference Blueprints

Internal References. To support the understanding of references between classes
inside the observed package, we add a particular surface with a thick border
at the top of the blueprint. This surface is the head of the blueprint, and the
rest its body. In the head, the first column represents the internal classes of the
package under consideration. Thus among these classes we see those that are
referenced from within the package itself: for the package P1 in Figure 3.2 (p.
43), the class A1 is referenced by B1 and C1; C1 is referenced by E1; D1 by C1 and
E1; E1 by D1 and G1 is referenced by H1 and I1. The height of the head surface
indicates the number of classes defined within the package.

Position. Internal referencing classes are arranged by columns: each column (after
the leftmost one) is reserved to the same internal class for all the surfaces.
The width of the blueprint indicates the number of referencing classes of the
package. Figure 3.2 (p. 43) shows that class E1 internally references C1 and D1,
and externally references B3, C3, A3 and A4.

We order classes of the concerned package in both horizontal and vertical
directions to present important elements according to the (occidental) reading
direction. Horizontally, we sort classes from left to right according to the
number of classes they reference. Hence classes referencing the most occupy
the nearest columns from the left gray column. Figure 3.2 (p. 43) shows that class
E1 occupies the nearest column from the left gray column since it references six
classes (D1, C1, A3, B3, C3 and A4) while D1 references three classes and C1 two
classes; each of the remaining internal classes references only one class.

42

3.4. Package Blueprint Detailed Visualizations

P2

A2

B2

P3

A3

B3

C3

P1

C1

A1

B1

D1

E1

F1

I1

G1

H1

P4

A4

I1H1

H1 I1

most—least
internal referencing classes

A4

B1

A2
B2 D1

E1

H1
B1

C3

B3

A1

E1

C1

ex
te

rn
al

re

fe
re

nc
ed

 c
la

ss
es

in
te

rn
al

 c
la

ss
es

head

body

E1

E1
D1
C1
A1

I1
G1
F1

C1 A1 B1D1

internal references

external references

P1

D1

C1

E1

E1

E1

A3 E1 D1
P3 surface

P2 surface

P4 surface

Figure 3.2: Surface package blueprint detailed view (Outgoing Reference view for
P1).

We apply the same principle to the vertical ordering, for both surfaces within
a blueprint and rows (i.e., external classes) within a body surface. Within a
package, we position surfaces that present the most external classes the highest.
Within a body surface, we order external classes from most referenced at the
top, to the least referenced at the bottom. This is why in Figure 3.2 (p. 43) the
surface in relation with P3 is the highest and why the surface with P2 is above
P4: there are more referenced classes into P2 than into P4.
Within the head surface, the vertical ordering of the internal classes is identical
to their horizontal ordering. Figure 3.2 (p. 43) shows that internal classes (E1,
D1, ... and I1) are ordered the same way vertically and horizontally. Bordered
squares, that are diagonally placed from the top-left to the bottom-right within
the head, help the users to clearly see the symmetry between the horizontal and

43

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

vertical orderings. This diagonal helps also to detect direct cyclic references
within the concerned package: within the head of P1 blueprint (Figure 3.2 (p.
43)), we see that there is a direct cyclic-reference between D1 and E1 – since there
are a node of D1 and a node of E1 that have symmetrical positions relatively to
the head diagonal; which means that E1 refers to D1 and D1 refers to E1.
Internal classes with no reference to others are placed at the bottom of the left
most column in the head (e.g., G1 and F1 do no reference).

The head surface therefore conveys the package size as well as the ratio between
defined classes and their internal dependencies. Both referencing classes and
unreferencing ones together with internal references among them are shown
(e.g., the unreferencing G1 is referenced by H1 and I1).

Color. Color intensity assigned to a node representing a class conveys the number
of references it is doing: the darker the more references it does. Both intensity
and horizontal position represent the number of references, but position is
computed relatively to the whole package blueprint, while intensity is relative
to each surface. Thus, while classes on the left of surfaces will generally tend
to be dark, a class that has many references but few in a particular surface will
stand up in this surface since it will be light gray. For example, in a blueprint of
P1 (Figure 3.2 (p. 43)), within the head surface, the nodes of C1 and E1 should
have the same color intensity and both should be darker than the nodes of
D1 – since C1 and E1 each references two internal classes (i.e., within the head
surface), while D1 references only one class in the same surface. Within P3
surface, E1 should be slightly darker than D1 since the former references three
classes within P3 while the latter references only one class.

In the first column and within the head surface, we distinguish unreferencing
internal classes from others by making their fill lighter than the one of internal
referencing classes (e.g., G1 and F1 fill color is lighter than the fill color of I1..E1).

Finally, we want to distinguish referenced classes depending on whether they
belong to a framework or the base system, or are within the scope of the system
under study. When a referenced class (in the first column and in the external
referenced part - see Figure 3.2 (p. 43)) is not part of the system we are currently
analyzing, the fill of its node is cyan.

3.4.2 Incoming Reference Blueprints

We use a view similar to the outgoing reference blueprint for exploring incoming
references. However we visually distinguish the incoming reference blueprint from
the former as follows: as shown in Figure 3.3 (p. 45), the global view is rotated counter-
clockwise by 90°; the external referencing classes are placed at the top while the
package internal classes are placed below them. The blueprint surfaces are ordered
from right to left: the head is at the most right and surfaces of client packages are
ordered by the number of referencing classes they enclose. The referencing classes
are thus displayed on the top row, and we sort internal referenced classes from the
most referenced on the second row, to the least referenced on the bottom row.

44

3.4. Package Blueprint Detailed Visualizations

Outgoing references map

head

body

Incoming references map

headbody

Figure 3.3: To distinguish it from the outgoing reference blueprint (left), we rotate the
incoming reference blueprint (right) by 90°, so that the important details are still read
first; in the incoming view, the references are made by the external classes, at the top,
to the internal classes below them.

C3

A3

A3 C3B3E1A4

C3

external
referencing

classes
internal
classes

head

body

internal
references

external
references

m
ost—

least
internal referenced

classes

P3

C3 C3

B3B3B3

D1

A3 A3

P1 surface

P4 surface

Figure 3.4: Package blueprint detailed view (Incoming Reference view for P3 Fig-
ure 3.2 (p. 43))

Figure 3.4 (p. 45) shows the incoming reference blueprint of P3 (Figure 3.2 (p. 43)).
The blueprint body has two surfaces: P1 surface and P4 surface – since P3 clients are
P1 and P4. P1 surface is at the right of P4 surface, since the former involves more
referencing classes (two classes: E1 and D1) than the latter (one class: A4). C3 is the
most referenced class within P3: C3 is referenced from three classes (A3, B3 and E1),
while A3 is referenced from two classes (E1 and D1) and B3 is also referenced from
two classes E1 and A4.

In a first version of the package blueprint, views were visually too close and it was
difficult to distinguish them in a glance. Finding a view that was really distinct from
the previous while sharing the same visual effect was important to avoid confusion.

45

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

A2

A3

A4

B4

A1

E1

C1

F1

G1

P2 P3 P4

P1
D1

B1

P1

Ex
te

rn
al

 in
he

rit
ed

 c
la

ss
es

Package under analysis

Internal
classes

A2 A1

A3 E1

A4 F1

B4 G1

B1 C1

D1

P2 surface

P3 surface

P4 surface

Figure 3.5: Inheritance package blueprint. Orange bordered classes inherit directly
from external classes.

3.4.3 The Case of Inheritance

Up to now, we only discussed references, but inheritance is a really important struc-
tural relationship in object-oriented programming. We then offer a specific view
which structures the inheritance relationship within the package according to the
client packages, as shown in Figure 3.5 (p. 46).

We consider only single inheritance so we can display all classes and subclasses
transitively inheriting from external classes on the same row. We distinguish the
direct subclasses of external classes by showing them with an orange border; indirect
subclasses are black-bordered and arranged in trees under their superclass. Figure 3.5
(p. 46) shows the inheritance blueprint of P1. P1 classes inherit from classes packaged
in distinct packages (P2, P3 and P4): A1 inherits from A2 defined in package P2, while
B1, C1, and D1 inherit from A1; E1 inherits from A3 defined in package P3; F1 and G1
inherit respectively from A4 and B4, both defined in package P4. This view highlights
internal inheritance roots as well as external inheritance usage.

As explained subsequently, to distinguish root classes such as Object and classes

46

3.5. An Example: The Network::Kernel Package

Object

Error

Network::Kernel
Inheritance Blueprint

(c)

Socket OldSocket

SocksSocket OldSimpleClientSocket

NetworkError InvalidSocketStatusException
PositionableStream SocketStream

Network::Kernel
Incoming Reference Blueprint

(b)

Socket
NetNameResolver

SocketStream

Pr
ot
oc
ol
s

Te
lN
et
::W

or
dN

et
Ke
rn
el
::T
es
ts

Re
m
ot
eD

ire
ct
or
y

ProtocolClientSocketStreamTest

Socket

...OldSocket

Password

Network::Kernel
Outgoing Reference Blueprint

(a)

HTTPSocket

NetworkError

OldSimpleClientSocket

SocketStream
NetNameResolver

NameLookupFailure

SocksSocket

ConnectionQueue
InternetConfiguration

ByteArray

Collections::Streams

Collections::Arrayed

Collections::StringsByteString

Kernel::Processes
Tools::Menus

FillInTheBlank
PopUpMenu

refers to

refers to

Figure 3.6: Analyzing the Network::Kernel Package.

that do not belong to the system under-analysis we use cyan as fill color. Similarly,
we use blue as a fill color to distinguish abstract classes. The fill color of other classes
in the inheritance view still represent the number of references made by the class, but
relatively to the package and not to the surface like in the reference views. This enables
maintainers to correlate inheritance and reference views. For instance, in Figure 3.6
(p. 47) (c), the inheritance blueprint of the package Network::Kernel shows that most
references come from the classes OldSimpleClientSocket and SocksSocket – since they
have the darker fill color – which are respectively subclasses of the abstract classes
OldSocket and Socket. Blueprint width represents the maximum number of subclasses
at one level and its height the depth of inheritance.

3.5 An Example: The Network::Kernel Package

We are now ready to have a deeper look at an example. The Squeak Network subsystem
contains 178 classes and 26 packages – making up a library and a set of applications
such as a complete mail reader. Figure 3.6 (p. 47) shows the blueprints (outgoing
reference, incoming reference and inheritance) of the Network::Kernel package in Squeak.

Glancing at the package outgoing reference, Figure 3.6 (p. 47) (a), we see that it
has a lot of gray squares inside its head surface, which indicates that there is a lot of
interactions among the internal classes of the analyzed package Network::Kernel. This

47

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

blueprint shows also that there are more gray squares inside the body surfaces than
inside the head, indicating that the package classes have more interaction with classes
of other packages than internally in the package. This conveys a first impression of
the package cohesion even if it is not really precise [Briand et al., 1999a].

The number of the body surfaces indicates that Network::Kernel is in relation with
14 other packages. Most of the referenced classes are cyan, which means that they
are not part of the Network subsystem. Indeed they belong to the core libraries
(e.g., Collections::Streams, Collections::Arrayed and Collections::Strings) on top of which
Network::Kernel is defined. What is striking is that all except one of the referenced
classes are outside the system (HTTPSocket in Figure 3.6 (p. 47) (a)). Since the package is
named Network::Kernel, it is strange that it refers to other classes from the same system,
and especially to only one. This is clearly a layering bug.

The outgoing reference blueprint shows clearly which provider packages are im-
portant for the analyzed one Network::Kernel and which are less important: some of the
referenced packages, such as Collections::Streams and Kernel::Processes, are strongly refer-
enced by Network::Kernel – since there are a lot of gray squares inside the corresponding
surfaces; other referenced packages, such as Collections::Strings, are referenced by only
one class or a couple of referencing classes.

Analyzing the blueprints and inspecting the class and package names, we found
via the outgoing reference blueprint, Figure 3.6 (p. 47) (a), another improper layering:
the Tools::Menus surface shows that Network::Kernel is referencing UI classes (FillInTheBlank
and PopUpMenu) via the package Tools::Menus which seems inappropriate.

On another hand, we learn that the class making most internal references is named
Socket: this class is represented in the outgoing reference blueprint by the second
column; this latter includes, within the blueprint head, the biggest number of gray
squares (4) that are darker than the remaining ones within the head. This means that
Socket is referencing 4 classes within the analyzed package Network::Kernel and it is the
class which does the biggest number of references within Network::Kernel.

We also learn that the class OldSimpleClientSocket, represented by the first column in
the outgoing reference blueprint, makes most external references – the class column
includes, within the blueprint body, nine gray squares that are distributed over seven
distinct surfaces, which means that this class refers to nine classes into seven packages.
However OldSimpleClientSocket refers to only 2 classes within Network::Kernel as
shown in the head.

The incoming reference blueprint (Figure 3.6 (p. 47) (b)) shows that most internally
referenced class is NetNameResolver, since the class row includes the biggest number of
squares within the blueprint head and those squares are darker than the other ones.
Similarly, we see that the second most referenced is Socket. So this is a sign of good
design since important domain classes, namely NetNameResolver and Socket are well
used within the package.

On the another hand, the incoming reference blueprint (Figure 3.6 (p. 47) (b)) shows
that Network::Kernel is referenced by only 4 client packages and all belong to the Network
system. One of those referencing package is Kernel::Tests which includes test classes.
The corresponding surface of Kernel::Tests shows that there is one referencing class
(SocketStreamTest) that refers to two classes within the analyzed package Network::Kernel
(Socket and SocketStream). We learn that most Network::Kernel classes are not tested and
this is a bad sign about the quality of the Network system.

48

3.6. Packages Within Their Software System

The inheritance package blueprint (Figure 3.6 (p. 47) (c)) shows that the Net-
work::Kernel package is bound to three external packages containing the three super-
classes Object, Error, and PositionableStream. In addition the package, while inheriting
a lot from external packages, is inheriting mostly from the same class, here Object.
The difference between the two main surfaces is interesting to discuss: the topmost
surface shows that most of the classes are directly inheriting from one external su-
perclass (Object), while the second one shows that errors are specialized internally to
the package. All in all, this makes sense and provides a good characterization of the
package.

3.6 Packages Within Their Software System

Understanding a package in isolation is interesting but lacks information about
the overall context of classes and packages in relation with it. As shown in the
following subsections, our approach also supports the understanding of the usage of
a class/package within the context of a complete software system. Relevant questions
are for instance: Which other packages use a given class? Are two classes always
co-used by others? Are two packages used with a same importance by others? and
so on.

To help maintainers navigate among packages and classes and to quickly collect
information, we introduced a fly-by-help mechanism to the Package Blueprint. In
addition to the fly-by-help (see Figure 3.7 (p. 50)), maintainers can select a class (i.e.,
any box representing the concerned class), or a package (i.e., any surface representing
the concerned package), and mark it with a particular color: the fill of boxes/surfaces
representing the selected class/package will all have the selected color. Similarly,
maintainers can mark several classes and packages with distinct colors (see Figure 3.8
(p. 51)).

3.6.1 Outgoing Reference Package Blueprint Analysis

Figure 3.8 (p. 51) shows the blueprints of all the packages referencing and defining the
class HTTPSocket of the Network system.

Hub classes. It is striking to see that HTTPSocket, highlighted in red, is a central
class of the package Protocols as it refers to most of the classes referenced by
that package. We can deduce the same thing for the class ServerDirectory in
RemoteDirectory package. In addition, we can easily see that almost all referencing
packages to the package Protocols, whose surface is highlighted in yellow, use
the class HTTPSocket of Protocols. Only RemoteDirectory refers, in addition to
HTTPSocket, to two classes in Protocols. Note that HTTPSocket has no incoming
references nor outgoing references inside its package Protocols – since in the
head of Protocols blueprint the column and the row of HTTPSocket contain no
gray squares.

Figure 3.8 (p. 51) also shows how the package Kernel, whose surface is highlighted
in orange, is used within the Network system.

49

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

Network::Kernel

Figure 3.7: Interacting with package blueprint: using the mouse and pointing at the
box shows, through a fly-by-help, the class and package names. In this view, the
mouse is pointing to the box representing HTTPSocket and the fly-by-help shows, in
addition to the class name, the name of Network::Kernel classes that refer to HTTPSocket.

Core Packages. Apparently, Kernel is less important than Protocols, i.e., Kernel is refer-
enced by 3 packages (Protocols, RemoteDirectory and TelNetWordNet), while Protocols
is referenced by all other packages in Figure 3.8 (p. 51) (5 packages including
Kernel). However, looking to the orange surface in the body of Protocols package
blueprint, we find that 4 classes of Protocols reference 3 classes of Kernel, while
the yellow surface in the body of Kernel package blueprint shows that only 2
classes of the latter reference a single class (HTTPSocket) of Protocols. In addition,
Kernel does not refer to any other package in Network system (classes colored in
cyan do not belong to the subsystem under analysis). Looking more closely
at Protocols referenced packages, we can see that Kernel (the orange surface in
the body of Protocols package blueprint) is placed above Url and RFC822, the
three only packages referencing classes belonging to the Network system. This
reinforces the idea that Kernel is the basic package of the Network system core.

Cyclic References. On another side, the cyclic reference between Kernel and Protocols
raises the known problem about the order of deploying or loading the Network
system. One possible way to remove this cyclic reference consists in moving
class HTTPSocket to Kernel package. However, HTTPSocket also refers to URL pack-
age. Therefore moving HTTPSocket to Kernel will result in adding one referenced
package to the latter, thus disturbing its status as a core package. To keep Kernel
without references to any other Network package, a better solution is to move the
referencing classes SocksSocket, colored in blue, and InternetConfiguration, colored

50

3.6. Packages Within Their Software System

Url

RFC822

Protocols
HTTPSocket

TelNetWordNet

Kernel

SocksSocket

InternetConfiguration

Password

RemoteDirectory
ServerDirectory

HTML::ParserEntities

Url

Url

Figure 3.8: Outgoing reference blueprints of some packages of the Network system. In
this view, the Kernel package was selected in orange, surfaces with Protocols package
are highlighted in yellow, class HTTPSocket in red, class SocksSocket in blue, class
InternetConfiguration in green, and class Password in fuchsia.

in green, to Protocols package. InternetConfiguration has no incoming nor outgoing
references inside Kernel package (see in the head of the blueprint, the column
and the row for this class), but InternetConfiguration references the HTTPSocket class
in Protocols package. So, moving InternetConfiguration to Protocols package will
increase the cohesion of both packages; SocksSocket refers to 3 classes inside
Kernel but is not referenced inside it. So moving SocksSocket to Protocols will
increase a bit the coupling between Protocols and Kernel but will increase the
Protocols package cohesion –since SocksSocket refers to HTTPSocket in Protocols
package. This way Kernel becomes a proper core package for Network system.

51

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

Potentially misplaced classes. Again in Kernel package, we found that the class Pass-
word, colored in fuchsia, has no outgoing nor incoming references inside Kernel
package – see in the head of Kernel package blueprint the column and the row
of this class. Looking closely at Password, we see that it is referenced by only
one package: RemoteDirectory refers to Password class in Kernel – see the orange
surface and the fuchsia referenced class in the body of RemoteDirectory package
blueprint. Thus we think that moving Password class to this last package will
increase the cohesion of both packages, Kernel and RemoteDirectory.

Internally loosely connected packages. Figure 3.8 (p. 51) shows that HTML::ParserEntities
and TelNetWordNet packages are not cohesive from the point of view of inter-class
references – since the heads of HTML::ParserEntities and TelNetWordNet blueprints
contain respectively only two and one gray boxes.

Internal Interconnected Packages. In addition we see in Figure 3.8 (p. 51) that Kernel
and Url packages contain classes that are tightly inter-referenced – since there
are a lot of gray boxes within the head of Kernel and Url package blueprints.
For example, within Url package, the class Url refers to almost all classes of
its package and it does not refer to any class outside the Url package (see the
column of Url class in the blueprint body).

Similarly, we can see that RemoteDirectory and Protocols packages are less cohesive
than Kernel and Url packages but more cohesive than HTML::ParserEntities and
TelNetWordNet packages. It is worth to note that in the Protocols package, all
internally referenced classes are classes that do not reference other classes –
since all gray boxes within the head of the Protocols blueprint are under the head
diagonal.

3.6.2 Incoming Reference Package Blueprint Analysis

Incoming reference Package Blueprint is similar to outgoing reference Package
Blueprint we described in previous sections. The difference between them is that
the incoming reference Package Blueprint shows the package dependencies with its
users while outgoing reference Package Blueprint shows the package dependencies
with the packages it uses.

Figure 3.9 (p. 53) shows the incoming reference blueprints for Network packages
where only references within the Network system are taken into account (i.e., ref-
erences from packages outside Network are not shown). In this figure, surfaces of
RemoteDirectory package are highlighted in green and those of TelNetWordNet in orange.

Figure 3.9 (p. 53) shows that most referenced packages within Network system are
Protocols and Url – since they have the biggest number of surfaces within the body of
their blueprints: both are referenced from 7 packages within Network. Thus we deduce
that these packages are the core of Network.

The package Kernel is referenced by only four packages within Network: Protocols,
TelNetWordNet, Kernel::Test and RemoteDirectory. Protocols package heavily refers to Kernel
package: the Kernel package incoming reference blueprint shows that the surface

52

3.6. Packages Within Their Software System

denoted by Protocols represents 4 external referencing classes. This means that there
are 4 classes of Protocols package that refer to Kernel classes.

Since Kernel package is heavily referenced by the core package Protocols (and that
as already explained in Section 3.6.1 (p. 49) Kernel does not refer to packages within
Network), Kernel represents the basic package within Network.

Most referenced package class. Within this package, Kernel, most referenced classes
(i.e., dominant referenced classes) are NetNameResolver and Socket (see the number
of gray boxes within the class rows of Kernel blueprint). Since the nodes of Socket
class, within the body surfaces of Kernel blueprint, are darker than those of

RemoteDirectory

TelNetWordNet

SqueakPageUUID

HTML::Forms

MailReader

MailReader::AddressBook MailReader::Categorizer

HTML::Tokenizer HTML::Formatter

MailReader::Filters

MailReader

HTML::Parser

HTML::ParserEntities

HTML::Parser

HtmlParser

KernelNetNameResolver
Socket

TimeOut
Password

TelnetMachineServerDirectory

Kernel::Test Protocols

Protocols

LoginFailedException
FTPClient

HTTPSocket

Protocols::Tests

SMTPClient

PortugueseLexiconServer
WordNet

SuperSwikiServer
ServerDirectory

Url
MIMEDocument

PortugueseLexiconServer
WordNet

SuperSwikiServer
ServerDirectory

Url::Tests

FileUrl

RFC822
MailAddressParser

Kernel::Test
MockSocketStreamSMTPClientTest

Figure 3.9: Incoming Reference global view in Network system. In this view, the
TelNetWordNet package was selected in orange, surfaces with RemoteDirectory package
are highlighted in green.

Kernel

InternetConfigurationPassword

SocksSocket

Socket TelNetWordNet

RFC822

SqueakPage

UUID

HTML::Parser HTML::ParserEntities

HtmlEntity HtmlTextualEntity HtmlInput

HTML::Tokenizer

HTML::Forms

FileInput

TextInput
FormInput

HTML::Formatter

HtmlFormatter
DHtmlFormatter

MailReader::Filters MailReader::AdressBook MailReader::CategorizerMailReader::Spam
TextClassifier

SpamFilter

Protocols

OldSimpleClientSocket HTTPSocket

Url
Url

FileUrl

MIMEDocument

RemoteDirectory

ServerDirectory

SuperSwikiServer

WordNet
PortugueseLexiconServer

Figure 3.10: Inheritance global view in Network system

53

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

NetNameResolver, thus the former has a bigger number of incoming references
than the latter.

Similarly we detect dominant referenced classes into other packages: the domi-
nant referenced class in Url package is MIMEDocument; in Protocols package, it is
HTTPSocket; in RFC822 package, it is MailAddressParser.

Leaf packages. Figure 3.9 (p. 53) clearly shows Network leaf packages (i.e., packages
which are referenced by only one package) such as MailReader::Filters which is
only referenced by MailReader, or HTML::ParserEntities by HTML::Parser. We also
identify packages which are completely isolated (i.e., are not referenced by any
package), since their blueprints contain only one surface (the head surface),
such as SqueakPage and TelNetWordNet packages.

Low test coverage. During our analysis we found that almost no class is tested. For
Protocols package, only the class SMTPClient has incoming references from a test
class within Protocols::Tests, while most referenced class HTTPSocket has none (see
the surface denoted by Protocols::Tests within the package blueprint of Protocols).
Also for Url package, only four classes from twelve have incoming references
from a test class within Url::Tests. Similarly for Kernel package, only two classes
have incoming references from Kernel::Test and the class NetNameResolver has
none. We thus deduce that the core packages of Network are not well tested,
particularly their most important classes (classes which are heavily referenced
from other packages) are not tested.

Internal/No Internal use. Package Blueprint stresses the different nature of pack-
ages. At first, we was surprised to see that some packages contain classes
without any reference among them, while they are heavily referenced by exter-
nal classes. For example, the reference package blueprint of MailReader::Filters
(Figure 3.9 (p. 53)) shows that it contains classes without any package internal ref-
erence – since there is no gray boxes within the head surface. On the other hand,
almost all classes of MailReader::Filters (four classes from five) are referenced
by classes into the package MailReader (see the surface denoted by MailReader
within the package blueprint of MailReader::Filter). The package HTML::Forms also
presents such characteristics.

During our inspection, we found that these packages are defined around class in-
heritance instead of inter-class references: HTML::Forms is defined around the in-
heritance hierarchy of the class FormInput; similarly the package MailReader::Filters
does (see inheritance package blueprint in Figure 3.10 (p. 53)).

Co-Referencers. Figure 3.9 (p. 53) shows that the packages RemoteDirectory and Tel-
NetWordNet are referencing together the same set of packages within Network:
both refer to classes into Kernel, Protocols and Url packages (see the green and
orange surfaces within the body of blueprints). This gives us an idea about
the similarity between RemoteDirectory and TelNetWordNet packages in terms of
package co-referencing within Network.

Looking more closely at the referenced packages (in Kernel, Protocols and Url
blueprints), we see that the similarity between RemoteDirectory and TelNetWordNet

54

3.6. Packages Within Their Software System

is improper at the class granularity level: the referencing classes of RemoteDi-
rectory and TelNetWordNet packages do not reference the same classes within the
cited referenced packages.

Except for Protocols package, the classes ServerDirectory and SuperSwikiServer of
RemoteDirectory package, PortugueseLexiconServer and WordNet of TelNetWordNet
package, all refer to the class HTTPSocket.

For Url package, the classes SuperSwikiServer, PortugueseLexiconServer and WordNet
refer to the class MIMEDocument class, while ServerDirectory refers to FileUrl.

However, we see that the classes PortugueseLexiconServer and WordNet of TelNet-
WordNet package, both refer to the same set of classes (HTTPSocket within Protocols
and MIMEDocument within Url). It is worth to note that WordNet is a superclass
of PortugueseLexiconServer (we can see that in the inheritance blueprint of TelNet-
WordNet, Figure 3.10 (p. 53)). Thus PortugueseLexiconServer inherits the behavior of
WordNet. We think that it is a design defect that a subclass references the same
set of classes as its superclass.

3.6.3 Inheritance Package Blueprint Overview

Finally during our case studies, thanks to the inheritance package blueprint, we
identified a few remarkable usage patterns: a package can mainly contain big inher-
itance hierarchies (potentially a single one); classes in a package may inherit from
superclasses within the system itself or from frameworks or the base system; or a
package can specialize functionality and have few internal inheritance dependencies.

Mispackaged inheritance root. Figure 3.10 (p. 53) shows all the package inheritance
blueprints of the Network subsystem in Squeak. It shows that there are only
two places where classes inherit from classes within the Network subsystem
scope: HtmlEntity and OldSimpleClientSocket. HtmlEntity is defined in HTML::Parser
package and directly inherited by a lot of classes within HTML::ParserEntities
package; OldSimpleClientSocket is defined in Kernel package and inherited by the
class HTTPSocket within Protocols package. Note however that HtmlEntity class has
blue fill color; this indicates that it is an abstract class.

Clicking on the HtmlEntity box, we can see that it is defined in the HTML::Parser
package, away of all its subclasses defined in HTML::ParserEntities. We consider
that it is defined in the wrong package.

Heavy inheritance structured packages. We can immediately spot that some pack-
ages are heavily structured around inheritance. Examples are: the package
HTML::ParserEntities where the main class, in terms of inheritance, is HtmlTextualEn-
tity; the package Url is structured around Url class which is internally inherited
by almost all Url package classes; HTML::Forms or MailReader::Filters where both
define a single hierarchy.

Heavy referencing classes. The overview also shows classes doing a lot of references
(indicated as black boxes) such as HTTPSocket in Protocols package, HtmlFormatter
in HTML::Formatter package, HtmlInput in HTML::ParserEntities package, FileInput in
HTML::Forms package and TextClassifier in MailReader::Spam package.

55

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

However, in the context of inheritance, we should pay attention to the fact
that all the subclasses of a class inherit its behavior and references. The case
of HtmlInput in HTML::ParserEntities package and FileInput in HTML::Forms package
is interesting: while they are inheritance leaves, they are darker than other
classes, in particular than their superclasses, which means that they make direct
references radically more than their superclasses; this indicates that such classes
are complex and may heavily specialize their superclass inherited behavior.

This case is the reverse of that of DHtmlFormatter in HTML::Formatter package and
SpamFilter in MailReader::Spam package – since these classes do direct references
radically less than their superclasses.

3.6.4 The views together

While the views are simple, they convey powerful information. For Inheritance
Package Blueprint, we can see that the percentage of black-bordered boxes reveals
the amount of internal reuse. Orange-bordered classes that inherit from a cyan class
indicate reuse of functionality from outside the system. Note that this is different
from many orange-bordered classes inheriting from a black-bordered one (like with
HtmlEntity in HTML::ParserEntities), since a lot of classes inherit from Object and indeed
do not share the same domain. In contrast, inheriting from HtmlEntity clearly reuses its
domain.

In addition to that, Inheritance Package Blueprint is an interesting complementary
view to Reference Package Blueprint.

For example, in Section 3.6.1 (p. 49) we proposed to move the classes InternetConfigu-
ration and SocksSocket from Kernel package to Protocols package – since these classes are
not referenced within Kernel and reference the class HTTPSocket defined in Protocols
package. The inheritance package blueprint of Kernel package (Figure 3.10 (p. 53))
shows that InternetConfiguration class has no inheritance relationship within Kernel, thus
moving InternetConfiguration to Protocols package will not break any inheritance hierar-
chy within the package. package blueprint also shows that SocksSocket class inherits
from Socket class within Kernel. Indeed the package Protocols has an inheritance rela-
tionship with Kernel package (HTTPSocket in Protocols inherits from OldSimpleClientSocket
in Kernel) that does not affect SocksSocket. Moving SocksSocket to Protocols package will
then not change the inheritance layering within Network system.

3.7 Striking Shapes

While applying blueprints to large software systems we identified some striking
shapes that the blueprint, a surface or a class within a blueprint would produce. We
present here most frequent ones.

3.7.1 Shapes of Packages and Surfaces

Sumo Package. A very large and tall reference blueprint denotes a package that
makes a lot of references from many classes. Figure 3.11 (p. 57) shows an

56

3.7. Striking Shapes

argouml::uml::cognitive::critics

C
rU
M
L

M
o
d
e
l

F
a
c
a
d
e

Figure 3.11: A Sumo Blueprint: the Critics package in ArgoUML. The view is in the
context of the subsystem argoUML::uml.

example: the package Critics of ArgoUML that defines all the rules for assessing
the quality of models.

Small House Package. A small inheritance blueprint with only a couple of surfaces
and few inheritance hierarchies often denotes a package that offers a well
packaged functionality, like Protocols (Figure 3.10 (p. 53)). Such blueprints are
usually taller than larger.

57

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

Flat Head Package. A reference blueprint with a wide but flat head indicates limited
internal references. HTML::ParserEntities in Figure 3.8 (p. 51) is flat head blueprint.

Exclusive External Referencer Package. When the first column in a outgoing refer-
ence blueprint is almost or completely cyan, the package makes most or all of
its external references to classes outside the scope of the analyzed system. These
packages typically extend a framework or a core library; Kernel in Figure 3.8 (p.
51) is an example.

Network::Url::Tests

Network::MailSending

Figure 3.12: A Loner Blueprint: Url::Tests and MailSending packages in Network.

Loner Package. A loner is a package that contains only a couple of classes. It is often
containing a single test case class. The blueprints of Url::Tests and MailSending
packages in Figure 3.12 (p. 58) or MailReader::Categorizer, UUID, MailReader::Spam of
Figure 3.10 (p. 53) are loners.

Tower Package. A reference blueprint with a small head and a thin body denotes

azureus::ui::swt::views::peer

Figure 3.13: A Tower Blueprint: the Peer package in Azureus. The view is in the context
of the subsystem azureus::ui::swt::views.

58

3.7. Striking Shapes

a package with few internal references but that makes many external refer-
ences. This package may not be cohesive but highly coupled with the external
packages. The package peer in Azureus is an extreme of this shape, as shown
in Figure 3.13 (p. 58). In Figure 3.8 (p. 51), RemoteDirectory package has a more
cohesive head and three classes intensively referencing external packages.

Large External Surface. When the topmost external surfaces are really large, like
the four surfaces below the head in Figure 3.11 (p. 57), they identify packages
that we must pay attention to, because changes in these external packages will
very probably impact the package under analysis. In Figure 3.9 (p. 53), most
right external surface of Kernel package blueprint, denoted by Protocols, and of
MailReader::Filters, denoted by MailReader are large external surfaces. They indi-
cate that those referencing packages, Protocols and MailReader, heavily depend
respectively on Kernel and MailReader::Filters.

Dark Head Package. A package whose almost, if not all, classes have references
among them will have a reference blueprint with a dark head surface, since
there are a lot of gray boxes within the head surface; this denotes a package that
is quite cohesive from the point of view of inter-class references. In Figure 3.9
(p. 53), SqueakPage has clearly a dark head.

White Head Package. This is the reverse case of Dark Head Package. In this pattern,
the package contains classes that are loosely coupled (i.e., the density of internal
references among its classes is very small), since there are a very small number
of gray boxes within the head surface. Such as the case of MailReader::Filters and
HTML::Forms in Figure 3.9 (p. 53), which have clearly a white head.

3.7.2 Shapes of Classes

Main Referencer Class. A vertical alignment of dark squares in the body of a refer-
ence blueprint denotes a class that is responsible for many references to classes
in other packages. The classes HTTPSocket and ServerDirectory are the main refer-
encers in packages Protocols and RemoteDirectory; they are candidates to be central
package classes (Figure 3.8 (p. 51)).

Main Internal Referencer Class. When vertical alignments are limited to the head,
they reveal classes doing many internal and few external references. These
classes often define the abstraction of the system. In Figure 3.8 (p. 51), the class
Url only references classes within Url package.

Omnipresent Referenced Class. Classes of this kind are referenced by almost all the
internal classes, and easily identifiable by filled rows in a surface. See the row of
CrUML class in Figure 3.11 (p. 57). This makes sense for a facade class if it occurs
a few times, but in ArgoUML we see this shape in most packages for Facade and
Model (see Figure 3.11 (p. 57)); we may thus assess that the Facade pattern is
misused.

59

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

3.8 User Case Study on Squeak Compiler

We performed a controlled user study to assess whether developers could easily use
the blueprints. The case study we proposed is the Squeak Compiler system, which is
composed of 4 packages (Kernel, ParseNodes, Support and Tests) containing a total of
33 classes (Figure 3.14 (p. 60)). We chose this case as we are familiar with the Squeak
compiler. So we can better appreciate the information that the view provides. As in
addition, compilers are systems that every one knows more or less, and, it is easier

ParseNodesKernel

Tests

Support

Parser

DecompilerConstructor

ParseNode

PrimitiveNode
Encoder

(b) Inheritance Blueprints for Compiler packages

(a) Outgoing Reference Blueprints for Compiler packages

Tests

ParseNode
ParseNodes

MessageNode MethodeNode

TextStyle Text

Kernel

Support

Support
Decompiler
Constructor

SyntaxAttribute

TextEmphasis

TextColor
Text

Parse
Nodes

Kernel

Kernel
Parser

ColoredCodeStream

TextEmphasis

Text

TextColor

Color

Text

Graphics

TextMorph
Editor TextSupport

UIManager ToolBuilder

ParseNodes

Encoder

Support

Figure 3.14: Global view in Compiler system. In this view, the class Parser is highlighted
in green, the class ParseNode in red and the class DecompilerConstructor in blue.

60

3.8. User Case Study on Squeak Compiler

for testers to make hypotheses. Another argument is that compilers generally contain
interesting patterns and are not too small nor too big in terms of size and complexity.

3.8.1 Experimental Setup

We first explained the visualization to the testers and gave them the paper that
describes the first version of the Package Blueprint [Ducasse et al., 2007], as well as
related slides. Then we showed them how to use our tool for detecting patterns in
the Network system. The demo helps them learn how to use the views. Such demo is
important since it shows step by step how to quickly get information from the views.

To define the questions, we have tested them internally to know if they are
understandable and meaningful. Hereafter are the questions with comments on the
rationale behind them:

1. Can you identify the main abstractions/classes of each package?

With this question we want to know if the reader can quickly identify the main
entities, and learn if they are meaningful.

We know that the main classes in Compiler are: the class ParseNode defined
in ParseNodes package, which is the top super class for all the parser node
classes. It is also the super class of the classes Encoder and DecompilerConstructor
(see Figure 3.14 (p. 60) (b)). The classes Parser and Encoder in Kernel package and
DecompilerConstructor in Support package are main classes in Compiler. These classes
uses heavily the ParseNodes classes and are the responsible of code parsing and
compiling.

2. Can you identify how these main classes interact within the package and within the
system? Are there classes doing most of the internal/external references?

This question checks if testers get how a package blueprint helps them see the
relationship between packages. The user learns how to select classes and finds
if they are referenced or if they make references.

It was clear for us that the ParseNode class and its subclasses are heavily refer-
enced and used from the classes DecompilerConstructor, Parser and Encoder.

3. How would you qualify the references from MessageNode class? Compare it to
MethodNode?

This question checks if the testers are focusing on the understanding of a single
package and comparing its classes.

We know that MessageNode is the main referencing class in ParseNodes package:
it refers and uses 5 classes of ParseNodes package and does few references to
classes outside ParseNodes. While MethodNode class does not refer to any class in
ParseNodes package and does many references to classes outside this package.

4. How would you qualify the cohesion of Support package?

This question brings the user to focus on the head of the package blueprint as it
gives information about the cohesion among enclosed classes. We check if the
testers have understood that.

61

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

5. Do you identify some misplaced dependencies with packages outside the compiler
system?

By inspecting Compiler package view, we noticed several misplaced depen-
dencies and we want to know if the user can find them. Those misplaced
dependencies are: in Kernel package, the class ColoredCodeStream references
classes Text, TextColor and TextEmphasis in Text package; the class Parser refer-
ences TextMorphEditor class in TextSupport package and UIManager class in ToolBuilder
package.

6. Under the assumption that a package containing classes referenced by other packages
should be loaded first, can you identify a loading order for the system?

We noticed that the three packages of the Compiler system depend on each other
cyclicly, this just by clicking on each of them in the view. Does the user easily
capture this?

7. Using the inheritance view, what can you say about the shape of the ParseNodes
package?

The parse node classes belong to the same hierarchy tree and are defined in one
package. This is the common way of declaring a parser tree. It allows one to
define visitors to walk the tree and it is easier to annotate it. We would know if
the user arrives to this conclusion.

8. Can you tell us something about the class ParseNode hierarchy?

We took the strangest things in the hierarchical view of the compiler to see
whether the user can spot it out or not. All nodes inherit from ParserNode class
except for PrimitiveNode class. This is not a good design since the node should be
polymorphic to ParseNode.

9. Do you think that you would have got the answers to our question in the time allocated
without the help of visualization?

We want to know if the user finds our views handy to understand the compiler
system. We also want to have suggestion to improve the usability of the view.

3.8.2 Results

The case study was conducted with 20 people, from master students to experienced
researchers, with various programming skills and experience with software projects.
We gave them a limited amount of time: one hour to perform the study.

For the first question, most of users identified the classes ParseNode and Mes-
sageNode in ParseNodes package, Parser in Kernel package, and DecompilerConstructor
in Support package, as the main classes of the packages. This was expected: they
did not identified Encoder class as a main class. They based their conclusions on the
quantity of references and inheritance dependencies with these classes, and whether
the referenced classes were within or outside of the system boundary. The remainder
of users had exactly our estimation: they also identified Encoder as a main class in
Kernel package – since it is referenced by the main class Parser.

62

3.9. Evaluation and Discussion

For the second and third questions, all users have been able to correctly answer
them.

For the 4th question, about 50% (11 users) of testers have identified the Support
package cohesion as very low. Two users have identified Support package as very
cohesive, without justifying their answers. The remainder of the users (9) skipped
this question. We think that we had to define what we mean by package cohesion.
On another hand, in the first version of the Package Blueprint [Ducasse et al., 2007],
packages that have not internal references do not have a head surface. Some users
have found that such a visual mapping is not helpful, since they cannot analyze what
they cannot see (e.g., the package size, classes and internal references). In this version,
we optimized the visualization in a way that users always see package size, classes
and internal references, if any.

For the 5th question, only five users were not able to identify the misplaced
dependencies that we identified. Some of them have declared that they did not
understand the question. Similarly for the 6th question, most of users have found that
the three packages (Kernel, ParseNodes and Support) depend on each other cyclicly and
we cannot know the loading order of Compiler packages. Some of those users added
that it is more probable to load the package ParseNodes at first – since other packages
depend heavily on ParseNodes and extend its class ParseNode – this was a good answer.
A couple of users said that we can easily and quickly answer this question by doing
an automatic dependency analysis using Smalltalk cross referencer, rather than using
the Package Blueprint.

For the 7th and 8th questions, more than 50% (12 users) captured that ParseNodes
package contains a single domain defined by the class ParseNode. They found that
the hierarchy of ParseNode class is coherent. They also spotted that it is not normal
that the class PrimitiveNode does not belong to the hierarchy of ParseNode class. The
remainder of users skipped these questions and mentioned that the questions are
confusing.

Almost all the users concluded positively to the last question indicating that the
visualization was useful. They underlined that the package blueprint was helpful
to extract information about the Compiler system in a very short time and indicate
that they would need really more time to do the same thing without the package
blueprint.

Some of the testers proposed enhancements such as adding a fly-by-help to explain
the nodes to ease the learning curve of the visualization. All those propositions were
integrated in the package blueprint new version presented in this chapter.

3.9 Evaluation and Discussion

3.9.1 Evaluation

As illustrated in Section 3.6, Package Blueprint allows its user to extract information
from the internal structure of a package, its clients as well as the provider packages it
uses. Now we revisit some of the information that we listed in the beginning of the
chapter.

Size. Package Blueprint highlights the complexity of the observed package in several

63

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

dimensions. For outgoing reference blueprints, the height of the body indicates
the amount of external classes referenced, whereas the number of surfaces
shows the number of referenced packages. Each individual surface height
shows how many classes are referenced in the corresponding package. This
gives us an estimate of the coupling between the package and this surface; to
further evaluate the coupling strength, we should also look at the intensity of
referencing classes in the surface because it represents the number of references.
In addition, surface width indicates the number of referencing classes.

Combined together these visual properties offer a quick impression not just
about the visualized package, but also about its classes: a thin package with
a long body depends on a lot of classes because of few internal classes. If
moreover the blueprint is heavily lined, i.e., it references a lot of packages, so
some of its referencing classes may be complex and fragile.

The same situation occurs with incoming reference and inheritance blueprints
but from the view point of referencing packages/classes and inheritance depen-
dencies.

Central or Peripheral. For outgoing reference blueprints, by looking at the border
color of external classes (cyan or black), we can easily see if a package depends
a lot on the framework or on the system. Also, through incoming reference
blueprints, we can see if a package is used by different subsystems (central) or
just by specific ones (peripheral).

Cohesion and Coupling. package blueprint also makes it possible to roughly com-
pare how several packages are coupled with the observed one: larger surfaces
indicate coupling to more classes and are positioned nearer to the head surface,
while surfaces with more darker class squares represent packages which are
more coupled in term of sheer number of references. We can also estimate
cohesion by comparing internal coupling (size and overall intensity of the head
surface) and external coupling.

Co-changes and Impact Analysis. Because package blueprint details how packages
depend on each other, it hints at the fragility of the observed package to changes.
Selecting a package or a class highlights surfaces or classes that reference the
selected entity and are thus sensitive to its changes.

3.9.2 Discussion

Our approach has worked well on our case studies (it helped us to get important
structural information efficiently). It should be noted that we were not familiar with
the case studies such as the Network system before applying our approach. We have
been able to locate many conceptual bugs. Our first evaluation with end-users is also
promising, even if we are aware that the number of participants was not significant
for drawing larger conclusions.

In conjunction with other tools. We do not consider that package blueprint should
be used in isolation. In our recent work on remodularisation, we use DSM [Laval
et al., 2008, 2009] to spot cyclic dependencies, then we zoom on the packages and

64

3.9. Evaluation and Discussion

use package blueprint to get a finer understanding of the package references.
The synergy between DSM and package blueprint proved to be really useful. In
addition, sometimes we complement the view using Distribution Map [Ducasse
et al., 2006a,b] to understand how a property (such as developers) spreads on a
set of packages.

Let us now discuss some of the visualization choices we made.

Position Choices. We grouped the internal references at the top of the package
blueprint, then ordered the surfaces from the ones having most external ref-
erences at the top to the least at the bottom; inside a surface, we also ordered
the rows from most referencing ones to the least. This way, we do not force the
reader to scroll through big visualizations, and use the fact that the reader pays
more attention to the top elements than to the bottom ones. We also tried to
layout surfaces compactly so that we can easily move them. According to this
principle, internal classes that do not do any reference are placed in the bottom
of the left most column in the head.

Seriation. Rows within a surface are sorted according to the number of references
they contain. In an earlier version we applied the dendrogram seriation al-
gorithm [Jain et al., 1999] to group lines having similar referencing classes.
However the resulting views were not as meaningful as with a simple ordering.
We thus plan to use seriation to group packages having similar surfaces i.e.,
packages using similar packages.

In a package blueprint head, internal classes are ordered so that the head
presents a symmetric matrix. This way, when the user focuses on the i column
(i.e., a column reserved for class x) s/he can easily see the information about
the internal references within the package of this class by looking to the i row
in the package blueprint head. Such an ordering reveals also the direct cyclic
references within the package under consideration. In previous versions, the
head only showed classes performing references [Ducasse et al., 2007] and our
users suggested such a change to be able to grasp package size.

Impact of Boundaries. We color classes that do not belong to the system in cyan.
This way, users distinguish clearly the dependencies from/to classes packaged
outside the analyzed system, from the dependencies among the analyzed sys-
tem classes. This is a bit limited in inheritance blueprints because we do not
distinguish well the true root classes —e.g., Object or Model in Squeak — from
other classes that are packaged outside the analyzed system.

We found it really effective to color surfaces so that the user can interactively
mark entities on which s/he wants to focus on; this increases the usability of
the tool and speeds up understanding packages.

Shapes. For the time being we represent the classes with squares only. We could
convey more information by using several visually distinct shapes. But it is not
clear which ones and how efficient the results will be since the shape size is
intentionally quite small to provide a compact overview.

65

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

Package Nesting. Currently we do not support package nesting. A solution like the
one proposed by Lungu et al. seems complementary to ours and interesting to
deal with package nesting [Lungu et al., 2006].

Outgoing vs. incoming. Having two views showing different flows of dependencies
can be confusing and it took us several attempts and experiments to find a
solution so that the reader can distinguish the incoming and outgoing flows.

3.10 Related Work

Several works provide or visualize information on packages. Many of these ap-
proaches treat software co-change, looking at coupling from a temporal perspective,
whereas in this chapter we focus on the static structure of dependencies [Beyer, 2005;
Eick et al., 2002; Froehlich and Dourish, 2004; Storey et al., 2005; Voinea et al., 2005; Xie
et al., 2006].

Lungu et al. guide exploration of nested packages based on patterns in the package
nesting and in the dependencies between packages [Lungu et al., 2006]; their work is
integrated in Softwarenaut and adapted to system discovery.

Sangal et al. adapt the dependency structure matrix from the domain of process
management to analyze architectural dependencies in software [Sangal et al., 2005];
while the dependency structure matrix looks like the package blueprint, it has no
visual semantics.

Storey et al. offer multiple top-down views of a system, but these views do not
scale very well with the number of dependencies [Storey et al., 1997].

Ducasse et al. present Butterfly, a radar-based visualization that summarizes
incoming and outcoming dependencies for a package [Ducasse et al., 2005b], but only
gives a high-level client/provider trend.

In a similar approach, Pzinger et al. use Kiviat diagrams to present the evolution
of package metrics [Pinzger et al., 2005].

Chuah and Eick use rich glyphs to characterize software artefacts and their evolu-
tion (number of bugs, number of deleted lines, kind of language...) [Chuah and Eick,
1998]. In particular, the time wheel exploits preattentive processing, and the infobug
presents many different data sources in a compact way.

D’Ambros et al. propose an evolution radar to understand the package coupling
based on their evolution [D’Ambros and Lanza, 2006b]. The radar view is effective at
identifying outliers but does not detail the structure.

Those approaches, while valuable, fall short of providing a fine-grained view of
packages that would help understanding the package shapes (the number of classes it
defines, the inheritance dependencies of the internal classes, how the internal classes
inherit from external ones...) and support the identification of their roles within an
system.

3.11 Conclusion

In this chapter, we tackled the problem of understanding the details of a package with
a focus on its dependencies in terms of relationships among classes. We described

66

3.11. Conclusion

the Package Blueprint, a visual approach for understanding package dependencies.
Package Blueprint is a compact visualization supporting large overview without
losing the essential details (references and inheritance among classes). Therefore it
can be used to get a first impression of a system and also to understand fine-grained
structures and relations.

While designing the Package Blueprint, we tried to exploit gestalt visualization
principles and preattentive processing. We successfully applied the visualization
to several large software systems and we have been able to point out core classes,
misplaced ones, and badly designed packages. We also introduced interactivity to
help the user focus and navigate within the system.

We validated the Package Blueprint usability by conducting tests with several
software maintainers. The results were positive, even if the number of testers was
low (20). Testers concluded that the Package Blueprint is useful for understanding
and analyzing packages. They specially underlined that the Package Blueprint helps
them to reduce the time and effort during maintenance tasks.

In this chapter, we showed that the Package Blueprint helps to understand pack-
age structure: i.e., to answer the quantitive information questions that we listed in
Section 2.3.1 (p. 23). We also showed that it helps to assess package cohesion based on
class internal dependencies. This cohesion approach is most related to the Common-
Closure Principle (CCP) of package cohesion (Section 2.3.2 (p. 23)). The limitation of
the Package Blueprint is that it does not help well to understand: (1) package role and
contextual information (Section 2.3.3 (p. 25)); (2) the usage of package interfaces and
package cohesion based on the Common-Reuse Principle (CRP: Section 2.3.2 (p. 23)).

67

Chapter 3. Package Blueprint:Visually Understanding Package Structure and Interactions

68

Chapter 4
Package Fingerprints:
Visually Summarizing Package
Interface Usage

Note for the reader: this chapter makes heavy use of colors in the figures. Please obtain and read an
online (colored) version of this chapter to better understand the ideas presented in this chapter.

4.1 Introduction

In the previous chapter we defined the Package Blueprint visualization which presents
a condensed view of a package in terms of its relationships to other packages. It acts
as a map and puts in situation the references between packages. Although that a
package blueprint provides a compact view and shows dependencies on a per-class
basis, it does not help users to group from a usage perspective the client/provider
packages for the package under analysis, nor to identify the cardinalities of package
interfaces and their use. But, as we underlined in Section 2.3 (p. 21), maintainers need
understand package contextual information (Section 2.3.3 (p. 25)) and assess package
design quality (i.e., the principles of package cohesion: Section 2.3.2 (p. 23)).

On the other hand, in the existing literature of package design quality [Abreu and
Goulao, 2001; Melton and Tempero, 2007; Ponisio and Nierstrasz, 2006; Rising and Calliss,
1992], we distinguish two main approaches for assessing package cohesion. The
first approach defines the cohesion of a package in terms of the interdependencies
between its internal classes. The second approach defines cohesion according to how
the system uses the package classes. For instance, if two classes of a package are used from
the same client package, then they are considered as conceptually coupled, regardless of the
explicit relationships that exist between them [Ponisio and Nierstrasz, 2006]. This approach
is meaningful to us, because we consider a package as functionality provider and not
only a structural grouping of inter-dependent classes. Contextual Cohesion is the name
we use for package cohesion regarding this approach.

As we explained in Section 2.5 (p. 29), many metrics have been defined to compute
package cohesion and determine packages that are candidates for restructuring.

69

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

However, those metrics do not help maintainers when they face the problem of
understanding how packages are used in general and how packages are in relation
with each other in their provider/client roles. On another hand, the existing works on
software visualization, together with the Package Blueprint presented in Chapter 3
(p. 39), fall short of providing a fine-grained view of packages that would help
maintainers understand and assess the package interfaces, their usage and their
contextual cohesion.

Contribution of the chapter

In this chapter, we present the Package Fingerprint, a compact, rich and zoomable visu-
alization to better support the understanding of package interfaces, relationships and the
conceptual coupling of package classes (i.e., package contextual cohesion). The goal of this
visualization is to help maintainers during their early contacts with unknown pack-
ages. We propose two complementary variants of the Package Fingerprint, structured
around the distribution of references from or to the classes of the analyzed package:
the incoming fingerprint shows how the system uses the package classes, and highlights the
cohesion of the analyzed package, as defined by Ponisio [Ponisio and Nierstrasz, 2006]; the
outgoing fingerprint shows how the package classes use the system.

The content of this chapter was the object of our paper submitted to the Information
and Software Technology (IST) journal [Abdeen et al., 2009a], as an extension of our paper
published in CSMR’08 [Abdeen et al., 2008].

Structure of the chapter

In Section 4.2 (p. 70) we present the principles of the incoming and the outgoing
fingerprints. Then, in Section 4.3 (p. 76), we show how to use the incoming fingerprint
in practice, for analyzing and understanding package interfaces and their contextual
cohesion. Section 4.4 (p. 79) presents the different zoom levels of a fingerprint and
shows how to read a fingerprint from far away. Section 4.5 (p. 82) presents the outgoing
fingerprint via a simple example, and Section 4.6 (p. 85) lists the relevant visual
patterns in incoming and outgoing fingerprints. Finally, we discuss our approach
and conclude in Section 4.7 (p. 98) and Section 4.8 (p. 102).

4.2 Package Fingerprint Principles

Our aim is to provide an approach that helps maintainers understand packages in
their context, regardless of what happens inside packages – since this is considered
as a hidden-information from the point of view of its system [Ponisio and Nierstrasz,
2006]. We will focus on a package as a provider and/or client offering and/or
requiring functionalities to/from other packages within a system.

We propose two complementary views for incoming and outgoing references
through the Fingerprints. The objective of Package Fingerprints is to provide an
overview of package cohesion and coupling by stressing the client/provider relation-
ships of the classes contained in the considered package. As such it is complementary

70

4.2. Package Fingerprint Principles

to traditional coupling/cohesion metrics [Arisholm et al., 2004; Briand et al., 1998].
Before going in detail, we setup the vocabulary and the intention of Fingerprints.

P2
P1

P3

A1

B1

C1

D1 E1

client
packages

In-Interface

A2

A3

P4

A4
B4

F1

H1

I1

G1

P5

A5
B5

P6
A6

B6

C6

provider
packages

Out-Interface
package under analysis

Legends: Internal reference External reference

Figure 4.1: Terminology – An example of references between packages

P1

A1

B1

C1 D1 E1

client
packages In-Interface

… and from
P4 and P3

classes referenced
from P2 only

… from P3 and P2

P2

P3

P4

S1

S2

S3

(a) Grouping the classes of the In-Interface of P1

by common client packages.

P1

F1

H1C1

I1 G1

provider
packagesOut-Interface

classes referring
to P5 only

… to P5
and P6

P5

P6
… and to
P6 only

R1

R2

R3

(b) Grouping the classes of the Out-Interface of P1

by common provider packages.

Figure 4.2: Grouping incoming and outgoing references into In- and Out- interfaces.

4.2.1 Terminology

As shown in Figure 4.1 (p. 71) and 4.2, the size (i.e., number of classes) of the In-
Interface gives maintainers a quantified information about the dependency of the
system on the package under-analysis P1, while the number of referencing packages
shows the importance of P1 for the system. Similarly, the size of the Out-Interface of
P1 gives maintainers a quantified information about the dependency of P1 on other

71

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

packages, while the number of referenced packages shows how much P1 depends on
the system.

Since referencing a class is an indicator of the usage of that class functionalities,
referencing a group of classes in a consistent way is an indicator of the usage consis-
tency of those classes. Such a referenced group, that we name a service, represents
classes whose functionalities are consistently used together.

Definition 7 (Service) In the context of a package P, we mean by Service, the set of classes
of P In-Interface which are referenced together by the same group of packages.

On another hand, Martin [Martin, 2002b] defines a class responsibility as a reason
for change. From the view point of inter-class references, if a class A refers to another
one B, changes in B may be a reason for changes in A. At a high level of abstraction, if
A refers to a package P, changes in P may be a reason for changes in A. In this context,
we define a package reason for changing as follows:

Definition 8 (Reason for Changing) In the context of a package P, we mean by Reason
for Changing, the set of classes of P Out-Interface which refer together to the same group of
packages.

4.2.2 Fingerprint Intention

To understand the multiple facets of a package, we group its classes according to
their usage by other packages and their usage of other packages. Figure 4.2(a) (p. 71)
shows the In-Interface classes of P1 grouped into clusters as well as the references
that point to those clusters, while Figure 4.2(b) (p. 71) shows the Out-Interface classes
of P1 grouped into clusters as well as the references that go out from those clusters.
Figure 4.2(a) (p. 71) shows that P1 provides three services (S1, S2 and S3): the service
S3 is used by the client packages P3 and P4; additionally, P3 with P2 use the service
S2; the service S1 is used by the client package P2 only. Figure 4.2(b) (p. 71) shows
that P1 involves three reasons for changing (R1, R2 and R3): R1 represents the class
F1 which refers to P5, R2 represents the classes C1 and H1 which refer to P5 and P6,
while R3 represents the classes I1 and G1 which refer to P6.

Clustering the In-Interface and Out-Interface helps identifying the inter-dependencies
between the package under analysis and the system, and thus which classes are con-
ceptually coupled and which classes are not. At a higher level of abstraction, this
helps answering the following questions:

• What services does the package provide?

• Which packages use those services?

• Does the package include classes that are always used together or not?

• Does the package include classes that use the same services/packages or not?

• Which are the reasons for changing the package?

• How are those reasons for changing distributed over the package classes?

72

4.2. Package Fingerprint Principles

The incoming fingerprint shows how the package under analysis is used by the
system and how this use is distributed over its classes. The outgoing fingerprint
shows how the package under analysis uses the remainder of the system. Since we
use the same approach for both views, we only present the incoming fingerprint in
details and briefly sketch the outgoing fingerprint further on.

Fingerprints have the four following properties: they are compact (only the refer-
ences are shown), zoomable (different levels of information are proposed), entity-based
in the sense that they focus on one package, and semantically rich since they present
multiple types of information at a glance.

Figure 4.3 (p. 73) depicts the key visualization principles of an incoming Fingerprint
with P1 from Figure 4.1 (p. 71) as the package under analysis. We first present the basic
layout before introducing additional features we give to convey more information on
package relationships.

P3 → P1
∩

P2 → P1

P3 → P1
∩

P4 → P1

P2 → P1
∩

P4 → P1

P2 → P1
∩

P3 → P1

P4 → P1
∩

P2 → P1

P4 → P1
∩

P3 → P1

P1 P3 P4 P2

P3

P4

P2

P3 → P1

P4 → P1

P2 → P1

Diagonal
 distribution of references

from P2 to P1
over classes in In-Interface of P1

Borders
packages referencing P1 sorted by
number of referenced classes in P1

Analyzed
package

P2's
references to

P1

P2 → P1
∩

P3 → P1

Co-Using
 classes in In-Interface of P1

used from
both P2 and P3

P3 → P1
P3 references to P1

1
class

3
classes

01
class

03
classes

5
classes P3 P4 P2

P3

P4

P2

4
classes

3
classes

2
classes

P1 In-Interface
classes

Figure 4.3: The Incoming Fingerprint skeleton with P1 (Figure 4.2(a) (p. 71)).

4.2.3 Fingerprint Skeleton

The Fingerprint skeleton layout is the following:

Analyzed Package. The top left corner cell indicates global information about the
package under analysis (here P1): the size of its In-Interface and the internal
references between its classes. Internal references are explained and illustrated
in Section 4.2.4 (p. 74).

73

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

Referencing Packages. The cells at the borders of the fingerprint, i.e., the leftmost
column and the topmost row, both represent the referencing packages placed in
the same order horizontally and vertically (i.e., there is a symmetry). Packages
are sorted according to the importance of their references: the more referenced
classes a package refers to, the closer it is to the top left corner. Figure 4.3 (p.
73) shows the three packages that refer to P1 in Figure 4.1 (p. 71): P3, P4, and P2,
referencing respectively four, three, and two classes inside P1.

If two packages make the same number of references, we then group them
using a similarity criterion. We define this latter in an incoming fingerprint,
as the number of shared referenced classes among packages. For example, in
Figure 4.2 (p. 71), we consider that P4 is more similar to P3 (3 referenced classes
in common) than to P2 (no referenced class in common). Conversely, we define
the similarity of referenced classes by the number of referencing packages they
share. Figure 4.2 (p. 71) shows that the similarity between C1 and D1 (2 common
referencing packages P3 et P4) is higher than the similarity between C1 and B1
(1 common referencing package P3). In any case, the ordering algorithm we
have implemented always respects the number of references prior to similarity.

Cells. The body cells of an incoming fingerprint, i.e., all cells except those on the left-
most column and the topmost row, each represents a subset of the In-Interface
of the package under analysis. This subset contains the classes that are ref-
erenced by both packages placed at the heads of the cell’s row and column.
For a package P that is referenced by P1, . . . , Pn, a cell on row i and column j,
cell(i, j), represents the subset of classes of P that are referenced by both Pi and
Pj (i.e., cell(i, 1) and cell(1, j)). Two situations occur: either a cell is on the main
diagonal or not.

• The main diagonal presents the distribution of the In-Interface on the client
packages. Figure 4.4 (p. 75) shows that cell(3, 3) represents the classes (C1,
D1, E1) referenced by P4, i.e., cell(3, 1) and cell(1, 3).

• The other cells present the classes referenced in common by both packages
represented by the row and column heads. Figure 4.4 (p. 75) shows that
cell(2, 4) contains the class B1, referenced by both P3 and P2.

We define the size of a cell as the number of classes it represents. Hence in
Figure 4.4 (p. 75), cell(2, 2) has as size 4 and cell(3, 3) has as size 3: both cells represent
the classes C1, D1, and E1; in addition the cell(2, 2) represents the class B1.

4.2.4 Enriching the Fingerprint Skeleton Layout

We enrich the skeleton of Figure 4.3 (p. 73) to convey extra information such as the
amount of referenced classes in the analyzed package. For this purpose we use color
intensity for cells, cell borders, and the position of classes within cells.

We selected those visual properties according to several research works that
address the characteristics of efficient visualizations [Tufte, 2001; Ware, 2000]. Partic-
ularly, as our focus is on providing a first impression of a package and its context,
and as we did in the previous chapter (Chapter 3 (p. 39)) for the definition of the

74

4.2. Package Fingerprint Principles

Package Blueprint, we want to exploit preattentive processing as much as possible
to help spotting important information; and we stress that the Package Fingerprints
visualization should respect the properties that we cited in Section 3.2 (p. 40).

Left Border:
Referencing packages

D1 E1

Cell(3, 2)

C1

Cell(4, 3)

B1

Cell(4, 2)

Cell(1, 2) Cell(1, 3) Cell(1, 4)

Main
 Diag

on
al

2

3

P1
D1

A1 C1

E1

B1

Cell(1, 1)
B1

Cell(2, 4)

Cell(3, 4)

A1 B1

Cell(4, 4)

Cell(3, 3)

Cell(2, 2)

E1

Cell(2, 3)

D1 E1

C1

D1 E1

C1

Cell(3, 3)

Cell(2, 1)

Cell(3, 1)

Cell(4, 1)

P3

P4

P2

Cell(3, 1)

Cell(4, 1)

P3 P4 P2

Cell(1, 2) Cell(1, 3) Cell(1, 4)
B1

D1

C1

E1

Cell(2, 2)

Top Border:
Referencing
packages

2

Top Left Corner:

1 Analyzed package
In-Interface

Figure 4.4: Showing the Incoming Fingerprint of P1 (Figure 4.3 (p. 73)) with the classes
involved in the relations inside each cell.

Cell Internals. Inside a cell, we visualize the package referenced classes as small
filled squares.

To enable preattentive processing [Healey et al., 1993], we give each class a fixed
place which is the same in all the cells of a fingerprint. When a cell represents a
package reference to a class of the analyzed package, the location of this class is
colored: in Figure 4.4 (p. 75), since the class B1 is referenced by packages P3 and
P2, the position corresponding to the class B1 is colored in the cell(2, 4). This
way all the cells will have the same geometrical size (i.e., height and width),
but the number of classes represented by the cell is given by the number of the
colored squares inside that cell.

Information on Internal References. Information on internal references among classes
of the analyzed package is visualized on the top left corner (cell(1, 1)). In Fig-
ure 4.4 (p. 75) we see that among the five referenced classes of P1, only C1 is
referenced internally (as it is colored). Additionally, since not all classes will
appear in all cells, we use this corner cell to show all the placeholders for the
classes that have incoming references, as bordered squares.

75

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

Colors. We use color hues to distinguish different entities in the fingerprint (e.g.,
classes, packages), and to give more information about the references. The
colors we use are: (1) shades of grey for all the cells in a fingerprint except the
top left corner, (2) blue for the classes (3) red for the top left corner and for
highlighting the borders of the main diagonal cells (4) orange to highlight the
fingerprint borders, (5) gold to highlight borders of the referencing packages
that are outside the scope of the system under analysis (called stubs thereafter).

Color Intensity. In addition to color hues, we use color intensity to give more in-
formation on the visualized entity: (1) for the top left corner, the darker the
package, the bigger its In-Interface; (2) for the fingerprint borders, the darker a
referencing package, the more classes it references in the analyzed package; (3)
for the body, on a given row, the darker the cell, the more classes it represents.
The darkness of a cell is calculated relatively to the size of the diagonal cell of
that row. As consequence, the cells of the diagonal are black. On the finger-
print borders, we consider the color intensity for a referencing package as an
additional visual information: as referencing packages are sorted according to
the importance of referenced classes and similarity criteria (Section 4.2.3 (p. 73)),
we use a same color intensity for referencing packages with a same number
of referenced classes. Indeed, those packages are placed in different order but
have the same color intensity. Figure 4.4 (p. 75) shows that P3 is darker than P4:
the first package refers to 4 classes in P1 while P4 refers to 3 classes in P1.

The color of the top left corner is based on an In-Interface size ratio: the size
of the In-Interface of P1 is 5 (Figure 4.2(a) (p. 71)) while the size of P1 itself is 9
(Figure 4.1 (p. 71)). Thus the color intensity of this cell equals 5/9.

In Figure 4.4 (p. 75), cell(2, 3) is darker than cell(2, 4), because the first contains 3
classes while the latter contains 1 class; cell(4, 3) is white (i.e., the color intensity
is zero) because no referenced class inside. cell(3, 2) is darker (it is black) than
cell(2, 3) although they both contain the same set of classes: the reason is that
the darkness of the former is relative to the size of cell(3, 3) while the darkness
of the latter is relative to the size of cell(2, 2). This darkness relativity informs
us that: for P1, all the classes referenced by P4 are also referenced by P3 but
some classes referenced by P3 (i.e., B1) are not referenced by P4.

4.3 Decorticating a Fingerprint

In the following section we present an example that illustrates how a fingerprint is
used to analyze package references. Figure 4.5 (p. 77) shows the incoming fingerprint
of the Jboss render::renderer package (referred to as P here), visualized in the context of
his subsystem, named theme. As a whole, Jboss is composed of 499 packages; theme is
composed 15 packages totaling up 119 classes .

No Internal Reference. As depicted by Figure 4.5 (p. 77), none of the small squares
on the top left corner cell (P) is filled: this means that there is no internal
reference within the considered package. Actually, this package only contains
Java interfaces.

76

4.3. Decorticating a Fingerprint

Interfaces that are
for the rendering of

some graphical
items (e.g., Page,

Window, etc.)

Interfaces that are for the
rendering "context" of some
graphical items (e.g., Page,

Window, etc.)

C

render P5

P2

B

D DB

DB

No internal
references

P2

P5

tag::basic

P1

P1

P

stubs

CD

CB

CD CB

impl::render::
dynamic

tag P8

P8

P3

P3

P4

P6

P7

P4 P6 P7

Figure 4.5: The Incoming Fingerprint of the package render::renderer, from the theme
subsystem of Jboss.

Big Number of External Incoming References. The top left cell P is dark red, there-
fore most of the classes of render::renderer have incoming references from other
packages. By looking at the number of squares in cell P we can estimate the
size of its In-Interface (11 classes here).

Small Number of Referencing Packages. The fingerprint has a relatively small num-
ber of rows and columns: only 8 other packages reference classes of the package
under analysis.

Two external packages, P4 and P7, have a gold border color, rather than orange.
This means that they are stubs, i.e., they are not part of the system under analysis
theme. Indeed, when moving the cursor over these cells a fly-by-help reveals
their names test::theme and test::theme::renderer. Thus those two packages are part
of the test subsystem rather than theme, and probably mainly contain test classes.
Moreover, since P (render::renderer) is only used by 6 of the 15 packages of his
subsystem and 2 external test packages, it does not have a direct role outside the
subsystem theme. Thus we can qualify render::renderer as a peripheral package.

Commonly Referenced Classes. Since the small squares representing classes keep
their positions in every cell, they make it possible to spot patterns. For instance,
most cells in the rows of P6 and P7 show the same 3-square shape, highlighting
commonly referenced classes.

77

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

Dominant Package. As P1 is the top/left-most package, we know that it makes most
references to P . We can also see that all cells in the column of P1 are black; this
means that the corresponding packages (P3, P4, P6, P7 and P8) refer to subsets
of the classes that are referenced by P1: P1 is thus a dominant referencer of P .

Classes with different reasons for changing. At a first glance, the fingerprint body
looks quite filled up: only one cell of the main diagonal (B) breaks the fill and
causes a white cross hair shape. A white cell means that there is no shared
reference to P between the two packages for this cell, e.g., there is no shared
reference between P1 and P5, nor between P3 and P5, etc.

The cell B contains 5 squares, for the 5 classes referenced by the package P5.
Cells denoted by DB represent the non empty intersection of cell D with cell B,
i.e., the four classes referenced from both P5 (cell B) and P2 (cell D).

Examining cell CD, which represents the common referenced classes from both
P1 (cell C represents 6 referenced classes) and P2 (cell D represents 6 referenced
classes), reveals that P1 and P2 have only 2/6 referenced classes in common.
For this reason cell CD is lighter than cells C and D. Similarly, cell CB, which
represents the common referenced classes from both P1 and P5 (cell B), reveals
that P1 and P5 do not have common referenced classes. For this reason cell CB
is clearly lighter (i.e., white) than cells C and B.

Thus we learn that the analyzed package contains two disjointed subsets of
classes: the first one with 6 classes (cell C) represents the subset which is
referenced by all the client packages except P5; the second one with 5 classes
(cell B) represent the subset which is referenced only by P5 and P2. P2 refers to
classes of both subsets, but it refers to 4 classes from B (DB) and just 2 from C
(CD). These subsets (C and B) hint at a possible way to split P into two more
cohesive packages.

Based on that, we suspect that it is possible to re-modularize the package, for
example by moving C classes to a new package. This will make the package
under analysis (P) conceptually more cohesive while providing one group of
classes (B) used together by P5 and P2. We check this hypothesis by reading
the code of B and C classes. We learn that B classes represent the interfaces
of item renderings (e.g., PageRenderer, WindowRenderer, etc.), while C classes are
the interfaces of item rendering contexts (e.g., PageRendererContext, WindowRender-
erContext, etc.). The referencing package impl::render::dynamic (P2) contains classes
that implement some of the interfaces of B. The referencing package render (P5)
contains the class renderContext that refers to B interfaces. This class renderContext,
which implements the facade pattern, is responsible of the communication with
different objects whose types are declared via the interfaces (e.g., PageRenderer,
WindowRenderer, etc.). C interfaces are implemented by classes contained in
different packages (e.g., tag::basic, tag) which are responsible of different contexts
of item rendering.

Reading the code reinforced the difference in the usage of both interface collec-
tions (B and C) the fingerprint revealed. It consequently reinforced our idea to
move C classes to a new package, named for example render::rendererContext, for
better modularization.

78

4.4. Reading the Fingerprint From Far Away

4.4 Reading the Fingerprint From Far Away

We introduce two levels of zoom-outs to: (a) keep the visualization compact and
scalable over a number of referencing packages or the size of the interface; (b) support
global visual patterns as presented in Section 4.6 (p. 85), while minimizing information
loss compared to the details presented in Section 4.3 (p. 76).

Zoom-out level 1 Zoom-out level 2

Figure 4.6: The Incoming Fingerprint of renderer package (Figure 4.5 (p. 77)) zoomed-
out twice.

Zoom-out level 1. We do not visualize the cell internals. We only visualize in the
main diagonal the size of each cell, i.e., the number of referenced classes.

Zoom-out level 2. We visualize the fingerprint without the cell internal information
and the size of main diagonal cells.

Figure 4.6 (p. 79) shows the fingerprint of the renderer package, illustrated in Fig-
ure 4.5 (p. 77), zoomed-out twice. In the first zoom-out we do not see the information
about the classes represented by cells, but we can estimate the size of any cell using
its darkness and the size of the main diagonal cell which is located on its row. This
last information is hidden in the second zoom-out.

Interacting with the Fingerprint.

To help users detect quickly information within the Fingerprint, we have introduced
an interaction mechanism to the visualization, as shown in Figure 4.7 (p. 80).

Figure 4.7(a) (p. 80) shows that the selection of a cell makes its fill color gold and its
border color green. In addition it automatically selects all cells that display a subset
of classes presented by the first selected cell. This highlights a family of packages
based on their co-referencing of the analyzed package classes. The fill’s color of the
cells which are automatically selected is also gold but with different intensity. The
cell which contains the biggest number of classes, is the cell with the darkest fill color.
We do the same at the class level: The classes that are contained in the selected cell

79

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

C

P5

P2

B

P2

P5P1

P1

P

P8

P8

P3

P3

P4

P6

P7

P4 P6 P7

Selected
cell

Marked
package

(a) Interacting with the Fingerprint of renderer package (Fig-
ure 4.5 (p. 77)). P5 is marked in yellow and the cell C is
selected (gold fill and green border). Thus, all the classes of
C are highligthed in green. In consequence, each cell that
represents only a subset of those classes is also selected.

B

(b) Interacting with the zoomed-out Fingerprint of renderer package (Figure 4.5 (p. 77)). The cursor is
over the cell B and a fly-by-help shows us B size and the set of the classes it represents.

Figure 4.7: Interacting with the Fingerprint.

get their fill color green. This highlights a family of the analyzed package classes
based on their co-usage.

In addition to the selection and marking mechanisms, we have introduced a new
interaction with the fingerprint: by moving the cursor over any cell a fly-by-help
shows us the size of the cell and the set of the classes it represents (Figure 4.7(b) (p.
80)).

Reading the Fingerprint.

We believe that a package fingerprint, as described in Section 4.3 (p. 76), helps devel-
opers understand and analyze a given package, while the fingerprint zoom-outs help
visualize large number of packages, easily navigate in the system and detect global
information (e.g., patterns, anomalies, etc.). To understand and analyze any package
in detail, the developer can select it and zoom to its full fingerprint at any time.

80

4.4. Reading the Fingerprint From Far Away

Pkgs1 Pkgs2 Pkgs3

Pkgs1

Pkgs2

Pkgs3

P

Z3Z3,2Z3,1

Z2,1 Z2 Z2,3

Z1 Z1,2 Z1,3

Figure 4.8: The Incoming Fingerprint of utils package, from plugins subsystem (Azureus
Application).

Example. Figure 4.8 (p. 81) shows the incoming fingerprint of the package utils of
the subsystem plugins, taken from Azureus system. In the following section we illustrate
how to read this incoming fingerprint, and which relevant information we can get.

Size. At first glance, the size (i.e., width or height) of the fingerprint is relatively
large and all referencing packages are golden bordered. That means the utils
package is referenced by a big number of packages that all are located outside
the subsystem plugins.

Spread of external incoming references. The top left cell (P) is dark red, which
means that most of the package classes are referenced from the outside, i.e., the
size of its In-Interface is relatively big.

Distinct part users. The fingerprint fill shows that some cells on the main diagonal
(circled in green) are isolated within their row: i.e., the rows are nearly com-
pletely white. These cells identify services provided by the analyzed package
for only a couple of packages. Classes represented by those cells are considered
as lightly coupled in the context of the package, and their presence degrades
the package cohesion.

Systematic package external usage. The fingerprint fill shows a black filled rectan-
gle Z3 at the intersection of the rows and columns of the packages Pkgs3. This
indicates that the cells within Z3 represent the same collection of classes that are
referenced together by all packages Pkgs3. In the same way, we can deduce that
those classes are also referenced together by the packages Pkgs2 and Pkgs1:
see the black filled rectangles Z3,2 and Z3,1. These set of classes are referenced
together from most of the referencing packages: they are highly coupled within
the package under analysis. Furthermore, the presence of dark/black rectangles

81

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

within the fingerprint body is an indicator of the package cohesion: the more
black space, the more cohesive the package is.

Strength of use-based cohesive classes. Comparing black filled rectangles accord-
ing to their size also provides another useful information related to the cohesion
based on usage: the larger a rectangle size is, the higher the coupling between the
classes represented by it –since more client packages used them together. For ex-
ample, classes represented by the cells within the rectangle Z2 are less coupled
than the classes represented by the cells within the rectangle Z3.

User heteregeneous references. The fingerprint body darkness is not symmetric.
While the classes that are together referenced by both the packages Pkgs1
and Pkgs3 are represented by both the rectangles Z1,3 and Z3,1, the fills of
those rectangles have different darkness: Z1,3 is light grey and Z3,1 is black.
We deduce then that the classes referenced by Pkgs3 form a small portion of
the classes referenced by Pkgs1. Thus, the dissymmetrical darkness of the
fingerprint body indicates that the package In-Interface contains classes that are
loosely coupled in the context of the package under analysis. As consequence,
this is an indicator of a bad organization of classes.

4.5 Outgoing Fingerprint

Up to this point we limited our presentation to incoming references; we also propose
the symmetrical view to help understanding how the package under analysis uses
the rest of the system.

2
classes

2
classes

5
classesP5 P6

P5

P64
classes

3
classes

P1 Out-Interface
classes

Borders
packages referenced by P1 sorted by
number of referencing classes in P1

Analyzed
package

Diagonal
 distribution of references

from P1 to P5
over classes in Out-Interface of P1

Co-Using
 classes in Out-Interface of P1

using
both P5 and P6

P1 → P6
P1 references to P6

P1 → P6
∩

P1 → P5

P1 → P5
∩

P1 → P6

P1P5 P6

P5

P6P1 → P6

P1 → P5

P1's
references to

P5

P1 → P5
∩

P1 → P6

Figure 4.9: P1 Outgoing Fingerprint skeleton (Figure 4.2(b) (p. 71)).

82

4.5. Outgoing Fingerprint

Cell(1, 3)

Top Border:
Referenced
packages

M
ain D

iagonal

2

3

P1

Top Right Corner:
Analyzed Package
Out-Interface

1

I1

C1 H1

G1

F1

Cell(1, 3)

C1 H1

Cell(3, 2)Cell(3, 3)

Right Border:
Referenced
packages

Cell(2, 3)

Cell(3, 1)

2

Cell(3, 3)

P5 P6

Cell(1, 1)

P6

P5

Cell(1, 2)

Cell(2, 2)

I1

C1 H1

G1

Cell(2, 1)

C1 H1

Cell(3, 3)

C1 H1F1

Figure 4.10: Showing the Outgoing Fingerprint of P1 (Figure 4.2(b) (p. 71)) with the
classes involved in the relations inside each cell.

Figure 4.9 (p. 82) and Figure 4.10 (p. 83) depict the key visualization principles of an
outgoing Fingerprint with P1 from Figure 4.1 (p. 71) as the package under analysis. The
principles we described above for an incoming Fingerprint (Section 4.2.3 (p. 73) and
Section 4.2.4 (p. 74)) are used exactly in the same way, except that we take into account
outgoing references instead of incoming ones and referenced packages instead of
referencing ones: the referenced packages and the Out-Interface of the package under
analysis. In an outgoing fingerprint, the package under analysis is located on the top
right most corner, i.e., the top right corner, and the diagonal is crossing in the other
direction. Also the referenced packages form the right border of the package outgoing
fingerprint.

Reading Outgoing Fingerprint

Figure 4.11 (p. 84) shows the outgoing fingerprint of impl::api::user package. The
fingerprint shows several important pieces of information:

A bad placed class. The package Out-Interface involves only two classes, UserEvent-
Bridge and UserEventIntercepter. In the top most corner, the square presenting
the class UserEventIntercepter is not filled, which means that this class does not
refer to classes inside the package under analysis impl::api::user. On the other
hand, this class refers to classes packaged into three packages, the group Pkgs2.
We suppose then that it is better to move the class UserEventIntercepter to one of
its provider packages. Inspecting UserEventIntercepter, we found that it has not
incoming references nor inheritances inside its current package; it inherits from
the class ServerInte, which is within the package portal::server. This last is one of

83

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

The Out-Interface
of the analyzed

Package

Pkgs1

Pkgs2

UserEventBridge

UserEventIntercepter

Referenced
Packages

Referenced
Packages

UserEventBridge class
referencing classes inside the package

UserEventIntercepter class
does not referencing classes inside the package

Zoom-Out level 1

core::event

api::event

api::user::event

java::lang

java::util

core::impl::api

java::security

common::invocation

portal::server

Figure 4.11: The Outgoing Fingerprint of impl::api::user package, from the subsystem
Jboss.portal.core.

the provider packages.
That enforced our estimation and we think that moving UserEventIntercepter to the
package portal::server will optimize the cohesion of both packages, the analyzed
one and portal::server.

Distinct provider packages used by the package. There are two distinct groups of
packages (Pkgs1 and Pkgs2 on the figure) being referenced by the classes of the
analyzed package – since the body cells form around the main diagonal two
distinct squares with uniform fill color, each group of the referenced packages
is consistently accessed.

Distinct reasons for changing the package. The view also reveals the input source
for each class of the package Out-Interface. The view shows that each class
refers to distinct groups of packages/classes. Changes within the group Pkgs1
directly impacts only the class UserEventBridge, while changes within the group
Pkgs2 directly impacts only the class UserEventIntercepter. Here we deduce that
the package under analysis has two distinct reasons for changing (Definition 8
(p. 72)).

Thus the package outgoing fingerprint helps maintainers coarsely evaluate the
package coupling with the rest of the system and the potential impact of changes
on the package. Also it focuses on the similarity/coupling between the referencing
classes and the cohesion of the considered package, from the provider point of view.

84

4.6. Relevant Visual Patterns

4.6 Relevant Visual Patterns

While applying Fingerprints to large systems (Squeak, Azureus, Jboss, ArgoUML) we
identified some recurring visual patterns. We present here most frequent ones,
knowing that several patterns could occur within a single fingerprint.

4.6.1 Black Fill Pattern

This pattern is characterized by a complete black fill of the fingerprint as shown in
Figures 4.12 and 4.12(c). This pattern occurs when all the package interface classes
are conceptually coupled: for an incoming fingerprint, all the In-Interface classes are
referenced together by every referencing package, while for an outgoing fingerprint,
all the Out-Interface classes refer together to every referenced package.

SMSqueakMap

(a) The Incoming Fingerprint of domain
package of the Squeak38::SMBase subsys-
tem.

ServerConfigServiceServerConfig

(b) The Incoming and the Outgoing Fingerprints
of config package of the jboss::portal::sever subsys-
tem.

NotationProvider

(c) The Incoming Fingerprint of notation package of the
argouml::uml subsystem.

Figure 4.12: Examples of Black Fill Fingerprints.

In our case studies, and in the context of the incoming fingerprint, this pattern
occurs for small size In-Interface packages, particularly when they export only one
class, or when the package is referenced by a small number of packages. Peripheral

85

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

packages often present this pattern.

Referenced as a single service. In this pattern, all the classes of the package In-
Interface are referenced always together as a single service. Thus such a package
is often characterized by a high degree of cohesion because all its classes tend
to fulfill a single service, and the package design respects the package cohesion
principles REP and CRP which are described in Chapter 2 (p. 15) (Section 2.3.2
(p. 23)).

Referencing all the same services. For outgoing fingerprints, this pattern occurs
also for small size package Out-Interface, or when the package refers to a small
number of packages. Exhibiting a black fill pattern reveals that all the classes
of the package Out-Interface refer together to the same group of packages.
Thus we can conclude that they have a high degree of similarity in terms of
required services and responsibility. Also such packages respect the package
cohesion principle CCP (Chapter 2 (p. 15) –Section 2.3.2 (p. 23)), –since all the
package classes refer to the same group of packages, they have the same source
of changes impact.

In consequence, packages that exhibit this pattern for incoming and outgoing
fingerprints, may represent a good architecture design since: (1) they respect the
three cohesion principles, (2) it is easy to know which services the package provides
and to which packages it provides them, and (3) maintainer can see quickly which
services/packages the package uses. Note that when several classes are doing consis-
tently several and similar references to external classes, leading to an outgoing black
fill, this pattern may reveal a lack of factorization within the package violating the
DRY (Don’t Repeat Yourself) principle [Fowler et al., 1999].

Examples. Figure 4.12 (p. 85) shows some fingerprints that present this pattern.

A well encapsulated package. Figure 4.12(a) (p. 85) shows the incoming fingerprint
of the package SMBase::domain of Squeak38, which defines the domain model of a
source management system. It shows that SMBase::domain exports only one class
(SMSqueakMap) to only four packages of Squeak38 system. Thus we know that
the services provided by this package are exactly the role of SMSqueakMap class
and we know that this class provides specific services – since it is referenced
by only four packages within the system. Note that SMBase::domain contains
14 classes, but understanding its role requires understanding only one class of
those classes. In such a context we say that the package design respects the
hidden-information principle.

A provider of abstract service. Figure 4.12(c) (p. 85) shows the incoming fingerprint
of notation package of argouml::uml subsystem. It shows that uml::notation exports
only one class NotationProvider. By reading this class and its hierarchy we found
that it is the interface which is implemented by every UML element notation
(e.g., AttributeNotation, MessageNotation, ObjectNotation, etc.). notation package in-
cludes all those classes (18 classes) but it provides them to the system via their
top superclass NotationProvider.

86

4.6. Relevant Visual Patterns

A package with a single reason for changing. Figure 4.12(b) (p. 85) shows the incom-
ing and outgoing fingerprints of config package of the jboss::portal::server subsys-
tem. Both fingerprints present the Black Fill pattern. The outgoing fingerprint
shows that the package Out-Interface contains only one class: ServerConfigService.
By reading this class we found that it implements the interface ServerConfig
which is the only class provided by the package: the incoming fingerprint
shows that the package In-Interface contain only ServerConfig. Thus we deduce
that the package has a single reason for changing, which is the class ServerCon-
figService. On the other hand, to understand the package role it is enough to
understand the interface ServerConfig or its implementation provided by the
class ServerConfigService.

the classes
PortletInvocation (Service1)

and ActionInvocation

Service1:

Service2:

Service3: Pkgs3

core::controller::portlet

test::wsrp::v1::consumer

faces::component::portlet

portlet::test

wsrp::producer

Pkgs2

test::core::state

test::core::model::instance

test::portlet::state

Pkgs1

wsrp::invocation

wsrp::aspects::portlet

wsrp::consumer

bridge

portlet::test::support

portlet::impl::jsr168::taglib

core::admin::ui::portlet

core::impl::model::instance

portlet::management

portlet::federation::impl

portlet::impl::jsr168::api

portlet::aspects::portlet

portlet::container

core::aspects::portlet

portlet::state::producer

portlet::state::consumer

portlet::impl::jsr168

the classes
PortletInvocation, ActionInvocation (Service2)

and RenderInvocation

the class
PortletInvocation

Figure 4.13: An example of the Black-White pattern: the Incoming Fingerprint of
invocation package, from Jboss system.

Variation. The package invocation, shown in Figure 4.13 (p. 87), illustrates a variation
of this pattern: the fingerprint fill appears as gray layers: under the main diagonal the
cells are black and above it, they are in progressively lighter shades of gray. We call
this variation Black-White Fill. The fingerprints that present this pattern are usually
larger than those presenting Black Fill. Note that the presence of gray layers indicates
a degradation of the package cohesion.

Providing a set of layered services. In incoming fingerprints, the Black-White Fill
pattern indicates that the package In-Interface involves several groups of classes,
where each group presents classes that are referenced together, as a single ser-
vice, by a set of referencing packages.
In this pattern, those services are ordered (layered) from the bottom of the

87

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

fingerprint to the top: each service presents a sub-service of the services that
are layered above it. Figure 4.13 (p. 87) shows that the most bottom service,
Service1 which presents the class PortletInvocation, is a sub service of the services
Service2 and Service3: Service2 presents, in addition to the class of Service1, the
class ActionInvocation; Service3 presents, in addition to the classes of Service2, the
class RenderInvocation.
By relating the service importance to the number of packages that refer to it, in
this pattern, the provided services are ordered by importance, from the bottom
of the fingerprint to the top. Figure 4.13 (p. 87) shows that the bottom layer
presents the class PortletInvocation (Service1). Service1 is referenced by all refer-
encing packages: all cells into that layer are black. The classes PortletInvocation
(Service1) and ActionInvocation, which present Service2, are referenced together
by the groups of packages Pkgs2 and Pkgs3: within the layer denoted by
Service2, the cells which are placed in columns of Pkgs2 and Pkgs3 are black.
The classes PortletInvocation, ActionInvocation (Service2) and RenderInvocation, which
present Service3, are referenced together by only the group of packages Pkgs3:
within the layer denoted by Service3, only cells which are placed in columns of
Pkgs3 are black.

Involving a set of layered reasons for changing. For outgoing fingerprints, the Black-
White Fill pattern indicates that the package Out-Interface involves several group
of classes, where each group present classes that refer together to a set of pack-
ages. Thus we deduce that each group involves a distinct reason for changing.
Those groups are ordered (layered) from the bottom of the fingerprint to the top
by reason-for-changing, where the group reason-for-changing is proportional
to the number of packages that the group refers to.

MCVersionInspector

MCSaveVersionDialog

MCMergeBrowser

MCChangeSelector MCFileRepositoryInspector

MCSnapshotBrowser

MCPatchBrowser

MCRepositoryInspector

Monticello::Versioning

Monticello::Repositories

Monticello::Tests

Monticello::Patching

Figure 4.14: Arrow Pattern: the Incoming Fingerprint of UI package of the
Squeak38::Monticello subsystem.

88

4.6. Relevant Visual Patterns

Pkgs1

Pkgs2

Pkgs3

Pkgs4

Pkgs5

Balloon3D::Wonderland::Morphs
Balloon3D::Kernel::Engine

Balloon3D::Morphic

Balloon3D::Kernel::Meshes
Balloon3D::Tutorial::Demos
Balloon3D::Kernel::Lights

Balloon3D::Wonderland-Lights Balloon3D::Kernel::Lights
Balloon3D::Kernel::Vectors
Collections::Unordered
Graphics::Primitives

Squeak38::Stubs
Collections::Streams
Graphics::DisplayObjects

B3DPrimitiveRasterizer
B3DPrimitiveLight

B3DPrimitiveEngine

B3DPrimitiveTransformer

(a) The Incoming and Outgoing Fingerprints of Kernel::PrimitiveEngine package of the Squeak38::Balloon3D
subsystem.

Morphic::Kernel
Morphic::Books

Morphic::Widgets

Tools::FileList
System::Support
Morphic::Worlds

Kernel::Objects

Service2:

Service3:

Service4:
the classes
URLMorph, SqueakPage (Service3)
and SqueakPageCache (Service1)

the classes
SqueakPage (Service2) and URLMorph

the class SqueakPage

Service1: the class SqueakPageCache

(b) The Incoming Fingerprint of SqueakPage package of the Squeak38::Network sub-
system.

Figure 4.15: Variations of Arrow pattern.

4.6.2 Arrow Pattern

When the only non white cells are the diagonal cells, the fingerprint looks like an
arrow.

Providing particular non-coupled services. For incoming fingerprints, the strict oc-
currence of this pattern appears when the package In-Interface involves several
groups of classes, where each group presents classes that are referenced together,
as a single service, by only one client package. On the other hand, in this pattern,
each client package refers to only one service. In other words, the relationship
between the provided services and the client packages is one-to-one. We deduce
thus that the concerned package provides non-coupled services to the system.
Since each service is used by only one client package, we also deduce that the
provided services are particular (i.e., are not general or core services from the
point of view of the package system): relating the service’s importance to the
number of packages that use it, in this pattern, we can conclude that all package
provided services have minimal importance.
Figure 4.14 (p. 88) shows the incoming fingerprint of UI package of the Squeak38::Monticello

89

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

subsystem. It shows that the package services are used separately, each service
is used by only one package and all client packages belong to the same subsys-
tem Squeak38::Monticello: the client package Monticello::Versioning uses the top ser-
vice which presents the classes MCVersionInspector, MCSaveVersionDialog, MCMerge-
Browser and MCChangeSelector; the client package Monticello::Repositories uses an-
other service that presents the classes MCFileRepositoryInspector and MCReposi-
toryInspector; at the end, the client package Monticello::Patching uses the service
which presents the class MCPatchBrowser.

Involving particular non-coupled reasons for changing. For outgoing fingerprints,
the strict occurrence of this pattern appears when the package Out-Interface
involves several groups of classes, where each group represents classes that
refer together, as a single reason-for-changing, to only one provider package.
Similarly to the case of the incoming fingerprint, each provider package is refer-
enced by only one group of classes and the relationship between the provider
packages and package reasons for changing is one-to-one. We deduce thus that
the concerned package has several non coupled/mixed reasons for changing.
On the other hand, since each reason-for-changing uses services of only one
provider package, we deduce that package’s reasons for changing are simple
(i.e., clear, or not complex).

Package may be a candidate for splitting. Since the occurrence of Arrow pattern in-
dicates that the concerned package provides particular services that are used
separately or/and it has several non coupled reasons-for-changing, the pattern
indicates that such a package could be a candidate for splitting: moving some
classes of the package In-Interface/Out-Interface to their referencer/referenced
packages may optimize package internal cohesion and reasons for changing.
For example, Figure 4.14 (p. 88) shows that the incoming fingerprint of UI pack-
age has the Arrow pattern. One of the services that the package provides is
the service that presents the classes MCFileRepositoryInspector and MCRepositoryIn-
spector. The most top corner of the fingerprint shows that those classes have
not incoming references within their package UI: they are presented by non-
filled squares. By inspecting those classes, we found that they do not refer to
classes within the UI package. We also found that both classes refer to classes
within the package Monticello::Versioning and provide particular functionalities
that are used only by Monticello::Repositories. But the package Monticello::Versioning
is also a client package of UI package. Thus the classes MCFileRepositoryInspector
and MCRepositoryInspector are related to cyclic-references between the analyzed
package and Monticello::Versioning package. More, we found that the package
Monticello::Repositories is also a provider to the package under analysis UI. Thus
the classes MCFileRepositoryInspector and MCRepositoryInspector are related to cyclic-
references between the analyzed package and Monticello::Repositories package.
We thus deduce that moving the classes MCFileRepositoryInspector and MCReposito-
ryInspector to the package Monticello::Repositories is a good re-factoring –since that
optimizes the internal cohesion of both packages UI and Monticello::Repositories
and removes cyclic-references between UI package and the packages Monti-
cello::Repositories and Monticello::Versioning.

90

4.6. Relevant Visual Patterns

Variation. A frequent variation of this pattern is when the fingerprint body ap-
pears as small squares, composed of multiple cells, around the fingerprint main
diagonal, as in Figure 4.15(a) (p. 89). In this variation, the relationships between the
package’s services/reasons-for-changing and the package clients/providers is one
service/reason-for-changing to at least one client/provider. Again, the presence of
squares only around the fingerprint diagonal is a good indication that the function-
ality of the packages is not cohesive from the client/provider point of view. Note
that the difference between this variation and the Arrow pattern that we described
above, is: in this variation, the importance of a package service/reason-for-changing
is proportional to the width of the square which represents that service/reason-for-
changing.

Non coupled services (reasons-for-changing) with distinct importances. The incom-
ing and the outgoing fingerprints of Kernel::PrimitiveEngine package, which are
shown in Figure 4.15(a) (p. 89), both have the described pattern variation. The
incoming fingerprint shows that Kernel::PrimitiveEngine package provides three
classes. Those classes (B3DPrimitiveEngine, B3DPrimitiveTransformer and B3DPrimitiveLight)
are used separately: the class B3DPrimitiveEngine is used by three client pack-
ages, denoted by Pkgs5; the class B3DPrimitiveTransformer is used by two client
packages, denoted by Pkg4; the class B3DPrimitiveLight is used by two client
packages, denoted by Pkg3. We thus deduce that this package provides three
non-coupled services and the class B3DPrimitiveEngine presents most important
provided service –since it is used by three client packages rather than only two
client package, as the classes B3DPrimitiveTransformer and B3DPrimitiveLight.

The package outgoing fingerprint shows that the package Out-Interface in-
cludes 2 non-coupled classes: the class B3DPrimitiveRasterizer refers to 5 packages
(denoted by Pkgs2), while the class B3DPrimitiveLight refers to 2 packages (de-
noted by Pkgs1). We deduce thus that the reason-for-changing represented by
the class B3DPrimitiveRasterizer is more important/complex than the reason-for-
changing represented by the class B3DPrimitiveLight.

Variation. A variation of the Arrow pattern occurs for incoming fingerprints
when some of the provided services, if not all, are used together by a few number
of referencing packages. In this case, we say that the package services are loosely
coupled and some of the referencing packages appear as dominant over the other
referencing packages.

Providing loosely-coupled services. Figure 4.15(b) (p. 89) shows the incoming fin-
gerprint of Network::SqueakPage package of the Squeak38 system. The incoming
fingerprint has the described pattern variation. It shows that the packages
Morphic::Kernel and Morphic::Books are dominant referencing packages. They refer
to all the classes provided by Network::SqueakPage package (3 classes: Squeak-
PageCache, SqueakPage and URLMorph). The rest of referencing packages refer
to distinct groups of those classes: The referencing packages Kernel::Objects and
Morphic::Worlds refer to the class SqueakPageCache (Service1); the referencing pack-
ages System::Support and Tools::FileList refer to the class SqueakPage (Service2); the
referencing package Morphic::Widgets refers, in addition to (Service2), to the class

91

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

URLMorph. Thus the classes of the package In-Interface are used together by
only two packages, while the package has seven referencing packages. We
then deduce that the provided services are loosely coupled in the context of
Network::SqueakPage package.

Squeak38::Morphic::Basic

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Morphic::Windows

Morphic::Support

Morphic::Widgets

Morphic::TileScriptors

Morphic::Navigators

Morphic::Palettes

Morphic::Kernel

Morphic::Games

Morphic::Demo

Morphic::GeeMail

Morphic::ScriptingTiles

Morphic::Scripting

Morphic::Experimental

Morphic::Books

Morphic::Menus

Morphic::Stacks

Morphic::PDA

Squeak38::Sound

Morphic::Games::Chess

Morphic::TextSupport::Tests

Morphic::Undo

Morphic::PartsBin

Morphic::PostscriptCanvases

Morphic::Flaps

Morphic::Games::Atomic

Nebraska::Morphic::Collaborative

Morphic::Widgets::Tests

Morphic::Buttons

Morphic::Kernel::Tests

Morphic::Components

Group3: StringMorph,
AlignmentMorph

Group1: StringMorph,
AlignmentMorph,

ImageMorph,
RectangleMorph

Group2: StringMorph,
AlignmentMorph,

ImageMorph

Group4: RectangleMorph,
EllipseMorph

AlignmentMorph

StringMorph

RectangleMorph

EllipseMorph

PolygonMorph

Mosaic

a

aaa

b
bb

c

cc
d

dd e

e
f

fff
g

ggggg

iiii
h

hh

à

à

à

M

i

Figure 4.16: An example of the Mosaic pattern: the Incoming Fingerprint of Mor-
phic::Basic package, from Squeak38 system.

4.6.3 Mosaic Pattern

In this pattern almost, if not all, the cells of the fingerprint fill are gray but they have
not an homogenous darkness. Examples of this pattern are the incoming fingerprints
of Basic package in Squeak38::Morphic subsystem (Figure 4.16 (p. 92)) and model package
in Argouml system (Figure 4.17 (p. 93)).

Large package interface size. The Mosaic pattern occurs usually for packages whose
interfaces (In-Interface and Out-Interface) contain a large number of classes.
The incoming fingerprint of model package (Figure 4.17 (p. 93)) shows that the
package In-Interface contains a large number of classes: 51 classes. This appears
as a large In-Interface size whatever the size of the concerned package (i.e.,
the number of classes that the package contains). In addition to that, only 14
classes among the In-Interface classes have incoming references inside the model

92

4.6. Relevant Visual Patterns

Group2: CoreHelper,
Facade,
Model

Group4: Facade,
Model

Group3: ModelEventPump,
Facade,
Model

Group1: MetaTypes,
Model

Group5: ModelEventPump,
Model

Mosaic

Pkgs1

Pkgs2

Pkgs3

Pkgs4

Pkgs5

argouml::model
Zoom-In

Zoom-In

The package's
In-Interface
contains 51 classes.
Only 14 classes,
among them,
have incoming
references inside
the package.

Group6: ModelEventPump,
Facade,
Model,

CoreHelper

Group7: Facade,
Model,

CoreHelper,
MetaTypes,

StateMachinesHelper,
ModelManagementHelper

Mosaic1

Mosaic2

Mosaic3

Mosaic4

Figure 4.17: An example of the Mosaic pattern: the Incoming Fingerprint of model
package, from Argouml system.

package. By inspecting model package, we found that it contains 112 classes.
Thus its In-Interface contains about 45% of its classes.

Core and Central package. This patten occurs usually with giant fingerprints: the

93

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

package under analysis is coupled to a large number of other ones and its
interface has a big size. In the case of incoming fingerprints, this means that the
package provides a lot of services/functionalities that are used by an important
number of packages within its system.

Examples. The Basic package whose incoming fingerprint (Figure 4.16 (p. 92)) has
the Mosaic pattern is also a core package within its system Morphic. Basic package
provides 15 classes to 30 packages. Only two packages of the referencing
packages are stubs, i.e., they do not belong to the Morphic system. Those stubs
are Squeak38::Sound package (denoted by 18) and Nebraska::Morphic::Collaborative
package (denoted by 26). Thus, Basic package provides 15 classes to 28 packages
of the 45 Morphic packages. This means that more than 62% of the Morphic
packages depend upon Basic package and this last is a core and a central package
within Morphic.

Another example, the model package whose incoming fingerprint (Figure 4.17
(p. 93)) has the Mosaic pattern is a core package within its system Argouml. In
addition to the fact that it contains 112 classes of the 1671 Argouml classes, it is
also referenced by 54 packages of the 76 Argouml packages. Also the package
In-Interface contains 51 classes, which means 71% of Argouml packages depend
directly on 51 classes within the model package. This means that the whole
Argouml system highly depends on the model package and this last plays the role
of core and central package within Argouml.

Imprecision and difficulty in determining package usage and role. The occurrence
of Mosaic pattern for incoming fingerprints indicates that the package under
analysis provides a large number of functionalities that are accessed by a large
number of packages in an arbitrary way, i.e., non-consistent way. Thus in pres-
ence of this pattern, it is hard to know which functionalities are used together
and which are not. As a result, it is hard to identify the role/functionality and
to determine the contextual cohesion of the considered package.

Imprecise package contextual cohesion. Since it is hard to determine the package
usage and role, it is also hard to have a precise contextual cohesion of such a
package.

For example, Figure 4.17 (p. 93) shows that the model package suffers from the
same problem that we discussed for the package Basic (Figure 4.16 (p. 92)):
for the 51 In-Interface classes, the fingerprint clearly shows several groups of
classes (Group1..Group7) — thanks to black zones within the fingerprint fill; those
groups are composed of only 7 classes: Model, Facade, CoreHelper, ModelEventPump,
MetaTypes, StateMachinesHelper and ModelManagementHelper. The classes Model and
Facade, denoted by Group4, are referenced together by the group of packages
Pkgs4 and also by all referencing packages except three (the three packages at
the right of the fingerprint top border): Pkgs4 row contains only black cells,
except the last three cells in each row. Thus, the classes Model and Facade are
highly coupled from a use point of view and are most important classes within
model package.
Whatever, it still hard to evaluate the coupling of the remainder 44 classes –since
that those classes are clearly co-used in a non-consistent way.

94

4.6. Relevant Visual Patterns

4.6.3.1 Analyzing Mosaic Patterns

Let us take a deep look at an example to see how a fingerprint reveals information
even in presence of messy and large packages clearly identifiable as Mosaic Pattern.

Looking at the incoming fingerprint of the Basic package (Figure 4.16 (p. 92)) we
see that there are several black zones within the fingerprint fill. Such zones, which
are surrounded by red rectangles, indicate that some classes within the package
In-Interface are referenced together by referencing packages.

Classes referenced together but with distinct groups of classes. Thanks to the black
zone, denoted by a, around the main diagonal, we find that the referencing
packages Morphic::GeeMail (10), Morphic::ScriptingTiles (11), Morphic::Scripting (12) re-
fer to the same group of classes. This group represents 4 classes (as indicated by
the value on the diagonal). Those 4 classes, denoted by Group1, are StringMorph,
AlignmentMorph, ImageMorph and RectangleMorph.
Other black zones in the rows of the referencing packages 10, 11 and 12 (rectan-
gles denoted by a) indicate that those 4 classes (Group1) are also referenced by
the referencing packages Morphic::Games (8), Morphic::Palettes (6), Morphic::Navigators
(5), Morphic::TileScriptors (4), Morphic::Widgets (3) and Morphic::Windows (1).

On another hand, rectangles denoted by à, which are symmetrical to rectangles
a relatively to the main diagonal, indicate that these last referencing packages
(1, 3..6 and 8) refer to more classes than the 4 cited classes –since the fill color
of cells involved within rectangles à is not as black as within rectangles a. If
we look to the main diagonal cells: the referencing package Morphic::Windows (1)
refers to 8 classes within the package under analysis, thus it refers to 4 classes
in addition to Group1 classes; the referencing packages 4..6 all refer to 6 classes
within the package under-analysis, thus they refer to 2 classes in addition to
Group1 classes; etc.

More, thanks to black cells denoted by b, we see that the referencing pack-
age Morphic::Menus (15) refers to three classes among the Group1 classes: String-
Morph, AlignmentMorph and ImageMorph (denoted by Group2). Also, thanks to
black cells denoted by c, we see that the referencing packages Morphic::PDA (17),
Squeak38::Sound (18) and Morphic::Games::Chess (19), all refer to two classes among
the Group2 classes: StringMorph and AlignmentMorph (denoted by Group3).

Omni-referenced classses in Basic Package. Counting the number of columns in-
volved into the rectangles c indicates that Group3 classes are referenced together
by 17 referencing packages: 1, 3..15 and 17..19, which means that it is good to
keep Group3 classes together in the same package.

Rectangles denoted by e indicates that the class AlignmentMorph is referenced by
almost all referencing packages (packages 1..19 and 21..23) showing that this
class is one of most important classes within the Basic package. Similarly we
deduce the same thing for the class StringMorph, thanks to rectangles denoted by
f .

We also found that the group Group4, which represents the classes RectangleMorph
and EllipseMorph, is referenced by 6 packages: 2..5, 13 and 20. On another hand,

95

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

the class RectangleMorph is referenced by other packages that do not refer to
EllipseMorph: the referencing package 27 refers only to RectangleMorph (see the
diagonal cell which is denoted by g). The same thing for EllipseMorph: the
referencing packages 28 and 29 refer only to EllipseMorph (see the diagonal
cells which are denoted by i). The class PolygonMorph is referenced by only 4
referencing packages (1, 2, 8 and 30).

Conclusion on Basics Package. From all that, we identify that the Basic package
provides several classes to a large number of referencing packages and the
usage coupling of those classes is not consistent. Thanks to some black zones,
we spot that classes are referenced together by client packages. As conclusion,
the usage coupling of the 44 In-Interface classes is done in an arbitrary way and
there is no relevant information about class usage coupling.

About model package. While model package (Figure 4.17 (p. 93)) suffers from the same
problem as the Basic package (Figure 4.16 (p. 92)), understanding and maintain-
ing the model package is really harder than understanding and maintaining
the Basic package: Basic In-Interface is smaller than model In-Interface, Basic is
referenced by a smaller number of packages and a relatively large portion of its
classes are clearly coupled — since they are used together in a consistent way.

Not surprisingly, the larger its interfaces are, the more difficult it is to under-
stand a package. It is also clear that grouping all the basic functionalities of
a system into one package (e.g., model package: Figure 4.17 (p. 93)) is not a
good design. It is always better to compose packages from a small number of
related functionalities. This pattern indicates a bad organization or design of
classes within the system: either the classes of the concerned package should
be re-organized (i.e., distributed over different packages); or new abstractions
should be implemented, where classes that have similar behavior inherit from
the same abstraction and the system classes refer to those abstractions instead
of their implementations, as we have seen in Figure 4.12(c) (p. 85) (Section 4.6.1
(p. 85)).

Fingerprint vs. Metrics. Note that common reuse based cohesion metrics [Ponisio
and Nierstrasz, 2006], indicate usually that such packages are cohesive. For
example the value of CU 5 metric [Ponisio and Nierstrasz, 2006] is 0.63 for the
Basic package and 0.7 for the model package: this means that the design of the
latter is better than the design of the former and both packages are considered
as enough cohesive, which is clearly not what the fingerprints revealed. We
learned that the Fingerprint is much more than metrics: the Fingerprint shows
which classes are coupled in a consistent way and which are not, what is the
portion of those classes relatively to the package interface size, etc.

4.6.4 Diverse Patterns

We present some other less frequent but still interesting patterns with less details.
5CU (Common-Use) metric computes package cohesion from the reuse of the classes of the package

in-interface. It takes its value between 0, the worst value of cohesion, and 1, the best value of cohesion.
For more information see [Ponisio and Nierstrasz, 2006].

96

4.6. Relevant Visual Patterns

4.6.4.1 Unbalanced Pattern

This pattern occurs when an incoming or outgoing fingerprint appears clearly bigger
than its counterpart (i.e., its outgoing or incoming fingerprint). The Unbalanced-
Incoming Fingerprint pattern indicates that the analyzed package plays a server role
within the system, rather than a client role. The Unbalanced-Outgoing Fingerprint
pattern indicates the reverse case. Two variants of this general patterns have special
interest:

Giant Incoming Fingerprint. This variant reveals core/central and utility packages
that provide basic services for the system. Figures 4.8, 4.17 and 4.16 show
respectively that plugins::utils, argouml::model and Morpic::Basic exhibit this pattern.

Empty-Outgoing Fingerprint. The outgoing fingerprint is empty, i.e., the package
under analysis does not refer to any package in the system. This occurs for
packages that include only abstract classes or/and interfaces. Such packages
are not impacted by the system.

Empty-Incoming Fingerprint. The incoming fingerprint is empty and the package has
no incoming references. It is the case of packages that include abstract classes
that are implemented in other packages. This pattern appears for packages that
are leaves in the package structure. This is often the case for UI application
packages.

4.6.4.2 Golden Border Pattern

This patterns occurs when all the referencing packages are stubs (i.e., are not part of
the system under analysis). Thus, this pattern only occurs when the clients of the
package under consideration do not belong to the analyzed subsystem (e.g., Plugins
package within Azureus Figure 4.8 (p. 81)). Such packages represent the border of the
analyzed subsystem. This pattern is usually a good sign because it indicates that the
system under analysis tends to be well layered.

Ideally, a subsystem should be composed of three distinct layers of packages: the
first layer presents packages that refer only to packages outside the subsystem –thus
they have Golden Border Outgoing Fingerprints– and are not referenced by packages
outside the subsystem; the second layer presents packages that interact only with
packages inside the subsystem; the third and last layer presents packages that refer
only to packages inside the subsystem and are referenced by only packages outside
the subsystem –thus they have Golden Border Incoming Fingerprints.
Whatever, analyzing and understanding subsystem architecture/layers need a global
view of the analyzed subsystem. DSM views [Sangal et al., 2005] are more suitable for
such analysis.

On the other hand, if a package has Golden Border Outgoing and Incoming Fin-
gerprints, this means that the concerned package is bad placed within the analyzed
subsystem –since it has no incoming or outgoing references with the subsystem
packages and it interacts only with packages outside the subsystem.

97

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

4.7 Discussion and Evaluation

4.7.1 Graphical concerns

Fingerprints are not magic; they show, albeit in a condensed form, the existing
situation of the code. When packages are not well-designed the patterns are less
apparent, still the visualization conveys the situation and the information about the
use of the package by its clients or how the package uses the system. Our approach
has worked well on our case studies and we have been able to locate many conceptual
bugs and to spot several visual patterns. It should be noted that we were not familiar
with the case studies before applying our approach.

Now we discuss some design points:

Position Choices. A reader often pays more attention to the top elements than to the
bottom ones. Therefore, we grouped the internal references at the top corner
of the package fingerprint, then ordered the related packages (i.e., referencing
packages in an incoming fingerprint; referenced packages in an outgoing fin-
gerprint) from most related one (i.e., most referencing package in an incoming
fingerprint; most referenced package in an outgoing fingerprint) at the top to
the least at the bottom.

Seriation. We ordered referencing (referenced) packages that make the same number
of references by similarity based on common referenced (referencing) classes
into the package under analysis: the largest number of common referenced (ref-
erencing) classes that two client (provider) packages have, the biggest similarity
the two packages have; this way, the reader can see which packages access, or
are accessed by, the same groups of classes. During the design of the fingerprint,
we tried ordering packages differently, e.g., by similarity regardless of how
many references they make, but each time we lost important information i.e.,
the position of most (least) referencing packages.

Impact of Boundaries. We colored the border of packages that do not belong to the
system under analysis in gold. We found it really effective to use color to
identify the currently selected entities so that the user can interactively mark
entities on which s/he wants to focus; this increases the usability of the tool.

Zooming. We introduced two levels of zoom-outs with minimal information loss,
so that the visualization remains compact and scalable over the number of the
related packages or the size of the interfaces. This way, the user can visualize
large systems, navigate in the system, spot global patterns and conceptual
anomalies. Then s/he can focus on any package by zooming into the detailed
fingerprint.

However, during our experiments, we found that detailed fingerprints do not
scale as well as the zoomed-out views. Detailed fingerprints expose a lot of
information, which makes it difficult to spot patterns or gather general infor-
mation about the visualized package; this is especially true for giant packages
whose interface and number of related packages are very large. In fact, in such
cases, none of the detailed views we applied has scaled well. We think that

98

4.7. Discussion and Evaluation

zooming mechanisms are very important in software visualization to solve this
problem.

Placeholders. The placeholders in cell internals are essential to make preattentive
processing work and thus to help users quickly spot which classes are coupled
and where they are coupled. The negative impact of this principle is that all
cells should be large enough to represent all possible classes in the package
interface. This is one of the reasons why the detailed fingerprints do not scale
so well.

4.7.2 About Coupling and Hints at Improvements

The presence of dark homogenous zones is a good indicator of the package cohesion.
Note that common reuse based cohesion metrics [Ponisio and Nierstrasz, 2006], indicate
usually that such packages are cohesive. Package Fingerprints are much more than
metrics that give simple values. We illustrated in Section 4.6.3.1 (p. 95) that the
Common-Use (CU) metric [Ponisio and Nierstrasz, 2006] indicates that the packages
model (Figure 4.17 (p. 93)) and Basic (Figure 4.16 (p. 92)) are both considered as enough
cohesive and the design of the former is better than the design of the latter, which is
clearly not what the fingerprints revealed.

Fingerprints Ability. Incoming Fingerprint helps maintainer answer the following
questions about a given package:

• Which In-Interface classes are used together, in a consistent way, as a single
service? And which are not used together, also in a consistent way, as
distinct services?

• Where is a group of In-Interface classes used as a single service? and where
is it mixed with distinct classes of the concerned In-Interface?

• How many classes of In-Interface classes are consistently used together
(i.e., coupled)? And how many are not?

• Which referencing packages refer to a given group of In-Interface classes?
And which ones do not refer to that group?

• Which In-Interface classes are highly coupled (i.e., used together by a large
number of referencing packages)? And which ones are loosely coupled
(i.e., used together by a small number of referencing packages)?

• Which In-Interface classes are considered as most important (i.e., classes
that are referenced by most referencing packages)? And which In-Interface
classes are less important?

Outgoing Fingerprint works similarly to Incoming Fingerprint but from the
point of view of package outgoing references (Out-Interface), referenced pack-
ages and package reasons-for-changing, instead of the the point of view of
package incoming references (In-Interface), referencing packages and package
provided services.

99

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

Fingerprints Limitations. Package fingerprints focus on the package contextual cohe-
sion, afferent and efferent coupling, and co-use of internal classes. However,
they do not provide a good map for internal references; our aim is to support un-
derstanding packages through their interfaces, regardless what happens inside
them. With package fingerprint, we consider related packages (e.g., referencing
packages in an incoming fingerprint) as black boxes; we only pay attention to
package classes while we look at its fingerprint.

Since package fingerprints do not show complete information about package
internal references, hints at improvements, which are revealed from fingerprints,
should be assessed together with other information/views of package internal
references and of the inheritance relationship between classes.

For example, we illustrated in Section 4.6.2 (p. 89) that an Arrow pattern indicates
that the concerned package may be a candidate for splitting — since it provides
distinct non-coupled services. For such a case, before deciding to split the
concerned package, maintainer needs to know if classes that are not contextually
coupled interact with each other. In other words, s/he needs to verify if there are
references or inheritance relationships among classes that are used by distinct
packages, before deciding to split the package or to move some classes of that
package to other ones.

We consider package fingerprints as complementary views to the Package
Blueprint resulting from Chapter 3 (p. 39) work, where the Package Blueprint
provide a good map for internal dependencies and shows dependencies be-
tween packages on a per-class basis, but they give limited information about
the coupling and co-use of classes.

Package Fingerprints are a dense and compact visualization, they were de-
signed to have such property. Still users may have difficulty extracting all
the information from them. Our current work lacks a serious user study. We
performed some limited studies with members and students of our team not
working on Fingerprint. Our preliminary results show that a first level of un-
derstanding is easy to get: identifying groups of co-referencing/co-referenced
classes; identifying distinct provided services and distinct reasons-for-changing;
identifying referencing and referenced packages; etc. Those users found that,
the direction of the diagonal as well as the small annotations we put on top of
the fingerprint to distinguish incomoing/outgoing fingerprint are very helpful.
Fingerprint supports also fly-by-help. The fly-by-help use suggests that show-
ing the names of the packages on the side may really help creating a deeper
context. In addition, the fly-by-help showing the referenced/referencing classes
make visualizations less abstract.
We learned that a deeper level of information extraction, with packages that
have very large interfaces and their classes are coupled in a non-consistent
way (e.g., the Mosaic pattern, Section 4.6.3.1), is much more difficult to grasp.
This suggests that Fingerprint is good for fast overview, but further usability
enhancements and studies are required.

100

4.7. Discussion and Evaluation

4.7.3 Related Work

Several works focus on understanding packages. We are interested here on those
based on visualizations. Sangal et al. adapted the dependency structure matrix (DSM)
from the domain of process management to analyze architectural dependencies in
software [Sangal et al., 2005]. DSM presents a consistent visualization that offers a
system overview. While the visualization scales for large systems, it is poor in terms
of precise information about the package. DSM cells contain a number indicating
the number of references made between packages. However DSM did not focus on
packages cohesion and co-use or co-usage of classes.

Package fingerprints are based on similar principles, but provide more visual
information and help identify groups of packages with similar dependencies. A
fingerprint exploits pre-attentive processing using color, contrast, and the principle of
placeholders. In addition, a fingerprint by focusing on a package at a time qualifies
in a finer-grained way the dependencies.

X. Dong et al. [Dong and Godfrey, 2007] present the High-level Object Dependency
Graph (HODG) that helps capturing, from a high-level point of view, possible usage
dependencies among coarse-grained software entities, namely packages. In their
approach, they interpret the usage dependencies between classes in the context of
their hierarchy and present a new graph of the system under analysis. While the
given graph is helpful for understanding the considered system from a high-level
point of view, it does not give any information about package cohesion nor about the
co-use or the similarity between classes. Also, their graph visualization still difficult
to be interpreted by human eyes because within it, the nodes have different sizes but
without any meaningful dimension. The HODG has not visual semantics and it uses
numbers to visualize almost all information.

Several works explore packages and their structure but few of them reveal in-
formation on their relationships and dependencies. In Softwarenaut, Lungu et al.
help system discovery by guiding exploration of nested packages [Lungu et al., 2006].
Storey et al. also worked on system exploration, supporting zoom-out facilities and
forces-based graph layouts [Storey et al., 1997]. However the work did not focus on
co-use or co-usage of classes.

There is a plethora of software metrics on cohesion: from the bogus LCOM
([Chidamber and Kemerer, 1994]) to more advanced LCOM* metrics [Briand et al., 1998].
Ponisio et al. introduced the notion of use cohesion [Ponisio and Nierstrasz, 2006],
which is at the foundation of the fingerprint. Hautus defines a new metric that
indicates the percentage of changes to be made in order to make a package structure
acyclic [Hautus, 2002]. While he focuses only on the cyclic dependencies, he does not
provide any utility that helps understanding packages or indicating their cohesion or
similarity.

Kuhn et al. used information retrieval to exploit linguistic information. He
introduced semantic clustering to group source artifacts that use similar vocabulary
[Kuhn et al., 2007]. He uses vocabulary topics to reveal the intention of the code and
the similarity between its artifacts, then he provides a consistent visualization.

A number of approaches give summarized information on package relationships
and their evolution: the Butterfly by Ducasse et al. gives a high-level client/provider
trend of package dependencies [Ducasse et al., 2005b]; Pzinger et al. show the evolution

101

Chapter 4. Package Fingerprints: Visually Summarizing Package Interface Usage

of package metrics using Kiviat diagrams [Pinzger et al., 2005]; Chuah and Eick use
rich glyphs to characterize software artifacts and their evolution (number of bugs,
number of deleted lines, kind of language...) [Chuah and Eick, 1998]. In particular, the
timewheel exploits preattentive processing, and the infobug presents many different
data sources in a compact way; finally, D’Ambros et al. reveal package coupling by
showing evolutions that are correlated in time [D’Ambros and Lanza, 2006b].

Other works treat and visualize information about software co-change evolution,
looking at coupling from a temporal perspective, and software development teams
and activities [Beyer, 2005; Eick et al., 2002; Froehlich and Dourish, 2004; Storey et al.,
2005; Voinea et al., 2005; Xie et al., 2006]. Such approaches are completementary to
ours in the sense that we only focus on the static nature of the packages and their
relationships. While those approaches are valuable and provide fine-grained views of
packages that may help understanding the contextual coupling and cohesion inside
packages, they fall short on the analysis of a single version of a system.

4.8 Conclusion

In this chapter, we tackled the problem of understanding the details of package
relationships from a usage perspective. We described the package fingerprints, and
their use as a visual approach for understanding package relationships, contextual
cohesion, and the conceptual coupling of their classes. While designing the Pack-
age Fingerprint, we exploited pre-attentive processing using color properties and
placeholders saving principle. We also introduced interactivity and multi-selection
mechanism to help the user during the analysis task.

We successfully applied the visualization to several large systems and we have
been able to quickly point out badly designed packages, and to extract relevant
patterns.

While applying Fingerprints to large systems that contain radically different
packages in terms of internal size and package references, the visualization generally
scaled well and the detection of the different patterns presented in this chapter was
always possible.

102

Chapter 5
Automatically Measuring and
Optimizing Modularization Quality

5.1 Introduction

A well modularized system enables its evolution by supporting the replacement of
its parts without impacting the complete system. A good organization of classes into
identifiable and collaborating subsystems eases the understanding, maintenance, test
and evolution of software systems [DeRemer and Kron, 1976].

However code decays: as software evolves over time with the modification,
addition and removal of new classes and dependencies, the modularization gradually
drifts and looses quality [Eick et al., 2001]. A consequence is that some classes may
not be placed in suitable packages [Griswold and Notkin, 1993]. To improve the quality
of software modularization, optimizing the package structure and connectivity is
required.

Although that Package Blueprint and Package Fingerprints help understanding
packages, they do not propose alternative modularizations. In addition, similarly to
every visualization-based approach, it is always the responsibility of maintainers to
take decisions about changes and to assess changes impacts on the modularization
quality.

On the other hand, as we explained in Section 2.7 (p. 34), few previous works
address the problem of automatically optimizing existing software modularization,
and those works often change (to various degrees) the existing package structure
of a software system. In such a case, it can be difficult for a software engineer to
understand the resulting structure and to map it back to the situation that maintainer
knows.

The aim of this chapter is, to support automatic optimization of existing pack-
age structure by explicitly taking into account the whole modularization quality
and the original class organization; and avoiding creating new packages or related
abstractions.

103

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

Contribution of the chapter

In this chapter, we present an approach for automatically optimizing existing software
modularizations by reducing connectivity among packages, in particular cyclic-
connectivity. The objective of the optimization process is inspired by well known
package cohesion and coupling principles already discussed in Section 2.3.2 (p. 23). We
limit ourselves to direct cyclic connectivity and restrict our optimization actions to
moving classes over existing packages.

Our approach is based on Simulated Annealing [Ferland and Costa, 2001; Kirkpatrick
et al., 1983], which is a neighborhood (local) search-based technique. Simulated Annealing
is inspired by the annealing process in metallurgy [Kirkpatrick et al., 1983]. We chose
this technique because, it suits well our problem, i.e., local optimization of an existing
solution. Moreover, it has been shown to perform well in the context of automated
OO class design improvement [O’Keeffe and Cinnéide, 2006, 2008] and more generally,
in the context of software clustering problems [Mitchell and Mancoridis, 2002, 2008].

In that respect, this chapter proposes two main contributions, that are the object
of our paper published in WCRE’09 [Abdeen et al., 2009b]:

• Firstly, we define a suite of metrics, based on the principles of package cohesion
and coupling [Martin, 2002a] (Section 2.3.2 (p. 23)): Common Closure Principle
(CCP), Common Reuse Principle (CRP) and Acyclic Dependencies Principle
(ADP). The aim of those metrics is to help in automatically assessing the qual-
ity of a modularization, as well as, the quality of a package within a given
modularization.

• On the other hand, we present an approach, using simulated annealing tech-
nique, for the automatic reduction of package coupling and cycles by only
moving classes over packages while taking into account the existing class or-
ganization and package structure. In our approach, maintainers can define (1)
the maximal number of classes that can change their package, (2) the maximal
number of classes that a package can contain, and (3) the classes that should
not change their packages or/and the packages that should not be changed.

Structure of the chapter

In the next section (5.2) we define a metric suite to assess the quality of a modu-
larization or a package within a given modularization. This approach follows the
principles of package coupling and cohesion which we underlined in Section 2.3.2 (p.
23). After that, we present and detail our optimization algorithm in Section 5.3 (p. 107),
and we define evaluation functions that our algorithm uses to automatically evaluate
both modularization and package quality. We validate our approach using real large
software systems and discuss the results in Section 5.4 (p. 112). In Section 5.5 (p. 119) we
position our approach with related works, before concluding in Section 5.6 (p. 121).

104

5.2. Modularization Quality

5.2 Modularization Quality

Our goal is to automatically optimize the decomposition of a software system into
packages so that the resulting organization of classes/packages, mainly, reduces
connectivity and cyclic-connectivity between packages. This goal is inspired from
well known quality principles already underlined and discussed by Brian et al. [Briand
et al., 1998], Fowler [Fowler, 2001] and Martin [Martin, 2002a] (Section 2.3.2 (p. 23)) and
in particular from the following principle: packages are desired to be loosely coupled and
cohesive to a certain extent [Fowler, 2001]. In such a context, we need to define metrics
that evaluate package cohesion and coupling.

In addition, Martin underlined that cyclic dependencies between packages are
considered as an anti-pattern for package design [Martin, 2002a].

In this section we define two suites of metrics: the first is used when evaluating
modularization quality; the second is used when evaluating modularity quality of
single package within a given modularization.

Note that all metrics we define in this section take their value in the interval [0..1]
where 1 is the optimal value and 0 is the worst value.

5.2.1 Measuring Modularization Quality

Inter-Package Dependencies. According to Common Closure Principle (CCP) [Mar-
tin, 2002a], classes that change together should be grouped together. In such a context,
optimizing modularization requires reducing the sum of inter-package depen-
dencies (IPD =

∑|MP |
i=1 |piExt.Out.D |) [Briand et al., 1998; Fowler, 2001]. Since

we do not change the dependencies between classes during our optimization
process, we use the sum of inter-class dependencies (ICD =

∑|MC |
j=1 |cjOut.D |) as

normalizer. We define the metric CCQ to evaluate the Common Closure Quality
of a modularizationM as follows:

CCQ(M) = 1− IPD

ICD
(5.1)

Inter-Package Connections. According to Common Reuse Principle (CRP) [Martin,
2002a], classes that are reused together should be grouped together. In such a context,
optimizing modularization requires reducing the sum of inter-package connec-
tions (IPC =

∑|MP |
i=1 |piOut.Con |) [Briand et al., 1998; Fowler, 2001]. We define the

metric CRQ to evaluate the Common Reuse Quality of a modularizationM as
follows:

CRQ(M) = 1− IPC

ICD
(5.2)

Inter-Package Cyclic-Dependencies. According to Acyclic Dependencies Principle
(ADP) [Martin, 2002a], dependencies between packages must not form cycles. In
such a context, optimizing modularization requires reducing the sum of inter-
package cyclic-dependencies (IPCD =

∑|MP |
i=1 |piOut.Cyc.D |). We define the

105

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

metric ADQ to measure the Acyclic Dependencies Quality of a modularization
M as follows:

ADQ(M) = 1− IPCD

ICD
(5.3)

Inter-Packages Cyclic-Connections. As for cyclic dependencies between packages,
reducing cyclic connections between packages is required, where reducing
inter-package cyclic dependencies does not necessarily reduce inter-package
direct cyclic-connections (IPCC =

∑|MP |
i=1 |piOut.Cyc.Con |).

We define the metric ACQ to evaluate the Acyclic Connections Quality of a
modularizationM as follows:

ACQ(M) = 1− IPCC

ICD
(5.4)

5.2.2 Measuring Package Quality

In addition to metrics represented in Section 5.2.1 (p. 105), we define a set of metrics
that help us determine and quantify the quality of a single package within a given
modularization.

To normalize the value of those metrics we use the number of dependencies
related to the considered package (|pD|) with |pD| > 0.

Package Cohesion. We relate package cohesion to the direct dependencies between
its classes. In such a context, we consider that the cohesion of a package p is
proportional to the number of internal dependencies within p (|pInt.D|). This is
done according to the Common Closure Principle (CCP) [Martin, 2002a]. We
define the metric of package cohesion quality similarly to that in [Abreu and
Goulao, 2001] as follows:

CohesionQ(p) =
|pInt.D|
|pD|

(5.5)

Package Coupling. We relate package coupling to its efferent and afferent coupling
(Ce,Ca) as defined by Martin in [Martin, 2005]. Package Ce is the number of
packages that this package depends upon (|pPro.P |). Package Ca is the number of
packages that depend upon this package (|pCli.P |). According to the common reuse
principle, we define the metric of package coupling quality using the number
of package providers and clients as follows:

CouplingQ(p) = 1− |pPro.P ∪ pCli.P |
|pD|

(5.6)

Package Cyclic-Dependencies. For automatically detecting packages that suffer
from direct-cyclic dependencies we define a simple metric that evaluates the

106

5.3. Optimization Technique (Methodology)

quality of package cyclic dependencies (CyclicDQ) using the number of package
cyclic dependencies:

CyclicDQ(p) = 1−
|pCyc.D|
|pD|

(5.7)

Similarly we define another metric that evaluates package cyclic connections
quality (CyclicCQ) using the number of package cyclic connections:

CyclicCQ(p) = 1−
|pCyc.Con|
|pD|

(5.8)

5.3 Optimization Technique (Methodology)

To optimize package connectivity, we use an optimization procedure that starts with
a given modularization and gradually modifies it, using small perturbations. At
each step, the resulting modularization is evaluated to be possibly selected as an
alternative modularization. The evaluation of modularization quality is based on
metrics defined in Section 5.2.1 (p. 105). This section describes our optimization
approach and algorithm.

5.3.1 Technique Overview

To address the problem of optimizing modularization, we use a heuristic opti-
mization technique based on simulated annealing algorithm [Ferland and Costa, 2001;
Kirkpatrick et al., 1983]. Simulated annealing is an iterative procedure that belongs to
the category of Neighborhood Search Techniques (NST).

Algorithm 1 (p. 108) shows an overview of the optimization algorithm. The opti-
mization process performs series of local searches with the global search parameter
Tcurrent. Tcurrent represents in simulated annealing technique the current tempera-
ture of the annealing procedure which started with the value Tstart. A local search
consists of num (num ≥ 1) searches of suboptimal solution. At each of them, a new
modularizationMtrial is derived from a current oneMcurrent by applying to this
latter a modification. The derivation ofMtrial fromMcurrent is performed by the
Neighborhood function. Then, the algorithm evaluates theMtrial andMcurrent fitness
using the Fitness function F , where the bigger is the value of F(M), the better is mod-
ularizationM: ifMtrial is better thanMcurrent thenMtrial becomes theMcurrent;
then, ifMcurrent is better than the current best modularizationMbest,Mcurrent be-
comes theMbest. At the end of each local search, the parameter Tcurrent decreases
and another local search starts with the new value of Tcurrent. Decreasing Tcurrent
is the responsibility of CoolingSchedule function. This latter is defined according to
Keeffe et al. discussion [O’Keeffe and Cinnéide, 2008] using a geometric cooling scheme:
CoolingSchedule(T) = 0.9975 ∗ T . Local searches are repeated until reaching Tstop
(Tcurrent ≤ Tstop).

To circumvent the problem of local optima [Ferland and Costa, 2001], a less-good
modularization can be accepted with some probability: a less-good modularization

107

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

Algorithm 1 Optimization Algorithm
Require: Tstop ≥ 1, Tstart > Tstop, num > 1 andMoriginal

Ensure: Mbest

Mbest ←Moriginal

Mcurrent ←Mbest

Tcurrent ← Tstart
–starting global search–
while Tcurrent > Tstop do

–starting local search–
for i = 1 to num do

–generating a new modularization and evaluating it–
Mtrial ← Neighborhood(Mcurrent)
if F(Mtrial) > F(Mcurrent) then
Mcurrent ←Mtrial

if F(Mcurrent) > F(Mbest) then
Mbest ←Mcurrent

end if
else if AcceptanceCondition then

–accepting a worse modularization–
Mcurrent ←Mtrial

end if
end for
–end of local search–
Tcurrent ← CoolingSchedule(Tcurrent)

end while
–end of global search–
ReturnMbest.

Mtrial can replaceMcurrent under some conditions AcceptanceCondition. Simulated
annealing technique defines acceptance conditions in a way that the probability of
accepting a less-good modularization decreases over time. We define Acceptance-

Condition as follows: r > e
−Tcurrent

Tstart , r ∈ [0..1]. The value of r is generated randomly

in the interval [0..1]. The function e
−Tcurrent

Tstart takes its value in the interval [0..1]
∀Tcurrent ≥ 0, and Tcurrent ≤ Tstart. It increases along the optimization process –since
Tcurrent decreases. By doing so, the probability of accepting a less-good modulariza-
tion decreases over time.

In the next section we define the Fitness function that evaluates the quality of a
given modularization.

5.3.2 Evaluating Modularization Quality (Fitness)

As for any search-based optimization problem, the definition of the fitness function
represents a central concern as it guides the search. We define our fitness function as a
combination of the metrics defined in Section 5.2.1 (p. 105). We define dependency qual-
ity (DQ) for a modularizationM as the weighted average of Common Closure Quality

108

5.3. Optimization Technique (Methodology)

(CCQ) and Acyclic Dependencies Quality (ADQ); and we define connection quality (CQ)
forM as the weighted average of Common Reuse Quality (CRQ) and Acyclic Connec-
tions Quality (ACQ). To give higher intention to cyclic dependencies/connections
between packages we define a factor of importance γ (γ = β

α , β > α ≥ 1):

DQ(M) =
α ∗ CCQ(M) + β ∗ ADQ(M)

α+ β
(5.9)

CQ(M) =
α ∗ CRQ(M) + β ∗ ACQ(M)

α+ β
(5.10)

Both functions DQ and CQ take their values in the interval [0..1] where 1 is the
optimal value. The final fitness function is defined by the average of DQ and CQ:

F(M) =
DQ(M) + CQ(M)

2
(5.11)

Our hypothesis is: optimizing F will reduce inter-package dependencies and
connections, particularly cyclic ones.

Furthermore, in addition to AcceptanceCondition for less-good modularizations
we defined in Section 5.3.1 (p. 107), the optimization process may accept a less-good
resulting modularization only if the number of inter-package dependencies decreases
(i.e.,DQ increases). We expect such a decision facilitates the reduction of inter-package
cyclic dependencies.

In addition to the Fitness function, the optimization approach should allow main-
tainers to specify constraints on possible alternative modularizations (Mbest). In the
next section we present the constraints that our optimization approach supports.

5.3.3 Modularization Constraints

In addition to the fitness function, our approach allows maintainers to define distinct
constraints that should complete the evaluation process and guarantee maintainers’
requirements. The rationale behind those constraints is to control the optimization
process when optimizing a given modularization. e.g., putting a major partition
of classes into one package can effectively reduce inter-package (cyclic-) dependen-
cies/connections; such an approach is clearly not the best one to optimize software
modularization. This section presents three constraints to control the optimization
process. Section 5.3.4 (p. 110) explains how the optimization process favors these
constraints when deriving new modularizations.

5.3.3.1 Controlling package size

To avoid having very large and dominant packages, we introduce the following con-
straint: the size of every package (psize) should always be smaller than a predefined
number (sizemax). We define sizemax for every package p relatively to its size in the
original modularization psizeV 0 : sizemax = δ + psizeV 0 , δ ≥ 0. Maintainers can define
δ according to the context of the concerned software system. We cannot determine
upfront the good interval in which δ should be taken. In the scope of this chapter, we
define δ as the theoretical package size in the original modularizationM0, which equals

109

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

to the ratio: |M0C
|

|M0P
| . It is worth to note that maintainers can define a different δ for

each package: e.g., for a large package p, δ may be defined to 0; this way, p will never
be larger than before.

5.3.3.2 Controlling modularization modification

Maintainers should be able to define the limit of modifications that the optimization
process can apply on the original modularizationM0 when it proceeds. In other
words, the optimization process must take into account the maximal authorized distance
(distancemax) between resulting modularizations and M0. In our context, for two
modularizations that entail the same set of classes, we define the distance between
them by the number of classes that changed packages. This way, distancemax can be
defined simply as the maximal number of classes that can change their packages.

5.3.3.3 Controlling modularization structure

Moreover, we found that it is very helpful to allow maintainers decide whether some
classes should not change their package and/or whether given packages should
not be changed. We say that such classes/packages are frozen. This constraint is
particularly helpful when maintainers know that a given package is well designed
and should not be changed: e.g., if a small package p contains a couple of classes that
extend classes from other packages, p may be considered a well designed package,
even if it is not cohesive. Similarly, it is also helpful when maintainers know that
some classes are well packaged together and should not change their package.

This constraint may also be used when maintainers need refactoring propositions
for a specified set of classes: in such a case, maintainers may specify the rest of classes
as frozen. Maintainers may also limit the scope of the possible refactoring propositions
to a specified set of packages: in such a case, maintainers may specify the rest of
packages as frozen.

5.3.4 Deriving New Modularization (Neighbor)

The neighborhood function (N) is the second main concern of the optimization
process. Defining N requires: (1) the definition of the set of modifications that N can
use to derive new modularizations, (2) and the definition of a process that derives a
new modularization from another one. This section presents our definition of N .

Since we search near optimal modularization by applying near minimal modifica-
tion to the original modularization, we limit the set of modifications that N can use
to only: moving a class c from its current package psource to another one ptarget. In
this context, we say that c is the modification actor (cactor). To minimize search-space
we reduce the selection-space of ptarget to the set of client and provider packages of
cactor: ptarget ∈ (cactorPro.P ∪ cactorCli.P

).
We specify the derivation of a neighbor modularization of a modularizationM

by 4 sequential steps: (1) selecting psource, (2) selecting cactor, (3) selecting ptarget and
then (4) moving cactor to ptarget. Selections in the first three steps are done arbitrary
using a probability function. The probability function gives higher probability to
the worst package intoMP to be selected as psource, to the worst class into psource to

110

5.3. Optimization Technique (Methodology)

be selected as cactor and to the nearest package to cactor to be selected as ptarget. The
selection mechanism performs similarly to a roulette wheel selection, where each
class/package is given a slice proportional to its probability to be selected and then we
randomly take a position in the roulette and pick the corresponding class/package.

It is worth to note that packages and classes that are defined as frozen (Sec-
tion 5.3.3.3 (p. 110)), do not belong to the selection spaces: a frozen package will
never be a psource or ptarget, and a frozen class will never be a cactor.

The following subsections explain our definition of the probability of being se-
lected as psource, cactor or ptarget. Note that in our definition of this probability we
use the factor γ, as defined in the fitness function (Section 5.3.2 (p. 108)), to pay more
attention to cyclic dependencies/connections.

5.3.4.1 Selecting psource

The worst package inMP is, the highest probability to be selected it has. We relate
package badness to the quality of its cohesion, coupling and of its external depen-
dencies (i.e., the density of cyclic dependencies/connections related to the concerned
package). We define the badness of package by using the metrics: CohesionQ, Cou-
plingQ, CyclicDQ and CyclicCQ (Section 5.2.2 (p. 106)): where we relate CohesionQ
and CyclicDQ to package dependency quality (DQ). Also we relate CouplingQ and
CyclicCQ to package connection quality (CQ). We define package quality functions,
similarly to modularization quality functions defined in Section 5.3.2 (p. 108) :

DQ(p) =
α ∗ CohesionQ(p) + β ∗ CyclicDQ(p)

α+ β
(5.12)

CQ(p) =
α ∗ CouplingQ(p) + β ∗ CyclicCQ(p)

α+ β
(5.13)

Both functions DQ and CQ take their values in the interval [0..1] where 1 is the
optimal value.
Finally, we define package badness based on the average of DQ and CQ:

Badness(p) = 1− DQ(p) + CQ(p)
2

(5.14)

In addition to satisfy constraints discussed in Section 5.3.3 (p. 109), we define the
probability of selecting a package p as psource by: ρ ∗ Badness(p), where ρ is a factor
that takes its value in the interval [0..1]. It is the average of two sub-factors (ρ1, ρ2):

• ρ1 is based on psize: relatively to p size in the original modularizationM0 (p0size),
a package whose size increased has a higher probability to be selected than a
package whose size decreased. By doing so, we expect that the package size in
resulting modularizations will be similar to that in the original modularization;

• ρ2 is based on the number of new classes into p: relatively to p0, a package that
acquired the largest number of new classes (i.e., classes are not packaged in p0)
has the highest probability to be selected. By doing so, we favor moving classes
that already changed their packages until they find their optimal package.

111

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

5.3.4.2 Selecting cactor

The worse a class in psource is, the highest probability to be selected it has. We relate
class badness to the number of external dependencies related to the class (|cExt.D|)
and to the number of its external cyclic-dependencies (related to its package p):

Badness(c) =
α ∗ |cExt.D|+ β ∗ |cExt.D ∩ pCyc.D|

α+ β
(5.15)

In addition, to satisfy the constraint of distancemax (Section 5.3.3.2 (p. 110)), when
the distance (d) between resulting modularizations and the original one increases,
classes that have already changed their packages have higher probability to be cactor.
In this context, we use the factor ρ = 1− d

distancemax
. If ρ ≤ 0 then only classes which

already changed their original packages can move. Only if 0 < ρ ≤ 1 then the
optimization process can move more classes over packages but with a probability ρ.
Thus we define the probability of selecting a class c as cactor as following:

0 ρ ≤ 0, not(isMoved(c))
ρ ∗ Badness(c) ρ > 0, not(isMoved(c))
Badness(c) isMoved(c)

(5.16)

Where the predicate isMoved(c) is true if c has already moved from its original
package.

5.3.4.3 Selecting ptarget

The nearest package to cactor is, the highest probability to be selected it has. We simply
relate the nearness of a package p to a class c to the number of dependencies that c
has with p classes (|cD ∩ pD|) and to the number of cyclic dependencies between c
and p (|cD ∩ pCyc.D|):

N earness(p, c) =
α ∗ |cD ∩ pD|+ β ∗ |cD ∩ pCyc.D|

α+ β
(5.17)

To satisfy the constraint on psize (sizemax defined in Section 5.3.3.1 (p. 109)), when
package size increases its probability to be selected as ptargert decreases. In this
context, we use the factor ρ = 1− psize

sizemax
. If ρ ≤ 0 then the package size should not

increase anymore. Only if 0 < ρ ≤ 1 then the package size can increase but with a
probability ρ which decreases when psize increases. Thus we define the probability of
selecting a package p as ptarget for a class c, as following:{

0 ρ ≤ 0
ρ ∗ N earness(p, c) 0 < ρ ≤ 1

(5.18)

5.4 Experiments and Validation

To validate our optimization approach, we applied it to several software systems that
differ in terms of: number of classes (|MC |), number of packages (|MP |), number
of inter-class dependencies (ICD); number of inter-package dependencies (IPD),

112

5.4. Experiments and Validation

Table 5.1: Information about used software applications.
Original |MC | ICD |MP | IPD IPCD IPC IPCC maxPsize

|MC |
|MP |

JEdit 802 2683 19 1430 1032 110 26 173 42.2
ArgoUML 1671 7432 76 5661 1406 517 63 156 22

Jboss 3094 8859 455 7219 296 1898 41 80 6.8
Azureus 4212 13945 380 10929 1319 2037 136 213 11

connections (IPC), cyclic dependencies (IPCD) and cyclic connections (IPCC). Ta-
ble 5.1 (p. 113) shows information about the original modularization of those software
systems.

Since the search process is not deterministic, we applied our algorithm 10 times
for each software system and we calculated the average of modularization parameters
cited in Table 5.1 (p. 113). We used the parameters Tstart, Tstop and num (Algorithm 1
(p. 108)) with value 50, 1 and 30 respectively. On another hand, we weighted cyclic
dependencies/connections to be three times more important than noncyclic depen-
dencies/connections. We performed our experience twice: the first time, we did
not use the constraint distancemax. In the second time, we limited distancemax to 5%,
which means that only 5% of classes can change their original packages.

25

0

50

75

100

125

150

175
dominant packages

empty packagessmall packages

P
a
c
k
a
g
e
 s
iz
e

0

1/16

2/16

3/16

1

.

.

.

.

.

.

.

.

15/16

P
a
c
k
a
g
e
 c
o
h
e
s
io
n

Figure 5.1: Package size and cohesion into ArgoUML original (dark gray) and resulting
(light gray) modularizations. Packages have the same order in diagrams.

General optimization. Table 5.3 (p. 115) shows optimization results. In the resulting

113

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

modularization for JEdit (JEdit1), 10.2% of inter-package dependencies IPD,
23.3% of inter-package cyclic-dependencies IPCD, 24% of inter-package con-
nections IPC and 37.2% of inter-package cyclic-connections IPCC have been
removed. This significant improvement of inter-package connectivity was ob-
tained by moving only 8.9% of the classes (d = 8.9%). Similarly for other case
studies, the optimization process has improved original modularizations by
moving a relatively small number of their classes. When limiting distancemax to
5%, the algorithm obtained similar results.

Class distribution and package size. Table 5.4 (p. 116) shows that some packages
were empty in resulting modularizations -since their classes moved to other
packages. For example, in ArgoUML1, 25.4% of packages were empty. By
inspecting packages in the original modularization we found that those empty
packages are packages which have originally very small sizes (i.e., in average
two or three classes) and have low quality for cohesion, coupling and/or cyclic
dependencies. This conclusion were also true for the other case studies.

Figure 5.1 (p. 113) shows an overview about package size and cohesion for the
original modularization of ArgoUML and for the resulting modularizations (Ta-
ble 5.3 (p. 115)). We can see that empty packages in the resulting modularizations
are packages whose sizes are small and whose cohesion is relatively worse. On
another hand, Figure 5.1 (p. 113) shows also that the size of some small packages,
annotated by small packages, is increased in the resulting modularization.
Dominant packages, annotated by dominant packages, is a main cause of bad
distribution of classes: moving classes from dominant packages to small ones
generally produces more dependencies and connections among packages.

Maintainers can avoid moving classes from small packages to dominant ones
by limiting the sizemax (Section 5.3.3.1 (p. 109)) of dominant packages to their
original size: psizemax = psizeV 0 . This way, the dominant package size will never
increase and the optimization process will search better modularizations by
moving classes among/to smaller packages.

Fortunately, in the case of JEdit1, only 10.5% (2/19) of packages are empty
(Table 5.4 (p. 116)), where Table 5.3 (p. 115) shows that our optimization process
has effectively optimize package connectivity in JEdit1.

Now as a future work, we have to perform a deep manual validation since in
presence of late-binding and frameworks, some small packages may extend
larger ones and as such may have a real reason to exist. Note that defining such
packages as frozen (Section 5.3.3.3 (p. 110)) will keep those packages existing.

While some packages became empty, Table 5.4 (p. 116) shows that the average
package size (|MC |

|MP |) for the resulting modularizations is really close to the aver-
age package size for the original ones Table 5.1 (p. 113). Similarly, we can see that
for the maximum package size (maxPsize). This shows that the optimization
algorithm conserves the original system shape.

Package quality optimization. Table 5.5 (p. 116) shows that package quality average
is also optimized: cohesion quality average (CohesionQAvg), coupling quality

114

5.4. Experiments and Validation

average (CouplingQAvg) and cyclic-dependency quality average (CyclicDQAvg)
for resulting packages are also almost all optimized, even if distancemax is
limited to only 5%. This can be seen also in Figure 5.1 (p. 113).

In only one case (JEdit1 and JEdit2), the package coupling quality (CouplingQ)
decreased with a very good improvement of CyclicDQ and CohesionQ. We ex-
plain this by the fact that the optimization process gives more importance to
inter-packages cyclic-dependencies. Indeed, CyclicDQ had a very bad value in
the original modularization JEdit (Table 5.2 (p. 115)): the ratio of inter-package
cyclic-dependencies (IPCDICD) shows that 38.4% of inter-class dependencies form
cyclic-dependencies between packages. Moreover there are 802 classes dis-
tributed over only 19 packages, so that the search space for generating new
modularization is limited.

Table 5.2: Package Quality in original modularizations
Original CohesionQAvg CouplingQAvg CyclicsDQAvg

JEdit 28.8% 91.4% 40.6%
ArgoUML 17.2% 76.6% 81.6%

Jboss 12.5% 61.8% 96.4%
Azureus 11.7% 72.3% 84.7%

Table 5.3: Optimizations on Inter-Package Connectivity. The top table shows the percent of

reduction of IPD, .. , IPCC (Table 5.1 (p. 113)) into resulting modularizations. The biggest negative value is, the

best optimization is. The bottom table shows these information when distancemax is specified and limited to 5%.
Optimization1 IPD IPCD IPC IPCC

JEdit1(d = 8.9%) −10.2% −23.3% −24.0% −37.2%
ArgoUML1(d = 8.3%) −04.4% −09.0% −32.7% −31.8%
Jboss1(d = 11.9%) −08.3% −37.7% −18.5% −51.2%
Azureus1(d = 9.5%) −06.0% −23.2% −6.2% −28.4%

Optimization2 IPD IPCD IPC IPCC
JEdit2(d = 05.0%) −06.5% −09.4% −20.6% −24.3%

ArgoUML2(d = 05.0%) −02.5% −04.2% −25.9% −24.9%
Jboss2(d = 05.0%) −03.2% −12.6% −11.3% −21.6%

Azureus2(d = 05.0%) −03.2% −09.3% −05.7% −16.7%

Consistency of resulting modularizations. since our optimization approach uses
random selection, different executions produce different modularizations. To
evaluate the consistency of our optimization approach, we have applied it
10 times on each case study (Table 5.1 (p. 113)). As a result, each system has
10 modularizations [M1..M10]. Table 5.6 (p. 116) shows the average distance
between every pair (Mi,Mj). For example, between resulting modularizations
for JEdit, there are, in average, only 3% of classes that have not the same packages.
For Jboss, only 5.6% of the classes have different packages in distinct resulting
modularizations.

115

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

Table 5.4: Modifications on Package Size. The top table shows the percent of empty packages

(Table 5.1 (p. 113)), the biggest and the average package size into resulting modularizations. The bottom table

shows these information when distancemax is specified and limited to 5%.

Optimization1 EmptyP maxPsize
|MC |
|MP |

JEdit1(d = 8.9%) 10.5% 176 47.2
ArgoUML1(d = 8.35%) 25.4% 157 29.3
Jboss1(d = 11.9%) 22.4% 79 8.8

Azureus1(d = 9.48%) 15.8% 219 13.2

Optimization2 EmptyP maxPsize
|MC |
|MP |

JEdit2(d = 05.0%) 5.3% 176 44.6
ArgoUML2(d = 05.0%) 21% 155 27.9
Jboss2(d = 05.0%) 14.7% 81 7.9

Azureus2(d = 05.0%) 12.9% 215 12.7

Table 5.5: Optimizations on Package quality. The top table shows the average optimizations on

package quality into resulting modularizations. Values are based on Table 5.2 (p. 115). The biggest positive value

is, the best optimization is. The bottom table shows these information when distancemax is specified and limited

to 5%.
Optimization1 CohesionQAvg CouplingQAvg CyclicDQAvg

JEdit1 +06.1% −00.8% +10.4%
ArgoUML1 +08.1% +07.4% +00.4%
Jboss1 +08.5% +11.6% +01.8%

Azureus1 +05.8% +03.6% +05.4%

Optimization2 CohesionQAvg CouplingQAvg CyclicDQAvg

JEdit2 +05.4% −02.2% +05.2%
ArgoUML2 +06.0% +07.4% +00.1%
Jboss2 +04.0% +09.4% +00.5%

Azureus2 +03.9% +04.6% +02.2%

We mainly relate this very good consistency of resulting modularizations to the
improvements we introduced to the neighbor function N Section 5.3.4 (p. 110)
(i.e., the probability function to being selected).

In conclusion, the obtained results are very convincing. For all the case studies,
the new modularizations are clearly better than the original ones. Moreover,
our optimization process produces very similar results.

Table 5.6: Resulting Modularization Consistency. Table shows the average distance between ten

resulting modularizations for each application.
Optimization1 DistanceAvg

JEdit1 3%
ArgoUML1 4.1%
Jboss1 5.6%

Azureus1 4.9%

116

5.4. Experiments and Validation

Optimization of package quality with constraints on package size. To illustrate how
to control our optimization process, we took, as example, the case study of
ArgoUML and specified the following constraints:

1. Do not increase the size of dominant packages: to avoid increasing the size
of dominant packages, we considered that the maximal package size is
35 (i.e., sizemax = 35). This way, our optimization process will not move
classes to such packages.
Note that, in the original modularization of ArgoUML there are 14 packages

25

0

50

75

100

125

150

175 dominant packages

empty packagessmall packages

Pa
ck

ag
e
si
ze

0
1/16
2/16
3/16

1

.

.

.

.

.

.

.

.

15/16

Pa
ck

ag
e
co
he
si
on

0
1/16
2/16
3/16

1

.

.

.

.

.

.

.

.

15/16

Pa
ck

ag
e
Cy
cl
ic
DQ

Figure 5.2: Package size, cohesion quality (CohesionQ) and cyclic dependency quality
(CyclicDQ) into ArgoUML original (dark gray) and resulting (light gray) modulariza-
tions. Packages have the same order in diagrams. The constraints are: (1) the size of packages
that entail more than 35 should not increase (sizemax = 35); (2) the classes that are packaged in small
packages (1 < psize < 6) should not be moved (i.e., they are frozen).

117

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

that their size is greater than 34. Which means that, this way, about 18% of
ArgoUML packages can not be target packages for class moving.

2. Do not move classes from small packages: to avoid removing small packages,
we considered that the classes of small packages should not be moved
(frozen classes). We defined a small package as a package that entails less
than 6 classes, but more than 1 class. We think that a package that entails
only one class has no sense.
Note that, in the original modularization of ArgoUML there are 21 packages
that their size is smaller than 6 and greater than 1. Those packages entail
68 classes. Which means that, this way, about 4% of ArgoUML classes can
not change their packages.

Table 5.7: Modifications on Package Size for ArgoUML. It shows the percentage of
empty packages (Table 5.1 (p. 113)), the biggest and the average package size into
resulting modularizations. The constraints are: (1) the size of packages that entail more than 35 should

not increase (sizemax = 35); (2) the classes that are packaged in small packages (1 < psize < 6) should not be moved

(i.e., they are frozen).

Optimization1 EmptyP maxPsize
|MC |
|MP |

ArgoUML1(d = 5.5%) 11.8% 155 24.9

Table 5.8: Optimizations on Package Quality for ArgoUML. Values are based on
Table 5.2 (p. 115). The biggest positive value is, the best optimization is. The constraints

are: (1) the size of packages that entail more than 35 should not increase (sizemax = 35); (2) the classes that are

packaged in small packages (1 < psize < 6) should not be moved (i.e., they are frozen).
Optimization1 CohesionQAvg CouplingQAvg CyclicDQAvg

ArgoUML1(d = 5.5%) +04.2% +04.4% +02.5%

Table 5.9: Optimizations on Inter-Package Connectivity for ArgoUML. It shows the
percentage of reduction of IPD, .. , IPCC (Table 5.1 (p. 113)) into resulting modulariza-
tions. The biggest negative value is, the best optimization is. The constraints are: (1) the size

of packages that entail more than 35 should not increase (sizemax = 35); (2) the classes that are packaged in small

packages (1 < psize < 6) should not be moved (i.e., they are frozen).
Optimization1 IPD IPCD IPC IPCC

ArgoUML1(d = 5.5%) −01.4% −15.6% −8.5% −12.7%

Figure 5.2 (p. 117) shows package size, cohesion quality (CohesionQ) and cyclic
dependency quality (CyclicDQ) into ArgoUML original and resulting modular-
izations. The diagram of package size shows that the size of dominant packages
has not increased. It also shows that the size of some dominant packages, de-
noted by dominant packages has decreased. On the other hand, only 9 packages
are empty in resulting modularizations: 8 among them are packages that entail
only one class in the original modularization.

118

5.5. Related Works

A summary of Figure 5.2 (p. 117) is that: our optimization process optimized
the quality of most packages (CohesionQ and CyclicDQ) in ArgoUML, without
moving classes from small packages to dominant ones. This is also shown in
Table 5.7 (p. 118), Table 5.9 (p. 118) and Table 5.8 (p. 118).
Table 5.7 (p. 118) shows that the resulting modularization shape (maxPsize
and MC

MP
) is very similar to the original modularization shape (Table 5.1 (p.

113)). While Table 5.9 (p. 118) and Table 5.8 (p. 118) show that package quality
(CohesionQAvg, CouplingQAvg and CyclicQAvg), as well as, package connectivity
are optimized.

5.5 Related Works

Our work is mostly related to work on software modularization and decomposition
[Abreu and Goulao, 2001; Harman and Hierons, 2002; Harman and Tratt, 2007; Mancoridis
and Mitchell, 1998; Mancoridis et al., 1999; Mitchell and Mancoridis, 2002, 2006, 2008;
Seng et al., 2005].

Mancoridis and Mitchell, [Mancoridis and Mitchell, 1998; Mancoridis et al., 1999],
introduced a search-based approach based on hill-climbing clustering technique to
cluster software modules (classes in our context). Their approach starts with an
initial population of random modularizations. The clustering algorithm clusters each
of the random modularization and selects the result with the largest quality as the
suboptimal solution. Recently, they used Simulated Annealing technique to optimize
resulting clusters [Mitchell and Mancoridis, 2002, 2006] [Mitchell and Mancoridis, 2008].
Their optimization approach creates new modularizations by moving randomly some
classes (a block of classes) to new clusters. The goal of their approach is increasing
cluster internal dependencies.

Harman et al. [Harman and Tratt, 2007] introduces a non-exhaustive hill climbing
approach to optimize and determine a sequence of class refactorings. Similarly to our
approach, they also restricted their approach to only move methods (classes in our
context) over existing classes (packages in our context). The goal of their approach is
reducing the class coupling, based on the Coupling Between Objects (CBO) metric
[Briand et al., 1998]. To avoid having very large classes, they also used the dispersion
of methods over classes (the standard deviation of methods per class metric) as a
factor to measure the quality of resulting class refactoring sequences.

Abreu et al. [Abreu and Goulao, 2001] used hierarchical agglomerative clustering
methods to decompose software classes into packages. Their clustering methods
starts with a set of classes considering that each class is placed within a singleton
cluster.
The goal of their approach is also increasing package internal dependencies (i.e.,
package cohesion). In addition to the package cohesion, they used the dispersion
of classes over packages (i.e., package size dispersion) as a factor to measure the
modularization quality.

Seng et al. [Seng et al., 2005] and Harman et al. [Harman and Hierons, 2002] proposed
genetic algorithms to partition software classes into subsystems (packages). Their
algorithms start with an initial population of modularizations. These algorithms
apply genetic operators on packages to modify current modularizations and/or

119

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

create new modularizations into the population. The goal of both works is increasing
package internal dependencies. Seng et al. consider also cyclic-dependencies between
packages as anti-pattern for package design quality.

Our approach has several advantages compared to those works.

Considering original modularizations: our approach tackles the problem of opti-
mizing existing software modularizations rather than the problem of software
re-modularization. Indeed, our optimization approach starts from one original
modularization instead of an initial population of modularizations or a flat set
of classes. Although we use an optimization technique similar to that in Mitchell
et al. work, we restrict ours to moving classes over existing packages rather than
creating new packages since we want to minimize the distance for a maintainer
between the initial situation and the resulting one. Even if some prior works
support the notion of importing a defined clustering [Tzerpo and Holt, 1997] and
restrict modifications to only moving classes over existing packages [Harman
and Tratt, 2007], we did not found, in the software re-modularization literature,
approaches that explicitly take into account the original modularization struc-
ture as we do. Our approach allows maintainers to specify the maximal number
of classes that may change their packages (distancemax).

Controlling the optimization process: Our approach allows maintainers to specify,
in addition to the constraint distancemax, a set of constraints: (1) the pack-
age maximal size (sizemax); (2) the packages/classes which should not be
changed/moved (frozen entities). As a consequence, it allows them to con-
trol the optimization process. Although those constraints are simple, they are
very important and helpful for the automatic optimization of software modular-
ization. For example, the constraint sizemax could be used to avoid increasing
the size of dominant packages. The constraint frozen could be used to specify
that a group of classes should always be together in their original package
–even if that package is not cohesive from the point of view of the CohesionQ
metric (Equation 5.5 (p. 106))

Doing near minimal modifications: differently from those cited works, we intro-
duce a probability function that improves the derivation of neighbor modular-
izations by taking into account the distance between resulting modularizations
and the original one, in addition to other constraints (Section 5.3.3 (p. 109)) and
package quality parameters (Section 5.2.2 (p. 106)). The great advantage of the
probability function is finding better modularization by doing near-minimal
modifications: Section 5.4 (p. 112) shows that the distance between resulting
modularizations and the original one is very small.

Reducing inter-package dependencies and connections: another advantage of our
approach is that we use an evaluation function consisting of a combination
of multiple metrics. This allows us to have a much richer quality model than
the approaches cited above which are mostly based on the unique goal of
maximizing package internal dependencies. Although those approaches aim
at reducing the global number of inter-package dependencies (e.g., the fitness
metric MQ used by Mitchell et al. [Mitchell and Mancoridis, 2002, 2006, 2008]),

120

5.6. Conclusion and Future Work

they do not take into account the number of coupled packages (i.e., the number
of inter-package connections). As consequence, they do not check whether
package coupling is reduced or not along the optimization process. In addition,
those cited prior works do not consider package cycles. Excepted Seng et al.
[Seng et al., 2005], they consider inter-package cyclic-dependencies, without
taking in account inter-package cyclic-connections.

5.6 Conclusion and Future Work

In this chapter, we addressed the problem of optimizing existing modularizations by
reducing the connectivity, particularly the cyclic-connectivity, among packages. We
proposed an optimization algorithm and a set of metrics that our optimization process
uses to automatically evaluate the quality of a modularization. When designing our
optimization approach, we exploited several principles of package design quality
to guide and to optimize the automatic derivation of new modularizations from an
existing one. We limited the optimization process to only moving classes over existing
packages. We also introduced constraints related to package size, to the number of
classes that are allowed to change their packages and to the classes/packages that
should not be moved/changed. The results obtained from 4 case studies on real large
software systems showed that our optimization algorithm has been able to reduce,
significantly, package coupling and cycles, by moving a relatively small number
of classes from their original packages. These results are important because the
chosen software systems have radically different original modularizations (in terms
of number of classes/packages, inter-class/inter-package dependencies, etc.).

As future work, we intend to enhance our approach by: (1) supporting indirect
cyclic-dependencies among packages, (2) taking into account visibility of classes
and particular cases of classes (e.g., inner classes in Java). Indeed in this chapter, we
considered that classes are always public and then can change their packages, (3)
setting up a real validation supported by proper statistics and qualitative analyses of
resulting source code structures.

121

Chapter 5. Automatically Measuring and Optimizing Modularization Quality

122

Chapter 6
Conclusions and Future Work

In the life, there is no problem,
there is a sequence of solutions

Although packages are important to cope with the complexity of software systems,
packages, themselves, are complex and play distinct roles. However, as software
systems evolve, the software modularization drifts, and as a consequence, it should
be maintained. In that respect, maintainers need to understand the structure of
packages, their intra and inter dependencies, their roles, etc. They also need to assess
the modularization quality, as well as the quality of a single package within the
concerned modularization; and looking for good alternative modularizations without
breaking the shape of the original modularization.

We have reviewed various existing approaches that tried to solve a substantial
body of the problem of the maintenance of software system modularizations. Our
review reveals that these approaches usually focus on few features about packages.
The existing approaches for understanding packages fall short of providing a fine-
grained view of packages that would help understanding the package shapes. The
existing metrics for assessing the quality of packages focus only on some aspects of the
package shape without an explicit relation to the package design principles, and they
fall short of assessing the quality of a given modularization. The existing approaches
for the automatic remodularization of software systems suffer from several limitations:
(1) they have as unique goal to maximize package intra-dependencies, without
considering other parameters of the modularization quality; (2) they do not allow
maintainers to specify constraints on alternative modularizations; (3) they often
produces new modularizations that are completely different from the original ones.

In this dissertation we argue for the need for: (1) approaches that help to un-
derstand package shapes at a fine and coarse grained level; (2) metrics that help to
automatically assess, from different perspectives, the quality of a modularization, as
well as the quality of a single package within a given modularization; (3) an approach

123

Chapter 6. Conclusions and Future Work

that help to automatic searching for good alternative modularizations.
Our proposal consists of:

The visual map Package Blueprint: a compact visualization that helps in understand-
ing fine-grained structures and dependencies (internal and external) of pack-
ages. We defined three variants of the Package Blueprint: (a) the incoming
reference package blueprint maps the incoming references that point to the
package classes; (b) the outgoing reference package blueprint maps the outgo-
ing references that exit the package classes; (c) the inheritance package blueprint
maps the outgoing inheritances that exit the package classes.

In Chapter 3 (p. 39) we illustrated that the Package Blueprint for a given package
reveals a lot of information about the package shape and dependencies. For
example, a package blueprint reveals: (1) the package size; (2) the package
internal and external complexity; (3) the number of its client and provider
classes/packages; (4) the distribution of its client/provier classes over the
client/provider packages; (5) the importance of each client/provider package;
(6) the importance of each referencing/referenced class; (7) the scope of the
incoming/outgoing dependencies: e.g., whether if the package refers to classes
belonging to other subsystems than the package subsystem, or to classes be-
longing to the package subsystem; (8) the package role: whether if the package
is central to the analyzed system or peripheral; (9) the package cohesion based
on the direct dependencies among the package classes –a package blueprint
shows, in detail, if the concerned package respects, or not, the Common Closure
Principle (CCP), as described in Section 2.3.2 (p. 23); etc.

A result of our validation of the Package Blueprint is the identified set of visual
patterns that help to quickly identify package and class shapes.

The visual map Package Fingerprint: a compact, rich and zoomable visualization to
better support the understanding of package interfaces, relationships and the
conceptual coupling of package classes (i.e., package contextual cohesion). The
goal of this visualization is to help maintainers during their early contacts with
unknown packages. We defined two complementary variants of the Package
Fingerprint, structured around the distribution of references from or to the
classes of the analyzed package: (1) the incoming fingerprint shows how the
system uses the package classes, and highlights the conceptual cohesion of the
analyzed package –an incoming fingerprint shows, in detail, if the concerned
package respects, or not, the Common Reuse Principle (CRP), as described in
Section 2.3.2 (p. 23); (2) the outgoing fingerprint shows how the package classes
use the system and highlights the coupling of the package classes from the
point of view of provider packages.

Package Fingerprints are orthogonal to the Package Blueprint. Maintainers may
use the Package Fingerprints to understand and characterize packages at a high
level of abstraction. After that, they may use the Package Blueprint to reveal
package’s detail and see the distribution of dependencies over classes.

Outgoing Fingerprint works similarly to Incoming Fingerprint but from the
point of view of package outgoing references (Out-Interface), referenced pack-
ages and package reasons-for-changing, instead of the the point of view of

124

package incoming references (In-Interface), referencing packages and package
provided services.

A package metric suite: we defined a suite of metrics that help to compute the qual-
ity of a single package within a given modularization. Our metrics follow
the principles of package cohesion and coupling: Common Closure Principle
(CCP), Common Reuse Principle (CRP) and Acyclic Dependencies Principle
(ADP), that we described in Section 2.3.2 (p. 23). The aim of these metrics is
to automatically identify candidate packages for restructuring (Chapter 5 (p.
103)). These metrics may also be used to have a first impression about a given
package. In Chapter 5 (p. 103) we illustrated how to use these metrics to identify
candidate packages for restructuring. We also defined a strategy (measure) to
determine the place quality of a class within its package, based on the class
external dependencies: class Badness (Equation 5.15 (p. 112)). In addition, we
defined a strategy to propose suitable refactoring of a given class, based on the
external dependencies that the class has with its client/provider packages: the
N earness between a class c and a package p (Equation 5.17 (p. 112)).

A modularization metric suite: we defined a suite of metrics that help to compute
the quality of a modularization. The aim of these metrics is to automatically
assess the quality of a modularization and the impact of changes within the
concerned modularization. These metrics also follow the principles of package
cohesion and coupling cited above.

In Chapter 5 (p. 103) we illustrated how to use these metrics in our approach
of automatic optimization of a software modularization. These metrics can
be used in any similar approach and also to have a first impression about the
quality of a given modularization.

A search-based optimization approach: we defined an approach based on the local
search-based technique Simulated Annealing to automatically reduce package cou-
pling and cycles. Our approach searches for good alternative modularizations
by doing near minimal modifications on the original modularization. It also
allows maintainer to control the optimization process by defining divers con-
straints on the possible alternative modularizations: (1) the maximal number of
classes that may change their package; (2) the maximal number of classes that a
package may contain; (3) the classes that should not change their package; (4)
the packages that should not be changed.

In Chapter 5 (p. 103) we validated our optimization approach on real large
software systems and showed that the resulting modularization effectively
optimizes the connectivity among packages. The obtained results illustrate
that: (1) our optimization approach is characterized by a very good consistence,
which is a good sign; (2) it optimizes existing software modularization by
moving a relatively small number of classes; (3) it does a relatively small
modifications on the package size.

Maintainers may use our optimization approach to have several alternative
modularizations. They then can use our metrics with our visualizations to un-
derstand these alternative modularizations and choose one of them as the most

125

Chapter 6. Conclusions and Future Work

suitable solution. Since the distance between resulting modularizations and
original ones is relatively small, it should be easy to map back the alternative
modularizations. In addition, since our visualizations support interactive mech-
anisms, maintainers can mark classes that changed their packages by a given
color. This way, they can easily detect changes and understand the alternative
modularizations.

According to this overview, our proposal covers the set of requirements, that we
identified in Section 2.8 (p. 37), for the maintenance of large and complex software
modularizations.

6.1 Open Issues

In this dissertation we exploit only explicit dependencies among classes, which
can be class inheritance, class access and method call. However, beyond the kinds of
dependencies explored in our proposal, there are further kinds of dependencies
among packages. For example, the class extension dependency that we described in
Section 2.2 (p. 16). We think that the techniques represented in this dissertation can be
refined with new dependency kinds.

We have shown that packages play different roles and offer different views.
However, our visualization approaches do not exhaustively analyze every possible
perspective of packages. In this dissertation, we focus on the static structure of pack-
ages. We think that our visualization approaches are complementary to approaches
that analyze: package evolution, the spread of properties over packages and the
software architecture design.

We defined a suite of metrics that compute the quality of software modularizations
and packages from different perspectives. However, we think that our metrics need a
deeper validation that characterizes these metrics and their correlations. In addition,
our metrics do not cover all the principles of package cohesion and coupling that
we described in Section 2.3.2 (p. 23): e.g., our metrics do not cover the Reuse-Release
Equivalence Principle. Therefore, other new metrics are needed.

In this dissertation, we also defined an approach for the automatic reduction
of package cycles and coupling. Our approach takes into account the quality of
software modularization, in addition to several constraints that maintainers may
define. However, we think that our approach can be refined to: (1) support indirect
cyclic-dependencies among packages; (2) take into account visibility of classes and
particular cases of classes (e.g., inner classes in Java). Indeed in our approach, we
considered that classes are always public and then can change their packages; (3)
support more types of constraints on classes and packages: e.g., maintainers should
be able to specify if a given class can be moved to only an identified set of packages.

126

Bibliography

Abdeen, H., Alloui, I., Ducasse, S., Pollet, D., and Suen, M.: (2008). Package refer-
ence fingerprint: a rich and compact visualization to understand package relation-
ships. In European Conference on Software Maintenance and Reengineering (CSMR), pp.
213–222. IEEE Computer Society Press.

Abdeen, H., Ducasse, S., Pollet, D., and Alloui, I.: (2009a). Package fingerprint: a
visual summary of package interfaces and relationships. Under submission at the
Information and Software Technology (IST) Journal.

Abdeen, H., Ducasse, S., Sahraoui, H., and Alloui, I.: (2009b). Automatic package
coupling and cycle minimization. In International Working Conference on Reverse
Engineering (WCRE), pp. ?–? IEEE Computer Society Press.

Abreu, F. B. and Goulao, M.: (2001). Coupling and cohesion as modularization
drivers: are we being over-persuaded? In European Conference on Software Mainte-
nance and Reengineering (CSMR), pp. 47–57.

Allen, E. and Khoshgoftaar, T.: (2001). Measuring coupling and cohesion of soft-
ware modules: An information theory approach. In International Software Metrics
Symposium.

Anquetil, N. and Lethbridge, T.: (1999). Experiments with Clustering as a Software
Remodularization Method. In Working Conference on Reverse Engineering (WCRE),
pp. 235–255.

Arisholm, E., Briand, L. C., and Foyen, A.: (2004). Dynamic coupling measurement
for object-oriented software. Transactions on Software Engineering (TSE), 30(8):pp.
491–506.

Bauer, M. and Trifu, M.: (2004). Architecture-aware adaptive clustering of oo systems.
In European Conference on Software Maintenance and Reengineering (CSMR), pp. 3–14.
IEEE Computer Society Press, Washington, DC, USA.

Berard, E. V.: (1993). Essays On Object-Oriented Software Engineering, volume 1.
Prentice-Hall.

Bergel, A., Ducasse, S., and Nierstrasz, O.: (2005). Analyzing module diversity.
Journal of Universal Computer Science, 11(10):pp. 1613–1644.

127

Bibliography

Bertin, J.: (1983). Semiology of Graphics. University of Wisconsin Press.

Beyer, D.: (2005). Co-change visualization. In International Conference on Software
Maintenance (ICSM), Industrial and Tool volume, pp. 89–92.

Bieman, J. and Kang, B.: (1995). Cohesion and reuse in an object-oriented system. In
ACM Symposium on Software Reusability.

Bieman, J. and Kang, B.: (1998). Measuring design-level cohesion. IEEE Transactions
on Software Engineering, 24(2):pp. 111–124.

Bieman, J. and L.M.Ott: (1994). Measuring functional cohesion. IEEE Transactions on
Software Engineering (TSE), 20(8):pp. 644–658.

Briand, L. C., Daly, J. W., and Wüst, J.: (1998). A Unified Framework for Cohesion
Measurement in Object-Oriented Systems. Empirical Software Engineering: An
International Journal, 3(1):pp. 65–117.

Briand, L. C., Daly, J. W., and Wüst, J. K.: (1999a). A Unified Framework for Coupling
Measurement in Object-Oriented Systems. IEEE Transactions on Software Engineering,
25(1):pp. 91–121.

Briand, L. C., Daly, J. W., and Wüst, J. K.: (1999b). Using coupling measurement for
impact analysis in object-oriented systems. In International Conference on Software
Engineering (ICSE), pp. 475–482.

Callebaut, W. and Rasskin-Gutman, D.: (2005). Modularity: Understanding the Devel-
opment and Evolution of Natural Complex Systems. MIT press.

Chapman, W. L., Rozenblit, J., and Bahill, A. T.: (2001). System design is an np-
complete problem: Correspondence. Systems Engineering, 4(3):pp. 222–229.

Chidamber, S. R. and Kemerer, C. F.: (1994). A metrics suite for object oriented
design. Transactions on Software Engineering (TSE), 20(6):pp. 476–493.

Chuah, M. C. and Eick, S. G.: (1998). Information rich glyphs for software manage-
ment data. IEEE Computer Graphics and Applications, 18(4):pp. 24–29.

Clarke, J., Dolado, J. J., Harman, M., Jones, B., Lumkin, M., Mitchell, B., Rees, K.,
and Roper, M.: (2003). Reformulating software engineering as a search problem.
In IEEE Proceedings on Software, volume 3, pp. 161–175.

D’Ambros, M. and Lanza, M.: (2006a). Applying the evolution radar to postgresql.
In Workshop on Mining Software Repositories (MSR), pp. 177–178.

D’Ambros, M. and Lanza, M.: (2006b). Reverse engineering with logical coupling.
In Working Conference on Reverse Engineering (WCRE), pp. 189 – 198.

D’Ambros, M. and Lanza, M.: (2006c). Software bugs and evolution: A visual ap-
proach to uncover their relationship. In European Conference on Software Maintenance
and Reengineering (CSMR), pp. 227–236. IEEE Computer Society Press.

128

D’Ambros, M. and Lanza, M.: (2007). Bugcrawler: Visualizing evolving software
systems. In European Conference on Software Maintenance and Reengineering (CSMR),
p. to be published. IEEE Computer Society Press.

D’Ambros, M., Lanza, M., and Lungu, M.: (2006). The evolution radar: Integrating
fine-grained and coarse-grained logical coupling information. In International
Workshop on Mining Software Repositories (MSR), pp. 26–32. ACM.

Demeyer, S., Ducasse, S., and Nierstrasz, O.: (2002). Object-Oriented Reengineering
Patterns. Morgan Kaufmann.

Demeyer, S., Tichelaar, S., and Ducasse, S.: (2001). FAMIX 2.1 — The FAMOOS
Information Exchange Model. Technical report, University of Bern.

Denker, M. and Ducasse, S.: (2007). Software evolution from the field: an experience
report from the Squeak maintainers. In Proceedings of the ERCIM Working Group on
Software Evolution, volume 166 of Electronic Notes in Theoretical Computer Science, pp.
81–91. Elsevier.

DeRemer, F. and Kron, H. H.: (1976). Programming in the large versus programming
in the small. IEEE Transactions on Software Engineering (TSE), 2(2):pp. 80–86.

Dong, X. and Godfrey, M.: (2007). System-level usage dependency analysis of object-
oriented systems. In International Conference on Software Maintenance (ICSM), pp.
375–384. IEEE Computer Society Press.

Doval, D., Mancoridis, S., and Mitchell, B. S.: (1999). Automatic clustering of soft-
ware systems using a genetic algorithm. In the Software Technology and Engineering
Practice (STEP), p. 73. IEEE Computer Society Press, Washington, DC, USA.

Ducasse, S., Abdeen, H., Pollet, D., Suen, M., and Alloui, I.: (2009). Understanding
packages: The package blueprint. Under submission at the IEEE Transactions on
Software Engineering (TSE) Journal.

Ducasse, S., Gîrba, T., and Kuhn, A.: (2006a). Distribution map. In International
Conference on Software Maintenance (ICSM), pp. 203–212. IEEE Computer Society
Press, Los Alamitos CA.

Ducasse, S., Gîrba, T., Lanza, M., and Demeyer, S.: (2005a). Moose: a collaborative
and extensible reengineering environment. In Tools for Software Maintenance and
Reengineering, RCOST / Software Technology Series, pp. 55–71. Franco Angeli,
Milano.

Ducasse, S., Gîrba, T., and Wuyts, R.: (2006b). Object-oriented legacy system trace-
based logic testing. In European Conference on Software Maintenance and Reengineering
(CSMR), pp. 35–44. IEEE Computer Society Press.

Ducasse, S., Lanza, M., and Ponisio, L.: (2005b). Butterflies: A visual approach to
characterize packages. In Software Metrics Symposium (METRICS), pp. 70–77. IEEE
Computer Society Press.

129

Bibliography

Ducasse, S., Pollet, D., Suen, M., Abdeen, H., and Alloui, I.: (2007). Package surface
blueprints: Visually supporting the understanding of package relationships. In
International Conference on Software Maintenance (ICSM), pp. 94–103. IEEE Computer
Society Press.

Eick, S., Graves, T., Karr, A., Marron, J., and Mockus, A.: (2001). Does code decay?
assessing the evidence from change management data. IEEE Transactions on Software
Engineering (TSE), 27(1):pp. 1–12.

Eick, S., Graves, T., Karr, A., Mockus, A., and Schuster, P.: (2002). Visualizing
software changes. IEEE Transactions on Software Engineering, 28(4):pp. 396–412.

Emerson, T.: (1984). A discriminant metric for module cohesion. In International
Conference on Software Engineering (ICSE).

Farrugia, A.: (2004). Vertex-partitioning into fixed additive induced-hereditary
properties is np-hard. the electronic journal of combinatorics, 11.

Feathers, M. C.: (2005). Working Effectively with Legacy Code. Prentice Hall.

Fenton, N. and Pfleeger, S. L.: (1996). Software Metrics: A Rigorous and Practical
Approach. International Thomson Computer Press, London, UK, 2nd edition.

Ferland, J. A. and Costa, D.: (2001). Heuristic search methods for combinatorial
programming problems.

Flanagan, D.: (1999). Java In a Nutshell: 3rd Edition. O’Reilly, 3rd edition.
Http://hell.org.ua/Docs/oreilly/javaenterprise/jnut/index.htm.

Fowler, M.: (2001). Reducing coupling. IEEE Software, 18:pp. 102–104.

Fowler, M., Beck, K., Brant, J., Opdyke, W., and Roberts, D.: (1999). Refactoring:
Improving the Design of Existing Code. Addison Wesley.

Froehlich, J. and Dourish, P.: (2004). Unifying artifacts and activities in a visual tool
for distributed software development teams. In International Conference on Software
Engineering, pp. 387–396. IEEE Computer Society Press, Washington, DC, USA.

Gîrba, T., Kuhn, A., Seeberger, M., and Ducasse, S.: (2005). How developers drive
software evolution. In International Workshop on Principles of Software Evolution
(IWPSE), pp. 113–122. IEEE Computer Society Press.

Griswold, W. G. and Notkin, D.: (1993). Automated assistance for program restruc-
turing. ACM Transactions on Software Engineering and Methodology (TOSEM), 2(3):pp.
228–269.

Harman, M.: (2007). The current state and future of search based software engineering.
In Future of Software Engineering (FOSE), pp. 342–357. IEEE Computer Society Press,
Washington, DC, USA.

130

Harman, M. and Hierons, R.: (2002). A new representation and crossover opera-
tor for search-based optimization of software modularization. In the Genetic and
Evolutionary Computation Conference (GECCO), pp. 1351–1358. Morgan Kaufmann
Publishers.

Harman, M. and Tratt, L.: (2007). Pareto optimal search based refactoring at the
design level. In the Genetic and Evolutionary Computation Conference (GECCO), pp.
1106–1113. ACM.

Hautus, E.: (2002). Improving Java software through package structure analysis. In
International Conference Software Engineering and Applications, pp. ?–?

Healey, C. G.: (1992). Visualization of Multivariate Data Using Preattentive Processing.
Master’s thesis, Department of Computer Science, University of Bristish Columbia.

Healey, C. G., Booth, K. S., and Enns, J. T.: (1993). Harnessing preattentive processes
for multivariate data visualization. In Proceedings of Graphics Interface (GI), pp.
107–117.

Healey, C. G., Booth, K. S., and Enns, J. T.: (1995). Visualizing real-time multivariate
data using preattentive processing. ACM Transactions on Modeling and Computer
Simulation (TOMACS), 5(3):pp. 190–221.

Henderson-Sellers, B.: (1996). Object-Oriented Metrics: Measures of Complexity.
Prentice-Hall.

Jain, A. K., Murty, M. N., and Flynn, P. J.: (1999). Data clustering: a review. ACM
Computing Surveys, 31(3):pp. 264–323.

Kirkpatrick, S., Jr., C. D. G., and Vecchi, M. P.: (1983). Optimization by simulated
annealing. Science, 220(4598):pp. 671–680.

Kuhn, A., Ducasse, S., and Gîrba, T.: (2007). Semantic clustering: Identifying topics
in source code. Information and Software Technology, 49(3):pp. 230–243.

Kuhn, A., Loretan, P., and Nierstrasz, O.: (2008). Consistent layout for thematic
software maps. In Working Conference on Reverse Engineering (WCRE), pp. 209–218.
IEEE Computer Society Press, Los Alamitos CA.

Langelier, G., Sahraoui, H., and Poulin, P.: (2005). Visualization-based analysis of
quality for large-scale software systems. In IEEE/ACM international Conference on
Automated software engineering (ASE), pp. 214–223. ACM, New York, NY, USA.

Lanza, M.: (2001). The evolution matrix: Recovering software evolution using
software visualization techniques. In International Workshop on Principles of Software
Evolution (IWPSE), pp. 37–42.

Lanza, M.: (2003). Object-Oriented Reverse Engineering — Coarse-grained, Fine-grained,
and Evolutionary Software Visualization. Ph.D. thesis, University of Bern.

131

Bibliography

Lanza, M. and Ducasse, S.: (2002). Beyond language independent object-oriented
metrics: Model independent metrics. In F. B. e Abreu, M. Piattini, G. Poels, and
H. A. Sahraoui (Editors), Proceedings of the 6th International Workshop on Quantitative
Approaches in Object-Oriented Software Engineering, pp. 77–84.

Lanza, M. and Ducasse, S.: (2003). Polymetric views—a lightweight visual approach
to reverse engineering. Transactions on Software Engineering (TSE), 29(9):pp. 782–795.

Lanza, M. and Marinescu, R.: (2006). Object-Oriented Metrics in Practice. Springer-
Verlag.

Laval, J., Bergel, A., and Ducasse, S.: (2008). Assessing the quality of your software
with moqam. In FAMOOSr, 2nd Workshop on FAMIX and Moose in Reengineering, pp.
28–31.

Laval, J., Denier, S., Ducasse, S., and Bergel, A.: (2009). Identifying cycle causes
with enriched dependency structural matrix. In Working Conference on Reverse
Engineering (WCRE), pp. ?–?

Lehman, M. and Belady, L.: (1985). Program Evolution: Processes of Software Change.
London Academic Press, London.

Liu, X., Swift, S., and Tucker, A.: (2001). Using evolutionary algorithms to tackle large
scale grouping problems. In the Genetic and Evolutionary Computation Conference
(GECCO), pp. 454–460.

Lung, C.-H., Xu, X., Zaman, M., and Srinivasan, A.: (2006). Program restructuring
using clustering techniques. Journal of Systems and Software, 79(9):pp. 1261–1279.

Lungu, M., Lanza, M., and Gîrba, T.: (2006). Package patterns for visual architecture
recovery. In European Conference on Software Maintenance and Reengineering (CSMR),
pp. 185–196. IEEE Computer Society Press, Los Alamitos CA.

Lutz, R.: (2001). Evolving good hierarchical decompositions of complex systems.
Journal of Systems Architecture, 47(7):pp. 613–634.

MacCormack, A., Rusnak, J., and Baldwin, C. Y.: (2006). Exploring the structure
of complex software designs: An empirical study of open source and proprietary
code. Management Science, 52(7):pp. 1015–1030.

Maini, H., Mehrotra, K., Mohan, C., and Ranka, S.: (1994). Genetic algorithms for
graph partitioning and incremental graph partitioning. In Supercomputing, pp.
449–457. IEEE Computer Society Press, Los Alamitos, CA, USA.

Mancoridis, S. and Mitchell, B. S.: (1998). Using automatic clustering to produce
high-level system organizations of source code. In International Workshop on Program
Comprehension (IWPC), pp. 45–52. IEEE Computer Society Press.

Mancoridis, S., Mitchell, B. S., Chen, Y., and Gansner, E. R.: (1999). Bunch: A
clustering tool for the recovery and maintenance of software system structures. In
International Conference on Software Maintenance (ICSM), pp. 50–59. IEEE Computer
Society Press, Oxford, England.

132

Martin, R. C.: (1996). Granularity. Www.objectmentor.com.

Martin, R. C.: (2000). Design principles and design patterns. Www.objectmentor.com.

Martin, R. C.: (2002a). Agile Software Development. Principles, Patterns, and Practices.
Prentice-Hall.

Martin, R. C.: (2002b). Srp: The single responsibility principle.
Www.objectmentor.com.

Martin, R. C.: (2005). The tipping point: Stability and instability in oo design.
Software Development.

Melton, H. and Tempero, E.: (2007). The crss metric for package design quality. In
the Australian Computer Science Conference (ACSC), pp. 201–210.

Meyer, B.: (1989). The new culture of software development: Reflections on the
practice of object-oriented design. In Proceedings TOOLS, pp. 13–23.

Mitchell, B. S.: (2002). A heuristic search approach to solving the software clustering prob-
lem. Ph.D. thesis, Drexel University, Philadelphia, PA, USA. Adviser-Mancoridis,
Spiros.

Mitchell, B. S. and Mancoridis, S.: (2002). Using heuristic search techniques to
extract design abstractions from source code. In the Genetic and Evolutionary Compu-
tation Conference (GECCO), pp. 1375–1382. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA.

Mitchell, B. S. and Mancoridis, S.: (2006). On the automatic modularization of
software systems using the bunch tool. Transactions on Software Engineering (TSE),
32(3):pp. 193–208.

Mitchell, B. S. and Mancoridis, S.: (2008). On the evaluation of the bunch search-
based software modularization algorithm. Soft Computing - A Fusion of Foundations,
Methodologies and Applications, 12(1):pp. 77–93.

Mitchell, B. S., Mancoridis, S., and Traverso, M.: (2004). Using interconnection
style rules to infer software architecture relations. In the Genetic and Evolutionary
Computation Conference (GECCO), pp. 1375–1387. Seattle, Washington.

Mišić, V. B.: (2001). Cohesion is structural, coherence is functional: Different views,
different measures. In International Software Metrics Symposium (METRICS). IEEE.

Morris, K.: (1989). Metrics for Object-Oriented Software Development Environments.
Master’s thesis, Sloan School of Management. MIT.

Myers, G. J.: (1978). Composite/Structured Design. Van Nostrand Reinhold.

O’Keeffe, M. and Cinnéide, M. O.: (2006). Search-based software maintenance. In
European Conference on Software Maintenance and Reengineering (CSMR), pp. 249–260.
IEEE Computer Society Press, Los Alamitos, CA, USA.

133

Bibliography

O’Keeffe, M. and Cinnéide, M. O.: (2008). Search-based refactoring for software
maintenance. Journal of Systems and Software, 81(4):pp. 502–516.

Parnas, D. L.: (1972). On the criteria to be used in decomposing systems into modules.
CACM, 15(12):pp. 1053–1058.

Patel, S., Chu, W., and Baxter, R.: (1992). A measure for composite module cohesion.
In International Conference on Software Engineering (ICSE), pp. 38–48.

Petre, M.: (1995). Why looking isn’t always seeing: Readership skills and graphical
programming. Communications of the ACM, 38(6):pp. 33–44.

Pinzger, M., Gall, H., Fischer, M., and Lanza, M.: (2005). Visualizing multiple
evolution metrics. In ACM Symposium on Software Visualization (SoftVis), pp. 67–75.
St. Louis, Missouri, USA.

Pollet, D., Ducasse, S., Poyet, L., Alloui, I., Cîmpan, S., and Verjus, H.: (2007).
Towards a process-oriented software architecture reconstruction taxonomy. In
R. Krikhaar, C. Verhoef, and G. Di Lucca (Editors), European Conference on Software
Maintenance and Reengineering (CSMR), pp. 137–148. IEEE Computer Society Press.
Best Paper Award.

Ponisio, L. and Nierstrasz, O.: (2006). Using context information to re-architect a
system. In Software Measurement European Forum (SMEF), pp. 91–103.

Ponisio, M. L.: (2006). Exploiting Client Usage to Manage Program Modularity. Ph.D.
thesis, University of Bern, Bern.

Pressman, R. S.: (1994). Software Engineering: A Practitioner’s Approach. McGraw-Hill.

Rising, L. and Calliss, F. W.: (1992). Problems with determining package cohesion
and coupling. Software - Practice and Experience, 22(7):pp. 553–571.

Sangal, N., Jordan, E., Sinha, V., and Jackson, D.: (2005). Using dependency models
to manage complex software architecture. In ACM SIGPLAN conference on Object
Oriented Programming Systems Languages and Applications (OOPSLA), pp. 167–176.
ACM, New York, NY, USA.

Seng, O., Bauer, M., Biehl, M., and Pache, G.: (2005). Search-based improvement of
subsystem decompositions. In the Genetic and Evolutionary Computation Conference
(GECCO), pp. 1045–1051. ACM, New York, NY, USA.

Serban, G. and l. G. Czibula: (2007). Restructuring software systems using clustering.
In International Symposium on Computer and Information Sciences (ISCIS)., pp. 1–6.

Stevens, W. P., Myers, G. J., and Constantine, L. L.: (1974). Structured design. IBM
Systems Journal, 13(2):pp. 115–139.

Steward, D.: (1981). The design structure matrix: A method for managing the design
of complex systems. IEEE Transactions on Engineering Management, 28(3):pp. 71–74.

134

Storey, M.-A. D., Čubranić, D., and German, D. M.: (2005). On the use of visualiza-
tion to support awareness of human activities in software development: a survey
and a framework. In ACM symposium on software visualization (SoftVis), pp. 193–202.
ACM Press.

Storey, M.-A. D., Wong, K., Fracchia, F. D., and Müller, H. A.: (1997). On integrat-
ing visualization techniques for effective software exploration. In Symposium on
Information Visualization (InfoVis), pp. 38–48. IEEE Computer Society Press.

Sullivan, K. J., Griswold, W. G., Cai, Y., and Hallen, B.: (2001). The structure and
value of modularity in software design. In ESEC/FSE-9, pp. 99–108. ACM.

Treisman, A.: (1985). Preattentive processing in vision. Computer Vision, Graphics, and
Image Processing, 31(2):pp. 156–177.

Tufte, E. R.: (1997). Visual Explanations. Graphics Press.

Tufte, E. R.: (2001). The Visual Display of Quantitative Information. Graphics Press, 2nd
edition.

Tzerpo, V. and Holt, R. C.: (1997). The orphan adoption problem in architecture
maintenance. Reverse Engineering, Working Conference on, 0:p. 76.

Voinea, L., Telea, A., and van Wijk, J. J.: (2005). CVSscan: visualization of code
evolution. In ACM Symposium on Software Visualization (Softviz), pp. 47–56. St. Louis,
Missouri, USA.

Ware, C.: (2000). Information visualization: perception for design. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Wettel, R. and Lanza, M.: (2007a). Program comprehension through software habit-
ability. In International Conference on Program Comprehension (ICPC), pp. 231–240.
IEEE Computer Society Press.

Wettel, R. and Lanza, M.: (2007b). Visualizing software systems as cities. In IEEE Inter-
national Workshop on Visualizing Software For Understanding and Analysis (VISSOFT),
pp. 92–99.

Wiggerts, T.: (1997). Using clustering algorithms in legacy systems remodularization.
In I. Baxter, A. Quilici, and C. Verhoef (Editors), Working Conference on Reverse
Engineering (WCRE), pp. 33–43. IEEE Computer Society Press.

Wysseier, C.: (2005). Interactive 3-D Visualization of Feature-Traces. Master’s thesis,
University of Bern, Switzerland.

Xie, X., Poshyvanyk, D., and Marcus, A.: (2006). Visualization of CVS repository
information. In Working Conference on Reverse Engineering (WCRE), pp. 231–242.
IEEE Computer Society Press, Washington, DC, USA.

Yourdon, E.: (1979). Classics in Software Engineering. Yourdon Press.

135

	Couverture
	Contents
	List of Tables
	Abstract
	Résumé
	Dédicace
	Acknowledgments
	Introduction
	Context: Object-Oriented Software Modularization
	Problem: Software Re-Modularization Challenges
	The Problem of Understanding Packages
	The Problem of Modularization Optimization

	Our Claim
	Contributions
	Structure of the Dissertation

	Software Re-Modularisation: Challenges and Approaches
	Introduction
	Background and Terminology
	Package Understanding
	Quantitive Information
	Qualitative Information (cohesion vs. coupling)
	Role and Contextual Information (central vs. peripheral)
	Organizational Information (developers vs. team)

	Challenges in Optimizing Modularization
	Modularization Complexity
	Class Distribution over Packages
	Package Optimization Trade-Offs

	Existing Approaches to Understand Packages
	Existing Approaches to Assess Package quality
	Existing Approaches to Optimize Modularizations
	A Combined Approach for The Maintenance of Software Modularization

	Package Blueprint: Visually Understanding Package Structure and Interactions
	Introduction
	Visualization Challenges
	Package Blueprint basic principles
	Package Blueprint Detailed Visualizations
	Outgoing Reference Blueprints
	Incoming Reference Blueprints
	The Case of Inheritance

	An Example: The Network::Kernel Package
	Packages Within Their Software System
	Outgoing Reference Package Blueprint Analysis
	Incoming Reference Package Blueprint Analysis
	Inheritance Package Blueprint Overview
	The views together

	Striking Shapes
	Shapes of Packages and Surfaces
	Shapes of Classes

	User Case Study on Squeak Compiler
	Experimental Setup
	Results

	Evaluation and Discussion
	Evaluation
	Discussion

	Related Work
	Conclusion

	Package Fingerprints: Visually Summarizing Package Interface Usage
	Introduction
	Package Fingerprint Principles
	Terminology
	Fingerprint Intention
	Fingerprint Skeleton
	Enriching the Fingerprint Skeleton Layout

	Decorticating a Fingerprint
	Reading the Fingerprint From Far Away
	Outgoing Fingerprint
	Relevant Visual Patterns
	Black Fill Pattern
	Arrow Pattern
	Mosaic Pattern
	Diverse Patterns

	Discussion and Evaluation
	Graphical concerns
	About Coupling and Hints at Improvements
	Related Work

	Conclusion

	Automatically Measuring and Optimizing Modularization Quality
	Introduction
	Modularization Quality
	Measuring Modularization Quality
	Measuring Package Quality

	Optimization Technique (Methodology)
	Technique Overview
	Evaluating Modularization Quality (Fitness)
	Modularization Constraints
	Deriving New Modularization (Neighbor)

	Experiments and Validation
	Related Works
	Conclusion and Future Work

	Conclusions and Future Work
	Open Issues

	Bibliography

