
THESE DE DOCTORAT
DE L’UNIVERSITE PARIS I – PANTHEON -

SORBONNE

Spécialité: Informatique

Muhammad Usman Bhatti

Pour l’obtention du titre de :

DOCTEUR DE L’ UNIVERSITE PARIS I -- PANTHEON -
SORBONNE

Object Identification
and

Aspect Mining
in

Procedural Object-Oriented Code

Jury de Thèse:

Mme Colette ROLLAND Directeur de thèse
M. Stéphane DUCASSE Co-directeur de thèse
M. Kim MENS Rapporteur
M. Yann-Gaël GUEHENEUC Rapporteur
Mme Marianne HUCHARD Membre du jury

The address of the author:

usman.bhatti@gmail.com

mailto:usman.bhatti@gmail.com

Acknowledgements

First of all, I want to thank Prof. Colette Rolland for providing me the opportunity
to work under her supervision in the research group at Centre de Recherche en
Informatique (CRI). She provided all the needed resources and support to complete
this work. She always provided me complete autonomy to carry out my research
work and always happily commented on it. I would very warmly like to thank
Prof. Stéphane Ducasse. He helped me finding my way through the dense forest
of thesis problematic. Despite hectic research schedule, he could always find time
for discussion and overview my work. Moreover, he enormously helped me in
progressing in my research, write papers and finally present this work in its current
form. Had it not been for his positive attitude, this thesis might not have seen the
day.

I would like to thank Prof. Kim Mens and Prof. Yann-Gaël Guéhéneuc for
participating in my PhD defence committee and providing important feedback on
the first version of the thesis. Yann-Gaël also provided very useful and pertinent
comments on the first drafts of this thesis.

I would also like to thank Prof. Awais Rashid at University of Lancaster for
useful discussions on aspect mining and crosscutting concerns. His useful advice
for one phrase definition of thesis problematic aided me to clarify my research
domain. Probably, this one phrase definition of thesis problematic is key for every
new PhD student to define the niche of his/her work. Prof. Marianne Huchard
extended her support for understanding the intricacies of Formal Concept Analysis
and helping refine the Object Identification Model. She taught me to ask pertinent
questions first and finding their answers later.

I worked at Diagnostica Stago for the industrial research scholarship (CIFRE).
I encountered many people and learnt a lot from everyone of them. I would partic-
ularly thank Sébastien Ailleret for liberating me from industrial project constraints.
This helped me enormously to concentrate on my thesis work.

All my friends at CRI, especially Assia, Olfa, Hamid, Ramzi, Hicham, Rim,
Ines, and Elena with whom I shared moments of stress and joy, and profound philo-
sophical discussion regarding every perspective of thesis and life around us.

I thank all people I met at conferences. I have had nice moments with them
and also useful discussions to help me to improve my work.

Most of all, I want to thank the people beyond university and academia, whose
lives were affected by this work: My parents for supporting me making this possi-

iii

iv ACKNOWLEDGEMENTS

ble. My friends Asad Mehmood, Taj Khan, Omer Khayam, and Irfran Hamid for
providing such a memorable company during the tough PhD years. They represent
my “other life” during my stay in France, especially during weekends. And last but
not least my wife for supporting and encouraging me for the timely completion of
this thesis. Thank you, I could not have done this without you.

Muhammad Usman Bhatti
December 2008

Abstract

In this dissertation, we present Procedural Object-Oriented Code (POC). POC is
the aftermath of the software development activity that involves state of the art
object-oriented languages, without employing object-oriented analysis and design.
Huge classes, absence of abstractions for domain entities, and shallow inheritance
hierarchies are hallmark design defects of procedural object-oriented code. POC
also consists of scattered code appearing not only due to the absence of aspects, but
it also manifests scattered code appearing due to the non-abstracted domain enti-
ties i.e., domain entities that do not have their proper object-oriented classes. The
non-abstracted domain logic hinders mining useful crosscutting concerns related
to aspects in POC. Confronted with the absence of object-oriented design and the
difficulty of mining aspects in POC, we studied it from two perspectives.

First, we improve aspect mining techniques by classifying various crosscutting
concerns identified in POC with a two-pronged approach: Firstly, the approach
identifies and groups crosscutting concerns present in a software system: aspects
as well as non-abstracted domain logic. Crosscutting concerns pertaining to non-
abstracted domain entities are identified and extracted through their usage of appli-
cation domain entity data. Secondly, a new metric called spread-out is introduced
to quantify the divulgence of diverse crosscutting concerns.

Second, we studied the problem of object identification in procedural object-
oriented code. We present a semi-automatic, tool-assisted approach for restructur-
ing POC into an improved object-oriented design. The approach identifies princi-
pal classes in POC. These principal classes are then used to extract object-oriented
abstractions using Formal Concept Analysis lattices. This is achieved by providing
three different concept lattices, namely fundamental, association, and interactions
views.

We developed tools to validate the approaches presented in the thesis. The
approaches are validated on a recently developed industrial application. The appli-
cation is used to run blood plasma analysis automatons. The results of our approach
are promising.

v

vi ABSTRACT

Résumé

Dans cette thèse, nous introduisons le code orienté objet procédural (Procedural
Object-Oriented Code (POC)). Ce logiciel est développé en utilisant les langages
orientés objets néanmoins sans utiliser correctement l’analyse et la conception ori-
entée objet. Grosses classes, absence des abstractions pour les entités de domaine,
des hiérarchies de classes peu développées ou complètement absentes représentent
les défauts clefs du POC. Le code concernant les entités absentes de domaine, ap-
pelé la “logique dispersée” de domaine, est éparpillé et embrouillé avec le code
des autres classes de système qui entrave l’identification des préoccupations trans-
verses liées aux aspects. Confronté au problème du POC, résultat de l’absence
de la conception orientée objets dans le logiciel et au problème de l’identification
des aspects dans ce type de code, nous avons étudié le POC de deux perspectives
principales.

D’abord, pour la classification des préoccupations transverses identifiées dans
le POC, nous adoptons une approche à deux axes : Premièrement, l’approche iden-
tifie et classifie les préoccupations transverses d’un logiciel : les aspects ainsi que
la logique dispersée de domaine. Les préoccupations transverses concernant les
entités dispersées de domaine sont identifiées et extraites par leur utilisation des
entités de domaine. Deuxièmement, une nouvelle métrique appelée “spread-out”
est présentée pour mesurer la dispersion des préoccupations transverses diverses.

Deuxièmement, nous avons étudié le problème d’identification d’objet dans le
POC. Nous présentons une approche semi-automatique, assisté par l’outil pour la
restructuration du POC. L’approche identifie les classes principales dans le POC
pour le but d’unifier les données et les opérations correspondantes dans une seule
classe. Ces classes principales sont alors employées pour extraire des abstrac-
tions orientées objets utilisant les treillis d’analyse de concept. Ceci est réalisé en
fournissant trois différentes vues basées sur des treillis de concept, à savoir la vue
fondamentale, la vue association, et la vue d’interactions de méthodes.

Nous avons développé les outils pour valider les approches présentées dans la
thèse. Les approches sont validées sur le logiciel pour les automates utilisés pour
faire les tests sanguins. Les résultats des approches proposées sont satisfaisant.

vii

viii RÉSUMÉ

Contents

Acknowledgements iii

Abstract v

Résumé vii

1 Introduction 1
1.1 Thesis Context . 2
1.2 Problem Statement . 3

1.2.1 Procedural Object-oriented Code 3
1.2.2 Restructuring Classes in Procedural Object-oriented Code 5
1.2.3 Aspect Mining in Procedural Object-Oriented Code 6

1.3 Contributions . 8
1.3.1 Code Smells and Detection Strategy 9
1.3.2 Restructuring Classes in Procedural Object-oriented Code 9
1.3.3 Classification Approach and Metrics for Scattered Concerns 11

1.4 Industrial Context . 11
1.4.1 Case Study: Blood Plasma Analysis Machines 12
1.4.2 Case Study Quality Metrics 13

1.5 Thesis Structure . 13

2 Related Work 15
2.1 Defects in Software . 15

2.1.1 Code Smells . 15
2.1.2 Object-Oriented Reengineering Patterns 16
2.1.3 AntiPatterns . 16
2.1.4 Design Heuristics . 17
2.1.5 Limitations of Software Defect Descriptions 17

2.2 Design Defect Detection in Software 18
2.2.1 Heuristic-based Design Defect Detection 18
2.2.2 Query-based Design Defect Detection 19
2.2.3 Design Defects Taxonomy 20
2.2.4 Visualizations for Design Defect Detection 20
2.2.5 Other Tools . 21

ix

x CONTENTS

2.2.6 Limitations of Design Defects Detection 22
2.3 Object Identification and Class Restructuring 22

2.3.1 Object Identification in Procedural Code 23
2.3.2 Object-Oriented Restructuring 26
2.3.3 Limitations of object-oriented Restructuring 28

2.4 Identification of Crosscutting Concerns 28
2.4.1 Crosscutting Concerns 28
2.4.2 Aspect Mining . 30
2.4.3 Concern Quantification 35
2.4.4 Aspect Refactoring . 36
2.4.5 Limitations in Crosscutting Concerns Identification 36

2.5 Discussion . 36
2.5.1 Design Defects and Code Smells 37
2.5.2 Object-Oriented Restructuring 37
2.5.3 Aspect Mining . 38
2.5.4 Proposed Solution . 38

3 Procedural Object-Oriented Code 41
3.1 Overview . 41
3.2 Background — Object-Oriented Paradigm 42
3.3 Procedural Object-Oriented Code 43
3.4 POC Design Defects and Code Smells 45

3.4.1 Missing Domain Entities 47
3.4.2 Shallow Inheritance Hierarchies 48
3.4.3 Missing Types . 51

3.5 Detection of POC Design Defects and Code Smells 54
3.5.1 Detecting Scattered Code in POC 56
3.5.2 Proposed Approach — Scattering Analyzer 57
3.5.3 Discussion . 58

3.6 Conclusion . 59

4 Reconsidering Classes in POC 61
4.1 Overview . 61
4.2 Formal Concept Analysis . 62
4.3 Motivation . 62

4.3.1 Goals of our Intended Model 63
4.3.2 Current FCA-based Techniques 63

4.4 Object Identification in POC . 64
4.4.1 Identification of Principal Classes 64
4.4.2 Principal Class Compositions 66
4.4.3 Hierarchical Method-Attribute Relationship 67
4.4.4 The case of Enumerated Types 73

4.5 Discussion . 75
4.6 Conclusion . 76

CONTENTS xi

5 Scattered Concerns in POC 79
5.1 Overview . 79
5.2 Aspect Mining in Procedural Object-Oriented Code 80

5.2.1 Aspect Browser . 80
5.2.2 Aspect Browser Results 82
5.2.3 FAN-in Metric . 83
5.2.4 FAN-in Results . 84
5.2.5 Comparison of Results 86
5.2.6 Taxonomy of Crosscuttingness in POC 87

5.3 Discussion . 90
5.4 Conclusion . 91

6 Concern Classification in POC 93
6.1 Overview . 93
6.2 Concern Classification . 94

6.2.1 Model for Concern Classification 96
6.2.2 Domain Entity Concern Assignment 98
6.2.3 Algorithm for Concern Classification 99

6.3 Scattering Metrics of Crosscutting Concerns 99
6.4 Discussion . 101
6.5 Conclusion . 102

7 Tools and Validation 105
7.1 Scattering Analyzer . 105

7.1.1 Identifier Analysis . 106
7.1.2 Identifier Results . 106
7.1.3 Fan-in Metric . 107
7.1.4 Fan-in Results . 107
7.1.5 Discussion . 108

7.2 Reconsidering Classes: Application of the Approach 108
7.2.1 Tool Support . 109
7.2.2 Validation of the Approach 111
7.2.3 Discussion . 115

7.3 Classifying Crosscutting Concerns 116
7.3.1 Validating Concern Classification Approach 116
7.3.2 Scattering Metrics of Crosscutting Concerns 117
7.3.3 Discussion . 120

7.4 Conclusion . 121

8 Conclusion and Perspectives 123
8.1 Contributions . 123
8.2 Future Work . 125

xii CONTENTS

A Sommaire 129
A.1 La Problématique . 130

A.1.1 Code orienté objet procédural 131
A.1.2 La restructuration des classes dans le COP 133
A.1.3 Identification d’aspect dans le COP 134

A.2 Contributions . 136
A.2.1 Mauvaise odeurs et leur détection 137
A.2.2 L’approche pour la restructuration des classes 137
A.2.3 L’approche pour la classification des préoccupations trans-

verses . 139

B Introduction to Formal Concept Analysis 141
B.1 Introduction . 141
B.2 Context and Concepts . 142
B.3 Concept Lattice . 143

Chapter 1

Introduction

Another flaw in the human character is that everybody wants to
build and nobody wants to do maintenance.

Kurt Vonnegut, Hocus Pocus.

Companies always try to look for means to reduce software development cost
because this cost does have a direct effect on their competitiveness. The reuse of
software components amplifies software developer’s capabilities because the de-
velopers do not need to develop the components anew. The reuse, thus, reduces
the overall cost of software development. Software reusability builds on a good
software structure through a comprehensive application of software design heuris-
tics, models, and guidelines [GHJV95, Mey88, Rie96]. These models and guide-
lines advocate software modularization, i.e., the division of large components into
smaller, autonomous, and manageable modules. Each of the modules should ad-
dress a smaller part of the application domain, hence each of the modules can be
evolved and maintained independently. Software modularity is strongly dependent
upon the principle of information hiding and data encapsulation, which state that
all the information about a module should be private to the module unless specifi-
cally declared in its public interfaces [Par72]. Respecting these principles ensures
that knowledge pertaining to a particular module is encapsulated inside the mod-
ule boundaries. Thus, a small change in software system specifications triggers
changes in just one module, or a small number of modules, because the changes
are localized to the private portions of the module. The changes in the module do
not impact its public interfaces and consequently other dependent modules.

Object-oriented languages provide support for well-modularized software where
all the knowledge of domain concepts is encapsulated in their corresponding classes.
These classes contain the state and a set of operations related to a particular domain
concept. Hence, the code related to a domain concept, or a domain entity, is en-
capsulated in its particular class in software. The functionality of these classes is
exposed to their client classes through well-defined interfaces. Thus, clients are
oblivious of the implementation details of a class. Changes to a class are confined

1

2 CHAPTER 1. INTRODUCTION

to the code residing inside the class. Therefore, a good object-oriented design leads
to software reusability and reduces software costs.

Recent works on software modularity consider software as a collection of soft-
ware concerns [Kic96, TOHJ99]. A concern is defined as “any matter of interest
in a software system” [FECA05]. It has been reported that by their very nature,
some software concerns are difficult to modularize using object-oriented or pre-
decessor software development paradigms and are termed as Crosscutting Con-
cerns [Kic96]. Crosscutting concerns are scattered and tangled across applica-
tion classes. Hence, crosscutting concerns violate information hiding principle and
this violation of information hiding severely affects software modularity because
changes to these crosscutting concerns are not bounded to one class but they are
scattered to various class in an object-oriented software system.

Aspect-Oriented Programming (AOP) proposes language constructs to encap-
sulate crosscutting concerns [KLM+97]. Aspect mining tools and techniques have
been proposed [KMT07] to facilitate the task of crosscutting concerns identifica-
tion in non-AOP code. The identified crosscutting concerns are then refactored
in aspects to improve software modularity. For correct aspect identification, it is
important that the crosscutting concerns identified in non-AOP code are correctly
associated to the absence of aspects. The correct aspect identification is essen-
tial to correctly identify candidates aspects that can be refactored into AOP con-
structs [HRB+06].

1.1 Thesis Context

We hypothesize in this dissertation that Procedural Object-oriented Code (POC)
appears when object-oriented software does not exhibit good object-oriented de-
sign. Procedural object-oriented code manifests itself in the code in the form of
various design design defects and code smells. Design problems occurring in pro-
cedural object-oriented code also give rise to scattered code. This scattered code
complicates the detection of crosscutting concerns in procedural object-oriented
code. This problem occurs because the techniques employed for the detection of
crosscutting concerns in POC also report scattered code related to object-oriented
design problems in their results. Hence, it becomes difficult to relate the scattered
code as related to the absence of object-oriented design or the absence of aspects.

Therefore, two main problems to be solved in procedural object-oriented code
are: (1) classification of crosscutting concerns identified in the context of POC and
(2) restructuring of classes to rectify design problems.

For the classification of the scattered code related to crosscutting concerns in
POC, we demonstrate that the scattered code identified through aspect mining tech-
niques can be classified as pertaining to the absence of objects or aspects based on
the usage of domain entity data and scattering metrics. For the restructuring of
classes in POC, we describe an approach through the usage of Formal Concept
Analysis.

1.2. PROBLEM STATEMENT 3

1.2 Problem Statement

In this problem statement, we state that software systems developed using object-
oriented languages sometimes show an absence of a proper design. These software
systems cannot be reused, changed or maintained without incurring high costs. The
lack of object-oriented design occurs because object-oriented analysis and design
process is only partially applied to speedup the software development process. In
addition, extensive maintenance activities dilute software design over a period of
time. The lack of design causes the violation of the principles of encapsulation and
information hiding in object-oriented software systems.

The absence of object-oriented design in software systems result in certain de-
sign defects and their manifestation in programs in the form of code patterns. Con-
sequently, application classes are less cohesive and more coupled because of the
scattered code related to the design defects. Thus, a change in specifications creates
modification ripples in several classes [Mey88]. Moreover, the scattered code ap-
pearing due to the absence of object-oriented design also complicates the problem
of crosscutting concerns identification.

Nevertheless, software cannot be discarded due to these design problems be-
cause, the software, in itself contains valuable artifacts that encompass domain
knowledge and sometimes it is all too expensive to develop a new software from
scratch. Software Reengineering and Restructuring aim to improve or transform
existing software so that it can be understood, controlled and used anew [DDN02].
By restructuring software, the design defects in programs can be removed and soft-
ware systems can be evolved for future needs easily [Cas98, RW98]. Software
restructuring extends the lifetime of software, thus increasing the return of invest-
ment of their owners.

In the following sections, we describe various research questions that arise
from the absence of object-oriented design in software. We summarize perti-
nent existing research works to demonstrate their limitations vis-à-vis the proposed
questions. Later, we describe our contributions that propose answers to these re-
search questions.

1.2.1 Procedural Object-oriented Code

What are the main characteristics of the classes and the code patterns
that appear due to the absence of object-oriented design?

We call the software systems developed using the state of the art object-oriented
languages, nevertheless demonstrating the absence of object-oriented design as
Procedural Object-oriented Code (POC). We believe that it is important to identify
the design defects and code smells appearing in POC so that these can be identified
and detected, and later removed from the code.

Procedural object-oriented code consists of Partially Decomposed classes whe-
reby huge classes define logic for subsystems or services instead of particular

4 CHAPTER 1. INTRODUCTION

domain entities. The partially decomposed classes in POC appear because of
the incomplete application of object-oriented decomposition or extensive main-
tenance activities. These partially decomposed classes in POC result in certain
architectural-level design defects. These design defects include the absence of class
hierarchies. Consequently the type and subtype relationships are missing for do-
main entities i.e., domain entity code is not produced in a hierarchical relationship
represented by a parent class and its derived subclasses. Thus, the code related to
a domain entity cannot be reused through specialization, a leverage obtained with
the presence of hierarchical relationships. In addition, certain domain entities are
not represented in their precise classes but their code is scattered across the other
classes making up a system.

Figure A.1, which shows an inheritance hierarchy graph, demonstrates that
in POC classes are often huge structures with limited use of inheritance. The
huge classes and a scarcity of inheritance links between classes points towards
the missing well-decomposed classes and class hierarchies for the domain entities
supported by the system.

Figure 1.1: Procedural Object-Oriented Code — Rectangles represent classes,
edges represent the inheritance relationships between classes, height and width
of rectangles are dependent upon number of methods and number of attributes re-
spectively, and node color is determined by the number of lines of code (a snapshot
taken using the MOOSE reverse engineering environment [MGL06]).

The higher-level design defects in POC manifest themselves in code as various
code patterns, or commonly called code smells. These code smells include the
occurrence of cloned calls in methods, cloned template code, global enumerated

1.2. PROBLEM STATEMENT 5

types, and misplaced methods. These code smells should be presented in detail
so that their manifestation in code be identified, detected, and corrected for an
improved object-oriented design.

Design defects are problems occurring from bad design practices, or devia-
tions from well-known design norms [DM00, Rie96]. There are some pertinent
studies that mention the code and architectural patterns that describe design prob-
lems in code [BMMM98, DDN02, FBB+99, Rie96]. However, the architectural
patterns that occur because of the missing object-oriented design only describe
their high-level, architectural manifestation [BMMM98]. No code-level examples
are provided. Code smells describe small design anomalies in code that represent
refactoring opportunities [FBB+99]. But the described code smells provide a list
of design anomalies that affect a few portions in code. These do not provide the
code smells related to the absence of an overall object-oriented design in programs.

Is it possible to provide techniques and tools to ease the discovery of
POC classes and the code patterns appearing in them?

There are several works that deal with the identification of problematic patterns in
code. Existing software quality metrics and visualization techniques do provide
clues for the identification of partially decomposed classes and lack of inheritance
hierarchies [Ciu99, LD03, Mar04, MlHG06]. Nevertheless, these do not support
the identification of the POC code smells that result in scattered code occurring due
to the absence of object-oriented design such as cloned method calls and global
enumerated types [BD07]. Their detection requires the use of structural analysis
of the scattered entities and their behavior. Therefore, the existing tools need to be
improved to identify all of the POC code smells.

1.2.2 Restructuring Classes in Procedural Object-oriented Code

Procedural object-oriented code consists of partial decomposed classes that encap-
sulate logic for several domain entities and hence some of the domain entities do
not have their object-oriented abstractions, i.e., classes in the code. We believe
that the design defects and code smells in POC have an adverse effect on software
modularity and these design defects and their associated code smells should be re-
moved from object-oriented programs. Thus, it is important to look for ways to
restructure classes in procedural object-oriented code to encapsulate each of the
domain entity into their appropriate class so that the software modularity of POC
is enhanced.

Can we extract meaningful object-oriented classes and class hierar-
chies from POC classes that represent an improved object-oriented
design?

Object identification techniques have been proposed in literature to detect ob-
jects in non-OO programs to transform these programs into object-oriented pro-
grams [CCDD99, CCM96, NK95, SLMM99, SR99, vDK99a]. These techniques

6 CHAPTER 1. INTRODUCTION

employ Formal Concept Analysis (FCA) to detect objects in procedural program
by grouping global variables and functions that operate upon these variables. These
techniques however do not take into account the partially decomposed classes
present in procedural object-oriented code and other forms of object-oriented ar-
tifacts (enumerated types and method calls) to improve object identification algo-
rithms.

Another set of proposals regarding restructuring of object-oriented classes per-
tains to the use of FCA to understand object-oriented programs and refine class
hierarchies [ADN05a, Moo96, ST97, SS04]. However, these techniques propose
to search for and correct small class hierarchy anomalies in object-oriented pro-
grams. These approaches do not target to fix architectural design defects in object-
oriented programs. Thus, these techniques are not applicable to migrate POC to an
improved object-oriented design.

One more set of proposals proposes code refactoring through the manual iden-
tification of small design problems within class hierarchies and provide various
heuristics for their rectification [DDN02, FBB+99]. However, restructuring of
classes in procedural object-oriented code following these guidelines is too cum-
bersome because these techniques only propose to improve object-oriented classes
without putting overall object-oriented design into question.

Moha et al. [MHVG08] define a very similar approach to the work presented
in this thesis. The approach suggests the use of Relational Concept Analysis for
removing AntiPatterns [MHVG08] in code. However, the approach when applied
on POC produces huge lattices cluttered with too much information that cannot be
used to extract useful information from POC.

In summary, the existing approaches for object identification in procedural pro-
grams, and class hierarchy reengineering and restructuring in object-oriented pro-
grams are not apt for class hierarchy inference from POC. These approaches when
applied on POC produce huge lattices that do not allow the interpretation of useful
object-oriented concepts. Moreover, these approaches do not take into account the
code smells occurring in POC (cf. Section 1.2.2 and Chapter 3).

Hence, there is a need to define an approach to restructure classes in POC.
This approach should integrate object-oriented features and the POC code smells
to obtain an improved object-oriented design from POC classes.

1.2.3 Aspect Mining in Procedural Object-Oriented Code

Crosscutting concerns result in scattering and tangling of code with various other
concerns of software system. Crosscutting concerns discovery is a difficult task and
for the purpose of aspect discovery in programs, aspect mining tools and techniques
have been proposed [KMT07]. Aspect Mining is a reverse engineering technique.
It automates the process of aspect discovery in non-AOP software systems. These
techniques rely on the assumption that any scattered code in systems is related to
crosscutting concerns and should be refactored into aspects [CMM+05, HK01]. In
outcome, these techniques propose their user one or more aspect candidates based

1.2. PROBLEM STATEMENT 7

Figure 1.2: Thesis Plan

on lexical information of the code, and static or dynamic analysis.
However, in the context of procedural object-oriented code, aspect mining tech-

niques do not provide reliable results [BD08]: The results contain non-aspect can-
didates, or false-positive aspects. The problem of false-positive aspects occurs
because procedural object-oriented code consists of scattered and tangled code
appearing not only due to the absence of aspects, but it also manifests scattered
code appearing due to the absence of object-oriented design. The lack of object-
oriented design gives rise to non-abstracted domain entity code i.e., the scattered
code related to the domain entities that do not have their own classes. Therefore,
we observe that proposed aspect mining tools, when applied on procedural object-
oriented code result in the identification of missing domain entities in the list of
crosscutting concerns [BD08]. These domain entities are falsely identified be-
cause aspect mining techniques assume that scattering and tangling only originate

8 CHAPTER 1. INTRODUCTION

from missing aspects, while other domain-related concerns have been encapsulated
into their object-oriented abstractions. As the phenomenon of good design is not
present in procedural object-oriented code, therefore, we are confronted with the
problem of the qualification of crosscutting concerns identified by aspect mining
tools as aspects.

Can we differentiate scattered code appearing in POC and distinguish
the scattered code occurring due to the absence of objects from the list
of identified aspects for correct aspect identification?

Current aspect mining techniques [KMT07] do not report false-positives appearing
due to the non-abstracted domain logic. Other concern-based studies [EZS+08,
KSG+06, RM02] provide a general approach for crosscutting concerns identifica-
tion without mentioning the scattered code appearing due to the absence of design.

For correct aspect identification in POC, it is important to study the charac-
teristics of the scattered code appearing due to the different reasons. It will help
define a strategy that classifies scattered and tangled code as related to missing ob-
jects or aspects and we believe that POC provides a good opportunity to classify
scattered code appearing in object-oriented programs. This classification will help
the current aspect mining techniques to differentiate between the different types
of scattered code. Thus, aspect mining techniques will better help developers to
distinguish between scattered code appearing from the POC design defects and the
absence of aspects. This distinction in scattered code permits to apply appropriate
refactorings to encapsulate the scattered code.

The overall problem space for this report is illustrated in Figure A.2.

1.3 Contributions

The research questions detailed above are all pertaining to the absence of object-
oriented design i.e., POC. Since no prior work reports POC from code scattering
and class restructuring perspectives, thus as we briefly mention in this chapter and
as we shall show in the thesis, the existing literature does not answer these ques-
tions.

We have provided solutions for two independent problems in POC. The first
solution pertains to the occurrences of scattered code in POC and its classification.
We choose this perspective because the scattered code originating from the absence
of both objects and aspects in POC provides an excellent opportunity to study the
nature of code scattering. The purpose of the proposed approach is to propose
an enhancement of the existing aspect mining techniques so that these tools can
distinguish the scattered code related to the absence of aspects from that of the
absence of objects. The second perspective is the restructuring of POC classes
into an improved object-oriented design that consists of more cohesive classes.
This perspective is important to look for a strategy to transform POC into a useful
object-oriented design.

1.3. CONTRIBUTIONS 9

We do not correlate the two solutions presented in this dissertation. We believe
that for the correlation of the two perspectives regarding classification of scattered
code in POC and restructuring of classes should form the subject for another thesis.

In the section below, we list the main contributions of the thesis. These contri-
butions provide an answer to the research questions formulated above. We briefly
list the contributions of this thesis below before providing their detailed account.

• Description of the POC design defects and code smells along with their iden-
tification strategy. We define a tool based on the principles of scattered code
identification to detect code smells that appear scattered in code.

• An approach for restructuring classes in POC towards an improved object-
oriented design.

• Classification of crosscutting concerns found in the context of POC through
structural analysis and metrics.

These are illustrated in Figure A.2 and we detail these in the following sections.

1.3.1 Code Smells and Detection Strategy

A list of the design defects and consequent code smells related to procedural object-
oriented code has been elaborated in this thesis. We list the design defects and their
associated code smells in POC. The design defects are already mentioned such as
the scarcity of inheritance hierarchies and huge classes. They result in the POC
code smells that include Common Calls and global enumerated types. For the
detection of the design defects and code smells in POC, we identify two groups.
The first group consists of those design defects and code smells that demonstrate
similar symptoms as the existing set of design defects and code smells. These
design defects and code smells can be detected through the use of existing software
quality metrics. The code smells in the other group cannot be detected using the
quality metrics because these result in scattered code. So, for their detection, we
proposed the usage of the techniques for the detection of scattered code. For this
purpose, we present an approach that searches for scattered code through the usage
of Identifier analysis and Fan-in analysis.

The work presented in this thesis is the first research work that provides a
catalogue of the design defects and the code patterns that appear in the absence
of object-oriented design, and consequently, the first detection strategy to identify
these characteristics and patterns. Moreover, the work presented here is the first
work that reports the scattered code resulting from the absence of object-oriented
design and its detection strategy with aspect mining techniques.

1.3.2 Restructuring Classes in Procedural Object-oriented Code

We present a semi-automatic, tool-assisted approach for restructuring classes in the
code showing signs of absence of object-oriented design [BDH08]. The approach

10 CHAPTER 1. INTRODUCTION

is based on Formal Concept Analysis (FCA) [GW99]. Our approach helps infer-
ring coarse-grained class hierarchies from the existing set of classes in procedural
object-oriented code. The overall approach is illustrated in Figure A.3 and it is
described below.

Application

C1 C2

C3 C4

Identification of
Principal Classes

C2 C3

C1

Principal Class
Composition

Refactoring of
Global Enumerated
Types

Hierarchies of
Methods in Principal
Classes

Figure 1.3: An Approach for Restructuring Classes in POC

1. The first step in our approach is the discovery of cohesive groups of meth-
ods and attributes in application, following certain rules, to decompose large
classes. This decomposition of classes is achieved by looking at methods
present in the code and user-defined types upon which they operate. These
cohesive groups are called principal classes.

2. An object-oriented architectural abstraction for principal classes is obtained
to obtain the interaction and composition relationships of principal classes
amongst themselves. This architectural abstraction is achieved by searching
for create-create pattern i.e., classes that instantiate other classes.

3. Hierarchical abstractions for the methods and attributes of each of the prin-
cipal classes are obtained by analyzing their accesses to the individual ele-
ments of user-defined types. These abstractions are obtained through various
contexts of FCA lattices. We define three views: Fundamental View, Asso-
ciation View, and Common-Interaction View. A reengineer can abstract hi-
erarchies for domain entities by inferring the hierarchical information from
these views.

4. Scattered code related to global enumerated types is identified and refac-
tored into new methods. These methods are then added to the user-specified
principal class.

1.4. INDUSTRIAL CONTEXT 11

As discussed earlier, the existing approaches for class hierarchy reengineering
and restructuring are not apt for class hierarchy inference from POC. Our approach
fills the gap as it produces lattices for each of the principal classes identified by the
approach. The reduction of FCA lattices is achieved because the principal classes
only contain state and methods related to a particular domain entity. Hence, class
information that is introduced into the lattices is reduced in a meaningful way.
Therefore, lattices are smaller and class hierarchies are easier to interpret.

1.3.3 Classification Approach and Metrics for Scattered Concerns

We evaluate two aspect mining techniques on an industrial system and report a new
set of false-positive aspect candidates identified by aspect mining techniques [SB].
We observe that the current aspect mining techniques are insufficient to distinguish
the scattered code resulting from the absence of objects from the scattered code that
appears due to the absence of aspects. This limitation of aspect mining techniques
occurs because aspect mining techniques relate scattered code to aspects regardless
of the fact that the scattered code appears due to the absence of certain abstractions
or inherent limitations of OO mechanisms to encapsulate crosscutting concerns.
We briefly describe a taxonomy of aspect mining tools regarding their abilities to
detect scattered concerns related to scattered types and scattered behavior [BD08].

A classification approach is proposed for the code that appears due to the
absence of objects to distinguish it from the candidate aspects [BDR08]. The
classification takes a two-pronged approach. Firstly, the approach identifies and
groups crosscutting concerns present in a software system: aspects as well as non-
abstracted domain entities. Crosscutting concerns pertaining to non-abstracted do-
main entities are identified and extracted through their usage of application entity
data. Secondly, a new metric called spread-out is introduced to quantify the scat-
tering of diverse crosscutting concerns.

Our work is the first work in aspect mining that reports the occurrences of
false-positive aspect candidates identified by aspect mining techniques due to the
absence of object-oriented design [BD08]. Thus, the classification approach pre-
sented in this thesis helps aspect mining tool developers to identify and filter from
the results of their tools those candidates that appear due to the absence of classes
for domain entities. The filtering of false-positives from aspect mining results per-
mits to perform aspect refactoring correctly.

1.4 Industrial Context

The work presented in this thesis was carried out during the research work at Diag-
nostica Stago. Diagnostica Stago manufactures and markets a range of instruments
of blood analysis. It develops and provides a product line of blood analysis au-
tomatons for research as well as for simple blood analysis. The automatons are
composed of two main subsystems: a hardware subsystem consisting of mechan-

12 CHAPTER 1. INTRODUCTION

ical and electronic parts like, arms, drawers, and a software subsystem managing
the hardware and carrying out blood plasma analyses. The user of the automaton
loads one or more tubes containing blood plasma, as well as products (reagents),
in the drawers of the automaton, associates analyses to be performed on each tube,
and launches the analyses. The automaton performs the analyses for blood-related
diseases and results are calculated. The overall process is depicted in Figure 1.4.

Figure 1.4: Testing Plasma Tubes

1.4.1 Case Study: Blood Plasma Analysis Machines

We selected as our case study a recently developed software system that is de-
ployed on the latest blood plasma analysis automaton. The software is written in
the C# programming language [HWG06], and hence adheres to the object-oriented
paradigm. Software comprises of components that provide all the above described
functionalities of analysis automatons.

For the sake of precision and clarity, we shall only present the software sub-
system that manages the business objects and operates with the database layer to
manage the data associated with these objects. This is one of the software subsys-
tems that is replicated on each new machine and, in case of any design problems
in the subsystem, it is important to remove them. The improvement in the design
of this subsystem will mean a good amount of software reuse and costs cut in the
development of software for new machines.

Certain core functionalities, such as blood analysis data, reagents used by the
machines, results and patient data are the key features implemented at this subsys-
tem. Every test is performed on patient data and the results of the tests are then
stored in persistent storage system. The persistent storage system is extensively
used to record all the business objects, machines activities, test traceability infor-
mation, machine products, and machine maintenance information. Quality control
is performed on the machines with plasma samples for which the results are known
beforehand, to determine the reliability of machine components. In addition for
quality control purposes, a machine is calibrated with the predetermined plasma
samples so that results can be displayed in different units according to the needs

1.5. THESIS STRUCTURE 13

of a biologist or a doctor for easy interpretation. Blood analyses are performed on
patient’s blood plasma in hospitals or laboratories.

Table 1.1: Case Study Metrics

Component Name LOC NOM NOA DIT LCOM
CPatient 11,462 260 9 1 0.85

CTest 2792 81 13 1 0.72
CProduct 2552 77 6 1 0.72
CResults 1652 52 13 1 0.85

CPersistency 1325 67 29 2 0.97
CGlossary 1010 121 5 1 0.80

1.4.2 Case Study Quality Metrics

Table 1.1 present the design quality metrics [HS96] of the subsystem described
above. Lines Of Code (LOC) tallies all lines of executable code in the system.
Number Of Methods (NOM) and Number Of Attributes (NOA) metrics indicate
respectively the total level of operations implemented and the amount of data main-
tained by the class. Depth Of Inheritance (DIT) indicates the level of inheritance
of a class. Finally, Lack of Cohesion Of Methods (LCOM) indicates the cohesion
of classes constituents by examining the number of disjoint sets of the methods
accessing similar instance variables; lower values indicates better cohesiveness.

These metrics are provided to depict an overall picture of the subsystem that we
shall study during the course of this thesis. The approaches that we shall propose
in the thesis are validated on the subsystem.

1.5 Thesis Structure

The report has been organized as follow:

• Chapter 2 describes the existing state of the art on design defects and code
smells appearing in object-oriented programs and their proposed restructur-
ing techniques. The chapter also provides the state of the art on aspect min-
ing and concern quantification techniques. The chapter provides a discussion
of the limitations of the state of the art vis-à-vis our problem statement.

• Chapter 3 provides a detailed insight into the design defects and code smells
appearing in POC. An approach is proposed based on the identification of
scattered code to detect the code smells resulting in the scattered code in
POC.

14 CHAPTER 1. INTRODUCTION

• Chapter 4 describes our approach for restructuring classes in POC into an
improved object-oriented design. We apply this approach on POC to extract
classes through the use of Formal Concept Analysis.

• In Chapter 5, we evaluate procedural object-oriented code through the prism
of aspect mining techniques. We employed two aspects mining techniques
to find crosscutting concerns present in POC. We demonstrate that, in POC,
there is a huge percentage of false-positive aspects in the results of aspects
mining tools. A taxonomy of various crosscutting concerns is also described
for POC.

• Chapter 6 provides an automated classification approach. This classification
approach is used to classify scattered code in POC. We classify scattered
code as related to objects and aspects. Moreover, an evaluation of scattering
metrics is presented. We present a new metric called spread-out of crosscut-
ting concerns to quantify scattering of various concerns.

• Chapter 7 describes the validation of the approaches proposed in this thesis.
We discuss the results of the tools along with their limitations.

• Chapter 8 concludes the dissertation and presents future research directions.
We identify research directions that we could not explore due to the lack of
time and resources. We intend to explore these directions in our future work.

• Appendix B is a complement to the thesis and explains in detail the mathe-
matical background of Formal Concept Analysis.

Chapter 2

Related Work

In this chapter, we present the work related to the research proposals presented in
this thesis related to POC, object-oriented restructuring, and concern classification.
We present software defects, namely design defects and code smells, which are de-
viations of object-oriented design norms and various detection techniques to detect
these software defects. After presenting the software defects, we present the tech-
niques that are proposed to restructure object-oriented programs to remove design
problems appearing due to the software defects.

Later, detection techniques for crosscutting concerns are discussed to bring
forth their limitations vis-à-vis detection of scattered code related to the absence of
design in POC. We present an extensive literature survey of the existing techniques
and their limitations vis-à-vis classification of different concerns.

2.1 Defects in Software

Software defects are common, recurrent design and implementation problems that
appear in object-oriented software. Generally, they are deviations from the well-
known design norms [Mar00, Rie96]. We distinguish two types of defects: Higher-
level design defects and code-level problems. Higher-level design defects are com-
monly associated to AntiPatterns [BMMM98]. However, the term design defects
remains a more general term. Code-level problems in software are generally known
as Code Smells [FBB+99]. Code smells are symptoms of the presence of higher-
level design defects. In the section below, we list various research works that dis-
cuss the presence of design defects and code smells.

2.1.1 Code Smells

Fowler et al. [FBB+99], in their pioneering work, introduced the concept of Code
Smells. A code smell represents a low-level design problem. Hence, code smells
depict refactoring opportunities to improve the software design for easy mainte-
nance and reuse. The seminal book on code smells presents a popular catalogue

15

16 CHAPTER 2. RELATED WORK

of 22 code smells and steps for their possible refactorings [FBB+99]. Code smells
include duplicate code, long method, large class, long parameter list, etc. Possible
remedies include encapsulate duplicate code in a helper method, breaking up the
long method by extracting some instructions in a new method, and moving meth-
ods and fields within class hierarchies. The work on code smells assumes that the
program demonstrating code smells has a good overall object-oriented design. The
program only suffers from code problems that are localized and do not span the
overall program code. As code smells are localized to certain program parts, they
can be removed by manually applying the proposed refactorings at the problematic
locations. The work on code smells does not discuss the code smells that span all
the program classes appearing due to the complete absence of class hierarchies and
the absence of object-oriented encapsulation for domain entities.

2.1.2 Object-Oriented Reengineering Patterns

Object-oriented reengineering patterns present the reengineering of legacy systems
in a pattern format, discussing the pros and cons of various steps involved in reengi-
neering [DDN02]. Patterns related to reverse engineering, software redesign, and
problem detection and correction are discussed. For the problem description part,
the authors carry forward work from the aforementioned code smells and provide
restructuring strategies in pattern-oriented format. Hence, the overall process of
code smells removal is presented from the reengineering perspective. Problem
solving patterns for design problems like large classes, null objects, navigational
code, and transform conditional to polymorphism are discussed in depth. The work
on reengineering patterns does not focus on the reengineering of object-oriented
systems lacking an overall object-oriented design.

2.1.3 AntiPatterns

Brown et al. present higher-level, architectural AntiPatterns [BMMM98]. An-
tiPatterns describe bad solutions to recurrent design problems that result in neg-
ative consequences for software quality. Contrary to design patterns [GHJV95],
AntiPatterns describe what should not be done. AntiPatterns generally describe a
design defect at a higher-level of software design without concretely presenting the
associated code patterns that provide a precise code-level manifestation. This way,
they remain more general in their nature, and hence, a large part of the identifi-
cation of AntiPatterns lies with the skill of the reengineers. A reengineer has to
correctly interpret AntiPatterns according to the context of his system to remove
them from their programs.

According to the context of the work presented in this thesis, we detail three
AntiPatterns related software design, namely The Blob, Functional Decomposition,
and Spaghetti Code [BMMM98]. These all describe the design defects due to the
absence of proper object-oriented design in software and their consequences. The
Blob AntiPattern describes the presence of a large controller class that works on

2.1. DEFECTS IN SOFTWARE 17

the data described in the surrounding data classes. Functional Decomposition de-
scribes the code written in a process-oriented manner with the existence of a main
routine that calls numerous subroutines. Spaghetti Code represents classes with
no structure and the presence of long methods working on global variables. No
inheritance and polymorphism is present in Spaghetti code. In summary, software
design AntiPatterns do represent some form of the manifestations of the absence
of object oriented design. The limitation of AntiPatterns is that they only describe
high-level, architectural anomalies; they do not present any concrete code-level
patterns that appear due to the presence of AntiPatterns. Detection techniques for
AntiPatterns describe AntiPatterns as a set of code smells for their detection in
code [MGMD08].

2.1.4 Design Heuristics

Reil [Rie96] describes 61 heuristics that characterize a good object-oriented design.
These design heuristics allow developers to manually evaluate the design of their
object-oriented applications. The author also mentions two design defects that
are incarnated in the form of huge classes: Behavioral god class and Data god
class. The first one describes a huge, god class (behavioral form) where the class
“performs most of the work, leaving minor details to a collection of trivial classes”.
It is similar to Functional Decomposition AntiPattern. The second design defect
describes a huge class that encapsulates all the data attributes that are needed by
other classes for their functioning.

2.1.5 Limitations of Software Defect Descriptions

Code smells and AntiPatterns describe the software defects encountered by the
authors while developing and maintaining software. But these do not enlist an ex-
haustive list of code problems that can occur in software systems. We are interested
in finding the design defects that appear in the absence of object-oriented design
and their consequent code smells.

AntiPatterns provide a list of design problems that can occur due to problems
in object-oriented design. Nevertheless, their definition is abstract and a few details
of their manifestation in code are described such as long methods and huge classes.
However, design defects similar to AntiPatterns can have a different manifestation
in code. An example that we shall elaborate later is related to the Blob AntiPattern.
Although, the Blob describes scattered behavior related to Data classes, the scat-
tered behavior in case of the Blob AntiPattern resides only in a single class. How-
ever, in the absence of an overall object-oriented design, the behavior related to
Data classes may not reside in a single class but in multiple god classes. Therefore,
AntiPatterns do not present all forms of design defects in a missing object-oriented
design.

Code smells on the other hand describe small design anomalies that affect a few
portions in code. This is because while describing these code smells the authors do

18 CHAPTER 2. RELATED WORK

not put the overall object-oriented design into question. Hence, it is believed by the
authors that manual refactoring in a few number of classes can remove these code
smells from code as they do not provide tools and techniques for their detection.
We shall later show that a degenerated object-oriented design may demonstrate
similar design defects as suggested by some AntiPatterns. But these similar design
defects give rise a new code smells that are different from the existing set of object-
oriented code smells [FBB+99].

2.2 Design Defect Detection in Software

Code smells and AntiPatterns provide a textual description of software defects,
which is destined for experienced developers. However, their detection in software
remains a manual activity. For the purpose of their identification in programs,
detection techniques have been proposed to automate the task of identification of
design defects and code smells. Below, we present approaches that aim to automate
the task of software defect identification in code.

2.2.1 Heuristic-based Design Defect Detection

Munro [Mun05] noticed the limitations of textual description of code smells and
proposed a template to describe code smells more systematically. The template
consists of three parts: code smell name, textual description of code smell features,
and detection heuristics. The work contributes to a more precise specification of
cod smells than their textual description. For detection purpose, metrics-based
heuristics are described. A study is conducted to validate the choice of metrics.

An approach to detect design defects by applying heuristics on design met-
rics has been presented by Marinescu [Mar04]. The approach provides an overall
goal-oriented framework that can allow the definition of Detection Strategies. A
Detection Strategy includes problem detection, meaningful filtering of the results,
and composition of obtained results. Marinescu states that the low-level metrics
definitions for problem detection are imprecise, which raise the issues of interpre-
tation of the obtained metrics measurements. A pattern-like description of design
defects and a systematic description of detection metrics is developed for each de-
sign flaw. For data filtering purposes, both semantic and statistical filters are used
to refine the data set obtained from the application of metrics on programs. This
refinement allows to obtain the results most relevant to the applied Detection Strat-
egy. Detection Strategies are applied to search for AntiPatterns and code smells.

Detection Strategies have been enhanced by their definition in a pattern-like
format as used for diseases in medical books by Trifu et al. [TM05]. It is stated
that different code smells in code occur together because they emanate from an
underlying common design defect. Therefore, the authors define these defects in
a common format whereby a description is provided for a design defect, its asso-
ciated code smells are listed, and the corresponding diagnosis is described for the

2.2. DESIGN DEFECT DETECTION IN SOFTWARE 19

design defect. This format ameliorates the detection of code smells by perform-
ing a transition from their symptomatic description to a more explicit correlation
amongst different code smells, and between code smells and design defects. The
diagnosis suggests the application of the appropriate refactoring proposed for code
smells to remove them from code.

Moha et al. stated that Detection Strategies are insufficient to express structural
and semantical properties of design defects [MGMD08]. This insufficiency results
from the limitation of the metrics to describe structural and semantical character-
istics of design defects. For this purpose, a domain-specific language is described
to specify defects at domain level. The language permits automatic generation of
detection algorithms from defect specifications. Key concepts are extracted from
literature. Key concepts correspond to the measurable properties of design prob-
lems. These include metrics-based heuristics, and lexical and structural properties.
Rules describe code smells in the form of measurable properties, and AntiPatterns
as a combination of code smells. These rules are used to generate automatic detec-
tion algorithms for high-level design defects.

Sahraoui et al. [SGM00] explored the use of object-oriented metrics as indi-
cators to automatically detect symptomatic situations. A symptomatic situation is
a structure in design or code whose metrics values indicate a poor design quality
and where a particular transformation can be applied to improve the quality. Rules
for the detection of a symptomatic situation are defined using quality estimation
models. These models are built from the empirical results of the studies on system
quality and are derived using machine learning algorithms. More concretely, a rule
defines the relation of cause and effect between combinations of metric values and
quality characteristics such as maintainability. The transformations suggested are
similar to refactorings.

2.2.2 Query-based Design Defect Detection

Ciupke [Ciu99] proposes a technique for analyzing code, specifying frequent de-
sign problems as Prolog queries, and locating the occurrences of these problems
in a model derived from the source code. The majority of detected anomalies are
simple ones, i.e., simple conditions with fixed threshold values such as “the depth
of inheritance tree must not exceed 6 levels”.

Queries based on logic meta-programming are defined by [TM03] to detect
the refactoring opportunities present in code in the form of code smells. SOUL
meta-programming language manipulates Smalltalk artifacts i.e., classes, methods,
variables, inheritance relationships, etc. A predicate library consisting of detection
rules is defined on top of SOUL to detect the code smells proposed by Fowler et.
al in order to perform refactoring activity.

20 CHAPTER 2. RELATED WORK

2.2.3 Design Defects Taxonomy

An effort to formalize the copious design defects (code smells, anti patterns, and
design pattern defects) presented in the literature has been introduced by Moha et
al. [MlHG06] to remove ambiguities in the interpretation of the design defects. The
work actually takes different design defects as input. A tree-based taxonomy for
the design defects helps classifying them in various categories and a meta-model
represents all these defects in a formal, UML-type description for their automatic
detection and correction. This work targets the detection and corrections of the
existing set of design problems.

2.2.4 Visualizations for Design Defect Detection

Visualization techniques have been presented that aid in the detection of code
smells and design defects in code [DSP08, LD03, PGN08]. Visualization tech-
niques provide a semi-automatic approach to get a first-hand idea of the design
defects present in code without delving into code-level details. But the human
expertise is still required to validate the results.

The Moose reengineering environment provides a suite of tools and techniques
for reverse engineering object-oriented applications [DGN05, DLT01]. These tools
combine metrics and visualizations to help visualize and understand internals of
object-oriented systems. Polymetric views provided by Moose is a two-dimensional
visualization of nodes and edges. Polymetric views can be generated for different
purposes: coarse-grained views to understand the overall system properties and
fine-grained views to understand the internal of a class [LD03]. Although Polymet-

Figure 2.1: Polymetric Views: Good De-
sign

Figure 2.2: Polymetric Views: Design
with Defects

ric views in Moose are described for understanding object-oriented applications, in
doing so they also help identify certain design defects. In Polymetric views, visu-

2.2. DESIGN DEFECT DETECTION IN SOFTWARE 21

alization and metrics are combined in a way that classes with anomalous metrics
attributes are marked by their color or size [LD03]. While representing the over-
all system properties with the coarse-grained views provided by Polymetric views,
nodes represent classes, while the edges represent the inheritance relationships be-
tween them. The size of the nodes reflects the number of attributes (width) and
the number of methods (height) of the classes, while the color tone represents the
number of lines of code of the class.

Figure 2.1 and Figure 2.2 demonstrate the difference between the visualization
for a good object-oriented design and an object-oriented software demonstrating
design defects, respectively. The good design is indicated by the well-decomposed
classes and a good number of inheritance links. The presence of the design defects
in Figure 2.2 are illustrated by the classes containing lots of methods (height of
the rectangle), large amount of code (color tone), and absence of inheritance links
amongst classes. However, as shall later show in this thesis that only those design
defects appearing in POC can be identified with Polymetric Views that exhibit
similar symptoms as the existing design defects. For different symptoms, we shall
need a different approach to detect them.

Van Emden and Moonen [vM02] present the visualization of code smells in
Java code. jCOSMO tool is proposed that allows the detection and visualization of
the code smells proposed by Fowler et al. The visualization is provided in the form
of graphs using RIGI [TWSM94]. Parnin et al. [PGN08] provide an approach to
visualize the existing set of code smells present in code. For each code smell, a
simple visualization is provided with the aid of colors.

SemmleCode [Sem07] allows to detect dependencies and code smells. The tool
defines a query language for the detection of code smells using metrics.

However, Van Emden et al., Parnin et al., and SemmleCode propose approaches
that are focused on the identification of existing set of code smells. These ap-
proaches are not apt to identify some of the code smells in POC that result in code
scattering.

2.2.5 Other Tools

In addition to the techniques for the detection of design defects and code smells,
there are various tools that are developed to help detect bug patterns, violations
of coding standards, and syntax errors in code. Generally, these tools focus on
improving code quality from a technical perspective. The fewer bugs there are
present in a piece of code, the higher the quality of that code [vM02]. The most
well-known include the C analyzer LINT [Joh77]. LINT checks for type viola-
tions, portability problems and other anomalies such as flawed pointer arithmetic,
memory (de)allocation, null references, array bounds errors, etc.

PMD [PMD02], FxCop [FxC06], and CheckStyle [Che04] are some of the
commercial tools that are available for searching for technical quality problems
such as violations of code conventions in software. FxCop and PMD allow de-
velopers to write new custom rules for the detection of problems in code. NDe-

22 CHAPTER 2. RELATED WORK

pend [NDe05] provides a useful tool to calculate various quality metrics for .NET
programs and information for type-based dependencies.

CROCOPAT [BNL05] tool allows several structural analyses in object-oriented
systems. The tool allows to search for various problems such as the detection of
design patterns, cyclic code dependencies, duplicate code, and dead code.

2.2.6 Limitations of Design Defects Detection

All the heuristic-based approaches for design defect detection provide an overall
framework for the detection of the existing design flaws. These approaches rely on
software quality metrics and the textual description of the existing design defects
and code smells. Their relevance with the work presented in this thesis lies in the
fact that the code smells that we bring forth and their proposed detection detection
techniques can be formally described with these approaches.

Other query-based and visualization tools that aim for the design defect de-
tection for a transition towards a superior object-oriented design focus to search
for existing set of design defects, such as AntiPatterns and code smells. These
tools, with the existing set of detection techniques, cannot be directly used to de-
tect the code smells appearing in POC that result in scattered code. The limitations
of existing tools and techniques lies in the fact that the existing techniques rely
on code quality metrics for code smell detection. However, scattered code cannot
be detected with code quality metrics as it requires a structural analysis for the
scattered code. Moreover, all the locations where scattered code exists should be
detected. Thus, we believe that a new set of techniques are required to detect for
scattered code. Hence, when we describe the new set of code smells that appear
in the absence of design, we also provide a some techniques that help detect them.
Our proposal for scattered code detection will help the existing tool developers to
integrate the proposed detection techniques in their respective tools.

2.3 Object Identification and Class Restructuring

While the design defects and code smells should be described and detected in code,
the ultimate objective for their description remains their removal from the code.
Their removal requires the identification of the modifications that are needed to
be applied to transform programs so that they represent a superior object-oriented
design.

Several research works aim to identify objects in procedural programs to trans-
form them into an improved object-oriented design. Moreover, there are various
studies that propose to restructure object-oriented software into an improved de-
sign by removing design defects and code smells. In the following sections, vari-
ous object identification approaches in procedural programs are discussed. After-
wards, we present approaches that propose to restructure object-oriented programs;
specifically, we mention those approaches that rely on the usage of Formal Concept

2.3. OBJECT IDENTIFICATION AND CLASS RESTRUCTURING 23

Analysis (FCA) [GW99].

2.3.1 Object Identification in Procedural Code

Graph-based Object Identification. Several work attempted to transform pro-
cedural code to object-oriented one [CB91, CCM96, CLLF99, LFGP97]. New-
comb et al. [NK95] proposed a Hierarchical Object-Oriented State-Machine Model
that is between conventional object-oriented modeling languages, state-based reac-
tive specification systems, and event-driven programming models. COBOL records
are mapped to classes and each procedure is mapped to a state machine associated
to a method. Several refactorings and transformations are applied to abstract and
merge the resulting methods.

De Lucia et al. [CLLF99, LFGP97] describe the Ercole approach for migrat-
ing programs written in RPG, the business application programming language, to
object-oriented programs. Among the different steps of the approach, one is ab-
stracting an object-oriented model that is centered around the persistent data stores.
Subroutines and groups of call-related subroutines are then candidate methods.

Cimitile et al. [CLLF99] found the identification of objects on the optimiza-
tion of certain object-oriented design metrics. The method identify coarse-grained
objects whose state is implemented by persistent data stores. First, a static analy-
sis of the source code is performed to identify the persistent data stores used and
their structure. The results are then refined through an analysis of the synonyms
and a concept assignment process. Synonymous files are grouped to form one ob-
ject. The concept assignment process is performed to associate a concept of the
application domain to each of the identified objects and to aggregate data stores
corresponding to the same element of the application domain. Object operations
are searched for at the program level first: object-oriented design metrics are used
to assign programs as object operations. In particular, the assignment is made while
trying to minimize the coupling between the objects. Measures of the coupling be-
tween programs and persistent data stores are computed based on the accesses that
programs make to the data stores.

An object-identification algorithm is proposed which treats coincidental and
spurious connections with a statistical technique [CCM96]. The algorithm exploits
an interconnection graph, called a variable-reference graph, and the objects are
identified by looking for mainly internally connected sub-graphs, which the algo-
rithm attempts to identify through an iterative process. At each step, every routine
in the system is associated with an index that measures the variation in the internal
connectivity of the graph that results in the use of the routine to generate a new
cluster. A filtering function is then used to discriminate, on the basis of the associ-
ated index, whether a function has to be used to generate a cluster, or it is likely to
introduce undesired connections.

Gall and Klösche propose a distinctive approach that is not only based on
the information derivable from the source code, but it also integrates domain and
application-specific knowledge to achieve the identification of application-semantic

24 CHAPTER 2. RELATED WORK

objects [GK95]. In the approach, object candidates are derived from the code
by the analysis of data store entities (persistent data) and non-data store entities
(non-persistent data). This analysis is also used to detect any functional relation-
ships amongst various entities. This model is called RooAM (Reverse generated
object-oriented Application Model). An independently developed object-oriented
application model called FooAM is generated for the same application from spec-
ifications. A FooAM model is then used to direct the object identification process
and complete the elements and resolve any ambiguities in the RooAM model.

Evidence-driven Object Identification. Evidence-driven identification is based
on an assumption that the user can discover a better object-oriented design once
he or she has global view of the different design alternatives [KP99]. The process
starts by identifying initial set of candidate classes and set of candidate methods.
However, the methods attributed to class may be in conflict. Hence, the next step
is to assign conflicting methods to one of the candidate classes. The idea is to
construct for each method global evidence table per candidate class. Each column
contains a property that holds for the method and associated class based on their
structural relationship. Weights are assigned to each column according to user
priority. A method is more suitable for a candidate class A than B, if its sum of
weights in evidence table of A is more than that in evidence table for B.

FCA-based Object Identification. Concept formation methods have been ap-
plied for object identification in procedural code. Sahraoui et al. in [SMLD97]
proposed an approach for identifying objects in procedural code. The approach
combines metrics calculation with several FCA-based analysis steps for class iden-
tification and further graph-based reasoning to detect method associations for newly
identified classes. In the first phase, groups of global variables and functions that
operate upon them are identified. The usage of variables by methods is further di-
vided into modification, read, and predicate mode. The predicate model indicates
if the variable is used to control execution of a function. The control execution in-
formation of a module is used to identify candidate objects through concept lattice.
In the second phase, candidate objects are further refined by grouping those can-
didate objects that share common variables. Concept lattices for candidate objects
and their associated variables is constructed to merge similar objects. In the third
phase, behavior is attached to the identified objects. For this purpose, reference
(access) and modification relationships of functions and variables are computed.
Modification relationship is given preference over reference (access) relationship.
As we shall demonstrate later, our approach for restructuring class in POC carries
forward this approach in that we generate more than one FCA views to extract
useful class hierarchies from POC classes.

Arie van Deursen proposes to use FCA and clustering to use legacy data struc-
tures as a starting point to object identification [vDK99b]. A legacy COBOL sys-
tem is studied for object identification. The authors apply cluster and concept

2.3. OBJECT IDENTIFICATION AND CLASS RESTRUCTURING 25

analysis for object identification in the program and provide an analysis for the
strengths and weakness of the two techniques vis-à-vis object identification. The
authors have remarked that concept analysis is more apt for object identification
because it produces the same candidate objects irrespective of the order in which
records are chosen. In clustering, the appearance of an item in a give cluster de-
pends upon the already computed clusters.

An approach to transform a COBOL legacy system to a distributed component
system is proposed by Canfora et al. [CCDD99]. The overall purpose is to reduce
the complexity of the lattices through the subgraph identification by the applica-
tion of an eclectic approach. A concept lattice is generated for programs and files
(database tables) used by these programs. Rules are defined for removing irrelevant
files and programs. For example, files that do not implement domain objects and
programs that access one file are removed. This reduction of context information
for lattices reduces the complexity of the resulting lattice and aids in simplifying
object identification. The focus remains the decomposition of COBOL programs
and data into meaningful components.

Clustering-based Object Identification. Object identification can be seen as
grouping problem. Different clustering techniques [Wig97] such as Optimization
Algorithms or Hierarchical Algorithms could be used to detect objects. Sahraoui
et al. [SVKS02] applied genetic algorithm and conceptual clustering algorithm to
detect objects in procedural code. Population consists of chromosomes. A chro-
mosome consists of groups of variables. Initially a random set of chromosomes
are produced i.e., random groups of variables. The method selects the best chro-
mosomes by applying objective function to chromosome sets. Then, mutate and
crossover operators are applied on each of the selected chromosome pairs to ob-
tain new chromosomes. The new chromosomes are found to have better groups of
variables compared their previous generations.

Object Oriented Idioms Found in C. Procedural code such as C implements
inheritance in variety of ways. Some interesting patterns have been identified
that are used in C programs to simulate object oriented features such as inheri-
tance [Sif98, Har00]. The simplest way in which inheritance is implemented is
through redundant declarations [Sif98]. The redundant declarations are shown be-
low with a sample declaration:

typedef struct { int x,y; } Point;
typedef struct { int x,y; Color c; } ColorPoint;

The example above describes ColorPoint that is a subclass of another class Point
because they have similar data structures, x and y, in their declaration.

26 CHAPTER 2. RELATED WORK

2.3.2 Object-Oriented Restructuring

Moha [Moh08] suggests that the correction of defects in object-oriented design
consists of three steps, namely, identification of modifications, application of the
modifications, and testing the resultant system. The modifications, or commonly
refactorings, that are necessary to improve object-oriented design are defined by
Opdyke [Opd92] and Fowler [FBB+99]. We believe that the modifications to be
applied to remove design defects and code smells are adequately described by ex-
isting research. Testing the results of refactorings is a manual task performed by
developers.

Hence, the most important task in object-oriented restructuring is the identifi-
cation of an overall roadmap to suggest and pursue refactoring activity to remove
design defects. This roadmap should extract help extract an overall object-oriented
design from POC programs.

First we provide an introduction of the proposed refactorings. Then, we list per-
tinent approaches related to finding an overall roamap to reengineer and restructure
object-oriented code to an improved design.

Refactorings. Opdyke first introduced the concept of refactorings to improve
program design [Opd92]. The purpose of these refactorings is to change the struc-
ture of a program in a useful way, and in doing so refactorings must preserve
program behavior. The proposed refactorings consist of two groups: low-level
refactorings and composed refactorings. Low-level refactorings include creating
an empty class and creating a new member attribute in a class. Low-level refactor-
ings are defined to show that they preserve program behavior. It is stated that all
the composed refactorings will preserve program behavior that are composed of a
series of low-level refactorings. Opdyke has defined 26 low level refactorings.

Opdyke has also contributed to Martin Fowler’s book [FBB+99] on code smells
and refactorings. The book provides a comprehensive list of refactorings to im-
prove object-oriented design. Here, we present three examples of refactorings pro-
posed in the book for illustration purposes.

• Move Method. The refactoring proposes to move a method of a Class A to
another Class B. The purpose is to move methods to the classes where these
methods are more frequently used.

• Extract Superclass The purpose of this refactoring is to move common fea-
tures in sibling classes A and B in a common superclass C. Common features
such as duplicate code are pulled up into the newly created class C. Classes
A and B then inherit from the superclass C.

• Extract Class. This refactoring consists of creating a new class B and dis-
placing all the pertinent attributes and methods from Class A to the newly
created Class B. This refactoring is used in cases where a single class en-

2.3. OBJECT IDENTIFICATION AND CLASS RESTRUCTURING 27

capsulates two different concepts. After the refactoring, each class contains
functionality pertaining to its purpose.

A meta-model based refactoring engine is proposed by Tichelaar et al. [TDDN00].
The purpose of the refactoring engine is to perform the proposed refactorings in a
language-independent manner. The meta-model is called FAMIX and it consist of
object-oriented entities such as methods, classes, and attributes. Based on the list
of primitive refactorings, the authors derive a common meta-model. The feasibility
of the application of approach is studied for Java and Smalltalk programs.

FCA-based Class Hierarchy Reengineering. FCA is proposed for class hier-
archy reengineering by Snelting and Tip [ST98]. The authors proposed an FCA-
based method for adapting a class hierarchy to a specific usage thereof. It com-
prises a study of the way class members are used in the client code of a set of
applications. The study enables the identification of anomalies in the design of
class hierarchies, e.g., class members that are redundant or that can be moved into
a derived class. However, the work does not address the presence of high-level
object-oriented defects and their correction.

FCA-based Object-Oriented Restructuring. Moha et al. [MHVG08] proposed
an approach to use Relational Concept Analysis (RCA) to suggest appropriate
refactorings to correct certain design defects. The approach suggests to make
classes more cohesive and less coupled by removing Blob anti-pattern. RCA lat-
tices are used to refactor to remove Blob AntiPattern. For doing this, an RCA
context is constructed where methods are considered as objects and method calls
and class attributes are considered as attributes of the context. Lattices are then
scaled to obtain useful information.

FCA-based Class Hierarchy Understanding. FCA-based understanding of class
structures is introduced in [ADN05a]. First, the authors identify pattern of views
based on FCA to understand the access of class attributes and method usage for
existing class hierarchies. Various collaborations are defined through the analysis
of class state and behavior, and interactions between the state and behavior. Based
on the groupings of these interactions, views provide internals of class interaction
patterns. These views include State Usage, External/Internal Calls, and Behav-
ioral Skeleton. State usage demonstrates the usage patterns of class attributes by
methods of the class. External/Internal calls reveal the overall shape of the class in
terms of its internal reuse of functionality by depicting methods that are not called
from inside their own class and that the methods only act as accessors to class
attributes. Finally, behavioral skeleton demonstrates the methods that do not use
class data and methods. These views are useful in understanding the internals of
object-oriented classes.

Dekel uses FCA to visualize the structure of Java classes and to select an effec-
tive order for reading the methods [DG03]. Method call graphs is superimposed

28 CHAPTER 2. RELATED WORK

onto the concept lattice to obtain an embedded call-graph, which provides a de-
tailed visualization of the interaction within a class.

2.3.3 Limitations of object-oriented Restructuring

Limitations of Procedural Object Identification. There are copious approaches
on object identification in procedural code. However, these approaches cannot be
applied to POC for two reasons. First, these approaches do not include the iden-
tification of object-oriented constructs such as method calls, composition, and as-
sociation relationships while searching for object-oriented classes. The integration
of these constructs in the restructuring approach is necessary to exploit the exist-
ing underlying object-oriented constructs while constructing new class hierarchies.
Second, these approaches do not take into account the POC code smells, which
can also provide certain hints for the presence of class hierarchies, as we shall
show later.

Limitations of FCA-based object-oriented Reengineering. The proposals for
understanding class hierarchies through the use of FCA search to understand class
hierarchies and remove petty design anomalies present in class hierarchies such as
misplaced attributes in subclasses that should be moved up in the class hierarchy.
However, they do not serve the purpose of removing high-level design defects from
object-oriented code, especially, when the program demonstrates the lack of the
overall design.

RCA-based technique to remove AntiPatterns from code produce huge lattices
for large systems that obstruct the task of the inference of useful object-oriented
abstractions from code. The solution that we shall propose looks to decompose
lattices to represent each cohesive group of attributes and methods.

2.4 Identification of Crosscutting Concerns

In addition to the design problems appearing due to deviations of object-oriented
norms, it has been reported that certain features, or more specifically concerns,
can not be encapsulated into the existing object-oriented abstractions and result in
crosscutting concerns [KLM+97]. Aspect mining techniques search for scattered
code related to the absence of Aspect-Oriented Programming constructs. Below,
first we provide a brief introduction of crosscutting concerns. Afterwards, we pro-
vide a detailed listing of tools and techniques for the identification of crosscutting
concerns. The purpose is to highlight the absence of literature on the detection of
scattered code resulting from the absence of object-oriented design.

2.4.1 Crosscutting Concerns

A commonly used definition of a concern is given by IEEE 1471: a concern
is an interest that pertains to the system’s development, its operations and any

2.4. IDENTIFICATION OF CROSSCUTTING CONCERNS 29

other aspects that are critical or otherwise important to one or more stakehold-
ers [FECA05]. Software is a collection of various concerns. There are certain
concerns which cannot be cleanly encapsulated in the current decomposition units
offered by programming languages, including object-oriented paradigm [Kic96].
When such concerns are implemented in a system, they result in Crosscutting Con-
cerns. Crosscutting concerns exhibit symptoms of code duplication, and scatter-
ing and tangling of code. In turn, they affect the modularity of a system because
changes to these crosscutting concerns are not bounded to one module but spread
to various modules in the system.

c l a s s P o i n t { i n t x , y ;
p u b l i c i n t getX () { r e t u r n x ; }

p u b l i c i n t getY () { r e t u r n y ; }

p u b l i c vo id se tX (i n t x) {
t h i s . x = x ;
Disp lay . update () ;

}

p u b l i c vo id se tY (i n t y) {
t h i s . y = y ;
Disp lay . update () ;

}

p u b l i c vo id moveBy (i n t dx , i n t dy) {
x += dx ;
y += dy ;
Disp lay . update () ;

} }

Listing 2.1: Non-AOP Code

Listing 2.1 depicts an example of a class defining the state for a class Point and
the operations on Point coordinates. The example is a simplified version of the
example presented by Kiczales ad Mezini [KM05]. Every time x or y coordinates
of the class Point are changed or the point is moved, the display is updated through
the update operation. The calls to the update method of Display class are scattered
in the methods of the class Point. Moreover, all the classes that inherit from the
point class inherit the logic of update and hence the scattered logic is inherited too.

c l a s s P o i n t {

i n t x , y ;

p u b l i c i n t getX () { r e t u r n x ; }

30 CHAPTER 2. RELATED WORK

p u b l i c i n t getY () { r e t u r n y ; }

p u b l i c vo id se tX (i n t x) { t h i s . x = x ; }

p u b l i c vo id se tY (i n t y) { t h i s . y = y ; }

p u b l i c vo id moveBy (i n t dx , i n t dy)

{
x += dx ; y += dy ;

}
}

a s p e c t U p d a t e S i g n a l i n g {
p o i n t c u t change () : e x e c u t i o n (vo id
P o i n t . se tX (i n t)) | |
e x e c u t i o n (vo id P o i n t . se tY (i n t)) | |
e x e c u t i o n (vo id P o i n t . moveBy (i n t , i n t)) ;
a f t e r () r e t u r n i n g : change ()
{

Disp lay . update () ;
} }

Listing 2.2: AOP Version

Listing 2.2 shows Aspect-Oriented Programming [KLM+97] (AOP) version of
the Point class. The update logic is now refactored to the aspect UpdateSignaling.
The pointcut change captures the execution of methods setX, setY, and moveBy.
Each time the pointcut captures the execution of one of these methods, it executes
the update operation after returning from the methods setX, setY, and moveBy. The
update logic is now well-encapsulated in a single aspect. Hence, using AOP, these
crosscutting concerns can be cleanly separated from the base code, which becomes
oblivious of the update operations [FF00].

2.4.2 Aspect Mining

AOP and its relevant concepts are rather new and industrial systems have been
using object-oriented paradigm as the state of the art technique to build modular
systems. So, there is a need to search for crosscutting concerns in existing systems
so that scattered code can be refactored into aspects [HRB+06]. Manual identifi-
cation of crosscutting concerns in the existing system is a difficult and error-prone
process due to large size, complexity, and obsolete documentation and knowledge
of existing systems. Hence, tools and techniques are essentiel to assist the discov-
ery of crosscutting concerns.

2.4. IDENTIFICATION OF CROSSCUTTING CONCERNS 31

Aspect mining refers to the identification and analysis of non-localized cross-
cutting concerns throughout an existing legacy software system [KMT07]. The
detected concerns can be re-implemented as separate aspects, thereby improv-
ing maintainability and extensibility as well as reducing complexity. The overall
process of aspect mining and refactoring has been described in Figure 2.3 (taken
from [KMT07]).

Figure 2.3: Aspect Mining and Refactoring [KMT07]

The origins of aspect mining can be traced back to the concept assignment
problem, i.e., the problem of discovering domain concepts and assigning them to
their realizations within a specific program [BMW94]. In aspect mining those con-
cerns (concepts) are discovered whose realization in a given program cuts across
modular units. Hence, the general hypothesis for aspect mining, be it in require-
ment documents, program behavior, or code, is that the manifestation of aspec-
tual opportunities is redundancy. This redundancy appears as scattered artifacts
in documents or code. Hence the basic assumption of aspect mining techniques
is to find the scattering of artifacts. These artifacts may be words in documents,
recurrent code elements, method calls, or execution patterns. Therefore, aspect
mining techniques are distinguished as belonging to three categories: early dis-
covery techniques, dedicated code browsers, and automated aspect mining tech-
niques [MKK08]. Figure 2.4 demonstrate an overview of existing aspect mining
tools and techniques [KMT07]. These tools and techniques are elaborated in the
following sections.

Aspect mining involves the search for source code elements belonging to the
implementation of a crosscutting concern. These source code elements are called
candidate seeds, which can be turned into confirmed seeds if accepted by a human
expert, or non-seeds if rejected. A non-seed appearing in the results of aspect min-
ing tools is referred to as a false positives. Too many false-positives produced by an
aspect mining tool requires a major human effort because of the need to study and
reject all the false-positives reported by the tool. Lesser number of false-positives
is also a prerequisite for a successful aspect mining and refactoring activity. Hence,
aspect mining tools and techniques strive to reduce the number of false-positives
identified in their results.

Starting from the specification documents, it has been argued that the aspect-
oriented paradigm should be adopted from the early stages of software develop-
ment such as domain analysis and requirements engineering [SCRR05].

In the following sections, various aspect mining techniques for searching miss-

32 CHAPTER 2. RELATED WORK

Figure 2.4: Aspect Mining Tools and Techniques

ing aspects in application code are discussed. For this purpose, we divide these
techniques into two groups: dedicated code browsers and automated techniques.
Dedicated code browsers need user input for searching for useful candidates seeds.
Automated techniques generate a set of candidates, which are further analyzed
manually to determine real crosscutting concerns. We discuss members of each
type of aspect mining techniques below.

Dedicated Code Browsers. Dedicated code browsers rely on search patterns
provided by aspect miner to identify aspects. Thus, they are also termed as query-
based or explorative techniques [MDM07]. These techniques guide an aspect
miner who has an idea of the aspects in the code and searches for crosscutting
concerns providing lexical or type patterns to code browsers. Source code loca-
tions that match the pattern correspond to crosscutting concern seeds, which can

2.4. IDENTIFICATION OF CROSSCUTTING CONCERNS 33

subsequently be analyzed in detail using features provided by the code browsers.
Aspect Browser is one of the first aspect mining approaches [GKY00]. It uses

lexical pattern matching for querying the code, and a map metaphor for visualizing
the results. It extracts fragments of identifier names from source code according to
a programmer specified naming convention.

The AspectMining Tool (AMT) extends the lexical search from the Aspect
Browser with structural search for usage of types within a given piece of code [HK01].
The tool displays the query results related to crosscutting concerns in a Seesoft-
type view as highlighted strips in enclosed regions representing modules (e.g.,
compilation units) of the system [ESEE92].

AMTEX is an AMT extension that provides support for quantifying the char-
acterization of particular aspects. AMTEX, in turn, has evolved into PRISM, a
tool supporting identification activities by means of lexical and type-based pat-
terns called fingerprints [ZJ04]. A fingerprint can be defined, for example, as any
method, of which the name starts with a given word. An aspect miner defining
fingerprints is assisted by so-called advisors. PRISM currently provides a ranking
advisor which reports the most frequently used types across methods.

The Feature Exploration and Analysis Tool (FEAT) is an Eclipse plug-in aim-
ing at locating, describing, and analyzing concerns in source code [RM07]. It is
based on concern graphs, which represent the elements of a concern and their rela-
tionships. A FEAT session starts with an element known to be a concern seed, and
FEAT allows the user to query relations, such as direct call relations, between the
seed and other elements in the program. The results of the query that are consid-
ered relevant by the user to the implementation of a (crosscutting) concern can be
added to the representation of the concern.

Various query-based tools (the Aspect Browser, AMT, and FEAT) have been
compared in a recent study [FECA05]. This study shows that the queries and
patterns are mostly derived from application knowledge, code reading, words from
task descriptions, or names of files. As the study shows, prior knowledge of the
system or known starting points strongly affect the usefulness of the outcomes of
the analysis.

Automated Techniques. The second group of aspect mining approaches aim at
automatically generating crosscutting concern seeds that will reduce the effort of
further understanding and exploring the concern. The approaches in this category
can be described as automated or generative techniques and will typically provide
the input for the dedicated code browsers.

Many automated approaches use program analysis techniques to look for symp-
toms of code scattering and tangling and identify code elements exhibiting these
symptoms that can act as candidate aspect seeds. Shepherd et al. [SGP04] use clone
detection based on program dependence graphs and the comparison of individual
statements abstract syntax trees for mining aspects in Java source code. Three
clone detection tools, implementing matching on tokens, abstract syntax trees, and

34 CHAPTER 2. RELATED WORK

on program dependence graphs, respectively, have been evaluated on an industrial
C component [vEBvDT05]. The starting point were four dedicated crosscutting
concerns that were manually identified and annotated in the code beforehand. The
evaluation assesses the suitability of clone detection for identifying these concerns
automatically by measuring the coverage of the annotated concerns by detected
clones.

Code clones in object-oriented systems would typically be refactored through
method extraction [FBB+99] that results in scattered calls to the extracted method.
Fan-in analysis looks for the concerns implemented by these scattered calls, which
could be further refactored into aspect advice [MDM07]. Unique methods searches
for crosscutting concerns by identifying methods with higher number of calls [GK05].
This technique concludes that crosscutting concerns provide “services” to other
concerns and their associated methods, when called, do not return data. In their
more recent work, Breu and Zimmermann searched for concerns by analyzing the
changes in the values of the fan-in metric between different versions of the sys-
tem under investigation [BZ06]. The technique they propose examines the version
history for insertions of method calls. Similar to fan-in analysis, a reported seed
consists of a set of one or more methods with same call site locations.

Dynamic analysis has been considered for aspect identification by examining
execution traces for recurring execution patterns [BK04] and by applying formal
concept analysis to associate method executions to traces specific to documentation-
derived use-case scenarios [TC04a]. Particularly challenging for dynamic analysis
techniques is to exercise all functionality in the system that could lead to aspect
candidates. The execution of the functionality for dynamic analysis implies that a
preliminary activity is needed in which use-case scenarios are defined for the sys-
tem under investigation. The first of the two dynamic techniques has been adapted
recently to static analysis to search for recurring execution patterns in control flow
graphs [Kri06].

Formal concept analysis has also been applied in an identifier analysis that
groups programming elements based on their names [TM04]. This analysis starts
from the assumption that naming conventions in programs can be used to detect
the scattered elements of a concern.

The suitability of refactoring certain interfaces implemented by a class has been
investigated through a number of indicators like the naming pattern used by the
interface definition, the coupling between the methods of the implementing class
and the methods declared by the interface, or the package location of the interface
and its implementing class [TC04b].

Aspect Identification Case Studies. Various aspect mining case studies have
been performed [CMM+05, RURD07, SPPCC05]. These case studies are geared
towards the analysis of combination of aspect mining techniques and comparison
of the precision of their seed identification. A first attempt was made in [CMM+05]
to establish a common benchmark for the development of aspect mining techniques

2.4. IDENTIFICATION OF CROSSCUTTING CONCERNS 35

and to report results for various aspect mining techniques. This work combines
results of dynamic analysis [TC04a], fan-in technique [MDM07], and identifier
analysis [TM04] approaches. This work is further studied and results are analyzed
in [RURD07] for the same software system.

Aspect mining tools are only tested on programs exhibiting good object-oriented
design. Likewise, the case study software chosen, such as JHotDraw [JHo], demon-
strate a good overall object-oriented design. Hence, aspect mining tools results do
not report the existence of false-positive results occurring due to the absence of
object-oriented design.

2.4.3 Concern Quantification

Apart from aspect mining tools and techniques, there are techniques that target the
quantification of the scattering of code elements pertaining to various concerns.
Concern identification and interaction through manual feature selection tool and a
first set of metrics for feature scattering have been presented in [LM99]. Primitive
metrics such as spread, tangle, and density are provided for various features present
in a program. These features are manually tagged by the user to understand the
scattering of the code elements related to each tagged feature.

Wang et al. undertook a study to compute, using dynamic analysis of code,
various features implemented in code and calculate the relationship of these fea-
tures with program components through disparity, concentration, and dedication
metrics [WGH00]. Program features are determination by their appearance in exe-
cution traces. These features are then mapped onto the file and disparity, concentra-
tion, and dedication metrics are calculated for features implemented in a program.

Eaddy et al. have presented a manual approach for concern identification
and concern assignment and presents two concerns quantification metrics derived
from [WGH00]: degree of scattering and degree of focus [EZS+08]. The proposed
approach promotes manual identification of concerns and discuss crosscutting con-
cerns arising in programs.

Garcia et al. have also provided a set of metrics to measure the scattering of
crosscutting concerns. These metrics are called Concern Diffusion over Compo-
nent (CDC), Concern Diffusion over Operations (CDO), and Concern Diffusion
over Lines of Code (CDLoc) [KSG+06]. As their names suggest, these metrics
are used to measure the diffusion of a concern over classes, methods, and lines of
code in object-oriented programs. The assignment of code artifacts to concerns is
manual.

An experience of marking concerns in two programs with a tool, SPOTLight,
has been presented in [RBC05]. This tool serves to associate code snippets with
various concerns and concern markings of the two developers have been compared
by analyzing the overlap of the lines of code of their respective concerns. The work
identifies useful guidelines for concern identification.

A terminology and formalism along with a set of criteria for the comparison,
evaluation, and definition of existing concern metrics is proposed in [FSG+08].

36 CHAPTER 2. RELATED WORK

The paper proposes guidance for consistent concern measurement in an abstract
manner by providing a survey of currently proposed metrics.

2.4.4 Aspect Refactoring

Aspect refactoring refers to the extraction of the code related to identified cross-
cutting concerns into AOP language constructs [HRB+06, Lad03, Mar04]. Aspect
refactoring works presume that prior to aspect refactoring, crosscutting code is al-
ready identified. In order to enable the refactoring of crosscutting code into aspects,
sometimes object-oriented refactorings are applied to make joinpoints i.e., points
in code where aspects are applied, more explicit in code [HRB+06]. It is also
suggested that object-oriented refactoring should be more aspect-aware because
aspects directly depend upon the joinpoints present in base programs [HOU].

Monteiro et al. [Mon05] mention the prerequisite of a good object-oriented
design before the application of aspect refactoring. In summary, aspect refac-
toring works set the precondition of good object-oriented design for applying as-
pect refactoring. Works on aspect refactoring do not report the absence of object-
oriented design and resulting code scattering that may appear. In cases where there
are anomalies, object-oriented refactorings are applied to prepare the programs for
aspect refactoring.

2.4.5 Limitations in Crosscutting Concerns Identification

The work in the domain of aspect identification, aspect refactoring, and concern
identification only strives to search for the scattered code from aspect identification
dimension and their eventual refactoring. In this thesis, we demonstrate that scat-
tered can also appear due to the absence of classes for domain entities. The scat-
tered code appearing from the absence of object-oriented design is never reported
in the literature. We also demonstrate that aspect mining techniques can equally
be used to detect some of the code smells related to the absence of object-oriented
design. On the one hand, the application of aspect mining techniques allows to
detect scattered code related to the absence of object-oriented design and, on the
other hand, it requires that the scattered code related to the absence of design be
removed from the aspect mining results for better accuracy of aspect mining tools.
We shall describe an approach for the classification of scattered code appearing in
non-AOP object-oriented programs demonstrating POC design defects.

2.5 Discussion

This chapter discussed various proposals related to the design problems in object-
oriented programs and their detection techniques. We also presented diverse ap-
proaches that help restructure procedural and object-oriented code into an improve
object-oriented design. In addition, we also described extensive list of techniques

2.5. DISCUSSION 37

aspect mining and concern identification. In summary, we list the limitations of the
described proposals regarding our problem statement.

2.5.1 Design Defects and Code Smells

Code smells described by Fowler [FBB+99] only describe localized design anoma-
lies in object-oriented programs that do not occur because of the absence of design.
Existing repository of design defects, or more specifically AntiPatterns, describe
high-level design problems that arise from deviations of design norms. These high-
level design problems are described in an abstract manner with textual description
of code problems. We believe that AntiPatterns do not describe all forms of code-
level manifestations of a degenerated object-oriented software. Hence, developers
and reengineers can always encounter and report a different manifestation of code-
level problems related to similar higher-level design defects. We shall present a list
of the design defects and code smells that we observed in software lacking a proper
object-oriented design.

The existing techniques for the detection of the existing design problems are
insufficient because they search the existing symptoms of design problems in code.
Any new symptoms would require the definition of new techniques for their detec-
tion. Some of the code patterns that appear in the absence of object-oriented design
produce scattered code. The existing set of proposals for design defect detection
in object-oriented do not serve to detect the scattered code that results from the
absence of object-oriented design. Hence, techniques are required to be defined to
search for the scattered code.

2.5.2 Object-Oriented Restructuring

There is extensive literature on object identification in procedural code. Moreover,
there are several proposals for restructuring of object-oriented programs into an
improve object-oriented design. While searching for an appropriate technique to
identify refactoring opportunities in POC, we found the following limitations of
the existing proposals.

• Object identification in procedural code does not include object-oriented
constructs such as method calls, composition, and association relationships
while searching for object-oriented abstractions.

• FCA-based techniques for class hierarchy reengineering and understanding
attempt to locate anomalies in classes and class hierarchies. These do not
attempt to resolve high-level design defects appearing due to the lack of
object-oriented design.

• FCA-based object-oriented restructuring involves producing a single lattice
for a system. This obstructs the analysis of huge systems. Moreover, class
hierarchies for domain entities cannot be extracted with the proposed tech-
nique.

38 CHAPTER 2. RELATED WORK

• The approaches for FCA-based restructuring do not take into account the
code smells that appear in the absence of object-oriented design while search-
ing for classes that can better encapsulate domain entities.

2.5.3 Aspect Mining

Aspect mining strives to search for scattered code related to crosscutting concerns
present in code. However, the proposed techniques aim to search for scattered
code resulting from the absence of aspects. We believe that the scattered code
related to the absence of classes for domain entities can also appear in the results of
aspect mining tools. This scattered code introduces false-positives in aspect mining
results, thus reducing the accuracy of the results obtained. The scattered code
related to the absence of classes for domain entity is never reported in the existing
literature on aspect mining. Moreover, concern identification and quantification
tools and techniques do not address the question of scattered code occurring due to
diverse reasons and its classification.

2.5.4 Proposed Solution

In the next chapters, we describe our contributions that fill up the aforementioned
gaps in the existing research. We summarize here our research contribution:

• As the current state of the art does not mention a description of the higher-
level design defects and their code-level manifestation occurring in the ab-
sence of object-oriented design, we present the design defects and code
smells appearing in POC. Their description will help better identify and re-
move them from code to improve the overall object-oriented design. We also
discuss identification techniques to detect the code smells that result in scat-
tered code. We utilize techniques to detect scattered code to detect the POC
code smells result scattered in code.

• Object identification and object-oriented reengineering techniques are not
adequate for the extraction of useful abstraction from POC to correct the
design defects. For object identification in procedural code, cohesive groups
of variables and functions are detected. However, these approaches do not
take into account object-oriented constructs. Class hierarchy reengineering,
provides a single lattice for the whole application that hinders the extraction
of cohesive groups of methods and attributes and their hierarchical links.
For the purpose of POC restructuring, we present an approach that helps
restructuring POC classes. First, we identify cohesive groups of methods
and attributes. To decompose lattice information, we generate three different
FCA views for each of the cohesive groups to analyze these cohesive groups
individually. The decomposition permits to identify class hierarchies within
each of the cohesive groups of methods and attributes.

2.5. DISCUSSION 39

• Crosscutting concerns identification in POC results in a large number of
false-positive aspect to be identified, which point to the absence of object-
oriented domain entities. The existing approaches for aspect mining and
concern quantification do not report the problem of false-positive aspects.
We propose an approach to distinguish crosscutting concerns through struc-
tural analysis of programs and scattering metrics. The approach identifies
a list of crosscutting concerns and distinguishes those that access domain
entity information as related to the missing objects. Moreover, Spread-out
metric quantifies the scattering of concerns on classes. Aspects demonstrate
high scattering values as compared to the missing objects. The approach
permits to identify and extract those crosscutting concerns that appear from
the absence of object-oriented design from the list of candidate aspects for
improving aspect mining results.

40 CHAPTER 2. RELATED WORK

Chapter 3

Procedural Object-Oriented
Code

While the benefits of object-oriented technology are widely
recognized, the indiscriminate use of object-oriented mechanisms

and weaknesses in analysis and design methods are rapidly
leading to a new generation of inflexible legacy systems. [Cas98]

Le problème ne cherche personne, c’est la personne qui cherche
le problème. Proverbe Camerounais

3.1 Overview

The object-oriented paradigm provides important concepts that help construct mod-
ular software systems. These concepts include inheritance, polymorphism, and
composition/aggregation. They are dependent upon the application of object-oriented
analysis and design before the actual programming phase so that classes and hier-
archies for domain entities are identified. However, software systems lacking a
good object-oriented design or in case of design erosion, the key object-oriented
concepts are absent and hence software systems suffer from modularity problems.
We term software systems developed using the state of the art object-oriented lan-
guages but lacking object-oriented design or demonstrating design erosion, Pro-
cedural Object-Oriented Code (POC). Huge classes, shallow class hierarchies and
the absence of domain abstractions in code are the hallmark design defects of POC.
These design defects manifest themselves in the form of various code smells in
programs. A few examples of code smells are displaced methods and duplicate
template code to name a few.

In the current chapter, we elaborate the design defects appearing in POC and
their manifestation in the form of code smells along with examples. The descrip-
tion of the design defects and resulting code smells is necessary so that these can
be detected and removed from the code for an improvement in software quality.

41

42 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

Design defects and code smells identification is essential for their removal from
code. However, manual identification can be cumbersome in large-scale software.
Their automated identification is essential to reduce the burden of manually search-
ing for the POC design defects. Hence, we briefly describe various existing ap-
proaches based on code quality metrics and visualizations for the detection of the
design defects and the code smells occurring in POC. We show that some of the
code smells cannot be identified through the existing techniques for two reasons.
First, the existing proposals apply techniques, such as metrics-based heuristics,
which are not pertinent to detect the new set of code smells in POC. Second, the
existing detection techniques search symptoms of the existing design defects and
code smells. The new set of code smells exhibit different symptoms than the cur-
rent ones: Some of the POC code smells result in scattered code. These new code
smells necessitate the definition of a tool that can exploit the code scattering identi-
fication techniques to search for these code smells. Thus, we propose a techniques,
which is based on the principles of the detection of scattered code to detect the
POC code smells exhibiting the scattered code. The techniques proposes to detect
the scattered code through identifier analysis and Fan-in metric.

This chapter is organized as follows: Section 3.2 describes the main concepts of
the object-oriented paradigm to illustrate these concepts and to contrast them with
their absence in POC. Section 3.3 describes POC and Section 3.4 describes the
design defects and the corresponding code smells present in POC with examples.
Section 3.5 describes various tools and techniques that may be useful to automate
the identification of the POC design defects and code smells. Section 3.6 concludes
the chapter.

3.2 Background — Object-Oriented Paradigm

Different methods have been proposed for designing and developing modular soft-
ware systems, one of the recent one is the Object-Oriented paradigm [Mey88].
Object-oriented languages allow developers to define classes (a unit of modularity)
of objects that behave in a controlled and well-defined manner. Classes represent
domain entities, which are the real world entities modeled by software systems.
Domain entities are normally identified during object-oriented analysis and refined
during the design phase [Pre01]. For example, the domain entities for library man-
agement system would be books, shelves, and users. Likewise, the domain entities
for blood plasma analysis applications would be patients, tests, quality control,
tubes, reagents, etc.

Classes encapsulate data and functionality related to domain entities [Rie96].
The principle to encapsulate data and functionality together is known as data encap-
sulation and the objects expose their functionality through well-defined interfaces.
The separation of interface and its implementation lies at the heart of encapsulation
and information hiding principle [Par72]. Interface contains only those elements
that a client class needs to know while hiding the implementation details behind it.

3.3. PROCEDURAL OBJECT-ORIENTED CODE 43

The separation of implementation details and interface constitutes loose-coupling
between a provider object and its client. The client knows how to use the object
without knowing how the provider object is built. Hence the provider object can
evolve its private implementation without changing its interface. The changes are
localized, thus supporting the concept of modular continuity [Mey88].

The concepts of abstraction and encapsulation are supported in the object-
oriented paradigm by inheritance and aggregation. Inheritance — which enables
parts of an existing interface to an object to be changed — enhances the potential
for re-usability by abstracting commonly used attributes and functionality in top-
level classes. Polymorphism is strongly connected to inheritance. Polymorphism
is the ability of objects belonging to different types to respond to method, field, or
property calls of the same name, each one according to an appropriate type-specific
behavior. Some objects are made of other objects and it is called aggregation or
composition.

3.3 Procedural Object-Oriented Code

Whereas the object-oriented paradigm advocates well-designed, modular software
programs, object-oriented programs often demonstrate the absence of object-oriented
design because of different reasons.

First, the budgetary and time limitations or the lack of knowledge of object-
oriented designers result in the absence of object-oriented design. Budgetary limi-
tations push managers to commence software development phase without properly
understanding the domain and decomposing the problem domain into independent
classes. The lack of the knowledge of object-oriented design leads to a partial
application of the object-oriented concepts. The partial application of the object-
oriented concepts produces classes that represent services or subsystems, instead
of fine-grained domain objects.

Second, sometimes the usage of the state of the art object-oriented languages
is understood to be the only key prerequisite for a good object-oriented design.
However, modern object-oriented languages only provide a support for the key
object-oriented concepts such as inheritance and polymorphism. Their utilization
does not replace the need for a good, upfront design.

Third, constant maintenance efforts erode software design because of addi-
tional features added to a program. These additional features may not fit in the
existing classes and new classes are needed to be created to accommodate the new
changes. The new changes are nonetheless introduced without creating the new
classes in software systems, and consequently, the program demonstrates strong
coupling, and the presence of misplaced functionality and logic in various classes
of a program.

We coined the term Procedural Object-Oriented Code (POC) for the code that
shows the signs of the absence of the overall object-oriented design, nonetheless
developed using the state of the art object-oriented languages. Procedural object-

44 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

oriented code often faces similar problems as procedural legacy systems [DDN02].
They both contain duplicated code and logic, misplaced logic, and incomplete ab-
stractions. The term POC makes a clear distinction between good object-oriented
code and object-oriented code presenting such defects.

As we shall see in this chapter, the design defects in POC are similar to the
design defects described for AntiPatterns [BMMM98]: The design defects in POC
also result in huge classes, under-developed inheritance hierarchies, and the lack
of abstraction for domain entities. Nevertheless, the design defects in POC dis-
tinguish themselves from AntiPatterns by their manifestation in code. That is, the
novelty of the POC design defects lies in the new code smells that are symptoms
of these design defects. These code smells are considered novel because the An-
tiPatterns descriptions do not provide all possible manifestations of AntiPatterns in
code and different code smells can be identified resulting from the same symptoms
as described by AntiPatterns.

POC manifests both the existing set of code smells introduced by Fowler et
al. [FBB+99] and the new set of code smells that we list later in this chapter.
The existing code smells, or object-oriented code smells, are described in detail
along with their remedies. It is also necessary to report the novel code smells in
POC. The definition of the POC code smells will permit the identification of perti-
nent algorithms to search for these design defects. In addition, it is also necessary
to search for solutions that may help removing the POC code smells from pro-
grams. Their removal will help improve the overall object-oriented design of the
programs [FBB+99].

Procedural object-oriented code consists of Partially Decomposed classes. Par-
tially decomposed classes are huge structures that represent subsystems rather than
any particular domain entity. These partially decomposed classes in POC result
in architectural-level design defects. These design defects include the absence of
class hierarchies. Consequently type and subtype relationships are missing for do-
main entities i.e., domain entity code is not produced in a hierarchical relationship
represented by a parent class and its derived subclasses. Thus, the code related to
a domain entity cannot be reused through specialization, a leverage obtained with
the presence of hierarchical relationships. In addition, certain domain entities are
not represented in their precise classes but their code is scattered across the other
classes making up a system.

Figure 3.1 provides a first example of the partially decomposed classes in POC
with Polymetric views [LD03]: The figure demonstrates shallow class hierarchies.
Moreover, the huge classes in the figure provide a hint about the lack of decom-
position of the object-oriented design. We describe these design defects in more
detail below.

The POC design defects and code smells are not as widespread as the existing
design problems. This is suggested by the widespread literature for the description
and detection of the existing design defects and code smells [BMMM98, DDN02,
FBB+99, MGMD08, Mar04, TM05]. But we believe that it is essential to bring
the POC design defects and code smells forth because these severely mar software

3.4. POC DESIGN DEFECTS AND CODE SMELLS 45

Figure 3.1: Procedural Object-Oriented Code — Rectangles represent classes,
edges represent the inheritance relationships between classes, height and width
of rectangles is dependent upon number of methods and number of attributes re-
spectively, and node color is determined by the number of lines of code.

design. Consequently, software maintenance efforts prolong for years, as our expe-
rience suggests. Hence, it is necessary to report them in the literature even if they
exist in a few systems only. Our industrial experience has helped us bringing forth
these defects so that others can also benefit from their description, their detection
techniques, and the proposals for their correction (cf. Chapter 4).

We detect these code smells while reading code to perform maintenance activ-
ities in industrial systems.

In the following sections, we describe in detail various design defects appearing
in POC and the consequent code smells.

3.4 POC Design Defects and Code Smells

In this section, the design defects and the code smells occurring in POC are de-
scribed. But before providing a classification of the POC design defects and code
smells, we clarify the precise meanings of the terms design defects and code smells.
Design defects are higher-level, architectural flaws in programs, which are also
known as, AntiPatterns [BMMM98]. Code smells are the code patterns that arise
from the presence of higher-level design defects. This definition of code smells

46 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

is consistent with the existing works that propose to formalize design problems
in programs [MGMD08, TM05]. These works relate higher-level design defects
with object-oriented code smells for the specification and identification of design
problems.

Hence, in this section, we present the higher-level design defects in POC and
their code-level manifestations.

Figure 3.2: Taxonomy of the POC Design Defects and Code Smells

Figure 3.2 demonstrates a taxonomy of the design problems appearing due to
the partially decomposed classes in POC. For the taxonomy of the POC design
defects and code smells, hexagons represent design defects and ovals represent the
code smells that are produced from these design defects. These shapes for design
defects taxonomy are first suggested and used by Moha et al. [MGMD08] to define
a taxonomy for AntiPatterns and code smells.

The taxonomy in the figure describes the presence of Partially Decomposed
classes in POC because of the incomplete application of the object-oriented con-
cepts. These Partially decomposed classes lead to the absence of classes for do-
main entities. Moreover, object-oriented types and subtypes relationships are also
absent. The absence of classes for domain entities and types and subtypes relation-
ships for various domain entities leads to the inheritance hierarchies that are not
fully developed.

In the sections below, we mention individual design defects appearing in POC
in detail and their associated code smells. We also present a comparison of each
of the POC design defects and code smells to the existing set of AntiPatterns and
object-oriented code smells.

3.4. POC DESIGN DEFECTS AND CODE SMELLS 47

3.4.1 Missing Domain Entities

In POC, there is an absence of the classes for domain entities from the code. The
methods associated to these domain entities are scattered across the other POC
classes. The Blob AntiPattern [BMMM98] defines a controller class, which con-
tains the logic for surrounding data classes. In POC, there are multiple controller
classes and each controller class encapsulates the logic for multiple data classes.
This scenario is depicted in Figure 3.3: Classes are represented with rectangles and
arcs represent relationship amongst class. Different colors in the controller classes
represent the presence of methods related to different domain entities in a single
class. The configuration of classes in POC can be considered as a Multiple Blob.
The multiple controller classes are aggregated classes: Classes that encapsulate the
logic for the other domain entities, as in shown Figure 3.3. Following are the code
smells arising due to the missing domain entities.

Figure 3.3: Arrangement of Data and Controller Classes in POC

Misplaced Methods

The absence of the class for a domain entity results in the data of the domain
entity residing in one data class and the associated operations scattered across the
other controller classes. This scenario is depicted in Figure 3.3: The methods
operating upon the data in Data Class B are scattered across the three controller
classes (depicted by dark grey color). Likewise, for the other data classes, their
methods are misplaced. This creates inadvertent coupling amongst many classes

48 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

of the system: any change in the domain entity represented by the data class or to
its operations cause changes to different classes.

Duplicate Methods

Some of the methods related to domain entities (Data classes) are duplicated in
multiple controller classes. This duplication occurs because while looking to per-
form a particular operation related to a domain entity, developers do not have an
idea of the currently implemented operations. In case they are unable to locate the
required method, they implement a similar method supporting the desired opera-
tion. Hence, some of the operations related to domain entities get replicated in the
multiple controller classes.

AntiPatterns and Code Smell Comparison

This design defect can be thought of having some similarity with Blob AntiPat-
tern [BMMM98] and the God class (behavioral form) presented in [Rie96]. How-
ever, in POC, there is not a single Blob class, but all the partially decomposed
classes make up multiple Blobs. The multiple Blobs complicate the problem as the
methods pertaining to the missing domain entities are spread arbitrarily. Therefore,
the methods related to the missing domain entities are not found in a single class
but these are scattered across multiply Blobs of POC. Hence, while searching to
correct this problem by encapsulating common data and behavior in a single class,
it would be a mistake to consider a single Blob class. But it will be essential to per-
form a structural analysis of all the multiple Blob classes to completely move the
methods related to a Data class (domain entity) into their appropriate abstraction.
A code smell is introduced in [FBB+99] as Data Class, which proposes to move
all the relevant methods inside the Data Class.

3.4.2 Shallow Inheritance Hierarchies

Another POC design defect is the absence or scarcity of class hierarchies in soft-
ware systems. This naturally origins from the omission of the design phase when
the common behavior related to subclasses is abstracted in their parent class. Miss-
ing parent classes in POC result in non-abstracted template behavior (common be-
havior) to appear duplicated in the methods of POC classes. Following are the code
smells that occur due to the shallowness of class hierarchies.

Common Calls

Template Method [GHJV95] is a design pattern based on the definition of a prim-
itive algorithm in an abstract superclass for a particular process. The skeleton
algorithm or the common behavior to be abstracted is described in the parent class.
This algorithm is then concretely defined by the subclasses to refine the algorithm
according to their own specificity. Template Method is a fundamental technique

3.4. POC DESIGN DEFECTS AND CODE SMELLS 49

for the code reuse. However, the failure to define the skeleton algorithm related to
Template Method in a parent class leads to the duplication of “template code” in
the methods of POC classes. In such situation, the template code manifests itself
in the form of common calls.

Method B

Method D

Method F

Method A

Method C

Figure 3.4: Cloned Calls - Missing Template Behavior

Common calls are reflected as duplicate method calls in methods that perform
common processes. An example of the common calls code smells is depicted in
Figure 3.4. In this case, methods B, D, and F invoke methods A and C. These
cloned calls show the presence of non-abstracted logic related to Template Method
that can be refactored into a common superclass. Hence, such pattern describes the
need to create a common superclass for the methods implementing common calls.
The client methods may be present in the same class or different classes.

Figure 3.5: Duplicate Template Code

50 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

Duplicate Template Code

Duplicate Template Code refers to different methods that implement some common
functionalities in addition to their respective specialization. This appears because
of the absence of a parent class that could abstract the common logic represented
by the duplicate code. In addition, due to the partially decomposed classes in
POC, duplicate template logic may be present in a single class. The left side of
Figure 3.5 demonstrates a scenario in object-oriented design where a parent class
defines a particular behavior (dark gray color). This behavior is inherited and some
specialization code is added by each subclass (light gray color). However, the
right hand side depicts that in the absence of a parent class and respective children
classes, the common code is duplicated in a single POC controller class.

This form is different from the common calls because the duplicate template
code surfaces in the form of a set of common instructions working on input vari-
ables. These methods are commonly implemented using similar names. This may
be overlooked due to the resemblance to method overloading.

We demonstrate this code smell with a code snippet taken from our case study
software to create the results of the blood analysis tests. The two different functions
from the same class are actually used to create two types of results associated to
the tests performed on the patient plasma. The only difference between the two
lies in the fact that they create two different objects (line# 16 in Listing 3.1 and
Listing 3.2), and the second method sets the error tolerance value for interpreted
results (line# 17 in Listing 3.2).

1 p u b l i c r e s u l t a t C r e e r R e s u l t a t (dou b l e accep tmin , do ub l e acceptmax , do ub l e
ecar tmax , do ub l e f a c t c o r , o b j e c t r e d i l l i m b a s s e , o b j e c t
r e d i l l i m h a u t e , o b j e c t t x r e d i l b a s s e , o b j e c t t x r e d i l h a u t e , i n t p r e m i e r p t
, i n t s econdp t , t e s t t)

2 {
3 r e s u l t a t r e s = mDM. N e w r e s u l t a t (t) ;
4 r e s . a c c e p t a t i o n m i n = a c c e p t m i n ;
5 r e s . a c c e p t a t i o n m a x = accep tmax ;
6 r e s . ecartmoymax = e c a r t m a x ;
7 r e s . f a c t e u r c o r r e c t i o n = f a c t c o r ;
8 i f (r e d i l l i m b a s s e != DBNull . Value)
9 r e s . l i m i t e r e d i l u t i o n b a s s e = Conve r t . ToDouble (r e d i l l i m b a s s e) ;

10 i f (r e d i l l i m h a u t e != DBNull . Value)
11 r e s . l i m i t e r e d i l u t i o n h a u t e = Conve r t . ToDouble (r e d i l l i m h a u t e) ;
12 i f (t x r e d i l b a s s e != DBNull . Value)
13 r e s . t a u x r e d i l u t i o n b a s s e = Conve r t . ToDouble (t x r e d i l b a s s e) ;
14 i f (t x r e d i l h a u t e != DBNull . Value)
15 r e s . t a u x r e d i l u t i o n h a u t e = Conve r t . ToDouble (t x r e d i l h a u t e) ;
16 c i n e t i q u e d o d e u x p t s c i n e 2 p = mDM. N e w c i n e t i q u e d o d e u x p t s (r e s) ;
17 c i n e 2 p . p r e m i e r p o i n t = p r e m i e r p t ;
18 c i n e 2 p . s e c o n d p o i n t = s e c o n d p t ;
19 r e t u r n r e s ;
20 }

Listing 3.1: Method Duplication

1 p u b l i c r e s u l t a t C r e e r R e s u l t a t (dou b l e accep tmin , do ub l e acceptmax , do ub l e
ecar tmax , do ub l e f a c t c o r , o b j e c t r e d i l l i m b a s s e , o b j e c t

3.4. POC DESIGN DEFECTS AND CODE SMELLS 51

r e d i l l i m h a u t e , o b j e c t t x r e d i l b a s s e , o b j e c t t x r e d i l h a u t e , d ou b l e
l i n e a r i t e m i n , i n t p r e m i e r p t , i n t s econdp t , t e s t t)

2 {
3 r e s u l t a t r e s = mDM. N e w r e s u l t a t (t) ;
4 r e s . a c c e p t a t i o n m i n = a c c e p t m i n ;
5 r e s . a c c e p t a t i o n m a x = accep tmax ;
6 r e s . ecartmoymax = e c a r t m a x ;
7 r e s . f a c t e u r c o r r e c t i o n = f a c t c o r ;
8 i f (r e d i l l i m b a s s e != DBNull . Value)
9 r e s . l i m i t e r e d i l u t i o n b a s s e = Conve r t . ToDouble (r e d i l l i m b a s s e) ;

10 i f (r e d i l l i m h a u t e != DBNull . Value)
11 r e s . l i m i t e r e d i l u t i o n h a u t e = Conve r t . ToDouble (r e d i l l i m h a u t e) ;
12 i f (t x r e d i l b a s s e != DBNull . Value)
13 r e s . t a u x r e d i l u t i o n b a s s e = Conve r t . ToDouble (t x r e d i l b a s s e) ;
14 i f (t x r e d i l h a u t e != DBNull . Value)
15 r e s . t a u x r e d i l u t i o n h a u t e = Conve r t . ToDouble (t x r e d i l h a u t e) ;
16 c i n e t i q u e d o c i n e d o = mDM. Newc ine t iquedo (r e s) ;
17 c i n e d o . l i n e a r i t e m i n = l i n e a r i t e m i n ;
18 c i n e d o . p r e m i e r p o i n t = p r e m i e r p t ;
19 c i n e d o . s e c o n d p o i n t = s e c o n d p t ;
20 r e t u r n r e s ;
21 }

Listing 3.2: Method Duplication

AntiPatterns and Code Smell Comparison As far as existing works are con-
cerned, no work explicitly mentions the code smells appearing from the absence
of class hierarchies. The Spaghetti Code AntiPattern [BMMM98] includes this de-
scription: “Benefits of object orientation are lost; inheritance is not used to extend
the system; polymorphism is not used”. This does provide an idea about the ab-
sence of hierarchy but the consequent code patterns are not mentioned. Duplicate
code smell [FBB+99] is reported in a general manner without a mention of its ap-
pearance in methods that provide a hint of the presence of non-abstracted template
logic. Extract Subclass refactoring mentions the presence of duplicate code in two
classes to be abstracted in a superclass. This refactoring discusses the presence
of the duplicate code in two sibling classes. However, in POC, classes are huge
structure without any particular focus. Hence, the duplicate template code point-
ing towards the absence of the parent class can be found in a single POC class or
multiple, unrelated POC classes.

3.4.3 Missing Types

The under-developed inheritance hierarchies and missing domain entities result
in the absence of important type and subtype information from POC. Therefore,
different operations pertaining to different types are defined with the use of global
enumerated types and conditionals. The absence of types and subtypes results in
the following code smells.

52 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

Global Enumerated Types and States

In POC, global enumerated types are used to hold the i) states, and ii) types of
objects. These global enumerated types are used in a large number of methods
with conditionals, hence leading to their scattering throughout the code. Now,
since these objects are global and visible to all objects present in a system, their
code is used and modified by all the classes in POC, making their maintenance or
reuse difficult. We illustrate such enumerated types with examples below.

States and Enumerated Types Enumerated types are used to test states of var-
ious operations in progress within programs and vary the operations performed
according to the current state of the domain entity. These state tests are performed
in the form of conditional statements and since the enumerated types are global
variables, this creates strong data coupling between these enumerated types and
the classes using them. Thus, their code is scattered across all the client classes.
Examples of such code snippets are shown in Listing 3.3, Listing 3.4, and List-
ing 3.5, taken from our case study software. The code snippets perform various
functions according to the state of the blood analysis. Each of them is extracted
from a different method. The text related to enumerated types defining state ap-
pears in bold characters.

1 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . ToStart | |
2 c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . NotPerformed) {
3 V a l i d a t e C a l i b (c u r r e n t A n a l y s i s . c a l i b) ;
4 PerformQC (c u r r e n t A n a l y s i s . qc) ;
5 }

Listing 3.3: State-related Conditionals

1 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . InProces s) {
2 r e s u l t s = c u r r e n t A n a l y s i s . G e t R e s u l t s () ;
3 DateTime d a t e T e s t = c u r r e n t A n a l y s i s . GetTime () ;
4 i f (d a t e T e s t == DateTime . MaxValue)
5 U p d a t e R e s u l t s (r e s u l t s) ;
6 }

Listing 3.4: State-related Conditionals

1 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . Miss ingProduct) {
2 U p d a t e P r o d u c t Q u a n t i t y (c u r r e n t A n a l y s i s . p r o d u c t) ;
3 }

Listing 3.5: State-related Conditionals

Types and Enumerated Types Global enumerated types are also used with con-
ditionals to perform different operations according to different subtypes related to
a domain entity. Below, a set of code snippets depict the use of global enumerated
types to define different behavior for various subtypes of calibration tests. The
code listings above demonstrate the usage of enumerated types in three different
methods in POC.

3.4. POC DESIGN DEFECTS AND CODE SMELLS 53

1 i f (c a l i b r a t i o n . t y p e == C a l i b r a t i o n . P r e c a l i b r a t e d)) {
2 L o a d C a l i b r a t i o n D a t a () ;
3 D i s p l a y D a t a () ;
4 }

Listing 3.6: Type-related Conditionals

1 i f (c a l i b r a t i o n . t y p e == C a l i b r a t i o n . Raw)) {
2 C h a n g e C a l i b r a t i o n (c a l i b . id , r e s u l t s) ;
3 AddNewCal ibra ton (c a l i b . id , f a l s e) ;
4 }

Listing 3.7: Type-related Conditionals

1 i f (c a l i b r a t i o n . t y p e == C a l i b r a t i o n . Ratio)) {
2 C h a n g e C a l i b r a t i o n (c a l i b . id , r e s u l t s , r a t i o) ;
3 AddNewCal ibra ton (c a l i b . id , f a l s e) ;
4 }

Listing 3.8: Type-related Conditionals

There are three things that can be remarked in the code snippets listed above to
use the usage of the enumerated types for states and types.

• Data Class (domain entity) has an associated state attribute (currentAnaly-
sis.state) in the example above.

• Data Class (domain entity) has an associated type property (calibration.type)
as shown in the example above.

• These states are compared to the global enumerated types to ascertain the
current state of the domain entity to vary the operations performed according
to different states.

• These state and type conditionals do not exist in a single method. But these
enumerated types are scattered across different methods defining the logic
for the domain entity.

Scattered Code related to Type information

In object-oriented software systems, one-to-one representation of significant do-
main entities is present in the form of application classes. In POC, such a mapping
is absent as POC classes do not represent a precise domain entity. The information
regarding types and subtypes is encoded in global enumerated types. In such a sce-
nario, if operations on domain entities are intended to be traced, this is achieved in
an ad-hoc manner: A type service is defined that provides the string representation
for the enumerated types emulating the missing type. Therefore, methods calls are
made to this type service by different methods in POC whenever they need to trace
information regarding a domain entity type.

54 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

For example, one such instance was observed in our case study software whereby
a glossary class manages the mapping of domain entities. This class only returns
string representation for particular enumerated code passed to the methods of this
class. Every domain object using this information references to the glossary class.
Hence, glossary-provided type information becomes scattered in the system due
to the extensive glossary-related method calls making it a scattered functionality.
As we discuss in the detection strategy, the glossary-related method calls in some
POC objects make 4% of all the method calls, creating strong coupling and reduc-
ing reuse and maintenance capacity of the system.

AntiPatterns and Code Smell Comparison

Normally, enumerated types, when used with conditionals, provide the code smell
for applying Transform Conditional to Polymorphism, as mentioned in [DDN02,
FBB+99]. An example described in [FBB+99] for the types used with conditionals
is reproduced in Listing 3.9 for illustration purposes. The form of the enumerated
types in POC (for example, Listing 3.3, Listing 3.4, and Listing 3.5) is definitely
different from the one described in Listing 3.9 in three ways. First, in POC, the
enumerated types are not attached to the object for which they define various states,
but these are defined as global variables. Second, the user-defined types, in our
case, are only associated a state variable and various states exist as separate global
variables defined by enumerated types. Third, the state operations do not exist in a
single method, as shown in Listing 3.9, but in several methods. Hence, in our case,
the enumerated types end up scattered across several methods of POC classes.
This scattered manifestation makes their manual detection difficult because the
reengineer is required to look into all the methods that use these enumerated types
for defining program behavior.

1 i n t payAmount () {
2 s w i t c h (t y p e) {
3 c a s e ENGINEER :
4 r e t u r n m o n t h l y S a l a r y ;
5 c a s e SALESMAN:
6 r e t u r n m o n t h l y S a l a r y + commiss ion ;
7 c a s e MANAGER:
8 r e t u r n m o n t h l y S a l a r y + bonus ;
9 d e f a u l t :

10 throw new Run t imeExcep t ion (” I n c o r r e c t Employee ”) ;
11 }
12 }

Listing 3.9: Example of Types and Conditionals from [FBB+99]

3.5 Detection of POC Design Defects and Code Smells

We have provided some design defects and code smells related to the absence of hi-
erarchical abstractions and the missing class abstractions for domain entities. The
next desirable thing is to detect the presence of the design defects and code smells

3.5. DETECTION OF POC DESIGN DEFECTS AND CODE SMELLS 55

in code [Ciu99, LM06, Mar04]. Manual detection of all the code smells may be too
laborious for a developer to undertake this task. The code of the aforementioned
global enumerated types can be scattered across a large number of methods. More-
over, duplicate template logic can be present in several methods in POC classes.
Hence there is a need for techniques and tools that can identify the design defects
and the code smells present in POC. The tools will help identifying all the loca-
tions where these code smells exist, automatically. For this reason, we decided to
look for the tools and techniques that may help discover the POC code smells and
design defects in programs.

We believe that the symptoms of the design defects appearing in POC are not
new. They are already described in the context of AntiPatterns [BW97]. Hence,
there are techniques that exist to identify their presence in code with the help of
code quality metrics. Visualization techniques aid in identifying the POC design
defects such as huge classes and lack of inheritance hierarchies. In Chapter 2, we
have demonstrated that polymetric views can help detect the presence of the huge
classes and the scarcity of class hierarchies. Another example is demonstrated in
Figure 3.6 that shows the presence of huge classes and scarce inheritance hierar-
chies present in application classes.

Figure 3.6: Coarse-Grained Polymetric Views - Nodes represent classes, edges rep-
resent the inheritance relationships between classes, height and width of rectangles
is dependent upon number of methods and number of attributes respectively, and
node color is determined by the number of lines of code.

Moreover, duplicate code is a known problem [DDN02, FBB+99] that can
occur in various contexts. In this regard, CCFinder is a good and easy to use tool

56 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

to search and visualize code clone as dotplots and provide various classes of clones
within the same file or in the separate files analyzed [KKI02].

Therefore, some of the above design defects and code smells, namely, huge
classes, scarce inheritance links, duplicate template methods, and duplicate meth-
ods can be identified with the help of the existing techniques.

Some of the POC code smells exhibit scattered code. Common calls and enu-
merated types belong to this group. We consider that these code smells cannot be
detected with quality metrics as the quality metrics are not apt for the purpose of
the detection of scattered code. We need to look into the techniques that search for
scattered code to detect these code smells.

In the following section, we describe Scattering Analyzer approach to detect
scattered code in POC.

3.5.1 Detecting Scattered Code in POC

In this section, we describe that we need to look for the techniques that are used
for detecting scattered code to search for code smells causing code scattering.

Limitations of Metrics and Clone Detection

Code clone detection performs well to detect code clones but we found that devel-
opers, in reality, are sufficiently proficient with the refactorings enlisted by Fowler
et al. [FBB+99] to leave too many duplicate code pieces. The duplicate code is
refactored and the duplicate locations are replaced with the method calls to the
refactored methods. Therefore, code clone detection techniques may not provide
good results where developers have refactored the code clones in helper methods.
Hence, a detection technique is needed to be employed to search for these helper
methods in application.

The visualization techniques are good at providing depiction of the code quality
metrics. However, only those defects can be detected that can be described with
code quality metrics. For example, enumerated types replace types and subtypes
and these are accessed throughout a program by several methods. These cannot be
detected with proposed visualization techniques based on software quality metrics.

Finding Answers with Aspect Mining

We have discussed that the absence of aspects in code is manifested in the form
of scattered and tangled code and aspect mining techniques search for the patterns
of scattered code (cf. Chapter 2). Hence, aspect mining techniques can equally be
utilized to detect scattered code in POC.

One of the techniques to detect scattered code related to aspects proposed the
use of identifier aggregates. The purpose is to look for frequently occurring iden-
tifiers in code. This idea has been explored by the Aspect Browser tool to look

3.5. DETECTION OF POC DESIGN DEFECTS AND CODE SMELLS 57

for the “crosscutting” scattered identifiers in the code [GKY00]; although our ex-
perience states that textual code information to ascertain scattering produces too
many false positives. For this reasons, scattered types are searched in more recent
aspect mining tools looking for identifier scattering [HK01, ZJ04]. We employ the
techniques to search for scattered enumerated types.

In addition, the scattered code related to the helper methods can be detected
with the Fan-in technique [MDM07]. We consider that this technique can be useful
to detect common calls code smell and other types of refactoring of duplicated
code.

In the following section, we describe a techniques based on the techniques
employed for aspect mining to search the scattered code in POC.

3.5.2 Proposed Approach — Scattering Analyzer

We propose Scattering Analyzer that integrates identifier analysis and Fan-in met-
ric for detecting scattered code in POC. We discuss these two features of the ap-
proach in the next subsections.

Identifier Analysis

Identifier analysis proposes a simple algorithm for finding the scattered identifiers
in the code: It looks for all the identifiers and searches for those that occur fre-
quently. The developer or maintainer can study these identifiers for problem detec-
tion. It provides for an identifier:

• aggregate of the frequency of occurrence of an identifier in the code;

• for each identifier it displays the scattering information, i.e., the class and
the associated method which accesses this identifier;

These features help decern the identifiers related to the code smells resulting in
scattered code. For example, the global enumerated types are detected using this
technique. The scattering information is equally important because one identifier,
if encapsulated well, will only be accessed from a single class.

Fan-in Metric

The Fan-in metric calculates total number of calls to a method, to uncover the
refactoring of duplicate code in helper methods. We employ Fan-in metric to iden-
tify the occurrences of Common Calls and scattered type information code smells
in POC by the increased Fan-in metric of the invoked methods.

Figure 3.7 represents our tool based on Scattering Analyzer approach. The tool
performs Fan-in analysis and identifier analysis to calculate each identifier and its
spread through various classes. We shall describe the tool and its results in detail
in Chapter 7.

58 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

Figure 3.7: Scattering Analyzer

3.5.3 Discussion

Most of the POC design defects and code smells can be detected through the ex-
isting techniques or Scattering Analyzer. Still, a concrete limitation of all the de-
tection techniques is the inability to precisely identify the absent domain entities.
Such entities require a manual analysis and knowledge of the application domain.
Moreover, the techniques discussed should be validated with more case studies.

We believe that the detection of the design defects and code smells related
to POC should interpreted as the uncovering of a larger problem: the absence of
object-oriented design. All the design defects and code smells are interrelated and
the presence of one should indicate that the others are not far behind. Hence,
we believe that the system demonstrating POC problems should undergo a ma-
jor reengineering effort to restructure the whole code. There is a need to resort

3.6. CONCLUSION 59

to the other, more semantically-rich techniques, such as Formal Concept Analy-
sis [ADN05b, DHHaV04] to find encapsulate data and operations of missing do-
main entities in new abstractions and finding class hierarchies. Moreover, scattered
enumerated types should be encapsulated in their own abstractions to make them
compatible with the existing refactorings.

3.6 Conclusion

In this chapter, we have descried procedural object-oriented code, which is the
result of the absence of the key object-oriented concepts from software systems.
POC consists of Partially Decomposed Classes. POC is shown to demonstrate
certain design defects that are similar to AntiPatterns. However, the novelty of
the design defects in POC lies in the new set of code smells produced by these
defects. These code smells include Duplicated Template Code and Common Calls.
The design defects and code smells adversely effect software design. Changes in
software systems are scattered, requiring huge effort in terms of time and resources.

Even though, the POC design defects and code smells are not widespread as
other design problems, we believe it is essential to bring them forth because these
severely mar software design. In turn, software maintenance efforts prolong for
years, as our experience suggests. Hence, it is important to report them so that
these can be identified and corrective measure be taken.

Various tools and techniques can automate the task of detection of the design
defects and code smells appearing in POC. We have shown that existing techniques
can be employed to detect the design defects and code smells, which produce simi-
lar symptoms as the current design problems. These design defects and code smells
can be detected through the usage of software quality metrics and clone detection
techniques. However, some of the code smells produce scattered code. For these
code smells, we proposed to use the techniques proposed in the domain of aspect
mining. Basing itself on the techniques of aspect mining, Scattering Analyzer,
permit to search the scattered identifiers and scattered methods calls occurring in
POC. This technique helps decern the presence of Scattered Enumerated Types and
Common Calls patterns in code.

The technique and tools for the detection of the POC design defects and code
smells can be detect individual design defects. However, a more comprehensive
strategy is needed to ascertain the overall course for an eventual reengineering
activity. In the next chapter, we discuss our strategy to reengineer and restructure
POC into an improve object-oriented design.

60 CHAPTER 3. PROCEDURAL OBJECT-ORIENTED CODE

Chapter 4

Reconsidering Classes in POC

As an understanding of the application improves, the system often
needs to be restructured and the abstractions embodied in

existing classes often need to be changed. [Opd92]

4.1 Overview

We have described Procedural Object-oriented Code as consisting of Partially De-
composed Classes. The hallmark design defects of POC are the presence of huge
classes and the absence of class hierarchies. In addition, certain domain entities
are not represented in precise classes but scattered in other classes.

We also presented techniques that may be useful to search for the POC design
defects and code smells. However, these techniques only detect the POC design
defects and code smells. But these techniques are not useful for the correction of
these design defects and code smells. POC software requires a major reengineer-
ing effort for a better object-oriented design. Hence, it is important to look for
technique that can help restructure POC into an improved object-oriented design.

Formal Concept Analysis (FCA) is a mathematical technique to discover useful
hierarchical groupings of objects having similar attributes [GW99]. This technique
has been successfully applied to obtain useful groupings of functions and global
variables in procedural code to place them in same object-oriented classes [SMLD97,
SR99]. This technique has also been applied to analyze and restructure class hier-
archies [ADN05a, DDHL96, MHVG08, SS04].

However, the application of FCA for procedural object-oriented code may need
further refinements because of the following reasons: First, methods attached to
current classes may be misplaced, thus a lattice representing a single class may
not provide all the required information. Second, lattices obtained from all the
classes in procedural object-oriented code are huge and this vast information may
obstruct the analyzer to extract useful groupings amongst the existing classes. In
case of reduction of context to find meaningful information, it is necessary to find
the pertinent methods within the existing classes that operate upon particular at-

61

62 CHAPTER 4. RECONSIDERING CLASSES IN POC

tributes. Third, this type of code may contain interesting traces of object-oriented
language constructs such as association and composition relationships, which may
be employed to enhance the information to generate class hierarchy. Hence it is not
enough to assign procedures to types to get classes as in traditional object identifi-
cation from procedural code [SMLD97, SR99, vDK99b].

In this chapter, we present a semi-automatic, tool-assisted approach for re-
structuring object-oriented software showing signs of absence of object-oriented
design [BDH08]. We define our approach in four steps:

1. Large classes are decomposed into smaller cohesive pieces. This is achieved
by grouping methods present in the code and user-defined types they operate
upon in principal classes following certain rules.

2. An architectural abstraction for principal classes is obtained to understand
the interaction and composition of principal classes amongst themselves.

3. Hierarchies for the methods and attributes of each of the principal classes
are obtained by analyzing their accesses to the individual elements of user-
defined types.

4. Scattered code related to global enumerated types is identified and refac-
tored into new methods. These methods are then added to the user-specified
principal class.

This chapter is organized as follows: Section 4.2 provides a brief introduction
of Formal Concept Analysis and Section 4.3 provides a motivation for the defini-
tion of a novel approach. Section 4.4 describes our object identification approach
for POC. Section 4.5 discusses our approach and its limitations. Section 4.6 con-
cludes the chapter.

4.2 Formal Concept Analysis

Concept Analysis provides a way to identify sensible grouping of objects that have
common attributes [GW99]. A context is a triple C = (O,A,R), where O and A
are finite sets (the objects and attributes, respectively), and R is a binary relation
between O and A. A concept is a pair of sets: a set of objects (the extent) and a
set of attributes (the intent) (X,Y) such that Y = σ(X) and X = τ(Y). Hence, a
concept is a maximal collection of objects sharing common attributes. Appendix B
provides more detailed information on Formal Concept Analysis.

4.3 Motivation

We intend to create a model based on FCA for procedural object-oriented code.
The model should help in the inference of classes and coarse-grained class hierar-

4.3. MOTIVATION 63

chies from the existing set of POC classes. We lay down the goals for our approach
regarding object identification in POC.

4.3.1 Goals of our Intended Model

The model provides following information:

• Composite classes present in procedural object-oriented code can be broken
up into more cohesive units.

• Discover scattered data and behavior pertaining to absent classes, and con-
gregate the data and associated behavior in a single class or a hierarchy of
classes.

• Finding missing hierarchical abstractions.

4.3.2 Current FCA-based Techniques

Current FCA-based techniques in procedural code do not help attain the above-
defined goals. These techniques propose functions as objects and variables as at-
tributes in FCA [SLMM99, vDK99b]. Moreover, proposals for FCA-based class
understanding propose methods as objects and class attributes as attributes in FCA.
These proposals however have their limitations as we describe below.

In order to demonstrate a lattice formation for a class in POC, we describe our
context as follows.

• O = Methods of a POC class

• A = All user-defined types (global variables)

• R = A method accesses or modifies a user-defined type

Figure 4.1: Subsystem Classes Access and Modify

Figure 4.1 demonstrates the lattice for one of the classes present in a POC
program. As evident from the figure, the lattice presents enormous amount of
information. Thus, we identify three main limitations for the application of existing
FCA techniques on POC.

64 CHAPTER 4. RECONSIDERING CLASSES IN POC

• The lattice obtained cannot be used directly to identify any useful informa-
tion. No interesting grouping of classes and no class hierarchies are possibly
extracted from such lattice.

• For context reduction purposes, if only those methods are considered which
modify various types, a minority of all the methods is present in the FCA.

• Methods related to a particular type may not reside in a particular class due
to the misplaced methods. These types can be accessed and modified from
all the methods of all POC classes. Hence, single class lattices may provide
only partial information related to data and its associated behavior.

Thus, a mere crude application of FCA to the classes present in procedural
object-oriented code will not produce any meaningful results. Therefore, there is a
need to reduce the context information in a meaningful manner to obtain reasonable
abstractions for encapsulating methods and variables.

Henceforth, we describe an approach for reconsidering and restructuring classes
in POC.

4.4 Object Identification in POC

In this section, we describe our object identification process, which supports the
discovery of class abstractions in procedural object-oriented code. The overall ap-
proach is presented in Figure 4.2. Based on type/class usage we identify principal
classes. In the second phase, we identify composition relationships between prin-
cipal classes based on common creation pattern, i.e., types that are created together.
The last phase consists of finding hierarchy of attributes and methods assigned to
the principal classes. We also perform an analysis of enumerated types to associate
each of them with their associated principal class.

This section is structured as follow: Section 4.4.1 presents the rules for the
identification of principal classes in POC. Section 4.4.2 describes the process of
identification of composition and abstractions of similar composite classes. Sec-
tion 4.4.3 describes the abstraction of hierarchies from the FCA analysis of meth-
ods and attributes making up principal classes. Finally, Section 4.4.4 provides the
description of the treatment of enumerated types in POC.

4.4.1 Identification of Principal Classes

We have described that classes for domain entities are missing in POC and this
results in misplaced methods scattered in POC classes. These misplaced methods
work on data classes (cf. Figure 3.3). Hence, the first step in class restructuring
in POC consists of the identification of a cohesive set of methods grouped by data
classes (type) usage. The identification helps combining the methods and their
associated data related to the missing domain entities in a single class . We con-
sider types as the user-defined classes defining a set of atomic (primitive) attributes.

4.4. OBJECT IDENTIFICATION IN POC 65

Application

C1 C2

C3 C4

Identification of
Principal Classes

C2 C3

C1

Principal Class
Composition

Refactoring of
Global Enumerated
Types

Hierarchies of
Methods in Principal
Classes

Figure 4.2: Overall Object Identification Approach

Read or write access to an atomic attribute of a type is considered as the read or
write access to the type defining the attribute. We term the group of methods and
the type that these methods access and modify as a principal class. Note that
we only consider end-user types as potential target for principal classes, primitive
types are not considered, as suggested by Sahraoui et al. [SMLD97]. The follow-
ing rules define method groupings as illustrated in Figure 4.3 using the principle of
class cohesion [FP96].

Figure 4.3: Principal Class Identification

66 CHAPTER 4. RECONSIDERING CLASSES IN POC

• All methods that exclusively write to a particular variable of a given type
are associated to the principal class for this type. In Figure 4.3, the method
NewTube is associated with the class Tube because it writes to the variable
tube of type Tube.

• Similarly all the methods that exclusively read from a variable of a given type
are associated to the principal class of that type. The method ReadMethodo
is associated to the class Methodology in Figure 4.3 because it reads from
the variable methodology of type Methodology.

• A method writing to two user-defined types is considered an anomaly and is
not considered in the principal class identification phase. In such a case, the
method is marked as a candidate for decomposition using slicing [GL91].
Slicing helps segregate instructions working on different variables. The
reengineer is required to refactor code into smaller methods and our ap-
proach does not provide a comprehensive strategy for slicing such methods.
The method PerformAnalysis in Figure 4.3 is a candidate for slicing. In this
case, the method can be decomposed into two different methods and each
new method is manually assigned to its corresponding principal class by the
reengineer.

• In case a method reads from two types, it is associated to the type with most
read number so that the most read type and the method reside in the same
class.

• When a method m does not read or write a type but calls another method n
in principal class PC1, then the method m is associated to PC1.

From the above rules, we identify five principal classes in Figure 4.3 repre-
sented by shaded ovals. This step identifies groups of cohesive entities and meth-
ods that make up candidates for principal classes.

During this step, we keep track of the dependencies amongst the identified
principal classes. This is achieved by keeping track of the read information or
method calls of other principal classes in all the methods of a principal class. For
example, the methods of Tube and Analysis principal classes in Figure 4.3 access
information of Patient class. This access information is kept and it is later used to
identify degree of association amongst principal classes.

4.4.2 Principal Class Compositions

Once principal classes are identified, we identify composition relationships among
principal classes so that maximum amount of class interaction information can be
integrated in the approach. For this purpose, we identify Create-Create pattern in
code.

The pattern searches for all the methods belonging to a principal class that
create a variable of its own type as well as a variable of another type. For example, a

4.4. OBJECT IDENTIFICATION IN POC 67

method belonging to principal class Analysis initializes a variable of its associated
type and calls another method which creates instances of another type Results.
Thus, a composition link is created such that Analysis is composed of Results
as depicted on the left of Figure 4.4. This pattern is also searched in methods
marked for slicing because this may provide useful information about principal
class composition.

Figure 4.4: Principal Class Compositions

If two principal classes Analysis and QualityControl are found to be composed
of a third principal class Results, a new parent class is created which composes it-
self with Results. Analysis and QualityControl then inherit from the newly created
class as demonstrated in Figure 4.4. The parent class helps abstracting attributes in
superclasses for optimal class hierarchy. For finding common compositions, con-
cept lattices are created for composition relationship. For this purpose, we define
the FCA context as follows:

• O = All Principal classes

• A = All Principal classes

• R = pc1 creates pc2

Figure 4.5 depicts an example of lattice displaying common compositions (at-
tributes are in grey background, PC represents a principal class). For example,
the figure shows that principal classes 5 and 3 commonly create class 2. More-
over, principal classes 1, 3, 4, 7 are not created by any other principal class. So,
four superclasses are created containing variables of types of principal classes 2,
8, 6, 5. We shall present some concrete examples of common compositions while
presenting the results of our approach in Chapter 7.

4.4.3 Hierarchical Method-Attribute Relationship

Now that principal classes and their composition links are inferred, we identify hi-
erarchical abstractions present within a principal class. For this purpose, informa-
tion regarding the types and methods associated to each principal class is studied.

68 CHAPTER 4. RECONSIDERING CLASSES IN POC

Figure 4.5: Common Compositions

For this, access patterns are observed for methods accessing the attributes of the
types in their principal classes. This offers a possible decomposition of principal
class into subclasses, with common attributes appearing in the parent class.

We extract using FCA three different views (named fundamental, interaction
and associations) to support the possible modularization within principal classes.
These views help extract the information depicted in Figure 4.6 from concept lat-
tices to infer class hierarchies within principal classes. Moreover, these views help
reducing the structure and information provided by the resulting concept lattices for
principal classes. These views can be combined (i.e., a single lattice is generated)
for smaller principal classes but for larger ones, extraction of useful modularization
in one combined view becomes cumbersome.

Fundamental View. For generating fundamental view lattices, we consider in-
dividual (class) attributes of the user-defined types and methods accessing these
attributes. When this information is fed into FCA and lattices are generated, the
lattices provide hierarchy of methods using the attributes in principal classes. Fun-
damental view therefore aids in constructing class hierarchy of the principal class
so that attribute and method sharing is optimized without cluttering the lattice with
principal class access information. For the fundamental view, we define the FCA
context as follows:

• O = All Methods within principal class

• A = Attributes of the user-defined type associated to principal class

• R = Method m reads or modifies an attribute of its associated type

4.4. OBJECT IDENTIFICATION IN POC 69

Figure 4.6: Various Views Obtained for Class Hierarchies from Principal Classes

This context has generally been used to search for object-oriented abstractions
in procedural code [SMLD97, SR99, vDK99b]. In our approach, the context only
contains the attributes and methods related to the principal class in question, hence
the results are less complicated.

Figure 4.7 presents an example of a fundamental view of a principal class con-
taining five methods and five attributes (attributes are in grey background). The
view provides class hierarchy information for different calibration types and their
attribute usage. Calibration type details are omitted purposely because the purpose
of the example is to show the inference of class hierarchies from various concept
lattice views.

The lattice proposes to constitute the methods and attributes in two disjoints hi-
erarchies: The right-hand side concepts can be restructured as hierarchy of classes
with a superclass (2Points:ReadCalib2Points) and a subclass (4Points:ReadCalib4Points),
and the left-hand side concepts propose a hierarchy with a superclass (Date:SetDate)
and two subclasses (Corrector:CalculateRaw) and (Coefficient:CalculateRatio). This
resulting class hierarchy is shown in Figure 4.8. Class Calib is an optional class
to bind two different branches of the principal class under analysis. Fundamental
views in this case just provide a possible modularization; it is upto the reengineer
to decide about Class Calib.

70 CHAPTER 4. RECONSIDERING CLASSES IN POC

Figure 4.7: Fundamental View Figure 4.8: Resulting Class Hierarchy

Common Interactions View. The common interaction view helps understanding
all of the method invocation of the methods in a principal class. This helps under-
standing the interaction of various methods present within the principal classes for
their possible categorization as interface methods or functionality providers [ADN03].
In addition, this supports the identification of template behavior regarding common
method calls, identified in Section 3.4. That is, common interaction view helps
identify methods that call common methods: these methods are clustered together.

For this view, we define the FCA context as follows:

• O = All Methods within principal class

• A = Method invocations

• R = method m calls method n

Figure 4.9: Common Calls View of Principal Classes

4.4. OBJECT IDENTIFICATION IN POC 71

Figure 4.10: Resulting Interactions through Method Calls

Figure 4.9 presents the interaction view concept lattice for the principal class
presented in Figure 4.7. The figure demonstrates that method ReadCalib4Points
calls ReadCalib2Points and GetProdData. Moreover, the concept containing meth-
ods CalculateRatio and CalculateRaw in its extent indicates the existence of com-
mon call pattern: they commonly call methods SetDate, GetProductParams, and
GetResults. It can also be inferred that methods SetDate and ReadCalib2Points
within this principal class do not invoke any methods from inside or outside the
principal class. Moreover, method calls to the other principal classes are also indi-
cated in the concept lattice.

The interpretation of the concept lattice vis-à-vis class hierarchy can be un-
derstood as shown in Figure 4.10. Method calls present in the concept lattice are
graphically shown by pointed arcs for illustration purposes only, our approach does
not support this visualization. The methods call to the other principal classes are
also demonstrated. In this case, method GetResults belongs to principal class Re-
sults while methods GetProdData and GetProductParams belong to principal class
Product.

72 CHAPTER 4. RECONSIDERING CLASSES IN POC

Associations View. In this view, we use the information retrieved regarding re-
lationships of principal classes while assigning methods to principal classes. This
information, which we term as associations, represents accesses to other principal
classes from the methods of the current principal class. For this view, we define
the FCA context as follows:

• O = All methods within a current principal class

• A = Attributes of the current principal class, and other principal classes (ex-
cept those linked by composition)

• R = m accesses an attribute of its type or accesses principal class pc

This view depicts the degree of usage of a principal class within methods of the
current principal and hence its place within the hierarchy of the principal class.

Figure 4.11: Association View Figure 4.12: Resulting Class Hierarchy

We illustrate this by an example: Consider the lattice presented in Figure 4.11.
This lattice augments the fundamental view presented in Figure 4.7. It demon-
strates the usage pattern of two principal classes Product and Results within the
methods of the current principal class. It is interesting to see that the principal
class Product is commonly used in all the methods of the current principal class,
while Results is used by another subset. The reengineer can interpret this usage
pattern according to her understanding. A new class may be created to include
Product from which the two disjoint classes created for the current principal class
can be inherited.

The class hierarchy inferred from the association view concept lattice is illus-
trated in Figure 4.12. The class that was deemed optional in Figure 4.8 is shown
to be beneficial because it allows the two hierarchies of the principal class to reuse

4.4. OBJECT IDENTIFICATION IN POC 73

the attribute related to the principal class Product defined by the parent class. This
improves code reuse in class hierarchies.

In addition, this view helps to segregate the functionality implemented by
methods of a principal class. For example, a principal class may have two sets
of methods: methods solely working on its attributes and methods which interact
with other principal classes. In some cases, these two may represent new “candi-
date” classes.

Principal classes for which the current principal class already has a composition
link are excluded from this view. For example, the current principal class PC1 has
a composition link to PC2, then association links to PC2 are excluded from the
association view lattice. This is because of the reason that composition relationship
is more stronger than association. Composition relations by default appear in top
most classes of principal classes.

4.4.4 The case of Enumerated Types

As we defined in Section 3.4.3, global enumerated types with conditional appear in
POC to replace the absence of types and states related to various domain entities.
We propose a three-step approach to rectify the problem of global enumerated types
and states scattered in the code. Our purpose is to change the enumerated types and
related code in such a way that refactorings proposed in [DDN02, FBB+99] can be
applied. The example presented in Section 3.4.3 is reproduced below. This is the
example that we shall use to illustrate our approach. The example is related to the
usage of states with conditional to define operations for various states of a domain
entity.

1 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . ToStart | |
2 c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . NotPerformed) {
3 V a l i d a t e C a l i b (c u r r e n t A n a l y s i s . c a l i b) ;
4 PerformQC (c u r r e n t A n a l y s i s . qc) ;
5 }

Listing 4.1: State-related Conditionals

1 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . InProces s) {
2 r e s u l t s = c u r r e n t A n a l y s i s . G e t R e s u l t s () ;
3 DateTime d a t e T e s t = c u r r e n t A n a l y s i s . GetTime () ;
4 i f (d a t e T e s t == DateTime . MaxValue)
5 U p d a t e R e s u l t s (r e s u l t s) ;
6 }

Listing 4.2: State-related Conditionals

1 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . Miss ingProduct) {
2 U p d a t e P r o d u c t Q u a n t i t y (c u r r e n t A n a l y s i s . p r o d u c t) ;
3 }

Listing 4.3: State-related Conditionals

74 CHAPTER 4. RECONSIDERING CLASSES IN POC

The following approach can equally be applied to scattered enumerated types
relate to states and types. Here our examples only illustrates their usage with scat-
tered conditionals related to states. We define these steps below.

Search. Enumerated types are used as global variables in different methods and
the logic associated to a particular enumerated type is scattered in these methods.
Hence, the first step is to decern the location of global enumerated types and refac-
tor these enumerated types in methods. For this purpose, a simple tool is devel-
oped that inspects usage of enumerated types along with conditional statements for
guiding the identification of such patterns to ease location identification of places
where these enumerated types are used. We find the code snippets in Listing 4.1,
Listing 4.2, and Listing 4.3 with the help of the tool.

Merge. The second step is to merge the domain entity defining the state (resp.
type) variable and various states (resp. types) defined in enumerated types. This
merge is achieved by moving the enumerated type defining state (resp. type) for the
domain entity into the class defining the domain entity. We elaborate this step with
our examples described in Section 3.4.3 and shown in Listing 4.1,Listing 4.2, and
Listing 4.3. For states enumerated type, it is associated to the analysis class, hence
its definition is moved inside the definition of the analysis class. The refactored
code is then only visible to the class defining it. The refactored code is shown in
the example below.

1 p u b l i c c l a s s A n a l y s i s {
2 enum A n a l y s i s S t a t e {
3 ToStart ,
4 NotPerformed ,
5 MissingProduct ,
6 InProces s
7 } ;
8 }

Encapsulate. Once the global enumerated type is moved to its particular class,
the third step consists of encapsulating the test conditions that are related to the
states (resp. types) in a single method. This encapsulation will help refactoring
scattered conditional in a single method. Moreover, it brings the problem to the one
defined in [FBB+99] and the associated Replace Type Code with State/Strategy can
be applied. This is shown below for the aforementioned example

1 p u b l i c i n t S c h e d u l e A n a l y s i s () {
2
3 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . ToStart | |
4 c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . NotPerformed) {
5 V a l i d a t e C a l i b (c u r r e n t A n a l y s i s . c a l i b) ;

4.5. DISCUSSION 75

6 PerformQC (c u r r e n t A n a l y s i s . qc) ;
7 }
8 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . InProces s) {
9 r e s u l t s = c u r r e n t A n a l y s i s . G e t R e s u l t s () ;

10 DateTime d a t e T e s t = c u r r e n t A n a l y s i s . GetTime () ;
11 i f (d a t e T e s t == DateTime . MaxValue)
12 U p d a t e R e s u l t s (r e s u l t s) ;
13 }
14 i f (c u r r e n t A n a l y s i s . s t a t e == A n a l y s i s S t a t e . Miss ingProduct) {
15 U p d a t e P r o d u c t Q u a n t i t y (c u r r e n t A n a l y s i s . p r o d u c t) ;
16 }
17
18 }

The methods that are created for encapsulating logic for various states of do-
main entity are then associated to the principal class identified for the domain en-
tity. Places from where these enumerated types are extracted, these are replaced
with method calls to the newly created method.

4.5 Discussion

The approach helps identifying objects missing in procedural object-oriented code.
User-defined types and methods are used to extract class hierarchies from POC.
This is done by analyzing the usage of atomic attributes in a principal class by the
methods of that principal class. Moreover, method invocations and the degree of
principal classes association help detect common interactions and identification of
association degree of various principal classes.

The approach should be applied first to identify principal classes in code and
their composition relationships. These two provide information regarding classes
and their interactions. Once this information is obtained, each principal class
should be individually examined for the class hierarchy of its attributes and meth-
ods. For the extraction of class hierarchies, the three views are used to construct
classes and subclasses within the principal class. Finally, global enumerated types
are considered to augment the class hierarchy information obtained from principal
classes and FCA lattices.

Various views are generated to understand the internals of principal classes. We
believe that these views do not automate the task of object identification. They act
as a tool to guide the restructuring activity. Reengineer needs to interpret different
views to combine them in an intelligent manner as the three views are not com-
pletely orthogonal. First, she needs to understand the compositions. Once compo-
sitions are inferred, hierarchies of methods and attributes in principal classes are
identified with the fundamental view. Later, new classes obtained from common
interaction view and associations view should be integrated to the overall class
model of the principal class in question. Common interaction view should also be
considered to understand the collaborations amongst methods of a principal class.

76 CHAPTER 4. RECONSIDERING CLASSES IN POC

It is not a trivial task to restructure POC classes. However, no approach sup-
ports the restructuring of these partially decomposed classes into a meaningful
class hierarchy. The object identification approach presented in this chapter actu-
ally complements earlier work on refactoring [FBB+99] by providing a framework
of class hierarchies in which to perform those refactorings.

The identification of principal classes and composition relationships are auto-
mated steps of the approach. Hence, they require minimum human involvement to
extract meaningful results. A reengineer is only required to validate the results and
to remove anomalies such as methods writing to variables of two different types.

We believe that the main limitation of the proposed technique is that the reengi-
neer should interpret concept lattices to obtain useful information from them: The
third step of the approach requires human intelligence to extract useful grouping
and hierarchies of classes. Heuristics and guidelines can be developed for the
extraction and refinement to identify objects from fundamental, association, and
common interaction views as described in [SLMM99]. However, such heuristics
are application dependent. We provide general views from which the reengineer
can infer class hierarchy information and refine it with domain knowledge.

The variables (of user-defined types) are of both declared and instantiated
types. The important point is that a method is considered as reading or writing
a particular type whenever the method reads or writes the type by using its refer-
ence or its value in memory. We consider these implementation details and they
are omitted to make the model more general. Method calls to getter and setter are
only considered when there is no direct access to the instantiated variable of a user-
defined type. This is covered by the last rule for method assignment to principal
classes.

The presence of user-defined types, groupings of primitive types for the rep-
resentation of domain entities, is essential for the approach to identify principal
classes. In addition methods are assumed to be crisp in their functionality in that
they implement functionality pertaining to a particular task and they are not huge.
In the absence of these two elements, the restructuring approach would fail be-
cause of failure to identify principal classes and failure to correctly assign methods
to principal classes. If methods are huge providing complex functionality, slic-
ing [GL91] and refactoring [FBB+99] should be applied first to split chunks of
related instructions into methods.

4.6 Conclusion

Procedural object-oriented code appears due to absence of software design or due
to its erosion over a period of time. This chapter describes our approach for the
identification of useful abstractions in procedural object-oriented code. For this
purpose, principal classes are identified, their composition links are discovered
and the hierarchical relationship of their methods is identified through the usage
of FCA. Various views are provided with different information to infer hierarchies

4.6. CONCLUSION 77

of methods and attributes. Concept lattices provide us with several modularization
proposals for methods and attributes present in principal classes. Our approach
bases itself on the presence of user-defined types in procedural object-oriented
code. The benefits of using concept analysis is to reduce the analysis of huge
amount of lines of code to a few high-level design choices. In their absence, a
manual task is required to identify them. Our approach also assumes presence of
well-focused methods.

78 CHAPTER 4. RECONSIDERING CLASSES IN POC

Chapter 5

Scattered Concerns in POC

Any given problem involves different kinds of concerns, which
should be identified and separated to cope with complexity and to

achieve the required engineering quality factors, such as
adaptability, maintainability, extendibility and reusability.

[Dij76]

5.1 Overview

A concern is defined as “any matter of interest in a software system” [FECA05].
Modularizing different concerns leads to the improvement of software quality and
provides many benefits, including reduced complexity, improved reusability, and
simpler evolution [KLM+97]. Aspect-Oriented Programming (AOP) origins from
the fact that there are some concerns that remain scattered in the presence of good
design because existing programming techniques are insufficient to capture them
in useful abstractions [Kic96]. The inventors of AOP stated that without the appli-
cation of these appropriate abstractions for the intricate concerns, these concerns
manifest themselves as scattered and tangled code: Thus non-AOP applications
manifest “crosscutting” concerns: a concern whose implementation spans multi-
ple program entities [FECA05]. Aspect mining refers to the search of scattered
and tangled code originating from these crosscutting concerns so that these can
be appropriately abstracted with aspect-oriented programming concepts. However,
aspect mining techniques have explored the hypothesis that the scattered code only
originates from the absence of appropriate AOP abstractions and the application
does not lack OO design.

In this chapter, we examine the problem of scattered code in procedural object-
oriented code through the prism of aspect mining techniques and from the cross-
cutting concerns point of view. We describe the behavior of aspect mining tech-
niques when object-oriented software systems suffer from the lack or erosion of
object-oriented design. The purpose is to understand various crosscutting can-
didates identified by aspect mining techniques in POC. The contribution of this
chapter is two-fold. First, we demonstrate the limitations of current aspect mining

79

80 CHAPTER 5. SCATTERED CONCERNS IN POC

techniques in identifying aspect candidates in POC. Second, we examine various
causes of scattered concerns in POC and provide a taxonomy for aspect mining
results obtained [BD08].

5.2 Aspect Mining in Procedural Object-Oriented Code

POC consists of scattered code appearing due to the absence of object-oriented de-
sign because all domain entities do not have their corresponding abstractions and
class hierarchies are missing. Moreover, absence of aspects also results in the ap-
pearance of scattered code related to crosscutting concerns. Hence, we mine scat-
tered code in POC using aspect mining techniques for two reasons. The purpose of
the study is two-fold:

1. The first purpose is to understand the origins for scattered code appearing in
POC through the study of the mined crosscutting concerns seeds.

2. The second purpose is to provide an elaborated taxonomy of crosscutting
seeds identified with aspect mining techniques in POC.

While searching for the techniques to mine aspects in POC, we looked for the
techniques that have tool support readily applicable to our case study software be-
cause C# language is not supported by many aspect mining tools [KMT07]. We
found that Aspect Browser and clone detection techniques have tool support that
is language-agnostic and these were directly applicable to our software system in
question. However, clone detection techniques do not provide many aspect can-
didates where cloned code is already refactored into helper methods. Therefore,
we decided to explore the Fan-in technique because the Fan-in technique identifies
aspect candidates that are refactored into helper methods [MDM07]. In addition,
this technique can mine meaningful aspects, directly in code, without the need to
execute software system and the Fan-in technique seems to common to various
aspect mining techniques [GK05, MDM07, BZ06].

Hence, we used two aspects mining techniques to mine scattered concerns in
procedural object-oriented code. One tool was selected from each of the categories
of aspect mining techniques: dedicated code browsers and automated techniques,
represented by Aspect Browser and Fan-in metric, respectively.

One vocabulary point: In this chapter, we use the term crosscutting concerns
for all the candidate concerns identified by aspect mining techniques, whether they
appear due to the absence of objects or aspects.

In the following, we present a description of the techniques used for mining
aspects and the results that we obtained using each technique.

5.2.1 Aspect Browser

Aspect Browser uses lexical pattern matching for querying the code, and a map
metaphor for visualizing the results [GKY00]. It extracts fragments of identifier

5.2. ASPECT MINING IN PROCEDURAL OBJECT-ORIENTED CODE 81

names from source code according to a programmer specified naming convention.
The results are reported as a list of aspect candidates.

Aspect Browser calculates two metrics for the source code in question:

• redundant lines;

• most common identifiers.

Aspect Browser extracts information from source code of a program, and there-
fore comments and keywords are also considered while calculating the metrics.
Hence, the two metrics sometimes carry useless information related to comments
and the keywords like “new” and “return”. A manual effort is required to filter
and aggregate information related to the identified concerns. Aspect Browser (like
other dedicated code browsers) is dependant on the naming convention used in the
source code, and assumes that implemented crosscutting concerns have a similar
keyword (signature) in all classes. In the absence of code naming conventions, as-
pect browser would not reveal identifier related to crosscutting concerns. When an
aspect candidate is found in aspect browser, the matching text is highlighted in the
source code and the tool will indicate the match-count.

The tool displays the query results in a Seesoft-type view as highlighted strips
in enclosed regions representing modules (e.g., compilation units) of the system [ESEE92].
This helps provide a view in which each file is represented as vertical strips, where
a row of pixels in the strip represents a line of code. Figure 5.1 illustrates the min-
ing results for two scattered concerns in Aspect Browser. Existence of searched
identifiers in files is highlighted by their corresponding colors. Two identifiers
searched in this case are DebuterTransaction and resultatbrut (checked in the left
pane in Figure 5.1) pertaining to transaction and raw results concerns respectively.
Their coloring indicate the presence of these identifiers in various files. Hence,
Aspect Browser can help reckon the scattering of identifiers and tokens related to
a concern.

Figure 5.1: Scattered Concerns in Aspect Browser

82 CHAPTER 5. SCATTERED CONCERNS IN POC

5.2.2 Aspect Browser Results

Table 5.1 demonstrates the concerns that are mined in our case study software
using the tool and the frequency of the occurrence of the identifiers and tokens
related to each concern. All the identifiers and lines mined with Aspect Browser are
associated to a particular concern by looking at their names and associating them
manually with the concerns. The third column of the table indicates a possible
classification of each scattered concern: Each crosscutting concern identified by
the tool is classified as related to domain or aspect.

The classification is performed manually by looking at the results of Aspect
Browser. The classification pertains to the recognition of the name of domain en-
tities in the list of scattered concerns. For example, Patient, Product, and Analysis
are domain concerns of our software system. Hence, a domain expert can per-
form the classification task to identify the domain entities in the list of crosscutting
concerns.

We classify them as domain because these scattered concerns appear due to the
absence of their object-oriented abstractions. Hence, the classification specifies
the appropriate abstraction for encapsulating each of the scattered concerns list in
Table 5.1. Different lines and identifiers referring to the same concern in Aspect

Table 5.1: Crosscutting Concerns and their Frequency

Concern Frequency Possible
Classification

PhysicalMeasures 37 Domain
Trace 40 Aspect
Events 91 Aspect

Singleton 118 Aspect
Glossary 222 Domain

Quality Control 240 Domain
Analysis 280 Domain

Transaction 300 Aspect
Product 350 Domain

Calibration 550 Domain
Patient 555 Domain

RawResult 750 Domain

Browser are aggregated under the name of the referred concern in the table. The
frequency of the concern is calculated by adding up the two metrics presented by
the tool for each concern’s related lexical tokens and discarding the repetitive en-
tries. The metric represents the total number of artifacts for each concern identified
by Aspect Browser. Thus, the metric shows the extent of scattering for each con-
cern. We also manually applied Porter stemming algorithm algorithm [Por80] to
group identifiers with similar roots, as performed in [TM04]. For example, identi-
fier ‘calib’ and ‘calibration’ are considered belonging to the same stem, calibration.

5.2. ASPECT MINING IN PROCEDURAL OBJECT-ORIENTED CODE 83

Below are the results for some of the concerns found in the system.
Overall, 66% of the crosscutting concerns identified by Aspect Browser are

related to domain entities of the case study software, as demonstrated by the pos-
sible classification of these concerns in Table 5.1. This is expected in POC be-
cause domain entities do not have their corresponding abstractions and their code
is scattered in other classes. This can be an interesting result from object-oriented
refactoring point of view to demonstrate the need to modularize scattered code in
objects. However, while searching for aspects, this adds up too much burden on as-
pect miner to filter these results. In some cases, it may lead to wrongly “aspectize”
code related to absent domain entities.

Hence, aspect mining results in POC constitute a huge amount of false-positives
related to domain entities in the aspect candidates. These false-positives surface be-
cause Aspect Browser only searches for scattered identifiers and tokens regardless
of their origin: absence of objects or aspects.

5.2.3 FAN-in Metric

Fan-in analysis fits in the category of automated aspect mining approaches. The
basic assumption for the Fan-in aspect mining technique is that the scattered code
has been factored out into helper methods [MDM07]. These methods are invoked
from all the places where the scattered functionality is required, hence such meth-
ods are called more frequently than the other methods from many places, giving
them a high fan-in value.

Fan-in aspect mining technique uses the Fan-in metric. The Fan-in metric is a
“measure of the number of methods that call some other method” [Som00]. Fan-in
collects the set of (potential) callers for each method and the cardinality of this set
gives the required Fan-in value. Fan-in analysis consists of the following:

1. Computation of the fan-in metric for all methods.

2. Filtering of the set of methods to obtain the methods that are most likely to
implement crosscutting behavior.

3. Analysis of the remaining methods to determine which of them are part of
the implementation of a crosscutting concern.

However, this technique has only been validated upon case studies demonstrat-
ing good Object-Oriented design [MDM07]. We applied the Fan-in aspect mining
technique to POC. Figure 5.2 demonstrates interclass and intraclass interactions
between classes through method calls in POC (a snapshot taken using MOOSE re-
verse engineering environment [MGL06]). The big rectangles in the figure repre-
sent classes, the small ones represent methods in the classes, and the lines amongst
each small rectangle depict method calls.

Now, we would like to identify and analyze scattered method call candidates
identified by Fan-in in such code. For this purpose, we developed a tool to support

84 CHAPTER 5. SCATTERED CONCERNS IN POC

Figure 5.2: Inter-Class and Intra-Class Method Invocations in POC

the Fan-in technique for C# language because there is no tool for computing FAN-
in in C#. The tool carries out all the three tasks defined above for the identification
of scattered method calls.

5.2.4 FAN-in Results

The tool looks for method calls to all the methods defined in the application classes
and lists those with values higher than the filtering threshold. The filtering thresh-
old value is given by aspect miner for the degree of their scattering i.e., Fan-in
metric value. In our case, we set 10 as the filtering threshold for mining aspect
mining candidates, as suggested in [MDM07]. Table 5.2 shows the crosscutting
candidate methods (pertaining to crosscutting concerns) identified by our tool and
their Fan-in values along with their possible classification.

The table includes various methods, we describe a few to illustrate their pur-
pose in the code and illustrate the reasons for the increased Fan-in metric.

A first example is that of methods that search or read data. There are five meth-
ods that search data related to domain entities. For example, SearchPatient method
looks for patient data and SearchProduct looks for product data. Now, these meth-
ods are clearly related to the domain entities of the software system, as they search
domain entity data. The calls of these methods are scattered because there is no
class that encapsulate the operations of the associated domain entity. For example,
the calls of SearchPatient are scattered because there is no class that encapsulates

5.2. ASPECT MINING IN PROCEDURAL OBJECT-ORIENTED CODE 85

Table 5.2: Application methods and associated Fan-in values

Method FAN-in Possible
Classification

UpdatePhysicalMeasures 10 Domain
CreateResultCalibration 10 Domain
NewMeasureCalibration 10 Domain

SearchProductIndex 10 Domain
SearchCalib 13 Domain

SearchPatient 17 Domain
PublishException 19 Aspect
ReadMesureCalib 22 Domain

Trace 24 Aspect
SearchProduct 26 Domain
SearchTestData 29 Domain

DecryptData 35 Aspect
ReadRawResults 41 Domain

PublishEvent 96 Aspect
ValidateTransaction 89 Aspect
GetGlossaryValue 127 Domain

GetInstance 101 Aspect

patient data operations. Hence, SearchPatient operation is called arbitrarily by all
the methods whenever they need to look for patient data. Thus, the calls of the
method are scattered not because it crosscuts different concerns, but it appears
scattered because the operation is not called encapsulated in its own class.

A second example of a method with a high Fan-in metric and related to domain
entity is that of CreateResultCalibration. This method is invoked to create results
of calibration tests. As there are different types of calibration types present in the
software system, and each of them creates calibration results, hence this method
is invoked several times. The increased number of method calls appear because
of the lack of a parent class for calibration types that could abstract their common
behavior, such as creation of results, in a template method.

A third example is that of UpdatePhysicalMeasures method. The method is
used to update results of the three different types of tests present in the software sys-
tem, namely, QualityControl, Analysis, and Calibration. Whenever each of these
tests finishes, the measures are updated from the results obtained. The code for the
method is shown in Listing 5.1. UpdatePhysicalMeasures method contains logic
for the each of the different type of tests. Hence, this method is called by each of
the different types of tests and this results in its increased Fan-in metric.

1 i f (T e s t . Type == A n a l y s i s)
2 U p d a t e A n a l y s i s M e a s u r e s (r e s u l t s) ;
3 e l s e i f (T e s t . Type == Q u a l i t y C o n t r o l)
4 U p d a t e Q u a l i t y C o n t r o l M e a s u r e s (r e s u l t s) ;
5 e l s e i f (T e s t . Type == C a l i b r a t i o n)

86 CHAPTER 5. SCATTERED CONCERNS IN POC

6 U p d a t e C a l i b r a t i o n M e a s u r e s (r e s u l t s) ;

Listing 5.1: UpdatePhysicalMeasures Code

We have added a possible classification of the scattered methods according to
the domain information. The purpose of adding the classification column in the
table is to quantify the presence of domain entity related concerns in the list of all
the crosscutting concerns mined with the Fan-in technique.

The classification is based on two criteria. First, we look at the method names
and those having similar names as domain entities are marked as potentially related
to domain entities. Second, we manually look for the methods and their callers.
The methods with high Fan-in numbers that are not encapsulated in their classes or
demonstrating code problems such as the one shown in Listing 5.1 are marked as
related to domain entities. A list of code problems that we looked for are described
later while we describe the taxonomy of the Fan-in results in POC.

Although crosscutting concerns indicated the presence of scattered code, al-
most 63% of the results pertained to the methods pointing to domain entities be-
cause of the non-abstracted domain logic (See Table 5.2).

Hence, it shows that the FAN-in metric can identify different types of cross-
cutting concerns (pertaining to the absence of aspects and non-abstracted domain
entities) but without distinguishing them. This inability to distinguish various scat-
tered method calls is that there is no inherent way while analyzing method calls to
ascertain the origin of crosscutting concerns. Too many calls for a method provide
us a hint about the possible scattered logic of the method in invoking methods.
Aspects may not be the most appropriate solution because the scattered logic in
callers may appear because of the non-abstracted domain logic. And it may be bet-
ter to look for object-oriented refactoring before resorting to aspectized solutions.
Thus, Fan-in metric information needs to be complemented with some semantic
information to segregated and classify scattered concerns. The usage of the appli-
cation data (domain entities) may provide useful information because the scattered
behavior pertains to domain entities. Hence domain entities can be used to dis-
tinguish the type of the behavior being invoked and the type of logic the invoked
method provides to its caller.

5.2.5 Comparison of Results

The first and the foremost thing to be remarked in the results of the two aspect
mining tools used on our case study software is the presence of domain entities
in the list of crosscutting candidates. These false-positive aspects appear because
there is lack of elementary design, and scattered artifacts (identifiers and methods
calls) are constituents of various domain entities. Scattered identifiers identified
by Aspect Browser related to missing objects and aspects are much higher in fre-
quency than those identified by the Fan-in tool. Aspect Browser also identified
those methods that were identified scattered by the Fan-in tool. This is because

5.2. ASPECT MINING IN PROCEDURAL OBJECT-ORIENTED CODE 87

Fan-in detects crosscutting concerns through methods calls while Aspect Browser
searches scattered lexical tokens, which also include scattered method calls.

The results of the Fan-in are more precise. This is because of the reason
that Aspect Browser lexical tokens may sometimes contain large number of false-
positives due to inclusion of comments, name similarities and the presence of
language-constructs. Hence, as suggested in [CMM+05], Aspect Browser (and
other dedicated code browsers) could be used to analyze and expand the crosscut-
ting seeds identified by automated techniques beforehand.

5.2.6 Taxonomy of Crosscuttingness in POC

Now that we have seen false-positives related to domain entities in the results of
aspect mining tools that we used, we proceed to investigate the various types of
“crosscuttingness” or scattered code that is found in the results. A thorough in-
vestigation of the crosscutting candidates identified by aspect mining techniques
reveals that the application consists of two kinds of scattering: Type scattering and
Behavioral scattering. We analyzed each of them and describe them below.

Type Scattering The absence of domain entity abstractions and aspects in POC
causes different types of domain types and aspectual types to appear in a program.
This distinction is achieved by looking at various identifiers related to types and
distinguishing those related to domain entities.

The scattered domain types are related to the presence of data classes and
global enumerated types representing domain entities. Scattered domain types ap-
pear in POC because the access and manipulation of the data in data classes is
controlled by a set of POC classes. These POC classes encapsulate behavior oper-
ating on the data classes. Hence, non encapsulation of the data and behavior in a
single class results in the appearance of scattered data classes.

Moreover, global enumerated types replace the absence of types and subtypes,
and the absence of states in POC. As stated earlier, POC classes contain a scattered
manifestation of the domain types. This separation of data and associated behavior
is manifested in Figure 5.3: POC classes encapsulate behavior operating on various
types while enumerated types and data classes encapsulate data of the system.

Another scattering is that related to Aspectual types. Aspectual types are those
that encapsulate logic related to the crosscutting concerns appearing due to the
absence of aspects. These aspectual types have inherent crosscutting in their nature,
as suggested in [KLM+97]. These appear because they do not interleave with the
primary concerns in non-recurrent manner.

Hence the these scattered types can be divided into three categories.

• Global enumerated type accesses. Dispersed accesses to global enumer-
ated types representing the states and object types of various entities (such
as patient, test, tube types, etc.) in diverse methods of classes present in the
system. Aspect Browser shows them scattered in different classes.

88 CHAPTER 5. SCATTERED CONCERNS IN POC

Figure 5.3: Separation of Data and Behavior

• Data Classes. Reading and writing of data related to domain entities. These
appear in code as data classes without any associated operations. For exam-
ple, the data class working on patient tubes is invoked from different com-
ponent classes (cf. Figure 5.3). Thus, this data class appears as crosscutting
in Aspect Browser.

• Aspectual Types. Aspectual types appear because crosscutting behavior re-
lated to the absence of aspects is scattered in component classes. Aspectual
types provide the encapsulate this behavior and are used to interleave aspec-
tual behavior in component classes by calling their methods. For example,
tracing appears as crosscutting because it is used to invoke tracing methods
to trace domain entities-related operations.

Aspect Browser (and other techniques searching for identifier crosscutting) are
apt for discovering Type scattering. This is because Type scattering can generally
be identified through the aggregation of scattered identifiers and Aspect Browser
and similar techniques search for scattered identifiers.

5.2. ASPECT MINING IN PROCEDURAL OBJECT-ORIENTED CODE 89

Behavioral Scattering Behavioral scattering means that two distinct behaviors
are composed together in a single abstraction. In our component classes, this usu-
ally happens in the form of method calls, hence indicated by abnormal high FAN-
in. Following are the scenarios for behavioral scattering to occur:

• The required data is away from its behavior, therefore one behavior perpetu-
ally calls the other one to get its particular data. This results in high FAN-in
value for accessors to attributes in data classes.

• Lack of a proper encapsulation for a behavior related to an entity and the
behavior is divulged into several client classes of the entity. This causes the
client classes to perpetually call the provider-logic, causing a high FAN-in
value for logic-provider methods.

• A method may provide key or central information. For example, a method
always passes through the patient data to get associated results and since
result logic used is quite often, this results in access to patient information
from all the client locations.

• Lastly, behavioral scattering occurs because a particular concern is impossi-
ble to be encapsulated in a particular abstraction using traditional OO tech-
niques hence resulting in scattered behavioral composition of the crosscut-
ting calls in the client locations such as caching and logging operations in
our software system.

Hence in the absence of elementary OO design crosscutting “seeds” identified by
the FAN-in tool consist of the following types of methods. These method types
are depicted in Figure 5.4: Boxes are marked with methods or classes and arrows
represent method invocations.

• Non-Abstracted Client. A method being called from non-abstracted, dupli-
cated code corresponding to domain entity subtypes or from a method pro-
viding multifarious behavior as demonstrated in Figure 5.4. This is a case of
missing use of polymorphism [DDN02].

• Diverse-Logic Provider. A method providing logic for the same entity sub-
types, as depicted in Figure 5.4. This occurs because of the absence of tem-
plate behavior in a parent class method or due to the presence of operation re-
lated to different types in a single method. UpdatePhysicalMeasures method
described earlier belongs to this type.

• Central Method. A method may provide central or key information such as
patient search function which is used from various other methods.

• Divulged-Logic. This lack of abstraction and encapsulation happens when
the behavior of an object is not defined in a specific class but spread into
client classes as shown in Figure 5.4.

90 CHAPTER 5. SCATTERED CONCERNS IN POC

Figure 5.4: Classification of Scattered Method Calls

• Utility Method. A method providing utility functions such as toString.

• Aspects. A method providing scattered technical behavior such as transac-
tion, logging, and exception handling.

It can be easily said that the scattered behavior can be detected by using Fan-in
technique or other similar techniques detecting scattered behavior through method
calls. These provide us a whole set of scattered behavior in code. So, we have
extended the taxonomy of the scattered behavior detected by Fan-in metric in
POC [BD08].

5.3 Discussion

Aspectual and domain types can be only be distinguished with the knowledge of
application domain. Moreover, various scattered method calls also require domain
information for their classification. For the purpose of this study, we manually
applied this information to understand the results. Nonetheless, domain informa-
tion cannot be acquired in an automated manner and requires human expertise to
analyze aspect mining results.

However, the need for this knowledge of when inspecting aspect mining re-
sults is not novel. Roy et al. mention that the initial results from aspect mining
techniques require domain knowledge to accomplish aspect mining tasks with ac-
curacy [RURD07].

5.4. CONCLUSION 91

We deliberately omitted the information regarding the precision and recall of
aspect mining results. We think that the purpose of this chapter is to demon-
strate and reflect upon the limitations of aspect mining vis-à-vis POC. Various
Studies provide information regarding accuracy of aspect mining techniques and
their combinations, along with their information retrieval facts and characteris-
tics [CMM+05, RURD07]. Here we only provide a taxonomy of the results that
are obtained while mining aspects in POC.

5.4 Conclusion

In this chapter, we have demonstrated that the existing aspect mining techniques
produce huge number of false-positive results in the absence of the object-oriented
design concepts such as inheritance and polymorphism. Hence, aspect mining re-
sults produce huge false-positives (∼ 60% of results). In the chapter, we evaluated
two aspect mining tools on POC and analyzed various types of crosscutting code
identified by these tools in POC. Globally, type scattering can be detected through
the usage of Aspect Browser and similar techniques. Behavioral scattering can be
identified through the use of Fan-in metric and similar techniques.

Hence, while mining aspects in POC, it is necessary to classify and distinguish
aspect candidates from those indicating scattered domain logic. In the following
chapter, we present an approach for the classification of diverse crosscutting con-
cerns mined with aspect mining techniques by incorporating information extracted
from the use of variables representing domain entities.

92 CHAPTER 5. SCATTERED CONCERNS IN POC

Chapter 6

Concern Classification in POC

A matter that becomes clear ceases to concern us.

Friedrich Wilhelm Nietzsche.

6.1 Overview

Lack of object-oriented design and procedural thinking result in scattered and tan-
gled code related to domain entities because their data and the associated behavior
do not share the same abstraction. In addition, missing class hierarchies for do-
main entity code also result in scattered code. Thus, crosscutting concerns also
appear for non-abstracted domain logic i.e., the domain entity logic that is not en-
capsulated in its associated class. Therefore, aspect mining techniques to discover
crosscutting concerns present in a software system are inadequate in the presence of
non-abstracted domain logic as they wrongly associate the lack of object-oriented
structure with aspects. This occurs because scattered code is often not a sign of
missing aspects but missing object-oriented abstractions. This situation introduces
huge noise during aspect mining. Therefore, there is a need to understand struc-
tural difference between scattered code appearing due to the absence of objects and
aspects to improve aspect mining techniques. Moreover, we need to understand the
extent of various scattered concerns in programs to understand the difference be-
tween characteristics of scattering appearing due to objects and aspects.

Most of the existing publications in the domain of software restructuring for
object-oriented software can be divided into four categories:

• Class hierarchy reengineering through the usage of attributes and methods
of the classes making up a system and grouping those which are used to-
gether [ADN05a, Cas94, DDHL96, Moo96, SS04].

• Software refactoring through the manual identification of small design prob-
lems within class hierarchies and provides various heuristics for their recti-
fication [FBB+99, DDN02].

93

94 CHAPTER 6. CONCERN CLASSIFICATION IN POC

• Identification of classes and objects in legacy code through the identification
of common usage of data by various methods [SMLD97].

• Aspect mining to refactor crosscutting concerns in aspects [KMT07, CMM+05].

Class hierarchy reengineering, object identification and software refactoring
do not target the occurrence of scattered and tangled code phenomenon due to
missing abstractions. In addition, they do not take into account those concerns
that can benefit from the usage of AOP mechanisms. Aspect mining techniques,
as aforementioned do not distinguish amongst various crosscutting concerns those
resulting from the absent OO abstractions.

In this chapter, we introduce an approach for the classification of diverse cross-
cutting concerns mined with aspect mining techniques in procedural object-oriented
code [BDR08]. The approach classifies these concerns by taking into account
domain entity data. The approach is based on the Fan-in aspect mining tech-
nique [MDM07]. One vocabulary point: In this chapter, we use the term crosscut-
ting concerns for all the candidate concerns identified by aspect mining techniques,
whether they appear due to the absence of objects or aspects.

For the approach we proceed as follows. Fan-in technique is used in the first
step to mine diverse crosscutting concerns present in programs. The approach then
classifies crosscutting concerns present in a software system: aspects as well as
non-abstracted domain logic. Crosscutting concerns pertaining to non-abstracted
domain entities are identified and extracted from the overall list of candidates
through their usage of application data.

In addition, a new metric called spread-out is introduced to quantify the divul-
gence of diverse crosscutting concerns.

This chapter is organized as follows: Section 6.2 presents our approach for the
identification and classification of concerns. Section 6.3 presents one new metric
to quantify concern spread. Section 6.4 discusses our approach and the concern
scattering metrics. Section 6.5 concludes the chapter.

6.2 Concern Classification

In the previous chapter, we have shown that the Fan-in technique can identify dif-
ferent types of crosscutting concerns (pertaining to the absence of aspects and ob-
jects encapsulating domain entities). But the current aspect mining techniques do
not help in distinguishing the origin of various crosscutting concerns. We believe
that it is important to distinguish the various kinds of crosscutting concerns so that
the false-positives are filtered. Otherwise, the developers will be left to deal with
too many false-positives in aspect mining candidates. For this purpose, we propose
an identification for those crosscutting concerns appearing due to the lack of ab-
straction for domain entities so that these can be removed from the list of aspect
candidates.

6.2. CONCERN CLASSIFICATION 95

This section describes the approach illustrated in Figure 6.1, and is organized
as follows: Section 6.2.1 defines a model for our concern classification approach
and Section 6.2.2 describes the assignment of various methods to the concerns that
represent domain entities. Section 6.2.3 describes the algorithm for the classifica-
tion of concerns.

Figure 6.1: Concern Classification Approach

Scattered Methods and Domain Entities. In the previous chapter, we have ex-
tended the taxonomy of scattered method calls detected by Fan-in in POC to in-
clude those method calls that appear because of the absence of classes for domain
entities. These scattered method calls appear because of the reasons described be-
low.

• Non-abstracted methods i.e., methods encapsulating operations related to
different types appear because of the absence of classes and class hierarchies.
These results elevated method calls for their callers and invoked methods.

• Data is placed far from its behavior. Hence, methods for reading domain
entities and writing them have higher number of method calls.

• The absence of template behavior in parent classes increase the Fan-in metric
for the invoked methods.

During our analysis of scattered method calls, it was revealed that these method
calls were always directly or indirectly related to domain entities. That is, all scat-
tered method calls related to false-positive candidates in Fan-in results, read or
write domain entity attributes or they called methods, which read or write domain
entity attributes. For example, the methods presented in Table 5.2 such as Search-
Patient, UpdatePhysicalMeasures, and CreateResultCalibration read information

96 CHAPTER 6. CONCERN CLASSIFICATION IN POC

from data classes or write information to them. These methods have high Fan-
in metric because either the data is placed far from its behavior (SearchPatient),
the methods provide diverse logic related to different types (UpdatePhysicalMea-
sures), or missing template behavior in a parent class (CreateResultCalibration).
The common property of all these false-positives candidates is that these access
the data related to domain entities in the software system.

Hence, to extricate the subset of crosscutting concerns appearing due to absent
domain entities, we need to identify the data and its associated behavior. Once we
identify the data and behavior related to domain entities and disentangle it from the
overall set of crosscutting concerns, this will remove the noise from aspect mining
candidates.

6.2.1 Model for Concern Classification

To identify crosscutting concerns appearing due to the absent domain entities, we
define a model based on application data usage and resolution of associated behav-
ior. The model is based on the interaction of classes as represented in Figure 5.3
(cf. Chapter 5). In our case, data classes are classes that encapsulate data related
to domain entities. Enumerated types provide the type and state information of
the domain entities. The methods are encapsulated in separate POC classes that
support behavior of the domain entities.

The model takes into account all the data classes, enumerated types, and meth-
ods that are present in the software system. We define M as a set of all methods in
the POC class being analyzed. D is defined as a set of all objects representing data
classes, and V is defined as a set of all the global variables of the enumerated types
that represent the states and types for domain entities. The association amongst
enumerated types and data classes is performed manually so that a domain entity
is defined by a data class and one or more enumerated types.

Domain Entity Model. As previously mentioned, we assume that the data mainly
consists of the representation of various domain entities in the form of data classes,
and global state and type variables. Moreover, it is assumed that data classes unam-
biguously represent one of the domain entities i.e., a data class can be considered
as the representation of a single domain entity. Also, the system states and entity
types represented by global enumerated types can also be associated to a single
domain entity. We believe that this assumption is reasonable because all domain
entities implemented in a program do have representation in code. In case of miss-
ing data classes or enumerated types related to a single domain entity, the model
will not be able to associate methods and data classes to a particular domain entity.

The one-to-one association between the domain entities and the above-mentioned
data components i.e., variables and data classes, is utilized to determine the meth-
ods related to each domain entity. This is done by resolving the data accessed by
each method.

6.2. CONCERN CLASSIFICATION 97

We define E as the set of all domain entities that are implemented by the
software system. Entity e ∈ E is a combination of a data class d(e) and variable
v(e) related to the associated domain entity e i.e., entity(e) = d(e) ∨ v(e).

Hence, all methods in M accessing directly or indirectly domain entity-related
data e are classified as implementing the concern related to the domain entity it
accesses. In the example of Figure 6.2, methods of class A and class B access
data “D” of class C either directly or through accessors hence they are identified as
implementing concern relating to the entity “D”.

Figure 6.2: Domain Entity Concern Identification

Aspect Model. It is assumed that crosscutting concerns also appear due to the
absence of appropriate OOP mechanisms to interleave two intersecting behaviors
in a non-recurrent way [KLM+97]. Due to this reason, crosscutting concerns ap-
pear scattered in code. There are various forms of manifestation of crosscutting
concerns in code such as cloned code, scattered method calls, and scattered identi-
fiers [KMT07]. It is proposed that the cloned code should be refactored in helper
methods for better reusability [FBB+99]. This leads to the appearance of scattered
calls at places from where cloned code is replaced with method calls. Scattered
identifiers are used to search for crosscutting concerns by searching types, and
searching methods invoked by these types [HK01, ZJ04].

In searching for a representative technique for identification of aspects, we
base our crosscutting identification model on the Fan-in metric [MDM07] (i.e., the
higher the number of calls to a method, the more the chances are for it being an
aspects). It seems reasonable because of the fact that a comprehensive amount

98 CHAPTER 6. CONCERN CLASSIFICATION IN POC

of aspect mining techniques search for the occurrence of scattered and tangled
method calls to detect aspects [KMT07]. Scattered method calls appear because
interleaving and composition of distinct behavior in object-oriented application is
performed through method calls.

For the qualification of scattered method calls as aspects, we only consider
those methods which do not directly or indirectly related to domain entities. In
general, such methods are invoked by those methods which are associated to do-
main entities as depicted in Figure 6.3. This assertion seems to have some support
in literature [GK05]. In the following, a model is introduced to ascertain methods
implementing domain entity related concerns are identified

Figure 6.3: Aspect Identification

6.2.2 Domain Entity Concern Assignment

To classify methods related to domain entities, we define following primary prop-
erties based on our model.

• m reads d means that m directly reads from data class d ∈ D

• m writes d means that m directly writes to data class d ∈ D

• m reads v means that m directly reads from the variable v ∈ V

• m calls n means that m calls another method n

As variable types are read-only, we can only read from these variable types but
we cannot write them.

• m accesses d means that m directly reads from or writes to data class d ∈ D
(i.e., accesses = reads ∪ writes)

6.3. SCATTERING METRICS OF CROSSCUTTING CONCERNS 99

From these primary properties, we define the following derived properties for
a concern c.

• m implements c related to domain entity e if m accesses d(e) or m reads
v(e) i.e.,

implements(m, c) = {m ∈M |∃e ∈ E : m accesses d(e) ∨m reads v(e)}

• Method n implements a concern c if n calls another method m and m imple-
ments c pertaining to domain entity e

implements(n, c) = {n ∈M |∃m ∈M : n calls m ∧ implements(m, c)}

We do not consider the classes during the concern identification because they
do not mean much in term of coherent abstraction: As stated earlier, classes in
POC are partially decomposed classes without any sharp focus.

The model helps identify all the methods that are related to domain entities.
The methods implementing domain entity concerns and appearing in the list of
crosscutting concerns are removed from the list of crosscutting concerns. For this
purpose, we describe a simple algorithm as described in the following section.

6.2.3 Algorithm for Concern Classification

We now define a simple algorithm to distinguish various crosscutting concerns
discovered in the system by the Fan-in tool in Table 5.2 in the precedent chapter.
The algorithm works as follow: All the crosscutting methods having a threshold
value higher than f are added to the set crosscutting seeds. Each method is then
examined to implement concerns related to the domain entities. Once the domain
entity related methods have been marked, all the methods which are marked as
crosscutting seeds and have not been marked as related to domain entities are aspect
candidates.

Now that we have defined an approach for the classification of crosscutting
concerns, it is also interesting to understand and examine the concerns identified
so far using scattering metrics proposed in the literature. This activity may pro-
vide useful information such as the scattering patterns and extent of scattering of
crosscutting concerns.

6.3 Scattering Metrics of Crosscutting Concerns

To understand the scattering of the different crosscutting concerns mined with as-
pect mining techniques in POC, we examine them using the existing concern scat-
tering quantification metrics [EZS+08, KSG+06]. In addition, we describe a new
metric called Spread-out to measure the divulgence of a concern over other classes.

100 CHAPTER 6. CONCERN CLASSIFICATION IN POC

1. {M} ← ∀Methods
2. Test all m ∈ {M} for a Fan-in metric f
3. if fanin(m) > f
4. {CCSeeds} ← m
5. ∀m ∈ {M} = Iterate over Instructions of m
6. if implements(m, c)
7. {Domain Concern} ← m
8. M ←M/m {Remove m from M}
9. ifn ∈ {M ∩ CCSeeds}
10. {CC} ← n

Figure 6.4: Concern Classification Algorithm

The overall purpose of this exercise is to understand the scattering characteristics
of diverse crosscutting concerns mined in POC.

We shall adopt the model defined in Section 6.2.2 to calculate existing con-
cern scattering metrics and our new metric. The existing metrics are redefined to
calculate these metrics in an automated manner.

Three metrics are defined to quantify the dispersion of various artifacts over
application classes: Concern Diffusion over Components (CDC), Concern Dif-
fusion over Operations (CDO) and concern diffusion over Lines of Code (CD-
LOC) [KSG+06]. These metrics respectively quantify the number of classes as-
sociated with a concern (CDC), the number of methods associated with a concern
(CDO), and lines of code associated with a concern (CDLOC). Since we tag meth-
ods with related domain entities, and hence concerns, we employ the CDO metric
to understand the scattering of crosscutting concerns. Concern diffusion over oper-
ations (CDO) counts the number of methods whose main purpose is to contribute
to the implementation of a concern. Hence, in our case, CDO for a concern c is:

CDO(c) = number of implements(m,c)

Eaddy et al. argued that CDO and other metrics from the same suite only discern
the presence of scattering but not their extent [EZS+08]. They proposed Concen-
tration (CONC) and DOS. CONC calculates the ratio of the number of methods
implementing a particular concern in a class to the total number of methods con-
tributing to the implementation of the concern. Concern extent is defined by De-
gree of Scattering (DOS) [EZS+08]. DOS is a measure of the statistical variance
of the concentration of a concern over all program elements. However, originally,
DOS is calculated by manually marking each line of code for a particular concern.
The manual concern calculation is a laborious task for large software systems. We
redefine the Concentration (CONC) and DOS metrics defined in [EZS+08]. First,
we automate the task of concern calculation by associating it with before men-
tioned concern assignment model. Second, we include only methods, instead of

6.4. DISCUSSION 101

lines of code, to calculate these metrics for the crosscutting concerns. We relate
the concentration to our model in the way described below.

CONC(c, t) = Number of implement(m, c) in class t
Total implement(m, c)

CONC calculates the ratio of the number of methods implementing a particular
concern in a class to the total number of methods contributing to the implementa-
tion of the concern.

DOS(c) = 1− |T |
∑T

t (CONC(c,t)−1/T)2

|T |−1

DOS is a measure of the variance of the concentration of a concern over all com-
ponents with respect to the worst case (i.e.,, when the concern is equally scattered
across all classes). DOS values can lie between 0 and 1: 0 indicates that a concern
is completely localized whereas 1 indicates uniform distribution of a concern over
all classes.

We intend to discover the spread of each concern, i.e., how many methods
implement a concern outside the concern’s own class. To show this spread of
each concern over other classes, we introduce a metric called Spread-Out. It rep-
resents the ratio of the operations, associated or contributing to a given concern,
located outside the main class implementing the logic for the concern. For exam-
ple, Spread-Out for the Patient Records concern identifies the ratio of the methods
implementing Patient Records outside the class CPatient. This helps us discern the
dispersion for that concern over other program classes. Note that there are some
concerns which do not have a dedicated class associated with them; in such a case
we consider the class containing the largest number of operations associated to that
concern as its home location. We define spread-out(c) of a concern c as follow:

spread-out(c) = implement(m, c) outside principal class
Total implement(m, c)

We shall describe the results of the classification approach and the metrics de-
scribed in this chapter in Chapter 7.

6.4 Discussion

Usage of Domain Entities and Concerns. We believe that the usage of domain
entities can be useful for the classification of scattered domain logic. We believe
that data attributes related to domain entities of software system are key to au-
tomatically mine concerns in a program. At least one more instance of variable
usage for concern identification is presented in an approach using data-flow analy-
sis [Tri08]. The approach searches for information sinks: variables that are used to
store results. As the author claims, these represent key results related to functional

102 CHAPTER 6. CONCERN CLASSIFICATION IN POC

requirements of a program. Hence, information sinks along with all the variables
used for calculation of the results stored in information sinks are called “concern
skeleton”. However, behavior is not taken into account while identifying concerns.

The domain-related attributes can provide a starting point to relate their associ-
ated behavior to particular concerns. Moreover, they can provide missing program-
related semantic information for current aspect mining techniques [MKK08].

Information used. For the concern extraction activity, we do not consider it nec-
essary to include statement-level local information because there may be certain
elements such as temporary variable assignments which may not be required: A
higher level abstraction of the program is more useful [RM02]. However, in our
case classes are non-cohesive units that do not represent useful information for
concern extraction. Thus, we include only methods and global variables.

Threats to External Validity. One of the limitations of our work is the fact that
it bases on the model of method invocation and Fan-in metric which assumes that
there is a minimum of behavioral encapsulation in the form of methods and these
methods represent a well-defined, crisp functionality. In situations where there is
a haphazard, extensive scattering i.e., methods do not have sharp focus and data
components do not have accessors, in such cases this approach will not produce
any meaningful crosscutting candidates. Crosscutting can also occur in the form of
code idioms to give rise to code clones [BvDTvE04], which Fan-in wouldn’t detect
and hence possible combination of clones classes and domain entity data has to be
combined to adapt the approach.

We also suppose that programs generally represent domain entities through
well defined, succinct global variables, which help to relate methods with concerns.
In the absence of such variables, a manual effort is required to associate methods
with concerns. In general, automatically identifying and classifying crosscutting
concerns out of completely unstructured code is near to impossible, if not impos-
sible because in such cases there is no anchor point to start the automatic search
for possible candidates. In such scenarios, Dynamic Analysis techniques can be
helpful to locate crosscutting features and concerns [EKS03].

6.5 Conclusion

Crosscutting concerns may appear due to non-abstracted domain logic as well as
due to the shortcomings of OO mechanisms to capture inherent crosscutting of
concerns. Aspect mining techniques are capable of identifying diverse crosscut-
ting concerns but are not capable to distinguish between them. In this chapter,
crosscutting concerns originating from non-abstracted domain logic are identified
according to their association to domain entities. Crosscutting concerns related to
absent domain entities are identified because they access domain entity data. We

6.5. CONCLUSION 103

have also studied the existing metrics to quantify the concern scattering and in-
troduced a new metric called Spread-out to support results from the classification
approach. The metric helps discern the amount of behavior of a concern that has
been divulged in client classes. To the best of our knowledge, the approach pre-
sented in the chapter is the first one towards the distinction of diverse crosscutting
concerns present in a software system originating from the lack of elementary OO
design and absence of aspects.

104 CHAPTER 6. CONCERN CLASSIFICATION IN POC

Chapter 7

Tools and Validation

In this chapter, we describe the tool support and the validation of the proposed
approaches described in the dissertation. This chapter is organized as follows.
Section 7.1 describes the tool support and validation for Scattering Analyzer ap-
proach. Section 7.2 describes the tool support and validation for the approach to
restructure classes in POC. Section 7.3.1 describes the validation for the concern
classification approach. Section 7.4 concludes the chapter.

7.1 Scattering Analyzer

We have proposed Scattering Analyzer approach to detect scattered code in POC
(cf. Chapter 3). The technique integrates identifier analysis and Fan-in metric for
detecting the scattered code.

We intended to validate the approach on our case study software. The absence
of tool support for Fan-in metric and identifier analysis for types for C# language
led us to develop a tool for analyzing this language. We build our own tool to
identify the scattered identifiers and Fan-in metric for each method.

This tool actually performs static analysis on the bytecode of .NET assemblies
i.e., Common Intermediate Representation (CIL) [Int06]. First, this choice was
retained for the ease of development since the bytecode is represented by a fixed
number of IL commands. The bytecode strips actual names of variables in code
and these variables are present as various types. Second, the tool is more generic
as it does not depend on any particular language for its working: Any language
that can compile its code into CIL representation can be analyzed. The simplicity
of the bytecode also led us to develop swiftly the tool since no complex token-
based analysis and abstract tree construction was required to represent the code in
question. Third, the bytecode represents the executable instructions of a program,
which represent a barebone skeleton of the program in question. Hence, it is much
more accurate in terms of identifier identification in the code than those working
with textual code information: Textual tools, sometimes, take into account com-
ments and they are cluttered with the information regarding keywords, which are

105

106 CHAPTER 7. TOOLS AND VALIDATION

used in the language such as return and new. For the degree of scattering, tool users
can also define a value to filter out results with an inferior value. The tool also con-
tains a provision to analyze user-defined types only. Figure 3.7 (cf. Chapter 3)
represents our tool for C# assemblies that performs Fan-in analysis and identifier
analysis to calculate each identifier and its spread through various classes. We
discuss these two features of our tool in the next subsections.

7.1.1 Identifier Analysis

Identifier analysis uses a simple algorithm for finding the scattered identifiers in
the code: It looks for all the identifiers and searches for those that occur frequently.
Identifiers include the following: locals, enumerated types, classes, delegates, pa-
rameters, methods, and fields. Names for these types do not matter because byte-
code strips off their names, only types are retained. The developer or maintainer
can study these identifiers for problem detection. It provides for an identifier:

• aggregate of the frequency of occurrence of an identifier in the code;

• for each identifier, it displays the class and the associated method which
accesses this identifier;

• search for particular identifier in the bytecode.

These features help decern the scattered code. For example, the global enumerated
types are detected using this tool. The scattering information is equally important
because one identifier, if encapsulated well, will only be accessed from a single
class.

7.1.2 Identifier Results

Figure 3.7 provides a snapshot of our tool. The tool displays the enumerated type
used to replace the absence of various types of tests in the system and their fre-
quency of appearance along with classes accessing this identifier.

Table 7.1 contains the results obtained with the tool while searching for various
identifiers in our case study software. For precision, we only present the results re-
lated to the enumerated types discovered through the tool. The table describes two
properties for each enumerated type: Frequency describes the number of times
the tool encountered the type. The column Distinct Methods in Table 7.1 shows
the number of distinct methods where these enumerated types appeared. This met-
ric depicts the extent of scattering of enumerated types. Some of the enumerated
types are scattered across a large number of methods, like UnitType and TestState.
The last column in the table also demonstrates that manually searching for these
enumerated types can be laborious.

In addition, the identifier can also help decern the duplicate methods that reside
in different classes. But these methods perform same operations on data residing
in data classes. Table 7.2 shows the methods found with similar names. There are

7.1. SCATTERING ANALYZER 107

Table 7.1: Detecting Scattered Enumerated Types

Identifier Frequency Distinct Methods
DossierState 11 6

ContainerType 12 6
DeterminationType 16 8

ProductType 17 8
CalibrationMode 22 10

TubeType 23 13
MethodologyType 27 12

UnitType 77 25
TestState 112 17

Table 7.2: Duplicate Methods in Identifier Analyzer

Identifier Duplicate Methods
ModifyCQ 2

ReadMethodoType 2
ModifCalibration 2

ModifyChrono 2
ReadDetermination 2

5 method-pairs that have same names and implementing the same functionality but
residing in different classes. Hence, similar names can provide quick overview for
methods implementing duplicate logic. This quick overview may not be directly
visible in clone detection tools.

Identifier analyzer helps providing useful information for detection of enumer-
ated types as well as their scatter across application methods, and information re-
garding duplicate methods. Identifier tool provides a technique, albeit primitive
one, to search for scattered identifiers. The reengineer is required to search iden-
tifiers with different frequencies to filter useless results because the aggregates de-
pend upon the size of the system under study.

7.1.3 Fan-in Metric

The Fan-in metric, i.e. total number of calls for all methods, can be used to uncover
the refactoring of duplicate code in helper methods. The tool that we developed
looks for method calls to particular functions and lists those with higher values
than the filtering value prescribed by the user for the degree of their scattering.

7.1.4 Fan-in Results

We detected one instance of template method pattern described in Section 3.4 with
our tool. This template pattern is used in the methods that create different cali-

108 CHAPTER 7. TOOLS AND VALIDATION

bration types. The calibration types are created using the same process. Thus, the
methods for creating three different calibration types call similar methods.

Table 7.3: Fan-in for Glossary

Class Name % Calls
CPatient 4%
CResult 1%
CTest 3%

CProduct 2%

In addition, with Fan-in metric, we identified the occurrence of scattered method
calls related to scattered type information. In our case study software, glossary
class provides the string representation of various enumerated types. Table 7.3
demonstrates the percentage calls to glossary methods in various classes and the
dependence of these classes on glossary-related functionality. The glossary-related
functionality is scattered in the application classes because of the absence of object-
oriented design.

7.1.5 Discussion

Scattering Analyzer tool helps uncover the design defects and code smells in POC
that result in scattered code. Global enumerated types are identified by the tool
in the methods of the software system. It also identified scattered method calls
through the use of Fan-in metric.

The Fan-in metric also helped identify other scattered methods for which we
have presented a taxonomy in Chapter 5. Hence, all scattered method types are
included in the Fan-in results. The reengineer is required to analyze manually each
candidate to decern the reason for the high Fan-in metric of the method. The tool
can be enriched with additional information such as checking method calls and
associated conditionals for diverse-logic providers.

The threshold for searching for scattered identifiers and method calls is depen-
dent upon the software system size. We do not have sufficient data to relate the
threshold values with system sizes. The reengineers are required to try different
values for their particular system to identify scattered code.

7.2 Reconsidering Classes: Application of the Approach

We have presented an approach for restructuring classes in POC (cf. Chapter 4).
Now, we evaluate our approach on our case study software related to the software
system that drives blood disease analyses. Table 1.1 demonstrates some facts about
the case study software: There is a clear lack of hierarchical structure and presence
of huge service classes lacking cohesion, with large number of methods. Certain

7.2. RECONSIDERING CLASSES: APPLICATION OF THE APPROACH 109

domain entities such as patient tube do not have associated classes which could
have encapsulated the state and behavior related to these entities in a single class.
Therefore, it offers a good case study to evaluate our approach since the software
is developed in C# and is a mixture of object-oriented code and procedural one
expressed within the same paradigm.

7.2.1 Tool Support

To support restructuring of POC classes, we developed a tool that performs static
analysis on the bytecode of .NET assemblies i.e., Common Intermediate Repre-
sentation (CIL) [Int06]. The tool looks for all user-defined types and associates
methods to the types to constitute principal classes according to the association
rules defined in Section 4.4.1. Figure 7.1 provides a snapshot of the tool. The
tool provides option to exclude namespaces, types, and methods when analyzing a
software system for principal classes.

Figure 7.1: Tool for Restructuring Classes

Once, principal classes are identified, the composition links are identified. For
this purpose, we look into the methods where a new object is created. If such a
method is found, we look into the its invoked methods to look for the creation of
new objects. Only invoked methods are searched and their invoked methods are

110 CHAPTER 7. TOOLS AND VALIDATION

not taken into account i.e., the callgraph of the method is searched upto a depth
of 1 for new object creations. When a principal class is found to create another
principal class, a composition link is created amongst the principal classes. For
common compositions, a context is generated for compositions to be analyzed with
a concept lattice.

Figure 7.2: Tool for Restructuring Classes

Figure 7.2 shows a principal class and its associated methods identified by the
tool. From the list of identified principal classes by the tool, the reengineer can
select a principal class and analyze its associated methods to identify any false-
positives associated with the principal class. The analysis mainly depends on the
names of the associated methods. Otherwise, the code can be looked in for further
analysis.

With the tool, the reengineer can analyze individual principal classes for ex-
tracting a class hierarchy for each of them. The tool then looks into all the methods
and their access to the attributes of the current principal class. A context file is gen-
erated for the methods of the principal class with methods as objects and attributes

7.2. RECONSIDERING CLASSES: APPLICATION OF THE APPROACH 111

as attributes of the FCA context. For the purpose of concept formation, we use
Galicia tool [VGRH03].

7.2.2 Validation of the Approach

Identification of Principal Classes

With the help of the tool, we proceed with the identification of principal classes
within our case study software system. Following are the results of the application
of the first step of our approach.

Table 7.4: Identification of Principal Classes

Total Principal Classes 41
Methods Associated Correctly 403
Methods Marked for slicing 21

False positives 7

Table 7.5: Some Principal Classes

ClassName Method Count ClassName Method Count
PatientRecord 40 TestParams 21
RawResults 57 Calibration 41

InterpretedResults 9 Paramproduit 3
CalibrationData 19 PatientTube 7

QualityTest 14 BloodTest 10
TransParam 3 TransmitData 8

Product 14 Lot 11
DeviceHistory 6 Maintenance 9

Table 7.4 describes the results for the first step. We identified 41 principal
classes, one for each user-defined types with the help of the tool. 403 methods
were associated to these principal classes. A List of some of the principal classes
along with their method count is presented in Table 7.5.

Of all the methods observed, 7 methods were determined to be false positives,
that is they were associated to a class to which they didn’t belong. These false-
positives were identified while analyzing individually the methods associated to
each of the principal class. False-positives were observed to have happened for
two reasons: Firstly, when methods were reading types, the number of reads for
the actual type were less than other types. For example, the method verifying
if the patient information is being used in a test. Now, this information can be
placed in one principal class or another depending on the proximity of data and
the reengineer may be required to manually fix the position of such a method. The

112 CHAPTER 7. TOOLS AND VALIDATION

second reason is more complicated as it involved the cases where a method called
another method to perform operations on its type while other principal classes are
accessed directly. For example, a method for repeating test on patient data called
another method to recreate test information while result information was directly
created in the method. This is shown in Listing 7.1 where analysis information is
create by a method call while result information is created in the method. In such
situation, the method is wrongly associated to the result principal class.

1 / / code c r e a t e s a new t e s t
2 A n a l y s i s a n a l y s i s = Crea teNewTes t () ;
3 R e s u l t r e s u l t = new R e s u l t () ;
4 r e s u l t . t y p e = do ub l e ;
5 r e s u l t . t e s t = a n a l y s i s ;

Listing 7.1: Code for Creating New Analysis

There are no false-negatives of the approach because all of the methods are
associated to a principal class following the association rules.

Principal Class Compositions

The creation pattern provided useful information regarding the composition of
principal classes. All in all 17 composition relationships were found of which
three composition relationships were identified as common to 9 principal classes.

Table 7.6: Identification of Compositions

Composite Classes Used Classes
Calibration, Analysis, QualityControl Raw Results
CalibProduct, Reagent, ClientProduct Lot

CalibrationRatio, CalibrationRaw, PreCalibration CalibProduct
ResultParams CinetiqueDO, Cinetique2Pts, Chronometry
PatientRecord PatientTube

Drawers Products
TransmissionData TransmissionParams

Table 7.6 provides a detail of the results obtained in the case study software
for composition relationships. Composite classes represent those classes that con-
tain an object of another type while used classes are contained in the composite
classes. The first three rows represent composition relationships related to com-
mon superclasses where Raw Results, Lot, and CalibProduct represent the com-
mon composition relationship. Hence, three superclasses were identified with such
a pattern.

Figure 7.3 illustrates an improvement in the overall design of the application
because of the identification of a common composition relationship. The principal
classes for three types of tests, namely, Calibration, Analysis, and QualityControl,

7.2. RECONSIDERING CLASSES: APPLICATION OF THE APPROACH 113

Figure 7.3: Principal Class Compositions

are composed of Raw Results. This relationship is illustrated on the left hand side
of the figure. The improvement in the design of the principal classes is shown
on the right hand side whereby a new class TestParams is created that abstracts
the common logic for the three types of tests i.e., Raw Results. Hence, common
composition pattern helps to identify classes that aid in optimal usage of class
hierarchies.

Hierarchies in Principal Classes

Once the task of identification of principal classes and their composition is achieved,
we proceed to identify hierarchical information present within the principal classes.
There are two sets of principal classes identified for our application.

Figure 7.4: A Simple Principal Class - Quality Control

Simple Principal Classes. Simple principal classes are those for which a single
concept lattice merging all the views is generated for understanding the internals
of the class. This helps decerning restructuring information from a single lattice
and the reengineer doesn’t need to produce lattices for different views. A simple

114 CHAPTER 7. TOOLS AND VALIDATION

principal class is determined from the information presented by concept lattice: If
useful information can be inferred from a single lattice combining all the views,
the class is termed as a simple class.

Figure 7.4 demonstrates concept lattice for QualityTest class in Table 7.5, whereby
a single lattice is generated to understand the hierarchies of attribute accesses as
well as method calls and type usage. The resulting concept lattice provides a clear
decomposition of methods. The reengineer can further explore lattice information
to create useful classes.

Complex Principal Classes. Complex principal classes are likely to consist of
large number of methods. The concept lattice for such classes showing all the views
contains huge number of concepts and it is near to impossible to infer any useful
abstractions. Thus, for such classes subsequent views are generated to understand
the hierarchies for their methods.

We consider class marked Calibration in Table 7.5. First, a fundamental view
is generated to get the methods and attributes.

Figure 7.5: Fundamental View of a complex Class

Figure 7.5 does not reveal any particular decomposition apart from a few meth-
ods that are disjoint and can be placed in a separate class. There are strong connec-
tions amongst methods and attributes. However, the common calls view presented
in Figure 7.6 does indicate presence of common calls where methods CreationCal-
ibRatio, CreationCalibBrut, and CreationCalibPrecalibree invoke 6 common meth-
ods lying outside their principal class. These methods implement complex logic for
the process of creating a calibration test, and the three methods actually implement
the three types of tests. Hence a superclass is created to contain template behavior
and three subclasses are then created for each process.

7.2. RECONSIDERING CLASSES: APPLICATION OF THE APPROACH 115

Figure 7.6: Common Interaction View of a complex Class

7.2.3 Discussion

The approach helps restructure POC by first finding cohesive set of methods and
types and binding them in principal classes. In the second phase, the cohesive set
are individually studied for finding useful hierarchies of methods and attributes
making up a principal class. Concept lattice views help understanding the interac-
tions of methods and attributes, methods and methods, and the interaction of the
current principal class with the other principal classes to restructure POC classes
in a useful way. The decomposition of the lattice information into three different
views eases the inference of useful classes.

The approach is useful in that it reduces the restructuring of POC classes to
the analysis of the obtained results. The overall approach reduces the overall code-
level analysis of POC classes to the analysis of resulting principal classes and con-
cept lattices, thus a few high-level design decisions. Overall the results are quite
promising and validated by the developers of the case study software.

The approach is also useful in that it combines object-oriented constructs such
as compositions, method calls, and association in the analysis process. The inclu-
sion of these constructs minimizes the need to read code and infer the information
manually. A complete picture of the overall software structure can be obtained
from the concept lattices.

A major shortcoming of the approach lies in the fact that the reengineer needs
to be proficient in understanding and interpreting the information presented by
concept lattices. This information should be interpreted to form class hierarchies
within principal classes. The approach does not present an algorithm to infer useful
objects from the three views. We intend to study object identification algorithms in
future to alleviate this shortcoming of the approach.

Moreover, the approach requires to perform various steps for restructuring pur-
poses i.e., identification of principal classes and composition relationships, and the
analysis of concept lattices. The reengineer needs to combine various pieces of in-
formation obtained in the different steps of the approach to comprehend the overall

116 CHAPTER 7. TOOLS AND VALIDATION

restructuring information. Our tool does not thoroughly support the process of
restructuring POC classes.

However, we believe that obtaining classes and class hierarchies from an un-
structured code such as POC requires a major effort that cannot be completely
automated. Human intelligence is required to infer useful information from proce-
dural object-oriented code. Human intelligence is also useful to combine domain
information for inferring classes from the concept lattice views.

7.3 Classifying Crosscutting Concerns

An approach is presented for the classification of diverse crosscutting concerns
identified in POC (cf. Chapter 6). Moreover, we redefined the existing set of met-
rics and defined a new metric for the analysis of crosscutting concerns dispersion
in POC. In this section, we shall validate the classification approach and concern
scattering metrics on our case study software.

7.3.1 Validating Concern Classification Approach

Table 7.7: Algorithm Results

Method Fan-in Classification
UpdatePhysicalMeasures 10 Domain Entity
CreateResultCalibration 10 Domain Entity
NewMeasureCalibration 10 Domain Entity

SearchProductIndex 10 Domain Entity
SearchCalib 13 Domain Entity

SearchPatient 17 Domain Entity
PublishException 19 Aspect
ReadMesureCalib 22 Domain Entity

Trace 24 Aspect
SearchProduct 26 Domain Entity
SearchTestData 29 Domain Entity

DecryptData 35 Aspect
ReadRawResults 41 Domain Entity

PublishEvent 96 Aspect
ValidateTransaction 89 Aspect

GetInstance 101 Aspect
GetGlossaryValue 127 Domain Entity

The results for the crosscutting concern classification are presented in Table 7.7.
First two columns are those methods discovered as crosscutting candidates by the
Fan-in tool and their corresponding Fan-in metric. The last column presents the
classification for each concern obtained through the algorithm for concern classi-
fication. Candidates marked “Domain Entity” access domain entity data and are
classified as the false-positives aspects.

7.3. CLASSIFYING CROSSCUTTING CONCERNS 117

The results produced are close to the classification that we have produced man-
ually in Table 5.2. In addition it corresponds well with the established aspect can-
didates described in literature such as tracing, exception handling and transactions.
Therefore, the use of domain data is useful for the classification of crosscutting
concerns.

We would like to elaborate on two of the crosscutting concerns classified in
Table 7.7: “GetGlossaryValue” and “DecryptData”. A large number of GetGlos-
saryValue method calls to the glossary concern may indicate that its classification
as domain entity is a false positive of the approach and that aspects may provide a
better encapsulation for such a scattered concern. Had it appeared because of the
missing aspects, its implementation must have benefited from the refactoring to as-
pects. We defined in Section 3.4 that scattered concern related to type information
appear and glossary provides such an instance in our case study software. A good
design will make this concern well-localized in related classes. Hence it is marked
as a concern that should be inspected and rectified with object-oriented mecha-
nism. DecryptData method call provides a service for data decryption and it can be
thought of a concern working directly on domain entities. However, an analysis of
encryption mechanism in our case study software reveals that domain entity data
is passed to the encryption and decryption methods as parameters. Hence, data
is received and returned by encryption mechanism as method arguments without
directly reading domain entity data.

7.3.2 Scattering Metrics of Crosscutting Concerns

Now that we show that the use of domain data is a good indicator for classifying
concerns, we want to go a step further: We study various crosscutting concerns of
our software system through the light of concern scattering metrics.

The values for the scattering metrics (CDO, DOS and spread-out) for various
concerns of our case study are provided in Table 7.8 (Dedicated class indicates if
there is a dedicated class for the given concern).

Figure 7.7 shows the distribution for the Concern Diffusion over Operations
metrics (CDO). It is described that higher values of CDO represent a concern that is
more scattered [KSG+06]. In the figure, there are some entities, which do not have
a dedicated class but these have higher CDO such as Calibration and Raw Results.
However, Patient Tube, even in the absence of a dedicated class, has a lower CDO
because it represents a smaller concern with small number of associated operations
and interpreted results have higher CDO even in the presence of a dedicated class.
Moreover, Interpreted Results concern has a higher CDO even in the presence of
a dedicated class. Consequently, we can deduce from the figure that CDO is a
relative metric which is useful to compare scattering of concerns of the same size
and with the same number of associated operations. Patient Tube data and Tracing
are relatively small concerns and hence, in the presence of large concerns, such as
Calibration and Transactions, they tend to present smaller CDO, and hence, it
is an error to infer that they are well-encapsulated. Moreover, it doesn’t indicate

118 CHAPTER 7. TOOLS AND VALIDATION

Table 7.8: Concern Scattering Results

Concern Dedicated Class CDO DOS Spread-out
Raw Results No 147 0.31 0.12

Patient Records Yes 99 0.50 0.25
Quality Control No 39 0.55 0.21

Calibration No 234 0.52 0.25
Analysis No 129 0.26 0.09

Interpreted Results Yes 228 0.68 0.43
Patient Tube No 54 0.78 0.57

Glossary Yes 254 0.73 0.50
Transactions Yes 94 0.58 0.94

Tracing Yes 26 0.47 0.93
Singleton Yes 108 0.54 0.94

Events Yes 110 0.57 0.88

Figure 7.7: Concern Diffusion over Operations for Concerns

the extent of encapsulation for a concerns i.e., whether the number of operations
contributing to a concern are located inside the class implementing the concern or
outside it.

Figure 7.8 shows the comparison between the DOS and Spread-out metrics;
we see that all the concerns are scattered with varying degrees. Spread-out and
DOS metrics also better depict the degree of scattering of the Patient Tube vis-
à-vis Raw Results than CDO metric because the size of the concerns is normal-
ized. DOS, in general demonstrates the average scattering of various concerns
over classes, and all concerns have ∼ 0.50 DOS. This depicts the lack of encapsu-

7.3. CLASSIFYING CROSSCUTTING CONCERNS 119

lation for various concerns and hence provides a measure of scattering of concerns.
Spread-out demonstrates that although some of the concerns do not have an associ-
ated class, they still are concentrated in one of the subsystem classes, for example
Analysis and Raw Results.

Figure 7.8: Comparison of DOS and Spread-out

Regarding the Spread-out values in Figure 7.8, it demonstrates that first that
there are two kinds of Spreading-out: one part of the crosscutting concerns such
as Raw Results, Patient Records, Analysis presents a low Spreading-out value.
The other part of the crosscutting concerns has a high spreading-out value such
as Transactions, Tracing, Singleton. This indicates two kinds of different situa-
tions which correspond well with our classification of domain entities and aspects:
domain entities have lower Spread-out. On the other hand, Tracing, Singleton
instances, Events and Transactions represent typical examples of aspects and
their Spread-out value is much higher.

Consequently, Spread-out helps better identify the cause of crosscutting con-
cerns than DOS and CDO: concerns exhibiting Spread-out values of more than 0.8
over the other components can be considered as aspects. And it is this anomalously
extensive spread of such crosscutting concerns over other classes that one wants to
capture in aspects for their improved modularity.

120 CHAPTER 7. TOOLS AND VALIDATION

7.3.3 Discussion

Domain Entity Data

Our hypothesis about the domain entity usage of false-positive crosscutting con-
cerns in general turns out to be quite substantiative because of the precision of the
resulting methods that appeared in the two categories in Table 7.7. That is, most of
the domain entity-related methods that were marked as crosscutting concerns have
been distinguished as occurring due to lack of elementary object-oriented design.

We have evaluated our classification technique in a data-intensive program and
the results are very encouraging. However, these results are needed to be validated
with empirical studies. Specially, this classification algorithm needs to be evaluated
in processing-intensive programs for understanding the limitation and improving
the current approach.

Spread of Singleton Instances

It is striking to see the Spread-out of Singleton instances in Figure 7.8 is nearly
equal to 94%. This high value of spread-out occurs because the code represents a
procedural thinking therefore huge classes are written and accessed in a procedural
manner. Moreover, since most of the class mostly implement unrelated concerns,
the scattered concerns are composed recurrently through singleton instances, caus-
ing their spread in client classes.

Extent of Scattering

We believe that in their nature, domain entity concerns are less scattered than as-
pects. The reason is that domain entities are prone to collaborate with lesser num-
ber of entities. For example, patient data concern would only collaborate with
patient tubes, tests, and products/reagents. On the other hand, aspects are scatter-
ing in wider because they interact with several domain entities. Aspects “crosscut”
across several domain entities and hence their code is more scattered and tangled.

We have shown the higher extent of scattering of aspects with our metric
Spread-out. Green et. al. [GBF+07] provide an interesting study whereby de-
sign stability for object-oriented and aspect-oriented designs of the same software
is examined. Several change scenarios for software are described and evolution
of design metrics is observed. They found that the changes in the crosscutting
concerns in AO design are much more localized and stable than object-oriented
design. It can be inferred from the provided data that the impact of changes to
well-known crosscutting concerns (distribution, concurrency, exception handling)
in object-oriented design have a wider impact. This impact is evident from changed
components, changed operations, and changed LOC metrics [GBF+07]. However,
it can equally be argued that application related changes are localized because the
case study software demonstrates good design. We believe that extent of scattering
should be evaluated with more empirical data.

7.4. CONCLUSION 121

Threats to External Validity

We have evaluated our approach on a data intensive system where we assumed
that objects provide an optimal solution for scattered behavior of domain entities.
We did not encounter domain entity behavior that could have benefited more from
aspectual abstractions: pointcuts and advices. However, other studies that target
JHotDraw, a show case system to demonstrate usage of design patterns [JHo],
demonstrate Undo concern and its aspect refactoring [MDM07]. Undo concern
in the program is refactored to aspects to increase modularity and this concern is
directly related to domain entities: figures in JHotDraw. Such concerns will be
treated as related to the absence of objects and will be considered a false-positives
of our approach. Further structural analysis such as the interaction of these aspec-
tual behavior with domain entities and their program locations can be integrated
into the proposed approach to improve the identification of missing objects and
aspects.

In general, our approach and spread-out metric provide encouraging results
for concern classification. The approach and spread-out metric can be simultane-
ously employed for the classification of crosscutting concerns for better results.
We believe that more empirical studies of the same sort are needed to be conducted
to comprehensively understand the nature of differences between the crosscutting
concerns appearing from domain entities and aspects. Our approach, nevertheless
a simple one, provides a first study towards the classification of crosscutting con-
cerns.

7.4 Conclusion

In this chapter, we have described tools for various techniques proposed in this dis-
sertation. We have validated the techniques on our industrial case study software.
Scattering Analyzer eases the detection of the scattered POC code smells. The
approach for the restructuring of classes in POC aids the inference of classes and
class hierarchies. However, the approach requires the analysis of concept lattices
and does not propose a list of possible classes to the reengineer. The concern clas-
sification approach classifies crosscutting concerns and the results of the approach
are confirmed by the spread-out metric. However, the approach requires more em-
pirical data. The results for the approaches presented in this dissertation are quite
promising. Still, the approaches need to be tested with further case studies in order
to better evaluate them for their further improvement.

122 CHAPTER 7. TOOLS AND VALIDATION

Chapter 8

Conclusion and Perspectives

And to make an end is to make a beginning. The end is where we
start from.

Thomas Stearns Eliot.
Software reusability has a key importance for enterprises to increase return-

on-investment on their software. Software reusability relies on good software de-
sign. Absence of software design or its dilution over time results in scattered code
breaking the principle of modular continuity. This increases software maintenance
costs and decreases software life. This dissertation described Procedural Object-
Oriented Code, a kind of software developed with state of the art object-oriented
languages but lacking object-oriented design. This chapter summarizes the contri-
butions presented in the thesis and a description of the future work.

8.1 Contributions

We have discussed various research contributions in this dissertation. These are
summarized below.

• Definition of POC. In this thesis, we have described Procedural Object-
Oriented code, which appears because of the lack or erosion of overall object-
oriented design. We have described a taxonomy of the design defects and
code smells appearing in POC. Some of the POC design defects have similar
symptoms as AntiPatterns. However, the novelty of the POC design defects
is their novel manifestation in code. The design defects appearing in POC
include missing classes for domain entities and the absence of class hier-
archies for domain entities. These design defects give rise to certain code
smells such as misplaced methods, global enumerated types, common calls,
and duplicate template code. We have provided concrete examples of these
code smells from our case study software. It has also been demonstrated
that some of the code smells lead to scattered code, therefore rendering the
software change difficult.

123

124 CHAPTER 8. CONCLUSION AND PERSPECTIVES

• Scattering Analyzer. Manual identification of design defects related to POC
by merely looking at the lines of code can be laborious particularly because
of large size of software. We have provided various existing techniques that
are helpful for detecting the design defects and code smells in POC. How-
ever, certain POC code smells result in scattered code and cannot be detected
with the existing techniques for the detection of design problems in object-
oriented software. For this purpose, we propose Scattering Analyzer that
integrates identifier analysis and Fan-in metric for the detection of the code
smells that result in scattered code.

• Reconsidering Classes in POC A three-step approach for object-oriented
design extraction from POC software is discussed. The first step consists of
the identification of data and its associated behavior. This date and behavior
is encapsulated in principal classes. The next step consists of the identifica-
tion of relationships amongst principal classes. For this purpose, we search
for the create-create patterns in code and analyze code of methods in prin-
cipal classes for their associations with other principal classes. These steps
are completely automated and do not require human intervention for their
completion.

Once classes and their possible associations are recovered, the next task is to
understand the hierarchies of methods and attributes within principal classes.
For this purpose, we utilize Formal Concept Analysis (FCA), which provides
a technique to group objects having similar attributes. Three FCA views are
generated with class attributes, method calls, and associations as attributes,
and methods of principal classes as objects of FCA context. Moreover, we
define an approach to rectify the problem of global enumerated types in
POC. The approach consists of three steps: search, merge and encapsulate
for global enumerated types.

The restructuring approach can be helpful to restructure POC software into
an improved object-oriented design. The approach reduces manual analysis
of an entire code base into a few high-level designs. Improved design will
help fulfill the promise of object-oriented design regarding reduced cost of
maintenance and easier evolution.

• Taxonomy of Scattered Code. We have described POC to consist of partially
decomposed classes. POC does not have representations for domain entities;
the code related to these domain entities appear scattered in other classes of
the system. Hence, aspect mining techniques that search for scattered and
tangled code related to missing aspects produce false-positive in their results
indicating absence of domain entities. Therefore, we evaluated two aspect
mining techniques on POC and provided a list of false-positives in their re-
sults which may amount to 60% of the identified candidates. We provide a
taxonomy of scattered code mined with aspect mining tools in POC. To the
best of our knowledge, this work presents a first set of false-positives indi-

8.2. FUTURE WORK 125

cating the absence of object-oriented design by aspect mining techniques.
Henceforth, it would not be practical to encapsulate all candidates crosscut-
ting concerns identified by aspect mining tools into aspects. More informa-
tion needs to be incorporated in aspect mining tools to qualify crosscutting
concerns as aspects.

• Towards Concerns Classification.

An approach is presented based on various scattered concerns in POC to
identify them in an automated manner based on the information related to
domain entity types. This approach helps classify various crosscutting con-
cerns identified by aspect mining tools. Moreover, we present a set of metrics
to evaluate the scattering of crosscutting concerns. This approach helps in
several ways. First, it presents an automated approach for concern identi-
fication that may reduce manual efforts required to achieve this task. For
this purpose, we elaborate a simplistic model based on the notion of domain
entities. Second, it helps distinguish various crosscutting concerns so that
appropriate remedies can be applied to encapsulate each of their sets.

• Validation. Various tools are developed to provide support for the techniques
proposed in this dissertation. We have validated the techniques on our in-
dustrial case study software. Scattering Analyzer eases the detection of the
scattered POC code smells. The approach for the restructuring of classes in
POC aids the inference of classes and class hierarchies. However, the ap-
proach requires the analysis of concept lattices and does not propose a list of
possible classes to the reengineer. The concern classification approach clas-
sifies crosscutting concerns and the results of the approach are confirmed by
the spread-out metric. However, the approach requires more empirical data.
The results for the approaches presented in this dissertation are quite promis-
ing. Still, the approaches need to be tested with further case studies in order
to better evaluate them for their further improvement.

8.2 Future Work

This dissertation presents POC and various improvements in the existing restruc-
turing techniques to support reengineering of POC. However, we could not explore
all research directions due to lack of time and lack of human resources. So, we list
here several research perspective that originate from this dissertation. These are
related to the improvements in the presented work.

• Further POC Design Problems. Absence of design results in certain design
defects and code smells in POC. Existing catalogue of the POC design de-
fects and code smells can be enriched by studying more POC systems.

• Formalization of POC Defects. The design defects and code smells appear-
ing in POC are presented textually. However, their interpretations remain

126 CHAPTER 8. CONCLUSION AND PERSPECTIVES

subjective. These design defects and code smells can be formalized so that
these can be searched, identified, and corrected in a coherent manner by au-
tomated tools.

• Domain Entities and Scattered Code. One of the novelties of the work
presented in this work is the appearance of scattered code related to non-
abstracted domain logic. We have reported a few characteristics of such code
elements. This work can be carried forward to report more characteristics of
scattered code appearing from non-abstracted domain logic and ways of their
possible distinction from the code due to missing aspects. This distinction
will consolidate the reasons for two kinds of scattered code.

• Concern Classification. We have presented a novel algorithm for the classifi-
cation of various crosscutting concerns. Moreover, we presented the metrics
for scattering. Most importantly, the algorithm and metrics require empiri-
cal validation of these should be conducted on more software systems as we
believe that these are validated only on Data-intensive systems.

Relationship of domain entities and crosscutting concerns should also be ex-
plored to understand those domain entity concerns that are best encapsulated
in aspects. The study should consider the structural or behavioral differences
amongst concerns that are best encapsulated with objects and aspects. This
study can lead to formal definition of the structure of crosscutting concerns
appearing in software.

Concern metrics can also be integrated in the existing aspect mining tech-
niques to include the factor of scattering to improve the search for possible
aspect candidates.

• Object Identification.

The object identification approach presented in this dissertation remain semi-
automated and the reengineer is required to extract meaningful objects. This
is because concept analysis provides structural groupings that should se-
mantically be grouped by humans. Our future work includes definition of
algorithm for moving from concepts lattices to meaningful classes. In addi-
tion, clustering algorithms are although less accurate, but they may provide
a more automated alternative in this direction. So, a hybrid approach can
be proposed involving both concept analysis and clustering algorithms for
object identification.

• Object and Aspect Refactoring. This work unveils a new set of questions re-
garding the refactoring of code related to objects and aspects. These include,
how should we go about the refactoring of code? Should we refactor objects
first and aspects later or should a parallel refactoring approach be explored
and developed? We would like to study these questions in detail and explore
the refactoring of code into objects and aspects to measure the improvement
in the overall modularity of POC.

8.2. FUTURE WORK 127

The two perspectives can be seen as improving the identification of the ap-
plication of refactoring opportunities: classification of concerns improves
aspect identification, thus helping in aspect refactorings and the POC restruc-
turing strategy provides a strategy for object-oriented refactorings. However,
we do not provide a roadmap for interleaving the two kinds of refactoring
opportunities together. We believe that carrying out the object-oriented and
aspect-oriented refactorings and understanding their underlying relationship
should form the subject of another thesis.

128 CHAPTER 8. CONCLUSION AND PERSPECTIVES

Appendix A

Sommaire

Les entreprises cherchent toujours les moyens de réduire le coût de développement
de logiciel parce que ce coût a un effet direct sur leur compétitivité. La réutilisation
des composants de logiciel participe à la réduction du coût global de son développement
car les développeurs n’ont pas besoin de développer les composants à nouveau. Le
logiciel réutilisable se base sur une bonne application des heuristiques de concep-
tion de logiciel, les modèles de conception, et les bonnes pratiques [GHJV95,
Mey88, Rie96]. Ces modèles de modularisation de logiciel préconisent la division
de grands composants dans des modules petits et autonomes. Chacun de ces mod-
ules devrait adresser une petite partie du domaine d’application et peut être évolué
et maintenu indépendamment des autres.

La modularité de logiciel dépend fortement du principe de la dissimulation de
l’information appelée Information Hiding et de l’emballage des données, appelé
Data encapsulation. Ces principes déclarent que toutes les informations d’un mod-
ule devraient être privées à moins qu’elles soient spécifiquement déclarées dans
les interfaces publiques [Par72]. Ces principes assurent que la connaissance con-
cernant un module particulier est encapsulée à l’intérieur du module. Ainsi, le
changement dans les spécifications d’un système logiciel change juste un module,
ou un nombre restreint de module, parce que les changements sont localisés dans
les parties privées de module. Les changements du module n’effectuent pas ses
interfaces publiques et par conséquent d’autres modules dépendants.

Les langages de type orienté objet fournissent le support pour la bonne mod-
ularisation de logiciel où toute la connaissance des concepts de domaine est en-
capsulée dans leurs classes correspondantes. Ces classes contiennent un ensemble
d’opérations liées à un concept particulier de domaine. Par conséquent, le code
lié à un concept de domaine, ou à une entité de domaine, est encapsulé dans sa
classe particulière dans le logiciel. La fonctionnalité de ces classes est exposée
à leurs clients par les interfaces bien définies. Ainsi, les clients sont inconscients
des détails de l’implémentation d’une classe. Les changements dans les classes
sont confinés au code résidant à l’intérieur de la classe. Par conséquent, une bonne
conception orientée objet mène à la réutilisabilité de logiciel et réduit des coûts de

129

130 APPENDIX A. SOMMAIRE

logiciel.
Les travaux récents sur la modularité de logiciel considèrent le logiciel comme

une collection de préoccupations appelé concerns de logiciel [Kic96, TOHJ99].
Une préoccupation est définie en tant que “toute matière d’intérêt pour un système
de logiciel” [FECA05]. On a montré que par leur nature il est difficile de modu-
lariser quelques préoccupations de logiciel en utilisant le paradigme orienté objet
et se nomment comme des préoccupations transverses ou Crosscutting Concerns
[Kic96]. Des préoccupations transverses sont dispersées et embrouillées à travers
des classes de l’application. Par conséquent, les préoccupations transverses violent
le principe de la dissimulation de l’information et cette violation affecte sévèrement
la modularité de logiciel parce que les changements de ces préoccupations trans-
verses ne sont pas localisés dans une classe mais ils affectent des classes différentes
dans le système logiciel orienté objet. La programmation orienté aspect (POA)
propose d’encapsuler les préoccupations transverses [KLM+97]. Les outils et
les techniques pour chercher des aspects dans les logiciels existants ont été pro-
posés [KMT07] pour faciliter la tâche de l’identification des préoccupations trans-
verses. Les préoccupations transverses identifiées sont ensuite encapsulées dans
les aspects pour améliorer la modularité de logiciel. Pour l’identification correcte
des aspects, il est important que les préoccupations transverses identifiées en code
non-AOP soient correctement associées à l’absence des aspects. L’identification
correcte d’aspect est essentielle pour identifier correctement les aspects candidats
qui peuvent être encapsulés grâce à la POA [HRB+06].

A.1 La Problématique

Dans cette problématique, nous considérons que les logiciels utilisant des langages
de type orienté objet montrent parfois une absence de conception appropriée. Ces
logiciels ne peuvent pas être réutilisés, modifiés, ou maintenus sans engager des
coûts élevés. Le manque de conception orienté objet se produit lorsque le proces-
sus d’analyse et de conception orienté objet est partiellement appliqué. Le manque
de conception provoque la violation des principes de l’encapsulation de données et
de la dissimulation de l’information dans les logiciels orientés objet. L’absence de
conception orienté objet dans les logiciels ont comme conséquence certains défauts
de conception et leur manifestation dans les programmes sous forme de mau-
vaises odeurs. En conséquence, les classes des applications sont moins cohésives
et davantage couplées en raison du code dispersé, lié aux défauts de conception.
Ainsi, un changement des spécifications crée des ondulations de modification dans
plusieurs classes [Mey88]. D’ailleurs, le code dispersé, apparaissant à l’absence de
la conception orienté objet, complique également le problème d’identification des
aspects candidats.

Néanmoins, le logiciel ne peut être abandonné à cause des problèmes de con-
ception parce que, le logiciel contient en soi la connaissance de métier et parfois il
est trop cher de développer un nouveau logiciel from scratch. La retro-ingénierie et

A.1. LA PROBLÉMATIQUE 131

la restructuration de logiciel visent à améliorer ou transformer le logiciel existant
de sorte qu’il puisse être compris, changé, et réutilisé [DDN02]. En restructurant
le logiciel, les défauts de conception dans le logiciel peuvent être enlevés et le logi-
ciel peut être évolué aisément pour s’adapter au nouveau besoin [Cas98, RW98].
La restructuration de logiciel prolonge la vie du logiciel, et augmente le retour sur
investissement.

Dans les sections suivantes, nous décrivons les diverses questions de recherches
qui résultent de l’absence de la conception orientée objet dans un logiciel. Nous
récapitulons les travaux de recherches existants pour démontrer leurs limitations
vis-à-vis des questions posées dans la problématique. Plus tard, nous décrivons
nos contributions qui proposent des réponses à ces questions de recherches.

A.1.1 Code orienté objet procédural

Quelles sont les caractéristiques principales des classes et patrons dans
le code qui apparat à l’absence de la conception orienté objet?

Nous appelons les logiciels développés en utilisant les langages de type ori-
enté objet, démontrant l’absence de conception orienté objet, le code orienté objet
procédural (COP). Nous croyons qu’il est important d’identifier les défauts de con-
ception et des mauvaise odeurs de code qui apparaissent dans le COP de sorte
qu’ils puissent être identifiés et détectés, et plus tard être enlevés du code. Le
COP se compose de classes partiellement décomposées — les classes énormes qui
définissent la logique des sous-systèmes ou services au lieu des entités particulières
de domaine. Les classes partiellement décomposées apparaissent dans le COP. De
ces classes partiellement décomposées dans le COP résultent certains défauts de
conception au niveau de l’architecture du logiciel. Ceux-ci incluent l’absence des
hiérarchies de classe. En conséquence les relations des types et des sous-types sont
absents pour les entités de domaine — le code des entités de domaine n’est pas
produit dans la relation hiérarchique représentée par une classe parent et ses sous-
classes dérivées. Ainsi, le code lié à une entité de domaine ne peut pas être réutilisé
à travers les classes dérivées. En outre, certaines entités de domaine ne sont pas
représentées dans leurs classes précises, c’est-à-dire leurs propres classes sont ab-
sentes du code. Ainsi, leur code est dispersé à travers les autres classes du logiciel.
La figure A.1, qui montre la graphe d’hiérarchie, démontre que souvent les classes
sont des structures énormes avec une hiérarchie de classes très peu développée. Les
classes énormes et l’hiérarchie de classes très peu développée mettent en évidence
les classes mal décomposées et l’absence des hiérarchies de classe pour les entités
de domaine présentes dans le logiciel.

Les défauts de conception dans le COP se manifestent en code comme des pa-
trons de code, appelés généralement des mauvaises odeurs de code. Ces mauvaises
odeurs de code incluent l’occurrence des appels similaires dans les méthodes, les
clones de codes, les types énumérés globaux, et les méthodes mal placées. Ces
odeurs de code devraient être présentées en détail, de sorte que leur manifestation

132 APPENDIX A. SOMMAIRE

Figure A.1: Code orienté objet procédural

en code soit identifiée, détectée, et corrigée pour améliorer la conception orientée
objet du logiciel.

Les défauts de code et de conception sont des problèmes communs et récurrents
de l’implémentation et de la conception, provenant de ”mauvais” choix conceptuels
et qui ont pour conséquence de freiner le développement et la maintenance des
logiciels en les rendant plus difficiles à maintenir et à évoluer.

Les défauts de conception sont des problèmes qui apparaissent à cause de
mauvaises pratiques en matière de conception, ou les déviations des normes bien
connues de conception [DM00, Rie96]. Il y a quelques travaux de recherche
pertinents qui mentionnent les défauts de code et de conception dans un logi-
ciel [BMMM98, DDN02, FBB+99, Rie96]. Cependant, les défauts de concep-
tion qui se produisent en raison de l’absence de conception orientée objet sont
décrivis à niveau élevé [BMMM98]. Aucun exemple au niveau de code n’est
fourni. Les odeurs de code décrivent les petites anomalies de conception de code
qui représentent les opportunités de changement de code [FBB+99]. Mais les
odeurs fournissent une liste d’anomalies de conception qui affectent quelques par-
ties dans le code. Celles-ci ne fournissent pas les odeurs de code liées à l’absence
de la conception orienté objet global du logiciel.

Est il possible de fournir des techniques et des outils pour la découverte
des classes de POC et les patrons de code apparaissant dans le COP?

Il y a plusieurs travaux qui traitent de l’identification des problèmes de concep-
tion dans le code. Les techniques basées sur les métriques de qualité de logiciel

A.1. LA PROBLÉMATIQUE 133

et les techniques de visualisation fournissent des indices pour l’identification des
classes partiellement décomposées et des hiérarchies de classes peu développées [Ciu99,
LD03, Mar04, MlHG06]. Néanmoins, ceux-ci ne supportent pas l’identification
des mauvaises odeurs du COP qui produisent le code dispersé à cause de l’absence
de la conception orientée objet [BD07]. La détection des mauvaises odeurs du
COP exige l’utilisation de l’analyse structurale des entités dispersées et de leur
comportement. Par conséquent, les outils existants doivent être améliorés pour
identifier correctement les mauvaises odeurs présentes dans le COP.

Le code orienté objet procédural se compose des classes, partiellement décomposées,
qui encapsulent la logique concernant plusieurs entités de domaine et par conséquent
une partie de ces entités de domaine n’a pas ses propres classes dans le code. Nous
croyons que des défauts de conception et des odeurs de code dans le COP exercent
un effet nuisible sur la modularité de logiciel et ceux-ci devraient être supprimés
du logiciel. Ainsi, il est important de rechercher des manières de réorganiser les
classes présentes dans le COP pour encapsuler chacune des entités de domaine dans
leur classe appropriée de sorte que la modularité de logiciel COP soit améliorée.

A.1.2 La restructuration des classes dans le COP

Pouvons-nous extraire les classes utiles orienté objet et les hiérarchies
de classe à partir des classes du COP qui représentent une conception
améliorée orienté objet?

On a proposé des techniques d’identification d’objet dans la littérature pour
détecter des objets dans des logiciels procéduraux pour transformer ces logiciels
dans la conception orienté objet [CCDD99, CCM96, NK95, SLMM99, SR99,
vDK99a]. Ces techniques utilisent l’analyse formelle de concept (AFC) pour détecter
des objets dans le logiciel procédural en obtenant le groupement des variables
globales et des fonctions qui opèrent sur ces variables. Ces techniques cependant
ne prennent pas en considération les classes partiellement décomposées présentes
dans le COP et d’autres formes d’uvres orientés objet (les types énumérés et les ap-
pels de méthode) pour améliorer des algorithmes d’identification d’objet. Un autre
ensemble de propositions concernant la restructuration des classes orienté objet
concerne l’utilisation de AFC pour comprendre la structure interne de logiciels
orientés objet et raffiner les hiérarchies de classe [ADN05a, Moo96, ST97, SS04].
Cependant, ces techniques proposent de rechercher et de corriger de petites anoma-
lies de hiérarchie de classe dans les logiciels orientés objet. Ces approches ne visent
pas de fixer des défauts de conception qui apparaissent à cause du manque de con-
ception globale orienté objet. Ainsi, ces techniques ne sont pas aptes à transformer
le COP vers une conception améliorée orientée objet.

Un autre type des propositions propose la restructuration du code orienté objet
par l’identification manuelle des petits problèmes de conception dans les hiérarchies
de classe et fournit les diverses heuristiques pour leur rectification [DDN02, FBB+99].
Cependant, la restructuration des classes dans le COP suivant ces derniers heuris-

134 APPENDIX A. SOMMAIRE

tiques est trop encombrante parce que ces techniques seulement des petits problèmes
de conception sans mettre la conception globale orientée objet en question.

Moha et. al. [MHVG08] définissent une approche très semblable au travail
présenté dans cette thèse. L’approche suggère l’utilisation de l’analyse formelle de
concept pour l’élimination des AntiPatterns [MHVG08] dans le code. Cependant,
l’approche une fois appliquée au POC produit des treillis de concept énormes en-
combrés avec trop d’information qui ne peut pas être employée pour extraire de
l’information utile du COP.

En résumé, il existe plusieurs approches pour l’identification d’objet dans des
logiciels procéduraux, et la restructuration des logiciels et des hiérarchies de classe
mais ces approches ne sont pas aptes pour la restructuration du COP vers une con-
ception améliorée orienté objet. Ces approches une fois appliquées produisent des
treillis énormes du COP qui ne permettent pas l’interprétation utile de la concep-
tion orientée objet à partir du COP. D’ailleurs, ces approches ne prennent pas en
considération les mauvaises odeurs présentes dans le COP. Par conséquent, il y
a un besoin de définir une approche pour restructurer des classes du COP. Cette
approche devrait intégrer la structure des langages orientées objet pour obtenir la
conception améliorée orienté objet du COP.

A.1.3 Identification d’aspect dans le COP

Les préoccupations transverses résultent dans la dispersion et l’embrouillement du
code dans les autres préoccupations d’un logiciel. La découverte des préoccupations
transverses est une tâche difficile et afin de découvrir les aspects candidats dans un
logiciel, les outils et les techniques d’identification d’aspect ont été proposés [KMT07].
L’identification des aspects est une technique de rétro ingénierie. Elle automatise
le processus de la découverte d’aspect dans les logiciels existants. Ces techniques
se fondent sur la supposition que le code dispersé dans un logiciel est un symptôme
des aspects et devrait être encapsulé dans les aspects [CMM+05, HK01]. Dans les
résultats, ces techniques fournissent aux utilisateurs un ou plusieurs aspects can-
didats candidats basés sur les informations lexicologiques du code, et une analyse
statique ou dynamique.

Cependant, dans le cadre du COP, les techniques d’identification des aspects
ne fournissent pas des résultats fiables [BD08] : Les résultats contiennent des can-
didats non aspects, appelé des aspects faux positifs. Le problème des aspects faux
positifs se pose parce que le COP se compose du code dispersé et embrouillé non
seulement dû à l’absence des aspects, mais le COP manifeste également le code
dispersé apparaissant dû à l’absence de conception orientée objet. Le manque
de conception orientée objet provoque le code non abstrait, c’est à dire du code
lié aux entités de domaine qui n’ont pas leurs propres classes. Par conséquent,
nous observons que les outils proposés pour identifier les aspects, une fois ap-
pliqué sur le COP, identifient des entités absentes de domaine dans la liste des
préoccupations transverses [BD08]. Ces entités de domaine sont faussement iden-
tifiées parce que les techniques d’identification des aspects assument que la dis-

A.1. LA PROBLÉMATIQUE 135

Figure A.2: Le plan de la thèse

persion et l’embrouillement proviennent seulement des aspects absents, alors que
d’autres préoccupations liées aux entités de domaines ont été encapsulés dans leur
abstractions orientées objet. Comme le phénomène de la bonne conception est
absent dans le COP, alors nous sommes confrontés au problème de la qualification
des préoccupations transverses identifiées par les outils d’identification des aspects,
comme des aspects.

Pouvons-nous différencier entre le code dispersé dans le COP pour
identifier le code provenant due à l’absence des objets de la liste des
aspects identifiés pour l’identification correcte des aspects?

Les techniques existantes d’identification des aspects [KMT07] ne rapportent
pas des candidats faux positifs dans la liste des aspects identifiés dans le COP.
Les autres travaux basés sur l’identification des préoccupations diverses présentes

136 APPENDIX A. SOMMAIRE

dans un logiciel [EZS+08, KSG+06, RM02] fournissent des approches générales
pour l’identification des préoccupations transverses sans mentionner le code dis-
persé apparaissant à l’absence de la conception orientée objet. Pour l’identification
correcte des aspects dans le COP, il est important d’étudier les caractéristiques du
code dispersé apparaissant à cause de différentes raisons. Il aidera à définir une
stratégie qui classifie le code dispersé lié aux objets et aspects et nous croyons
que le COP fournit une bonne occasion de classifier le code dispersé apparaissant
dans les logiciels orientés objet. Cette classification aidera les techniques exis-
tantes d’identification des aspects pour différencier entre les différents types de
code dispersé. Ainsi, les techniques d’identification des aspects vont mieux aider
les développeurs pour distinguer le code dispersé apparaissant à cause des défauts
de conception du COP et de l’absence des aspects. Cette distinction du code dis-
persé aide à appliquer des solutions appropriées pour encapsuler le code dispersé.
L’espace global du problème de la thèse est illustré dans la figure A.2.

A.2 Contributions

Toutes les questions de recherches détaillées ci-dessus sont concernées par l’absence
de conception orientée objet. Aucun travail n’indique les perspectives de restruc-
turation des classes et de dispersion du code dans le COP. Ainsi comme mentionné
brièvement dans ce chapitre, nous montrons dans cette thèse que la littérature ex-
istante ne répond pas à ces questions.

Nous avons fourni des solutions pour deux problèmes indépendants dans le
COP. La première solution concerne l’occurrence du code dispersé dans le COP et
sa classification. Nous choisissons cette perspective car le code dispersé provenant
de l’absence des objets et des aspects dans le COP fournit une opportunité pour
étudier la nature de la dispersion de code. Le but de l’approche est de proposer un
perfectionnement des techniques existantes d’identification d’aspect de sorte que
ces outils puissent distinguer le code dispersé lié à l’absence des aspects de celui
de l’absence des objets.

La deuxième perspective est la restructuration des classes dans le COP dans le
but d’améliorer la conception orientée objet d’un logiciel afin que ce dernier soit
composé de classes plus cohésives et de hiérarchies de classes bien décomposées.
Cette perspective est importante pour rechercher la stratégie permettant d’obtenir
une conception améliorée orientée objet à partir du COP. Nous ne corrélons pas
les deux perspectives présentées dans cette thèse. Nous croyons que la corrélation
des deux perspectives concernant la classification de code dispersé dans le COP
et la restructuration des classes devrait former le sujet pour un nouveau travail de
recherche.

Dans la section ci-dessous, nous énumérons les contributions principales de
la thèse. Ces contributions apportent la réponse aux questions de recherches for-
mulées ci-dessus. Nous énumérons brièvement les contributions de cette thèse
avant de fournir leur description détaillée.

A.2. CONTRIBUTIONS 137

• Description des défauts de conception et des mauvaises odeurs présents dans
le COP avec leur stratégie d’identification. Nous définissons un outil basé sur
des principes de l’identification de code dispersée pour détecter des odeurs
de code dispersés dans le COP.

• Une approche pour la restructuration des classes dans le COP vers une con-
ception améliorée orientée objet.

• Classification des préoccupations transverses trouvées dans le COP par l’analyse
structurale des entités de code et les métriques.

Le chemin dans la figure A.2 illustre également les contribution de cette thèse
et nous les détaillons dans les sections suivantes.

A.2.1 Mauvaise odeurs et leur détection

Dans cette thèse, nous élaborons une liste de défauts de conception et de mauvaises
odeurs de code apparaissant dans le COP. Nous énumérons les défauts de concep-
tion et leurs odeurs de code associés. Les défauts de conception sont mentionnés
comme les hiérarchies de classes peu développées et les classes énormes. Ces
défauts de conception produisent des mauvaises odeurs dans le code. Les odeurs
de code incluent des appels communs et des types énumérés globaux. Pour la
détection des défauts et des odeurs dans le COP, deux groupes d’odeurs sont iden-
tifiés. Le premier groupe se compose de défauts de conception et de mauvaises
odeurs de code qui démontrent les symptômes semblables aux défauts et odeurs
existants. Ceux-ci peuvent être détectés par l’utilisation des métriques existantes
de qualité de logiciel. Le deuxième groupe se compose des odeurs de code qui ne
peuvent pas être détectées en utilisant les métriques de qualité parce que celles-ci
ont comme conséquence le code dispersé. Ainsi, pour leur détection, nous avons
proposé l’utilisation des techniques pour la détection du code dispersé. A cette
fin, nous présentons une approche basée sur la recherche du code dispersé par
l’utilisation de l’analyse d’identificateurs dans le code et de l’analyse du nombre
d’appels de méthodes (Fan-in metric).

Le travail présenté dans cette thèse est le premier travail de recherche qui four-
nit un catalogue de défauts de conception et de mauvaises odeurs qui apparaissent
dans le COP, et par conséquent, la première stratégie de détection pour identifier
ces défauts et odeurs de code. D’ailleurs, le travail présenté ici est le premier travail
qui rapporte le code dispersé résultant de l’absence de la conception orienté objet
et sa stratégie de détection avec des techniques de l’identification des aspects.

A.2.2 L’approche pour la restructuration des classes

Nous présentons une approche semi-automatique et un outil pour la restructuration
des classes dans le code montrant des signes d’absence de conception orientée objet
[BDH08]. L’approche est basée sur l’analyse formelle de concept (AFC) [GW99].

138 APPENDIX A. SOMMAIRE

Cette approche aide à inférer des hiérarchies de classes à grain grossier à partir des
classes présentes dans le COP. L’approche globale est illustrée dans la figure A.3
et décrite ci-dessous.

Application

C1 C2

C3 C4

Identification of
Principal Classes

C2 C3

C1

Principal Class
Composition

Refactoring of
Global Enumerated
Types

Hierarchies of
Methods in Principal
Classes

Figure A.3: Approche pour la restructuration des classes dans le COP

1. La première étape dans notre approche est la découverte des groupes cohésifs
de méthodes et d’attributs dans l’application, en appliquant certaines règles,
pour décomposer des grandes classes. Cette décomposition de classes est
réalisée par l’analyse de l’accès des méthodes dans le code et les types définis
par l’utilisateur sur lesquels les méthodes fonctionnent. Ces méthodes et
types sont groupés et ces groupes cohésifs s’appellent Principal Classes.

2. L’abstraction architecturale orientée objet pour des classes principales est
obtenue pour inférer les interactions et les compositions de classes princi-
pales entre elles. Cette abstraction architecturale est réalisée par la recherche
du patron create-create dans le code c’est-à-dire les classes qui instancient
d’autres classes.

3. Les abstractions hiérarchiques pour les méthodes et les attributs de chacune
des classes principales sont obtenues par l’analyse de l’accès aux différents
éléments des types associé à cette classe principale. Les abstractions sont
obtenues par de divers contextes de treillis d’AFC. Nous définissons trois
vues: Fundamental View, Association View, et Common Interaction View.
Le développeur peut déduire des hiérarchies de classes pour des entités de
domaine en inférant l’information hiérarchique présentée par ces vues.

4. Le code dispersé lié aux types énumérés globaux est identifié et encapsulé

A.2. CONTRIBUTIONS 139

dans de nouvelles méthodes. Ces méthodes sont alors ajoutées à la classe
principale spécifiée par l’utilisateur.

Comme discuté auparavant, les approches existantes pour la restructuration
des hiérarchies de classe ne sont pas aptes pour l’inférence des hiérarchies de
classes dans le COP. Notre approche comble la lacune en produisant des treil-
lis d’AFC pour chacune des principales classes identifiées par l’approche. La
réduction de treillis d’AFC est réalisée parce que les classes principales contien-
nent seulement l’état et les méthodes liés à une entité particulière de domaine. Par
conséquent, l’information de la classe qui est présentée dans les treillis est réduite
d’une manière significative. Par conséquent, les treillis sont plus petits et il est plus
facile interpréter des hiérarchies de classe.

A.2.3 L’approche pour la classification des préoccupations transverses

Nous évaluons deux techniques d’identification d’aspects sur un système indus-
triel et nous rapportons qu’un nouvel ensemble d’aspects candidats faux positifs
sont identifiés par le techniques d’identification d’aspects [SB]. Nous observons
que les techniques courantes d’identification d’aspects sont insuffisantes pour dis-
tinguer le code dispersé résultant de l’absence des objets du code dispersé qui
apparat à l’absence des aspects. Cette limitation des techniques d’identification
d’aspects se produit parce que les techniques d’identification d’aspects lient le
code dispersé aux aspects, indépendamment du fait que le code dispersé apparat à
l’absence de certaines classes ou de limitations inhérentes des mécanismes orientés
objet à encapsuler des préoccupations transverses. Nous décrivons brièvement une
taxonomie d’outils d’identification d’aspects concernant leurs capacités de détecter
des préoccupations traverses liées aux types dispersés et au comportement dispersé
[BD08].

Nous proposons une approche pour classifier le code dispersé dans le COP
[BDR08]. La classification adopte une approche à deux dents. Premièrement,
l’approche identifie et groupe des préoccupations transverses actuelles dans un
système logiciel : aspects aussi bien que entités absentes de domaine. Des préoccupations
transverses concernant les entités absentes de domaine sont identifiées et extraites
par leur utilisation des données d’entité de domaine. Deuxièmement, une nouvelle
métrique appelé Spread-out est présentée pour mesurer la dispersion des diverses
préoccupations transverses présentes dans un logiciel.

Notre travail est le premier travail qui rapporte l’occurrence des aspects can-
didats faux positifs identifiés par des techniques d’identification d’aspect dues à
l’absence de la conception orientée objet [BD08]. Ainsi, l’approche de la classifi-
cation présentée dans cette thèse aide les outils d’identification d’aspect à iden-
tifier et à filtrer des résultats qui apparaissent à l’absence des classes pour des
entités de domaine. Le filtrage des candidats faux positifs à partir des résultats
d’identification d’aspect aide dans l’encapsulation correcte des aspects.

140 APPENDIX A. SOMMAIRE

Appendix B

Introduction to Formal Concept
Analysis

B.1 Introduction

This appendix is an introduction to the main terminology of Formal Concept Anal-
ysis. It is attempted to give a global overview in this mathematical discipline to
understand how FCA works, how it can be applied in different case studies. It is a
summary of the definitions given in [Aré05, GW99, SR99, Sne96, ST98].

Formal Concept Analysis (FCA) [GW99](also known as Galois lattices [Wil81])
is a branch of lattice theory that allows us identify meaningful groupings of objects
that have common attributes. The mathematical notations used in the following
sections of this chapter are mainly extracts from Formal Concept Analysis: Math-
ematical Foundations by [GW99].

In all the extent of this report, we use one illustrative example about a crude
classification of a group of mammals: cats, gibbons, dolphins, humans, and whales,
and we consider five possible characteristics: four-legged, hair-covered, intelligent,
marine, and thumbed. Table B.1 shows the relationships between the mammals and
its characteristics.

Table B.1: Mammal example: Table T represents the binary relations

four-legged hair-covered intelligent marine thumbed
Cats × ×
Dogs × ×

Dolphins × ×
Gibbons × × ×
Humans × ×
Whales × ×

But first of all, we need to understand a few definitions to see how we analyze

141

142 APPENDIX B. INTRODUCTION TO FORMAL CONCEPT ANALYSIS

the information provided by this technique. The symbols ∩, ∪, \,⊂, ⊆,∈ represent
the classical operations on sets: intersection, union, complement, belongs to, re-
strictive inclusion, inclusion. The rest of the symbols that have a specific meaning
in this context are introduced in the text.

B.2 Context and Concepts

The initial starting point in using FCA is setting up a context. A context is a triple:

C = (O,A,R)

O is a finite set of objects,A is a finite set of attributes andR is a binary relation
between O and A: R ⊆ O × A and is usually represented as a cross-table T . The
binary relation in our example is shown in the Table B.1, where we see that our
objects are the animals and attributes are their characteristics. Then we see that the
tuple (whales, marine) is in R but (cats, intelligent) is not.

Let X ⊆ O and Y ⊆ A. The mappings:

σ(X) = a ∈ A|∀o ∈ X : (a, o) ∈ R,

the common properties of X , and

τ(Y) = o ∈ O|∀a ∈ A : (a, o) ∈ R,

the common elements of Y , form a Galois connection. That is, the mappings
are antimonotone:

X1 ⊆ X2 → σ(X2) ⊆ σ(X1)

Y1 ⊆ Y2 → σ(Y2) ⊆ τ(Y1)

and their composition is extensive:

X ∈ τ(σ(X)) and Y ∈ σ(τ(Y))

In the mammal example:

σ({Cats,Gibbons}) = {hair-covered} and τ({marine}) = {dolphins, whales}

B.3. CONCEPT LATTICE 143

Based on the previous definitions, we define the term of concept. A concept
is a pair of sets: a set of elements (the extent) and a set of properties (the intent)
(X,Y) such that:

Y = σ(X) and X = τ(Y)

Therefore a concept is a maximal collection of objects sharing common at-
tributes. Informally, such a concept corresponds to a maximal rectangle in the
cross-table T : any o ∈ O has all attributes in A, and all attributes a ∈ A fit to all
objects inO. In the mammal example, ({Cats,Dogs}, {four-legged, hair-covered})
is a concept, whereas ({Cats,Gibbons}, {hair-covered}) is not a concept. Al-
though,

σ({Cats,Gibbons}) = {hair-covered}),

τ({hair-covered}) = {Cats,Dogs,Gibbons}

shows that it is not a concept. Table B.2 shows the complete list of concepts. It
is important to note that concepts are invariant against row or column permutations
in the cross-table T .

Table B.2: Concepts of the mammal example

top (Cats, Gibbons, Dogs, Dolphins, Humans, Whales , ;)
c6 (Gibbons, Dolphins, Humans, Whales , intelligent)
c5 (Cats, Gibbons, Dogs , hair-covered)
c4 (Dolphins, Whales , intelligent, marine)
c3 (Gibbons, Humans , intelligent, thumbed)
c2 (Cats, Dogs , hair-covered, four-legged)
c1 (Gibbons , hair-covered, intelligent, thumbed)

bottom (; , four-legged, hair-covered, intelligent, marine, thumbed)

B.3 Concept Lattice

The set of all the concepts of a given context forms a complete partial order. Thus
we define that a concept (X0, Y0) is a subconcept of concept (X1, Y1), denoted by
(X0, Y0) ≤ (X1, Y1), if X0 ⊆ X1 (or, equivalently, Y1 ⊆ Y0).

For instance, ({Dolphin,Whales}, {intelligent,marine}) is a subconcept
of

144 APPENDIX B. INTRODUCTION TO FORMAL CONCEPT ANALYSIS

({Gibbons,Dolphins,Humans,Whales}, {intelligent}).

Thus the set of concepts constitutes a concept lattice L(T). The concept lattice
for the mammal example is shown in Figure B.1.

Figure B.1: The lattice of the mammals example with classical notation

Each node in the lattice represents a concept and they are shown in Table B.2.
Given two elements (O1, A1) and (O2, A2) in the concept lattice, their infimum or
meet is defined as:

(O1, A2) u (O2, A2) = (O1 ∩O2, σ(O1 ∩O2)),

and their supremum or join as

(O1, A2) t (O2, A2) = (τ(O1 ∩O2), O1 ∩O2),

Following our mammal example, lets see the results of c3uc5 and c1tc2 when
we compute them:

c3 u c5 =({gibbons, humans} , {intelligent, thumbed})
u ({cats, gibbons, dogs} , {hair-covered})
= ({gibbons} , τ({gibbons}))
= ({gibbons} , {hair-covered, intelligent, thumbed})
= c1

B.3. CONCEPT LATTICE 145

Figure B.2: The lattice of the mammals example with complete notation

c1 t c2 =({gibbons} , {hair-covered, intelligent, thumbed})
t ({cats, dogs} , {hair-covered, four-legged})
= (τ({hair-covered}), {hair-covered})
= ({cats, dogs, gibbons} , {hair-covered})
= c5

Generalizing, the fundamental theorem for concept lattices [Wil81] relates sub-
concepts and super-concepts as follows:

⊔
i∈I

(Xi, Yi) =

(
τ

(⋂
i∈I

Yi

)
,
⋂
i∈I

Yi

)
.

ui∈I(Xi, Yi) =

(⋂
i∈I

Xi, σ

(⋂
i∈I

Xi

))
.

From the computation of the concepts, two special concepts are also introduced
in the concept lattice. Given a context C = (O,A,R), the two following concepts
are calculated:

146 APPENDIX B. INTRODUCTION TO FORMAL CONCEPT ANALYSIS

top = (τ(θ), σ(τ(θ)))

bottom = (τ(σ(θ)), σ(θ))

The top concept reflects the attributes that fit to all objects, and the bottom
concept reflects the objects that fit to all attributes. If there are not attributes that
fit all objects and/or there are not objects that fit all attributes, the definitions are
reduced to the following expressions:

top = (O, θ)

bottom = (θ,A)

This means that in the case of top concept, there is no column with crosses for all
the objects in the table T ; and in the case of bottom concept, there is no row with
crosses for all the attributes in the table T .

List of Figures

1.1 Procedural Object-Oriented Code — Rectangles represent classes,
edges represent the inheritance relationships between classes, height
and width of rectangles are dependent upon number of methods
and number of attributes respectively, and node color is determined
by the number of lines of code (a snapshot taken using the MOOSE
reverse engineering environment [MGL06]). 4

1.2 Thesis Plan . 7
1.3 An Approach for Restructuring Classes in POC 10
1.4 Testing Plasma Tubes . 12

2.1 Polymetric Views: Good Design 20
2.2 Polymetric Views: Design with Defects 20
2.3 Aspect Mining and Refactoring [KMT07] 31
2.4 Aspect Mining Tools and Techniques 32

3.1 Procedural Object-Oriented Code — Rectangles represent classes,
edges represent the inheritance relationships between classes, height
and width of rectangles is dependent upon number of methods and
number of attributes respectively, and node color is determined by
the number of lines of code. 45

3.2 Taxonomy of the POC Design Defects and Code Smells 46
3.3 Arrangement of Data and Controller Classes in POC 47
3.4 Cloned Calls - Missing Template Behavior 49
3.5 Duplicate Template Code . 49
3.6 Coarse-Grained Polymetric Views - Nodes represent classes, edges

represent the inheritance relationships between classes, height and
width of rectangles is dependent upon number of methods and
number of attributes respectively, and node color is determined by
the number of lines of code. 55

3.7 Scattering Analyzer . 58

4.1 Subsystem Classes Access and Modify 63
4.2 Overall Object Identification Approach 65
4.3 Principal Class Identification . 65

147

148 LIST OF FIGURES

4.4 Principal Class Compositions . 67
4.5 Common Compositions . 68
4.6 Various Views Obtained for Class Hierarchies from Principal Classes 69
4.7 Fundamental View . 70
4.8 Resulting Class Hierarchy . 70
4.9 Common Calls View of Principal Classes 70
4.10 Resulting Interactions through Method Calls 71
4.11 Association View . 72
4.12 Resulting Class Hierarchy . 72

5.1 Scattered Concerns in Aspect Browser 81
5.2 Inter-Class and Intra-Class Method Invocations in POC 84
5.3 Separation of Data and Behavior 88
5.4 Classification of Scattered Method Calls 90

6.1 Concern Classification Approach 95
6.2 Domain Entity Concern Identification 97
6.3 Aspect Identification . 98
6.4 Concern Classification Algorithm 100

7.1 Tool for Restructuring Classes 109
7.2 Tool for Restructuring Classes 110
7.3 Principal Class Compositions . 113
7.4 A Simple Principal Class - Quality Control 113
7.5 Fundamental View of a complex Class 114
7.6 Common Interaction View of a complex Class 115
7.7 Concern Diffusion over Operations for Concerns 118
7.8 Comparison of DOS and Spread-out 119

A.1 Code orienté objet procédural 132
A.2 Le plan de la thèse . 135
A.3 Approche pour la restructuration des classes dans le COP 138

B.1 The lattice of the mammals example with classical notation 144
B.2 The lattice of the mammals example with complete notation . . . 145

List of Tables

1.1 Case Study Metrics . 13

5.1 Crosscutting Concerns and their Frequency 82
5.2 Application methods and associated Fan-in values 85

7.1 Detecting Scattered Enumerated Types 107
7.2 Duplicate Methods in Identifier Analyzer 107
7.3 Fan-in for Glossary . 108
7.4 Identification of Principal Classes 111
7.5 Some Principal Classes . 111
7.6 Identification of Compositions 112
7.7 Algorithm Results . 116
7.8 Concern Scattering Results . 118

B.1 Mammal example: Table T represents the binary relations 141
B.2 Concepts of the mammal example 143

149

150 LIST OF TABLES

Bibliography

[ADN03] Gabriela Arévalo, Stéphane Ducasse, and Oscar Nierstrasz. Under-
standing classes using X-Ray views. In Proceedings of 2nd Inter-
national Workshop on MASPEGHI 2003 (ASE 2003), pages 9–18.
CRIM — University of Montreal (Canada), October 2003.

[ADN05a] Gabriela Arévalo, Stéphane Ducasse, and Oscar Nierstrasz. Dis-
covering unanticipated dependency schemas in class hierarchies. In
Proceedings of 9th European Conference on Software Maintenance
and Reengineering (CSMR’05), pages 62–71. IEEE Computer Soci-
ety, March 2005.

[ADN05b] Gabriela Arévalo, Stéphane Ducasse, and Oscar Nierstrasz. Lessons
learned in applying formal concept analysis. In Proceedings of
3rd International Conference on Formal Concept Analysis (ICFCA
’05), volume 3403 of LNAI (Lecture Notes in Artificial Intelligence),
pages 95–112. Springer Verlag, February 2005.

[Aré05] Gabriela Arévalo. High Level Views in Object-Oriented Systems
using Formal Concept Analysis. PhD thesis, University of Berne,
Berne, January 2005.

[BD07] Muhammad Usman Bhatti and Stphane Ducasse. Surgical infor-
mation to detect design problems with moose. In Proceedings of
FAMOOSr (1st Workshop on FAMIX and MOOSE in Reengineer-
ing), 2007.

[BD08] Muhammad Usman Bhatti and Stéphane Ducasse. Mining and clas-
sification of diverse crosscutting concerns. In LATE ’08: Proceed-
ings of the 2008 AOSD workshop on Linking aspect technology and
evolution, 2008.

[BDH08] Muhammad Usman Bhatti, Stéphane Ducasse, and Marianne
Huchard. Reconsidering Classes in Procedural Object-Oriented
Code. In Proceedings of WCRE ’08 (15th Working Conference on
Reverse Engineering), pages 257–266, 2008.

151

152 BIBLIOGRAPHY

[BDR08] Muhammad Usman Bhatti, Stéphane Ducasse, and Awais Rashid.
Aspect mining in procedural object oriented code. In The 16th IEEE
International Conference on Program Comprehension, pages 230–
235, 2008.

[BK04] Silvia Breu and Jens Krinke. Aspect mining using event traces. In
ASE ’04: Proceedings of the 19th IEEE international conference on
Automated software engineering, pages 310–315, Washington, DC,
USA, 2004. IEEE Computer Society.

[BMMM98] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III,
and Thomas J. Mowbray. AntiPatterns: Refactoring Software, Ar-
chitectures, and Projects in Crisis. John Wiley Press, 1998.

[BMW94] Ted J. Biggerstaff, Bharat G. Mitbander, and Dallas E. Webster. Pro-
gram understanding and the concept assignment problem. Commu-
nications of the ACM, 37(5):72–82, May 1994.

[BNL05] Dirk Beyer, Andreas Noack, and Claus Lewerentz. Efficient rela-
tional calculation for software analysis. IEEE Trans. Softw. Eng.,
31(2):137–149, 2005.

[BvDTvE04] Magiel Bruntink, Arie van Deursen, Tom Tourwe, and Remco van
Engelen. An evaluation of clone detection techniques for identifying
crosscutting concerns. In ICSM ’04: Proceedings of the 20th IEEE
International Conference on Software Maintenance, pages 200–209,
Washington, DC, USA, 2004. IEEE Computer Society.

[BW97] Alan W. Brown and Kurt C. Wallnau. Enginnering of component-
based systems. In Alan W. Brown, editor, Component-Based Soft-
ware Engineering, pages 7–15. IEEE Press, 1997.

[BZ06] Silvia Breu and Thomas Zimmermann. Mining aspects from ver-
sion history. In ASE ’06: Proceedings of the 21st IEEE/ACM In-
ternational Conference on Automated Software Engineering, pages
221–230, Washington, DC, USA, 2006. IEEE Computer Society.

[Cas94] Eduardo Casais. Automatic reorganization of object-oriented hier-
archies: A case study. Object-Oriented Systems, 1(2):95–115, De-
cember 1994.

[Cas98] Eduardo Casais. Re-engineering object-oriented legacy systems.
Journal of Object-Oriented Programming, 10(8):45–52, January
1998.

[CB91] Gianluigi Caldiera and Victor R. Basili. Identifying and qualify-
ing reusable software components. IEEE Computer, 24(2):61–70,
February 1991.

BIBLIOGRAPHY 153

[CCDD99] Gerardo Canfora, Aniello Cimitile, Andrea De Lucia, and
Giuseppe A. Di Lucca. A Case Study of Applying an Eclectic Ap-
proach to Identify Objects in Code. In Proceedings of IWPC ’99 (7th
International Workshop on Program Comprehension), pages 136–
143. IEEE, IEEE Computer Society, May 1999.

[CCM96] G. Canfora, A. Cimitile, and M. Munro. An improved algorithm for
identifying objects in code. Softw. Pract. Exper., 26(1):25–48, 1996.

[Che04] Checkstyle, 2004. http://checkstyle.sourceforge.
net/.

[Ciu99] Oliver Ciupke. Automatic detection of design problems in object-
oriented reengineering. In Proceedings of TOOLS 30 (USA), pages
18–32, 1999.

[CLLF99] Aniello Cimitile, Andrea De Lucia, Guiseppe Antonio Di Lucca,
and Anna Rita Fasolino. Identifying objects in legacy systems using
design metrics. J. Syst. Softw., 44(3):199–211, 1999.

[CMM+05] Mario Ceccato, Marius Marin, Kim Mens, Leon Moonen, Paolo
Tonella, and Tom Tourwe. A qualitative comparison of three as-
pect mining techniques. In 13th International Workshop on Program
Comprehension (IWPC), pages 13–22. IEEE CS, 2005.

[DDHL96] Hervé Dicky, Christoph Dony, Marianne Huchard, and Thérèse
Libourel. On Automatic Class Insertion with Overloading. In
Proceedings of OOPSLA ’96 (11th ACM SIGPLAN conference on
Object-oriented Programming, Systems, Languages, and Applica-
tions), pages 251–267. ACM Press, 1996.

[DDN02] Serge Demeyer, Stéphane Ducasse, and Oscar Nierstrasz. Object-
Oriented Reengineering Patterns. Morgan Kaufmann, 2002.

[DG03] Uri Dekel and Yossi Gil. Revealing class structure with concept
lattices. In WCRE, pages 353–362. IEEE Press, November 2003.

[DGN05] Stéphane Ducasse, Tudor Gı̂rba, and Oscar Nierstrasz. Moose:
an agile reengineering environment. In Proceedings of ESEC/FSE
2005, pages 99–102, September 2005. Tool demo.

[DHHaV04] Michel Dao, Marianne Huchard, Mohamed Rouane Hacene, and
Cyril Roume andPetko Valtchev. Improving Generalization Level
in UML Models Iterative Cross Generalization in Practice. In Pro-
ceedings of ICCS ’94 (12th International Conference on Conceptual
Structures), volume 3127 of Lecture Notes in Computer Science,
pages 346–360. Springer-Verlag, July 2004.

http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/

154 BIBLIOGRAPHY

[Dij76] Edsger Wybe Dijkstra. A Discipline of Programming. Prentice Hall,
1976.

[DLT01] Stéphane Ducasse, Michele Lanza, and Sander Tichelaar. The
moose reengineering environment. Smalltalk Chronicles, August
2001.

[DM00] et al. Didier Martin, Mark Birbeck. Professional XML. Wrox Press
Ltd., 2000.

[DSP08] Karim Dhambri, Houari A. Sahraoui, and Pierre Poulin. Visual de-
tection of design anomalies. In 12th European Conference on Soft-
ware Maintenance and Reengineering 2008, pages 279–283, April
2008.

[EKS03] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. Locating
features in source code. IEEE Computer, 29(3):210–224, March
2003.

[ESEE92] Stephen G. Eick, Joseph L. Steffen, and Sumner Eric E., Jr.
SeeSoft—a tool for visualizing line oriented software statistics.
IEEE Transactions on Software Engineering, 18(11):957–968,
November 1992.

[EZS+08] Marc Eaddy, Thomas Zimmermann, Kaitlin D. Sherwood, Vibhav
Garg, Gail C. Murphy, Nachiappan Nagappan, and Alfred V. Aho.
Do crosscutting concerns cause defects? IEEE Transactions on Soft-
ware Engineering, 2008.

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring: Improving the Design of Existing Code. Ad-
dison Wesley, 1999.

[FECA05] Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit,
editors. Aspect-Oriented Software Development. Addison-Wesley,
Boston, 2005.

[FF00] Robert E. Filman and Daniel P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. Technical report, 2000.

[FP96] Norman Fenton and Shari Lawrence Pfleeger. Software Metrics: A
Rigorous and Practical Approach. International Thomson Computer
Press, London, UK, second edition, 1996.

[FSG+08] Eduardo Figueiredo, Cláudio Sant’Anna, Alessandro Garcia, Thi-
ago T. Bartolomei, Walter Cazzola, and Alessandro Marchetto. On
the maintainability of aspect-oriented software: A concern-oriented
measurement framework. In Conference on Software Maintenance
and Reengineering, 2008, pages 183–192, 2008.

BIBLIOGRAPHY 155

[FxC06] Fxcop, June 2006. http://msdn.microsoft.com/en-us/
library/bb429476.aspx.

[GBF+07] Phil Greenwood, Thiago Bartolomei, Eduardo Figueiredo, Alessan-
dro Garcia, Nlio Cacho, Claudio SantAnna, Paulo Borba,
Uirakulesza, and Awais Rashid. On the impact of aspectual decom-
positions on design stability: An empirical study. In Proceedings of
ECOOP2007, LNCS, pages 176–200. Springer-Verlag, 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, Reading, Mass., 1995.

[GK95] Harald Gall and René Klosch. Finding objects in procedural pro-
grams: an alternative approach. In WCRE ’95: Proceedings of
the Second Working Conference on Reverse Engineering, page 208,
Washington, DC, USA, 1995. IEEE Computer Society.

[GK05] K. Gybels and A. Kellens. Experiences with identifying aspects in
Smalltalk using ‘unique methods’. In Workshop on Linking Aspect
Technology and Evolution, 2005.

[GKY00] W. G. Griswold, Y. Kato, and J. J. Yuan. Aspectbrowser: Tool
support for managing dispersed aspects. Technical Report CS1999-
0640, 3, 2000.

[GL91] Keith Brian Gallagher and James R. Lyle. Using Program Slicing
in Software Maintenance. Transactions on Software Engineering,
17(18):751–761, August 1991.

[GW99] Bernhard Ganter and Rudolf Wille. Formal Concept Analysis:
Mathematical Foundations. Springer Verlag, 1999.

[Har00] Maarit Harsu. Identifying object-oriented features from procedural
software. Nordic Journal of Computing, 7(2):126–142, 2000.

[HK01] Jan Hannemann and Gregor Kiczales. Overcoming the prevalent
decomposition in legacy code. 2001.

[HOU] Stefan Hanenberg, Christian Oberschulte, and Rainer Unl. Refac-
toring of aspect-oriented software. In Proceedings Net.ObjectDays,
year = 2003.

[HRB+06] Mark Harman, Filippo Ricca, David Binkley, Mariano Ceccato,
and Paolo Tonella. Tool-supported refactoring of existing object-
oriented code into aspects. IEEE Transactions on Software Engi-
neering, 32(9):698–717, 2006.

http://msdn.microsoft.com/en-us/library/bb429476.aspx
http://msdn.microsoft.com/en-us/library/bb429476.aspx

156 BIBLIOGRAPHY

[HS96] Brian Henderson-Sellers. Object-Oriented Metrics: Measures of
Complexity. Prentice-Hall, 1996.

[HWG06] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Program-
ming Language, The (2nd Edition) (Microsoft .NET Development
Series). Addison-Wesley Professional, 2006.

[Int06] ECMA International. Standard ECMA-335 - Common Language
Infrastructure (CLI). 4th edition, June 2006.

[JHo] Jhotdraw: a java gui framework for technical and structured graph-
ics. www.jhotdraw.org.

[Joh77] S. C. Johnson. Lint, a c program checker. In Computer Science Tech-
nical Report, Bell Laboratories, NJ, USA, December 1977. Murray
Hill.

[Kic96] Gregor Kiczales. Aspect-oriented programming: A position paper
from the Xerox PARC aspect-oriented programming project. In Max
Muehlhauser, editor, Special Issues in Object-Oriented Program-
ming. Dpunkt Verlag, 1996.

[KKI02] Toshihiro Kamiya, Shinji Kusumoto, and Katsuro Inoue. CCFinder:
A multi-linguistic token-based code clone detection system for large
scale source code. IEEE Transactions on Software Engineering,
28(6):654–670, 2002.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier, and John Irwin. Aspect-
Oriented Programming. In Mehmet Aksit and Satoshi Matsuoka, ed-
itors, Proceedings ECOOP ’97, volume 1241 of LNCS, pages 220–
242, Jyvaskyla, Finland, June 1997. Springer-Verlag.

[KM05] Gregor Kiczales and Mira Mezini. Aspect-oriented programming
and modular reasoning. In ICSE ’05: Proceedings of the Interna-
tional Conference on Software Engineering, 2005.

[KMT07] Andy Kellens, Kim Mens, and Paolo Tonella. A survey of auto-
mated code-level aspect mining techniques. Transactions on Aspect-
Oriented Software Development, 4(4640):143–162, 2007.

[KP99] Kostas Kontogiannis and Prashant Patil. Evidence driven object
identification in procedural code. In STEP ’99: Proceedings of the
Software Technology and Engineering Practice, page 12, Washing-
ton, DC, USA, 1999. IEEE Computer Society.

www.jhotdraw.org

BIBLIOGRAPHY 157

[Kri06] Jens Krinke. Mining control flow graphs for crosscutting concerns.
In WCRE ’06: Proceedings of the 13th Working Conference on Re-
verse Engineering, pages 334–342, Washington, DC, USA, 2006.
IEEE Computer Society.

[KSG+06] Uira Kulesza, Claudio Sant’Anna, Alessandro Garcia, Roberta
Coelho, Arndt von Staa, and Carlos Lucena. Quantifying the ef-
fects of aspect-oriented programming: A maintenance study. In
ICSM ’06: Proceedings of the 22nd IEEE International Conference
on Software Maintenance, pages 223–233, Washington, DC, USA,
2006. IEEE Computer Society.

[Lad03] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented
Programming. Manning Publications Co., Greenwich, CT, USA,
2003.

[LD03] Michele Lanza and Stéphane Ducasse. Polymetric views—a
lightweight visual approach to reverse engineering. Transactions
on Software Engineering (TSE), 29(9):782–795, September 2003.

[LFGP97] Giuseppe A. Di Lucca, Anna Rita Fasolino, Patrizia Guerra, and Sil-
via Petruzzelli. Migrating legacy systems towards object-oriented
platforms. In ICSM ’97: Proceedings of the International Confer-
ence on Software Maintenance, pages 122–129, Washington, DC,
USA, 1997. IEEE Computer Society.

[LM99] A. Lai and G. Murphy. The structure of features in java code: An
exploratory investigation. In OOPSLA’99 Multi-Dimensional Sepa-
ration of Concerns Workshop, 1999.

[LM06] Michele Lanza and Radu Marinescu. Object-Oriented Metrics in
Practice. Springer-Verlag, 2006.

[Mar00] Robert C. Martin. Design principles and design patterns, 2000.
www.objectmentor.com.

[Mar04] Radu Marinescu. Detection strategies: Metrics-based rules for de-
tecting design flaws. In 20th IEEE International Conference on Soft-
ware Maintenance (ICSM’04), pages 350–359, Los Alamitos CA,
2004. IEEE Computer Society Press.

[MDM07] Marius Marin, Arie van Deursen, and Leon Moonen. Identifying
crosscutting concerns using fan-in analysis. ACM Transactions on
Software Engineering and Methodology, 17(1):1–37, 2007.

[Mey88] Bertrand Meyer. Object-oriented Software Construction. Prentice-
Hall, 1988.

158 BIBLIOGRAPHY

[MGL06] Michael Meyer, Tudor Gı̂rba, and Mircea Lungu. Mondrian: An ag-
ile visualization framework. In ACM Symposium on Software Visu-
alization (SoftVis’06), pages 135–144, New York, NY, USA, 2006.
ACM Press.

[MGMD08] Naouel Moha, Yann-Gaël Guéhéneuc, Anne-Françoise Le Meur,
and Laurence Duchien. A domain analysis to specify design defects
and generate detection algorithms. In Proceedings of International
Conference on Fundamental Approaches to Software Engineering
(FASE 2008), Hungary, pages 276–291, 2008.

[MHVG08] Naouel Moha, Amine Mohamed Rouane Hacene, Petko Valtchev,
and Yann-Gaël Guéhéneuc. Refactorings of design defects using
relational concept analysis. In ICFCA, pages 289–304, 2008.

[MKK08] Kim Mens, Andy Kellens, and Jens Krinke. Pitfalls in aspect mining.
In Proceedings of WCRE ’08 (15th Working Conference on Reverse
Engineering), pages 113–122, 2008.

[MlHG06] Naouel Moha, Duc loc Huynh, and Yann-Gaël Guéhéneuc. Une
taxonomie et un métamodèle pour la détection des défauts de con-
ception. In Langages et Modèles à Objets, pages 201–216, 2006.

[Moh08] Naouel Moha. DECOR : Détection et correction des défauts dans
les systèmes orientés objet. Ph.D. thesis, Université des Sciences et
Technologies de Lille, August 2008.

[Mon05] Miguel Pessoa Monteiro. Refactorings to Evolve Object-Oriented
Systems with Aspect-Oriented Concepts. Ph.D. thesis, Universidade
do Minho, July 2005.

[Moo96] Ivan Moore. Automatic Inheritance Hierarchy Restructuring and
Method Refactoring. In Proceedings of OOPSLA ’96 (11th Annual
Conference on Object-Oriented Programming Systems, Languages,
and Applications), pages 235–250. ACM Press, 1996.

[Mun05] Matthew James Munro. Product metrics for automatic identification
of ”bad smell” design problems in java source-code. In METRICS
’05: Proceedings of the 11th IEEE International Software Metrics
Symposium, page 15, Washington, DC, USA, 2005. IEEE Computer
Society.

[NDe05] Ndepend. Website, 2005. http://www.ndepend.com/.

[NK95] Philipp Newcomb and Gordon Kotik. Reengineering procedural into
object-oriented systems. In Proceedings of WCRE (Working Confer-
ence on Reverse Engineering), pages 237–250. IEEE CS, 1995.

BIBLIOGRAPHY 159

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks.
Ph.D. thesis, University of Illinois, 1992.

[Par72] David L. Parnas. On the criteria to be used in decomposing systems
into modules. CACM, 15(12):1053–1058, December 1972.

[PGN08] Chris Parnin, Carsten Görg, and Ogechi Nnadi. A catalogue of
lightweight visualizations to support code smell inspection. In Soft-
Vis ’08: Proceedings of the 4th ACM symposium on Software visu-
allization, pages 77–86, New York, NY, USA, 2008. ACM.

[PMD02] Pmd. Website, June 2002. http://pmd.sourceforge.net/.

[Por80] Martin F. Porter. An algorithm for suffix stripping. Program,
14(3):130–137, 1980.

[Pre01] Roger S. Pressman. Software Engineering: A Practitioner’s Ap-
proach. McGraw-Hill Higher Education, 2001.

[RBC05] Meghan Revelle, Tiffany Broadbent, and David Coppit. Understand-
ing concerns in software: Insights gained from two case studies. In
IWPC ’05: Proceedings of the 13th International Workshop on Pro-
gram Comprehension, pages 23–32, Washington, DC, USA, 2005.
IEEE Computer Society.

[Rie96] Arthur Riel. Object-Oriented Design Heuristics. Addison Wesley,
Boston MA, 1996.

[RM02] Martin P. Robillard and Gail C. Murphy. Concern graphs: find-
ing and describing concerns using structural program dependencies.
In ICSE’02: Proceedings of the 24th International Conference on
Software Engineering, pages 406–416, New York, NY, USA, 2002.
ACM Press.

[RM07] Martin P. Robillard and Gail C. Murphy. Representing concerns in
source code. ACM Trans. Softw. Eng. Methodol., 16(1):3, 2007.

[RURD07] Chanchal Kumar Roy, Mohammad Gias Uddin, Banani Roy, and
Thomas R. Dean. Evaluating aspect mining techniques: A case
study. In ICPC ’07: Proceedings of the 15th IEEE International
Conference on Program Comprehension, pages 167–176, Washing-
ton, DC, USA, 2007. IEEE Computer Society.

[RW98] Spencer Rugaber and Jim White. Restoring a legacy: Lessons
learned. IEEE Software, 15(4):28–33, July 1998.

[SB] Assia Ait Ali Slimane and Muhammad Usman Bhatti. Utilisa-
tion des services et des aspects pour la réutilisabilité du logiciel

160 BIBLIOGRAPHY

d’un automate pour l’analyse de plasma. In Actes de la Quatrième
Journée Francophone sur le Développement du Logiciel par Aspects
(JFDLPA’07), Toulose, France, March.

[SCRR05] Américo Sampaio, Ruzanna Chitchyan, Awais Rashid, and Paul
Rayson. Ea-miner: a tool for automating aspect-oriented re-
quirements identification. In ASE ’05: Proceedings of the 20th
IEEE/ACM international Conference on Automated software engi-
neering, pages 352–355, New York, NY, USA, 2005. ACM.

[Sem07] Semmlecode. Website, October 2007. http://semmle.com/.

[SGM00] Houari A. Sahraoui, Robert Godin, and Thierry Miceli. Can metrics
help to bridge the gap between the improvement of oo design quality
and its automation? In ICSM ’00: Proceedings of the International
Conference on Software Maintenance (ICSM’00), pages 154–162,
Washington, DC, USA, 2000. IEEE Computer Society.

[SGP04] David Shepherd, Emily Gibson, and Lori L. Pollock. Design and
evaluation of an automated aspect mining tool. In Software Engi-
neering Research and Practice, pages 601–607, 2004.

[Sif98] Michael Benjamin Siff. Techniques For Software Renovation. Ph.D.
thesis, University Of Wisconsin-Madison, May 1998.

[SLMM99] H. A. Sahraoui, H. Lounis, W. Melo, and H. Mili. A concept for-
mation based approach to object identification in procedural code.
Automated Software Engineering Journal, 6(4):387–410, 1999.

[SMLD97] Houari A. Sahraoui, Walcélio Melo, Hakim Lounis, and Francois
Dumont. Applying Concept Formation Methods to Object Identi-
fication in Procedural Code. In Proceedings of ASE ’97 (12th In-
ternational Conference on Automated Software Engineering), pages
210–218. IEEE, IEEE Computer Society Press, November 1997.

[Sne96] Gregor Snelting. Reengineering of Configurations Based on Math-
ematical Concept Analysis. ACM Transactions on Software Engi-
neering and Methodology, 5(2):146–189, April 1996.

[Som00] Ian Sommerville. Software Engineering. Addison Wesley, sixth
edition, 2000.

[SPPCC05] David Shepherd, Jeffrey Palm, Lori Pollock, and Mark Chu-Carroll.
Timna: a framework for automatically combining aspect mining
analyses. In ASE ’05: Proceedings of the 20th IEEE/ACM interna-
tional Conference on Automated software engineering, pages 184–
193, New York, NY, USA, 2005. ACM.

BIBLIOGRAPHY 161

[SR99] Michael Siff and Thomas Reps. Identifying modules via concept
analysis. Transactions on Software Engineering, 25(6):749–768,
November 1999.

[SS04] Mirko Streckenbach and Gregor Snelting. Refactoring class hierar-
chies with KABA. In OOPSLA ’04: Proceedings of the 19th annual
ACM SIGPLAN Conference on Object-oriented programming, sys-
tems, languages, and applications, pages 315–330, New York, NY,
USA, 2004. ACM Press.

[ST97] Gregor Snelting and Frank Tip. Reengineering Class Hi-
erarchies using Concept Analysis. Technical Report RC
21164(94592)24APR97, IBM T.J. Watson Research Center, IBM
T.J. Watson Research Center, P.O. Box 704, Yorktown Heights, NY
10598, USA, 1997.

[ST98] Gregor Snelting and Frank Tip. Reengineering Class Hierarchies
using Concept Analysis. In ACM Trans. Programming Languages
and Systems, 1998.

[SVKS02] H. Sahraoui, P. Valtchev, I. Konkobo, and S. Shen. Object identi-
fication in legacy code as a grouping problem. In Proceedings of
the 26th Computer Software and Applications Conference (COMP-
SAC’02), 2002.

[TC04a] Paolo Tonella and Mariano Ceccato. Aspect mining through the
formal concept analysis of execution traces. In Proceedings of
WCRE 2004 (11th International Working Conference in Reverse En-
gineering), pages 112–121. IEEE Computer Society Press, Novem-
ber 2004.

[TC04b] Paolo Tonella and Mariano Ceccato. Migrating interface implemen-
tation to aspects. In ICSM ’04: Proceedings of the 20th IEEE In-
ternational Conference on Software Maintenance, pages 220–229,
Washington, DC, USA, 2004. IEEE Computer Society.

[TDDN00] Sander Tichelaar, Stéphane Ducasse, Serge Demeyer, and Oscar
Nierstrasz. A meta-model for language-independent refactoring.
In Proceedings of International Symposium on Principles of Soft-
ware Evolution (ISPSE ’00), pages 157–167. IEEE Computer Soci-
ety Press, 2000.

[TM03] Tom Tourwé and Tom Mens. Identifying refactoring opportunities
using logic meta programming. In Proc. 7th European Conf. Soft-
ware Maintenance and Re-engineering (CSMR 2003), pages 91–
100. IEEE Computer Society Press, March 2003.

162 BIBLIOGRAPHY

[TM04] Tom Tourwe and Kim Mens. Mining aspectual views using formal
concept analysis. In SCAM ’04: Proceedings of the Source Code
Analysis and Manipulation, Fourth IEEE International Workshop,
pages 97–106, Washington, DC, USA, 2004. IEEE Computer Soci-
ety.

[TM05] Adrian Trifu and Radu Marinescu. Diagnosing design problems in
object oriented systems. In Proceedings of 12th Working Confer-
ence on Reverse Engineering (WCRE 2005), 7-11 November 2005,
Pittsburgh, PA, USA, pages 155–164, Los Alamitos CA, 2005. IEEE
Computer Society.

[TOHJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley
M. Sutton Jr. N degrees of separation: Multi-dimensional separa-
tion of concerns. In ICSE, pages 107–119, 1999.

[Tri08] Mircea Trifu. Using dataflow information for concern identifica-
tion in object-oriented software systems. In Conference on Software
Maintenance and Reengineering, 2008, pages 193–202, 2008.

[TWSM94] Scott R. Tilley, Kenny Wong, Margaret-Anne D. Storey, and
Hausi A. Müller. Programmable reverse enginnering. Interna-
tional Journal of Software Engineering and Knowledge Engineer-
ing, 4(4):501–520, 1994.

[vDK99a] Arie van Deursen and Tobias Kuipers. Identifying objects using
cluster and concept analysis. In ICSE, pages 246–255. IEEE Press,
1999.

[vDK99b] Arie van Deursen and Tobias Kuipers. Identifying objects using
cluster and concept analysis. In Proceedings of ICSE ’99 (21st In-
ternational Conference on Software Engineering), pages 246–255.
ACM Press, 1999.

[vEBvDT05] Remco van Engelen, Magiel Bruntink, Arie van Deursen, and Tom
Tourwe. On the use of clone detection for identifying crosscutting
concern code. IEEE Trans. Softw. Eng., 31(10):804–818, 2005.

[VGRH03] Petko Valtchev, David Grosser, Cyril Roume, and Mohamed Rouane
Hacene. Galicia: an open platform for lattices. In 11th Interna-
tional Conference on Conceptual Structures (ICCS’03, pages 241–
254. Shaker Verlag, 2003.

[vM02] Eva van Emden and Leon Moonen. Java quality assurance by detect-
ing code smells. In Proc. 9th Working Conf. Reverse Engineering,
pages 97–107. IEEE Computer Society Press, October 2002.

BIBLIOGRAPHY 163

[WGH00] Eric Wong, Swapna Gokhale, and Joseph Horgan. Quantifying the
closeness between program components and features. Journal of
Systems and Software, 54(2):87–98, 2000.

[Wig97] Theo Wiggerts. Using clustering algorithms in legacy systems re-
modularization. In Ira Baxter, Alex Quilici, and Chris Verhoef, edi-
tors, Proceedings of WCRE ’97 (4th Working Conference on Reverse
Engineering), pages 33–43. IEEE Computer Society Press, 1997.

[Wil81] Rudolf Wille. Restructuring lattice theory: An approach based on
hierarchies of concepts. Ordered Sets, Ivan Rival Ed., NATO Ad-
vanced Study Institute, 83:445–470, September 1981.

[ZJ04] Charles Zhang and Hans-Arno Jacobsen. Prism is research in aspect
mining. In OOPSLA ’04: Companion to the 19th annual ACM SIG-
PLAN conference on Object-oriented programming systems, lan-
guages, and applications, pages 20–21, New York, NY, USA, 2004.
ACM.

	Acknowledgements
	Abstract
	Résumé
	Introduction
	Thesis Context
	Problem Statement
	Procedural Object-oriented Code
	Restructuring Classes in Procedural Object-oriented Code
	Aspect Mining in Procedural Object-Oriented Code

	Contributions
	Code Smells and Detection Strategy
	Restructuring Classes in Procedural Object-oriented Code
	Classification Approach and Metrics for Scattered Concerns

	Industrial Context
	Case Study: Blood Plasma Analysis Machines
	Case Study Quality Metrics

	Thesis Structure

	Related Work
	Defects in Software
	Code Smells
	Object-Oriented Reengineering Patterns
	AntiPatterns
	Design Heuristics
	Limitations of Software Defect Descriptions

	Design Defect Detection in Software
	Heuristic-based Design Defect Detection
	Query-based Design Defect Detection
	Design Defects Taxonomy
	Visualizations for Design Defect Detection
	Other Tools
	Limitations of Design Defects Detection

	Object Identification and Class Restructuring
	Object Identification in Procedural Code
	Object-Oriented Restructuring
	Limitations of object-oriented Restructuring

	Identification of Crosscutting Concerns
	Crosscutting Concerns
	Aspect Mining
	Concern Quantification
	Aspect Refactoring
	Limitations in Crosscutting Concerns Identification

	Discussion
	Design Defects and Code Smells
	Object-Oriented Restructuring
	Aspect Mining
	Proposed Solution

	Procedural Object-Oriented Code
	Overview
	Background — Object-Oriented Paradigm
	Procedural Object-Oriented Code
	POC Design Defects and Code Smells
	Missing Domain Entities
	Shallow Inheritance Hierarchies
	Missing Types

	Detection of POC Design Defects and Code Smells
	Detecting Scattered Code in POC
	Proposed Approach — Scattering Analyzer
	Discussion

	Conclusion

	Reconsidering Classes in POC
	Overview
	Formal Concept Analysis
	Motivation
	Goals of our Intended Model
	Current FCA-based Techniques

	Object Identification in POC
	Identification of Principal Classes
	Principal Class Compositions
	Hierarchical Method-Attribute Relationship
	The case of Enumerated Types

	Discussion
	Conclusion

	Scattered Concerns in POC
	Overview
	Aspect Mining in Procedural Object-Oriented Code
	Aspect Browser
	Aspect Browser Results
	FAN-in Metric
	FAN-in Results
	Comparison of Results
	Taxonomy of Crosscuttingness in POC

	Discussion
	Conclusion

	Concern Classification in POC
	Overview
	Concern Classification
	Model for Concern Classification
	Domain Entity Concern Assignment
	Algorithm for Concern Classification

	Scattering Metrics of Crosscutting Concerns
	Discussion
	Conclusion

	Tools and Validation
	Scattering Analyzer
	Identifier Analysis
	Identifier Results
	Fan-in Metric
	Fan-in Results
	Discussion

	Reconsidering Classes: Application of the Approach
	Tool Support
	Validation of the Approach
	Discussion

	Classifying Crosscutting Concerns
	Validating Concern Classification Approach
	Scattering Metrics of Crosscutting Concerns
	Discussion

	Conclusion

	Conclusion and Perspectives
	Contributions
	Future Work

	Sommaire
	La Problématique
	Code orienté objet procédural
	La restructuration des classes dans le COP
	Identification d'aspect dans le COP

	Contributions
	Mauvaise odeurs et leur détection
	L'approche pour la restructuration des classes
	L'approche pour la classification des préoccupations transverses

	Introduction to Formal Concept Analysis
	Introduction
	Context and Concepts
	Concept Lattice

