
Numéro d’ordre : XXX

THÈSE

présentée en vue d’obtenir le grade de

Docteur

Discipline: Informatique

par

Carolina Hernández Phillips

Doctorat de l’Université de Lille

Délivré par IMT Lille Douai

Bootstrap-Based Language Development:
Turning an existing VM into a polyglot VM

Soutenue le XX XXX 2021 devant le jury d’examen :

Rapporteurs : Alain PLANTEC Professeur – Universit de Bretagne Occidentale
Wolfgang DE MEUTER Professeur – Vrije Universiteit Brussel

Examinateurs : Elisa GONZALEZ BOIX Professeur – Vrije Universiteit Brussel
Michael ENGEL Professeur assistant – NTNU Norwegian University of

Science and Technology

Directeur : Luc FABRESSE Professeur – IMT Nord Europe
Encadrant : Guillermo POLITO Docteur – Univ. Lille, CNRS, Inria, CRIStAL
Invités : Stéphane DUCASSE Directeur de Recherche – INRIA Lille

Noury BOURAQADI Professeur – IMT Nord Europe

Ecole Doctorale SPI 072 (Lille I, Lille III, Artois, ULCO, UVHC, Centrale Lille, IMT Nord Europe)

Copyright c⃝ 2021 by Carolina Hernández Phillips

This work is licensed under a Creative Commons
“Attribution-NonCommercial-ShareAlike 3.0 Unported” li-
cense.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

Abstract

Programming languages need to evolve as software requirements change, but their proto-
typing and extension comes at the cost of great development efforts. Reflective languages
which are able to modify their own semantics provide a high-level approach to language
implementation. While easy to use, the reflective approach has a limited range of lan-
guages it can produce, because modifications to core system elements can break circular
references and leave the system in an inconsistent state. To overcome this limitation
the system’s kernel architecture must be re-built in a bootstrap process. Bootstrap has
been shown effective to produce a family of similar languages. However, adapting an
existing bootstrap implementation to generate new languages is challenging. This diffi-
culty is caused by a lack of proper abstractions for language specification and, similarly
to other techniques, a late manifestation of errors together with abstraction leaps during
debugging tasks.

In this dissertation we study the design of a bootstrap based language development
technique that supports the generation of multiple languages with low efforts. For this
we introduce MetaL, a bootstrapping framework where language specification is based
on metamodels and high-level reflective initialization instructions. A Meta Object Pro-
tocol (MOP) that is aware of VM constraints keeps the abstraction level high, providing
operations to build the model of the language and then the kernel. Our MOP ensures
model correctness by construction and ensures kernel health, detecting corruption early
during the generation process.

To validate our approach, we report on the successful generation of seven object-
oriented language kernels, plus an experiment by an external user. These experiments
show that MetaL: (i) removes the need for expertise with virtual machine,(ii) reduces
the abstraction gap in debugging tasks, (iii) it is positively perceived as meeting the
need for easy-to-use bootstrapping solutions, and (iv) it is applicable in real world sce-
narios. Nevertheless, this experience also shows that using the metamodel for language
specification hinders code reuse since a semantic feature implementation is spread across
multiple metamodel classes. To solve the previous limitation we propose using Aspect-
Oriented Programming (AOP) to bootstrap. For this, we implemented AspectMetaL, an
aspect-oriented layer on top of MetaL that allows language specification at the level of
semantic features. To validate AspectMetaL, we generated 3 kernels by combining both
predefined and custom semantic features, learning that AOP is effective for improving
code reuse and rising the abstraction level for language specification in bootstrap.

Keywords: bootstrapping, programming language design, reflective languages, lan-
guage runtime initialization.

Résumé

Les langages de programmation doivent évoluer au fur et à mesure que les exigences
des logiciels changent, mais leur prototypage et leur extension se font au prix de grands
efforts de développement. Les langages réflectifs, qui sont capables de modifier leur
propre sémantique, offrent une approche de haut niveau pour l’implémentation des lan-
gages. Bien que facile à utiliser, l’approche réflexive a une gamme limitée de langages
qu’elle peut produire, car les modifications apportées aux éléments centraux du système
peuvent briser les références circulaires et laisser le système dans un état incohérent.
Pour surmonter cette limitation, l’architecture du noyau du système doit être reconstru-
ite dans un processus d’amorçage. Le bootstrap s’est avéré efficace pour produire une
famille de langages similaires. Cependant, l’adaptation d’une implémentation bootstrap
existante pour générer de nouveaux langages est un défi. Cette difficulté est due à un
manque d’abstractions appropriées pour la spécification des langages et, comme pour
d’autres techniques, à une manifestation tardive des erreurs avec des sauts d’abstraction
pendant les tâches de débogage.

Dans cette thèse, nous étudions la conception d’une technique de développement
de langage basée sur le bootstrap qui permet de générer plusieurs langages avec peu
d’efforts. Pour cela, nous introduisons MetaL, un cadre d’amorçage où la spécification
du langage est basée sur des métamodèles et des instructions d’initialisation réflectives
de haut niveau. Un Meta-Object Protocol (MOP) qui est conscient des contraintes VM
maintient le niveau d’abstraction élevé, fournissant des opérations pour construire le
modèle du langage et ensuite le noyau. Notre MOP garantit la correction du modèle
par construction et assure la santé du noyau, en détectant la corruption au début du
processus de génération.

Pour valider notre approche, nous rapportons la génération réussie de sept noyaux
de langage orienté objet, ainsi qu’une expérience par un utilisateur externe. Ces expéri-
ences montrent que MetaL : (i) supprime le besoin d’expertise avec la machine virtuelle,
(ii) réduit le fossé d’abstraction dans les tâches de débogage, (iii) il est perçu positive-
ment comme répondant au besoin de solutions d’amorçage faciles à utiliser, et (iv) il
est applicable dans des scénarios du monde réel. Néanmoins, cette expérience montre
également que l’utilisation du métamodèle pour la spécification du langage entrave la
réutilisation du code, car l’implémentation d’une fonctionnalité sémantique est répartie
sur plusieurs classes de métamodèle. Pour résoudre cette limitation, nous proposons
d’utiliser la Programmation Orientée Aspect (POA) pour amorcer le processus. Pour
cela, nous avons implémenté AspectMetaL, une couche orientée aspect au dessus de
MetaL qui permet de spécifier le langage au niveau des fonctionnalités sémantiques.
Pour valider AspectMetaL, nous avons généré 3 noyaux en combinant des caractéris-
tiques sémantiques prédéfinies et personnalisées. Nous avons ainsi pu constater que

iv

la POA est efficace pour améliorer la réutilisation du code et augmenter le niveau
d’abstraction pour la spécification du langage dans le bootstrap.

Mots-clés: bootstrapping, conception de langage de programmation, langages réflec-
tifs, initialisation de l’exécution du langage.

Contents

1 Introduction 1

1.1 Abstractions for Language Definition . 2

1.2 Reflective Languages . 3

1.3 Bootstrap . 4

1.4 Problem Statement . 4

1.5 Hypothesis . 5

1.6 Results . 6

1.6.1 Research Question 1 . 6

1.6.2 Research Question 2 and Hypothesis 1 7

1.7 Contributions . 8

1.8 Thesis Outline . 8

2 Language Implementation Techniques 11

2.1 Cognitive Distance . 12

2.2 Language Implementation Techniques (LIT) 13

2.2.1 LIT Evaluation Criteria . 13

2.2.2 LIT Classification . 13

2.3 Generation Techniques . 14

2.3.1 Language Workbenches . 15

2.3.2 Meta-Compilation Techniques . 16

2.4 Self-Surgery Techniques . 18

2.4.1 Concepts About Reflection . 19

2.4.2 Smalltalk Self-Surgery . 20

2.4.3 CLOS Self-Surgery . 22

2.4.4 Self-Surgery Limitations . 23

vi Contents

2.5 LIT Evaluation . 23

2.5.1 C1. Abstractions . 23

2.5.2 C2. Mapping From Specifications To Realizations 24

2.5.3 Conclusion . 25

2.6 Overcoming Self-Surgery Limitations: Language Runtime Initialization . 26

2.6.1 Ruby and Python Runtime-Initialization 26

2.6.2 Discussion . 28

2.7 Bootstrap . 28

2.7.1 Common Lisp Bootstrap . 29

2.7.2 Smalltalk Bootstrap . 29

2.7.3 Discussion . 30

2.8 Conclusions . 30

3 Challenges Bootstrapping Reflective Kernels 33

3.1 Pharo Bootstrap . 34

3.1.1 Pharo Bootstrap in a Nutshell . 35

3.1.2 (A) Language Sources and Language Model (declarative) 36

3.1.3 (B, C) Generation Instructions (imperative) 37

3.1.3.1 (B) Reflective instructions 37

3.1.3.2 (C) Non-reflective instructions 38

3.2 Causes of Bootstrap Failures . 38

3.2.1 VM Constraints on the Kernel Structure 39

3.2.2 Classification of Defects and Failures 39

3.2.2.1 Classification of Defects 40

3.2.2.2 Classification of Failures 40

3.2.3 Taxonomy of Defects and Failures 41

3.3 Challenges Bootstrapping ObjVLisp . 41

3.3.1 Pharo’s Metamodel Does Not Support Explicit Metaclasses 43

Contents vii

3.3.2 Structural Def. causes VM Const. Fail at Generation (easy) . . . 43

3.3.3 Structural Def. causes VM Const. Fail at Generation (hard) . . . 43

3.3.4 Reflective Def. causes Guest-Lang. Code Fail at Generation . . . 46

3.3.5 Reflective Def. causes VM Constraint Fail at Generation 47

3.3.6 Structural Def. causes VM Constraint Fail at Execution 51

3.3.7 Non-Reflective Def. causes VM-Constraint Fail at Execution . . . 53

3.3.8 Application Def. causes Guest-Lang. Code Fail at Execution . . . 55

3.4 Analysis Of Cognitive Distance In Bootstrap 58

3.4.1 Introduction to Cognitive Distance Representations 58

3.4.2 Causes Of Large Cognitive Distance In Bootstrap 58

3.5 Desirable Features Of A Bootstrap-Based LIT 61

3.5.1 Requirement 1 . 61

3.5.2 Requirement 2 . 62

3.5.3 Requirement 3 . 62

3.6 Conclusions . 63

4 Bootstrap-Based Language Implementation: MetaL 65

4.1 MetaL in a Nutshell . 66

4.2 MetaL by Example: Generating OvlispL 68

4.2.1 General Bootstrap Process . 68

4.2.2 Metamodel Definition . 68

4.2.3 Definition of Roles . 72

4.2.4 Model Construction . 74

4.2.4.1 Core Class-Models . 74

4.2.4.2 Automatic Model Completion 75

4.2.4.3 User-Defined Model Transformations 78

4.2.5 Kernel Generation, Writing, and Execution 78

4.3 Debugging OvlispL Bootstrap in MetaL 80

viii Contents

4.3.1 Solving Structural Defects . 80

4.3.2 Solving Reflective Defects . 81

4.4 Kernel and Model Validations . 85

4.4.1 Model Validations: Roles . 85

4.4.2 Roles and Smart Mirrors . 85

4.4.3 Kernel Validations: Smart Mirrors 87

4.4.4 Extending validations for a new VM 87

4.5 Conclusions . 88

5 MetaL Evaluation: Bootstrapping Kernels 89

5.1 OvlispL
slot . 92

5.1.1 Application . 94

5.1.2 Metamodel . 94

5.1.3 Model . 95

5.1.4 Discussion . 96

5.2 ObjV Lisp . 96

5.2.1 Application . 96

5.2.2 Metamodel . 97

5.2.3 Model . 99

5.2.4 Discussion . 100

5.3 OvlispL
ns . 101

5.3.1 Application . 101

5.3.2 Metamodel . 101

5.3.3 Model . 102

5.3.4 Discussion . 105

5.4 CandleL . 106

5.4.1 Application . 106

5.4.2 Metamodel . 106

Contents ix

5.4.3 Model . 108

5.4.4 Discussion . 112

5.5 OwnerL . 112

5.5.1 Application . 112

5.5.2 Metamodel . 115

5.5.3 Model . 115

5.5.4 Kernel Initialization . 118

5.5.5 Discussion . 120

5.6 OvlispL
dyn . 120

5.6.1 Application . 120

5.6.2 Metamodel . 121

5.6.3 Model . 121

5.6.4 Discussion . 124

5.7 Experiment by External User . 124

5.8 Analysis Of Cognitive Distance In MetaL 124

5.9 Evaluation of MetaL . 127

5.9.1 Meeting Requirement 1 . 127

5.9.2 Meeting Requirement 2 . 128

5.9.3 Meeting Requirement 3 . 129

5.9.4 Limitations . 129

5.10 Conclusions . 130

6 Aspect-Oriented Bootstrap: AspectMetaL 133

6.1 AOP in a Nutshell . 134

6.2 AspectMetaL Overview . 135

6.2.1 General Process . 135

6.2.2 AspectMetaL Aspects . 136

6.3 AspectMetaL By Example: Generating OvlispL
scv 138

x Contents

6.3.1 Semantic Features . 138

6.3.2 Metamodel Definition . 139

6.3.3 Definition Of A New Aspect . 140

6.3.4 Aspect Reuse . 142

6.3.5 Deployment Ordering . 144

6.4 Discussion . 145

6.4.1 Abstractions In AspectMetaL . 145

6.4.2 Code Reuse In AspectMetaL . 145

6.4.3 Limitations . 146

6.5 Conclusions . 147

7 Conclusions 153

7.1 Contributions . 153

7.1.1 MetaL . 154

7.1.2 AspectMetaL . 154

7.1.3 Research Questions & Hypotheses 155

7.2 Future Work . 157

A Associated Publications 159

A.1 Journals . 159

A.2 Conferences . 159

A.3 Workshops . 159

A.4 Vulgarization . 159

B MetaL MOP 161

C MetaL Roles 165

D Aspect-Oriented Programming (AOP) 167

D.0.1 AOP Concepts . 167

Contents xi

D.0.2 PHANtom . 167

Bibliography 171

List of Figures

1.1 Steps in language elaboration using LIT 3

2.1 Mapping from abstractions specification to realization in Generation LIT 15

2.2 Xtext artifacts generation multi-stage process. 17

2.3 Comparison of abstractions for language specification in state of the art
LIT. 25

2.4 Ruby initial class hierarchy. 27

2.5 VM and language runtime. 28

2.6 Bootstrap multi-stage process. 31

3.1 Pharo bootstrap overview. 35

3.2 Taxonomy of Defects and Failures in Bootstrap. 42

3.3 OLObject and OLClass are the only classes defined in ObjVLisp. 42

3.4 Host debugger showing the error presented in Sectionsec:uninitialized-soa 44

3.5 Debugging guest-language code execution by using the host debugger to
debug AST interpreter execution. 48

3.6 Debugging primitive failure when instantiating OLCompiledMethod. . . . 50

3.7 Debugging Bootstrap code using the host debugger to find the cause of
failure shown in Section 3.3.7 . 57

3.8 Cognitive Distance in Bootstrap. 59

3.9 Bootstrap defect backtracking required domains 60

3.10 Solutions to Bootstrap Defects and Failures. 62

4.1 MetaL bootstrap process. 67

4.2 MetaL Base Language Metamodel. 69

4.3 OvlispL metamodel and model. 70

xiv List of Figures

4.4 Extract of OvlispL model after automatic completion by MetaL. Auto-
matically created classes are in thick lines, their structure is as defined
by corresponding roles. Class instance variables and methods have been
automatically created. 77

4.5 Editing OvlispL code using Pharo’s code browser. 82

4.6 Debugging OvlispL code execution using MetaL’s Kernel Debugger. . . . 83

4.7 Kernel health-test fails during kernel generation. 84

5.1 Tree of kernels generated to validate MetaL. 91

5.2 MetaL Base Language Metamodel (Identical to Figure 4.2). 92

5.3 OvlispL
slot metamodel and model. 93

5.4 ObjV Lisp metamodel and model. 98

5.5 OvlispL
ns metamodel and model. 103

5.6 CandleL metamodel and model. 107

5.7 OwnerL metamodel and model. 116

5.8 OvlispL
dyn metamodel and model. 122

5.9 Cognitive Distance in Bootstrap. 125

5.10 Cognitive distance comparison between MetaL and Bootstrap. 126

5.11 Comparison of abstractions for dynamic semantics specification in LIT
including MetaL . 128

6.1 AspectMetaL process overview. The base metamodel is automatically
modified by Aspects and used for model construction and kernel genera-
tion. Then it is restored to its original state. 149

6.2 OvlispL
scv metamodel after aspects modifications and model 150

6.3 Comparison of abstractions for dynamic semantics specification in LIT
including AspectMetaL . 151

List of Tables

B.1 Core MetaL MOP Methods in ObjectModel. 161

B.2 Core MetaL MOP Methods in LanguageModel. 162

B.3 Core MetaL MOP Methods in ClassModel. 163

B.4 Core MetaL MOP Methods in MethodModel. 163

C.1 Roles in MetaL for a 32 bits Pharo VM. "S.O.A" stands for special objects
array. Indexes are 1 based (part 1). 165

C.2 Roles in MetaL for a 32 bits Pharo VM. "S.O.A" stands for special objects
array. Indexes are 1 based (part 2). 166

Chapter 1Introduction
Contents

1.1 Abstractions for Language Definition 2

1.2 Reflective Languages . 3

1.3 Bootstrap . 4

1.4 Problem Statement . 4

1.5 Hypothesis . 5

1.6 Results . 6

1.6.1 Research Question 1 . 6

1.6.2 Research Question 2 and Hypothesis 1 7

1.7 Contributions . 8

1.8 Thesis Outline . 8

Programming languages are a central topic in computer science. They evolve as
software requirements change. Their evolution to integrate new features, constructs
or paradigms, or to revise their internal semantics should be done efficiently. Never-
theless, prototyping and extending programming languages comes at the cost of great
development effort.

Language implementation techniques (LIT) are software reuse techniques that re-
duce efforts of language implementation providing solutions that can be used to generate
different languages with little change [Biggerstaff 1992]. Among existing kinds of LIT
we find Self-Surgery Techniques, which are offered by systems providing a reflective lan-
guage that has control over its own semantics. To produce new languages, developers
write programs that modify the semantics of the base language.

Self-surgery has a limited range of produced languages because modifications to
core elements of the base language architecture can break internal references leaving the
system in an inconsistent state. However, it is possible to overcome this limitation by re-
building the system’s runtime in a bootstrap process. This runtime, also named kernel,
contains the system’s new architecture, in which the semantics of the new language is
implemented.

Bootstrap is a high-level approach for kernel generation. It is specially used in the
generation of reflective languages. The idea is to use as early as possible the capacities
of the new language for building itself. Until now, Bootstrap supports the evolution of
a single programming language or a family of similar languages [Polito 2015].

2 Chapter 1. Introduction

Even though the bootstrap process is written in a high-level language, modifying an
existing bootstrap implementation to generate new languages imposes a high cognitive
distance on developers. Small changes introduced by the developer can produce failures
that manifest during late stages of the kernel generation process or as late as during the
execution of the kernel. The larger the distance between error causes and symptoms,
the harder it is to track the infection chain [Zeller 2005]. Furthermore, debugging these
errors often requires debugging VM or bootstrapper code, where the abstraction level is
lower than that of the code written by the developer. This situation causes abstraction
leaps, where developers mentally map concepts between different levels of abstractions.

In this dissertation we study how Bootstrap can be adapted to become a LIT. For
this we must reduce the cognitive distance and increase the variety of languages it can
produce. To achieve cognitive distance reduction we must find proper abstractions to
specify new languages and mechanisms to support debugging errors occurring during
the kernel generation process, preventing abstraction leaps.

1.1 Abstractions for Language Definition

Abstraction is the essential feature in any reuse technique [Wegner 1983]. The most
important abstractions in LIT are are those representing the language syntax and se-
mantics.

According to Krueger [Krueger 1992] abstractions have two levels: specification is the
highest of the two levels and only express what is relevant for the developer (e.g. objects
in object-oriented languages are a high-level representation of data in memory), and
realization which contains detailed information about the abstraction that is not relevant
for the developer (e.g. object’s layout in memory).

The language definition process in LIT occurs in three steps as illustrated in Fig-
ure 1.1. During Conceptualization developers reason informally about the syntax and
semantics of the new language. Then, during Specification they express syntax and
semantics in terms of specification abstractions. Finally during Specification To Real-
ization Mapping the system automatically transforms specifications into realizations.

Krueger states that the success of a reusable software technique depends on the
effectiveness of its abstractions, which can be evaluated in terms of cognitive distance.
Cognitive distance is an informal and intuitive measure of the amount of intellectual
effort that takes using a technique.

For the creator of a software reuse technique, the goal is to minimize cognitive dis-
tance by providing specification abstractions that are succinct, expressive and close to
abstractions used for conceptualization, and using automated mappings from abstrac-

1.2. Reflective Languages 3

Conceptualization Specification Mapping
From Specification

To Realization

Figure 1.1: Steps in language elaboration using LIT

tion specification to abstraction realization.

1.2 Reflective Languages

Reflection is the ability of a system to observe and (possibly) change its own execu-
tion [Smith 1982]. There are multiple kinds of reflection, being the most powerful one
behavioral intercession reflection. An object-oriented programming language provid-
ing this kind of reflection reifies its own semantics in metaobjects whose modification
changes the semantics of the language.

Meta-Object Protocols(MOP [Kiczales 1991]) are protocols to modify metaobjects.
They give users the ability to incrementally modify the language metaobjects through
operations that can be applied at run-time.

Self-surgery is a LIT where developers implement new languages by manipulating
the metaobjects of an existing reflective language. This technique is is applied for
both implementing internal DSLs and prototyping new languages. In self-surgery, the
specification of a new language is a program written in the reflective language provided
by the technique. This program uses MOP operations to modify the semantics of the
reflective language to obtain the new language.

As a consequence of the previous, abstraction leaps during debugging tasks never
occur because language specification and realization are at the same level of abstrac-
tion. Moreover, debugging tools from the original system are useful to debug language
specifications because they are written in the same language the system originally pro-
vides. Also, interaction with low-level code never happens, since most low-level language
concepts are represented by high-level metaobjects.

4 Chapter 1. Introduction

1.3 Bootstrap

Bootstrap is a high-level approach for language runtime initialization that takes the
definition of a new language as input and produces its language runtime (also named
kernel) as output [Polito 2015]. It is specially applied to generate systems that define
reflective languages, since they are able to modify themselves.

The main idea of Bootstrap is to use as early as possible the reflective capabilities
of the resulting language to build the kernel. In consequence, great part of the system
building process written in the same language that is being produced. This makes
Bootstrap is a circular process through which reflective languages generate their own
implementation (i.e. kernel). Considering the previous, Bootstrap takes advantage of
the reflective features of the new language in the same way than self-surgery techniques
do.

Bootstrapping a new language is done by modifying both the definition and the
application that generate the kernel of an existing language. This is challenging because
building reflective systems is a delicate process. Also, if the kernel is built to be executed
by an existing VM, spread in the language definition and bootstrapper application there
are critical sections of code in charge of creating low-level structures that the target
VM expects to find in the kernel. These critical sections are unidentifiable a priori.
Unfulfilled VM expectations produce failures either during kernel generation or as late
as during kernel execution. Debugging these errors requires dealing with bootstrapper
and VM code that is external to the user.

When targeting an existing VM, the kernel is an array of bytes during its construc-
tion. Contrary to self-surgery, in Bootstrap the abstraction level of specifications and
realizations is different. While reflective language code is used for the specification, the
realization are bytes in the array of bytes. During debugging tasks, realizations are
accessed through mirrors providing generic tools for their manipulation as objects. This
causes abstraction gaps when debugging the generation process.

Taking the previous into consideration, Bootstrap does not have access to the same
benefits as self-surgery regarding immediate feedback and debugging support.

1.4 Problem Statement

Even though Bootstrap has been used to generate similar programming languages fami-
lies [Polito 2015], it is not yet a language implementation technique for two reasons: first,
because current implementations are limited to a single language or to a narrow variety
of similar languages; and second, because it is difficult to modify the bootstrap imple-

1.5. Hypothesis 5

mentation to generate a new language. This difficulty is caused by a lack of proper
abstractions for language specification, late manifestation of errors, and abstraction
leaps during debugging tasks.

To address these problems we ask the following research questions.

RQ1: What abstractions for language specification reduce the cognitive
distance in a bootstrap-based LIT?

Krueger [Krueger 1992] states that effective specification abstractions are succinct,
expressive and close to abstractions used for conceptualization. We must consider that
specification of the language semantics alone is not enough, because a kernel contains
the language runtime which includes core system’s classes, methods, global state, etc.
It is important to identify suitable abstractions for kernel specification in Bootstrap,
which take into account failures in the generation process. This leads to our second
research question.

RQ2: What mechanisms support the automatic mapping from specification
to realization in a bootstrap-based LIT?

In Bootstrap failures can manifest late and often require debugging external code,
not written by developers, such as VM, compiler, and/or bootstrap process code. To
address these problems we need to analyze the different causes of failures in Bootstrap
to prevent them whenever is possible. For those who cannot be prevented, we must
design strategies to force their manifestation as early as possible during the bootstrap
process.

Manifestation of failures often occurs at a lower abstraction level than that of their
original cause (e.g. a segmentation fault in the VM, caused by the missing definition
of one element in the language definition). Traditional debugging tools do not provide
appropriate support for this scenario [Chis 2015]. It is important to study abstraction
gaps in Bootstrap to provide suitable debugging tools for each situation.

1.5 Hypothesis

Considering the research questions stated in Section 1.4, we propose the following hy-
pothesis:

6 Chapter 1. Introduction

H1: It is possible to apply self-surgery concepts about abstractions, immedi-
ate feedback, and debugging mechanisms to a bootstrap-based LIT to reduce
the cognitive distance.

Contrary to self-surgery, in Bootstrap there is an abstraction gap between specifi-
cations and realizations during debugging tasks. If we can improve bootstrap to offer
specifications that resemble metaobjects and, at the same time, we improve mirrors to
also resemble metaobjects, we would significantly reduce the abstraction gap between
specifications and realizations. This is a first step towards cognitive distance reduction
in bootstrap.

In self-surgery, when MOP operations to modify base language semantics fail to
execute, most of the time they are debugged using the host system’s debugger. In
this way, debugging tasks are kept at the abstraction level of specifications because
MOP operations are directly debugged with the host debugger. On the other hand, in
Bootstrap, when the generation process fails, it is often necessary to debug low-level
code from the VM or code form the bootstrap process which was not defined by the
user. Thus, debugging tasks in bootstrap are not kept at the level of specifications,
falling to the level of realizations and forcing developers to mentally map concepts
between different abstraction levels. If we can design debugging tools in the style of
self-surgery, we would reduce mental operations needed from developers, reducing the
cognitive distance.

In self-surgery, the system modifies itself (possibly) at run-time. This provides im-
mediate feedback to developers. If we can implement immediate feedback in Bootstrap,
alerting developers about corruption and providing live interaction with objects (i.e. see
the effects of kernel modifications immediately), we would shorten the distance between
defects and failures. We know from [Zeller 2005] that the larger this distance, the harder
it is to track the infection chain.

1.6 Results

We present a summary of the main results obtained in this work, answering our research
questions and testing our hypothesis.

1.6.1 Research Question 1

To answer RQ1 we studied the abstractions provided by state of the art LIT and then we
designed MetaL, a framework for bootstrapping kernels that provides a kernel specifica-

1.6. Results 7

tion based on metamodels. To test MetaL, we use it to generate seven example kernels.
These examples were selected such as they have important semantic differences. In this
way we test the metamodel flexibility. In our experience generating these kernels, we
never needed to become aware about VM implementation details.

MetaL was used by an external user in his project of building Smalltalk environments
that use the browser as a view/frontend. From his experience we concluded that (i)
MetaL is positively perceived as meeting the need for easy-to-use bootstrapping solutions
and that (ii) MetaL is applicable in real world scenarios.

In AspectMetaL, aspects are the main abstraction for kernel specification: one aspect
represents one semantic feature. Kernels in AspectMetaL are specified declaratively,
providing the list of aspects that define it. We performed experiments to test the
capacity of aspects to be reused in the definition of different kernels, obtaining positive
results.

Our answer to RQ1 is that both MetaL and AspectMetaL abstractions reduce cog-
nitive distance when defining kernels in a bootstrap-based LIT.

1.6.2 Research Question 2 and Hypothesis 1

To answer RQ2 and test H1, we undertook a comprehensive analysis of failures occurring
in Bootstrap which resulted in a taxonomy of errors. From it we conceived a set of
desirable features of a bootstrap-based LIT where each feature solved one category of
error.

To evaluate our strategy and test H1 we rely on our experience generating kernels.
We acknowledge that our own experience is not enough to validate the effectivity of our
approach in a general context. However, we confirm its effectivity to reduce cognitive
distance in the generation of kernels presented in this dissertation.

We can answer RQ2: combining early detection of corruption through automatic
tests, a debugger for reflective code, and smart-mirrors which raise the abstraction
level to interact with kernel contents, provides effective support for automatic mapping
from specification to realization when the approach is applied to the example kernels
presented in this work.

Finally, we accept H1: the concepts from self-surgery applied to MetaL have shown
effective on reducing the cognitive distance on developers in all tested cases.

8 Chapter 1. Introduction

1.7 Contributions

The contributions of this thesis are summarized below:

• MetaL: A framework for bootstrapping kernels that reduces cognitive distance.
MetaL is based on metamodels for kernel specification and a VM constraints aware
MOP which ensures compatibility of the kernel with the target VM.

• Kernel Experiments: The definition of seven object-oriented kernels which are
compatible with the Pharo VM but present important semantics differences with
respect to Pharo.

• AspectMetaL: An aspect-oriented layer on top of MetaL that raises the abstrac-
tion level of kernel specifications to the level of semantic features. AspectMetaL
allows users to generate kernels by combining semantic features and never modi-
fying the metamodel.

1.8 Thesis Outline

• Chapter 2: Language implementation Techniques, presents the state of art
in language implementation techniques, evaluating their methods for cognitive
distance reduction.

• Chapter 3: Challenges Bootstrapping Reflective Kernels, presents a tax-
onomy of errors in the bootstrap process and a presentation of the bootstrap
limitations through a case of study.

• Chapter 4: Bootstrap-Based Language Implementation: MetaL, presents
MetaL, our bootstrap framework to achieve cognitive distance reduction in boot-
strap.

• Chapter 5: MetaL Evaluation: Bootstrapping Kernels, shows the imple-
mentation in MetaL of 8 kernels with different semantics and one experiment done
by an external user.

• Chapter 6: Aspect-Oriented Bootstrap: AspectMetaL, presents our imple-
mentation of a bootstrap-based LIT using aspect-oriented programming to raise
the level of abstraction for language specification.

• Chapter 7: Conclusions, exposes the main results of this work and concludes
this dissertation.

1.8. Thesis Outline 9

• Appendix A: Associated Publications, presents the list of publications pro-
duced by this research work.

Chapter 2Language
Implementation
Techniques
Contents

2.1 Cognitive Distance . 12

2.2 Language Implementation Techniques (LIT) 13

2.2.1 LIT Evaluation Criteria . 13

2.2.2 LIT Classification . 13

2.3 Generation Techniques . 14

2.3.1 Language Workbenches . 15

2.3.2 Meta-Compilation Techniques . 16

2.4 Self-Surgery Techniques . 18

2.4.1 Concepts About Reflection . 19

2.4.2 Smalltalk Self-Surgery . 20

2.4.3 CLOS Self-Surgery . 22

2.4.4 Self-Surgery Limitations . 23

2.5 LIT Evaluation . 23

2.5.1 C1. Abstractions . 23

2.5.2 C2. Mapping From Specifications To Realizations 24

2.5.3 Conclusion . 25

2.6 Overcoming Self-Surgery Limitations: Language Runtime Ini-
tialization . 26

2.6.1 Ruby and Python Runtime-Initialization 26

2.6.2 Discussion . 28

2.7 Bootstrap . 28

2.7.1 Common Lisp Bootstrap . 29

2.7.2 Smalltalk Bootstrap . 29

2.7.3 Discussion . 30

2.8 Conclusions . 30

12 Chapter 2. Language Implementation Techniques

In this dissertation we study the elaboration of a novel language implementation
technique based on Bootstrap. Language implementation techniques (LIT) are software
reuse techniques that decrease efforts of language implementation providing solutions
that are used to generate multiple languages with little change [Biggerstaff 1992]. Differ-
ent techniques implement different approaches to cognitive distance reduction, provid-
ing different the abstractions and debugging support. This chapter focuses on studying
these mechanisms to guide our design of a bootstrap-based LIT.

We start by giving a brief introduction to the concept of cognitive distance in Sec-
tion 2.1. A classification of LITs and the evaluation criteria we use to compare the
presented LIT is offered in Section 2.2. Sections 2.3 and 2.4 describe solutions belong-
ing to each LIT category. These solutions are then compared in the evaluation presented
in Section 2.5. Before presenting Bootstrap, we explain the concept of language runtime
initialization in Section 2.6. Following, Section 2.7 presents some Bootstrap examples.
Our final remarks about the chapter are given in Section 2.8.

2.1 Cognitive Distance

We use the ideas of Krueger [Krueger 1992] about cognitive distance to evaluate existing
LIT solutions later in this chapter.

According to Krueger, LIT success depends on the effectiveness of its abstractions,
which can be evaluated in terms of cognitive distance. He defines cognitive distance
as an informal and intuitive measure of the amount of intellectual effort required to
accomplish software development tasks. For the creator of a software reuse technique,
the goal is to minimize cognitive distance by using abstractions that are both succinct
and expressive, and by using automated mappings from abstraction specification to
abstraction realization.

Analyzing the automatic mapping process requires taking into consideration possible
errors produced during the process. An error is a combination of a defect (the cause)
and a failure (the symptom). We define these concepts as follows.

• Defect. Also named bug, is an unintended mistake introduced by the programmer
in the source representation of a program [Beizer 1990].

• Failure. Is an unwanted executional behavior that is externally observable by a
developer while a process is running [Spinellis 2018]. A critical failure [Zeller 2005]
is a failure that interrupts the execution of the process.

2.2. Language Implementation Techniques (LIT) 13

Developers reason about and formulate questions using concepts and abstractions
from their specification domain. Not offering a one-to-one mapping between developer
questions and debugging support forces developers to refine their high-level questions
into low-level ones and mentally piece together information from various sources. [Sil-
lito 2008].

2.2 Language Implementation Techniques (LIT)

LIT are software reuse techniques that reduce the efforts of implementing new languages
providing solutions to produce different languages with little input from developers [Big-
gerstaff 1992], improving developers productivity [Frakes 2005].

2.2.1 LIT Evaluation Criteria

On the basis of Krueger [Krueger 1992] ideas, we propose the following criteria to
evaluate cognitive distance in LIT:

C1. Specification abstractions provided by the technique must be succinct, expressive,
and must be close to abstractions used for conceptualization of language syntax
and semantics.

C2. The mapping between abstraction specification and realization must be automatic.
In the case the mapping process fails, the technique should provide debugging sup-
port that answers developer questions formulated at the level of their abstraction
specifications.

2.2.2 LIT Classification

LIT can be divided according to their approach for language specification and sub-
sequent mapping to realization in two groups: generation techniques and self-surgery
techniques. Our classification is consistent with the classification for software reuse tech-
niques proposed by Biggerstaff et al. [Biggerstaff 1987], which is based on the nature of
the software components being reused.

14 Chapter 2. Language Implementation Techniques

2.3 Generation Techniques

In Generation LIT the abstraction level of specification is higher than that of realiza-
tion1. The logics to transform specifications into realizations is inside the generator
program. These logics are the technique’s reusable components and, in principle, they
are kept hidden from the user.

As an example, we present in Listing 2.1 the specification for the semantics of the
boolean operator ’not’ in DynSem [Vergu 2015], a DSL for specification of dynamic
semantics which is part of the language workbench Spoofax [Metaborg]. The semantics
of ’not’ is specified as two reduction rules written in DSL code. DynSem’s interpreter
generator is an application written in Java that takes these rules as input and generates
the Java code that implements the specified semantics in an interpreter.

1 " DSL rules for ’not’ operator "
2 rules
3 true −not−> false
4 false −not−> true
5

6 " Generated Java pseudo−code "
7 class Interpreter {
8 public Object evaluate(Operator operator, Arguments <Node> arguments) {
9 ...

10 if (operator.symbol() == ’not’) {
11 if (arguments[1].value()) {
12 return false; }
13 else {
14 return true; }
15 }
16 }
17 }

Listing 2.1: Specification and realization of the semantics for the boolean operator ’not’
in Generation LIT.

We represent in Figure 2.1 the mapping process from specification to realization for
the previous example. We follow the style of T-diagrams, commonly used in compilers
to represent language transformation processes.

We call host-language to the language in which the generator application is written.
1This category corresponds with Generation Technologies proposed by Biggerstaff et al. [Bigger-

staff 1987]. The reused components are the patterns in the generator program to transform specifica-
tions into realizations. Reuse is less a composition matter than it is an execution matter of component
generators.

2.3. Generation Techniques 15

Java

DSL Java

Generator program

Abstraction
specifications

Abstraction
realizations

Figure 2.1: Mapping from abstractions specification to realization in Generation LIT

Depending on the technique, the host language can be the same as the specification
language or not. We call guest-language to the language that is generated.

2.3.1 Language Workbenches

Language workbenches [Fowler 2005] are integrated environments to develop domain-
specific languages. They provide a set of DSLs to specify language syntax and semantics.
The set of specifications is used to generate software artifacts which integrate with exist-
ing ones to provide parsing/compilation and code edition tools for the guest-language.
The generation is a multi-stage process, as depicted in Figure 2.2 using Xtext [Xtext]
as an example.

Popular examples are Xtext, Spoofax [Metaborg], Jet-Brains Meta Programming
System (MPS) [JetBrains], MetaEdit+ [Metacase], Rascal [Rascal].

Although generation of general purpose programming languages (GPL) is possible
in workbenches such as Xtext, it requires a considerable amount of code [Willink 2011],
much of which is not DSLs code, but Java code.

C1. Abstractions for language definition. We split our description in two ac-
cordingly to the language concepts represented by abstractions.

Syntax and static semantics. DSLs for syntax and static semantics specification
resemble formal attribute grammars notation: a grammar is defined by a set of rules
expressed in a declarative way. The abstraction level of these DSLs is close to that
of syntax conceptualization, e.g. Xtext DSL [Xtext], SDF3 [SDF3]. Dedicated DSLs
for binding analysis and scoping rules work as a complement of attribute grammar
DSLs, e.g. NaBL2 [Konat 2012]. In this way, DSLs work together in a tool-chain. The
resulting realizations are parsers and compiler extensions. Customizations which are not

16 Chapter 2. Language Implementation Techniques

supported by the DSLs must be expressed in the language of the workbench, i.e. the
host-language.

Dynamic semantics. Dynamic semantics is the aspect with less support. DynSem [Vergu 2015]
and XSemantics [XSemantics] are DSLs for specification of the dynamic semantics of a
language as a set of conditional term reduction rules, resembling operational semantics
formal notation. Specifications are mapped to interpreters and validators used during
compilation.

Dynamic semantics can also be expressed through model-to-model transformations (e.g. Strat-
ego [Visser 2004] [Bravenboer 2008]), where developers define rules from which guest-
language code is transformed into Java code. Model-to-model transformations are not
close to semantics conceptualization. Dynamic semantics specification often requires
customization code written in the language of the workbench.

C2. Mapping from specification to realization. Language workbenches offer
code editors for their DSLs. These editors can mark defects due to wrong syntax in
DSL code and even suggest possible solutions. However, other kinds of defect are not
so easy to capture.

DSL code with the right syntax but the wrong meaning maps into realizations that
behave unexpectedly. To find the defect back in DSL code, the realization code (e.g. a
parser) is generated as traced code to find back the defect in DSL code (e.g. a grammar).
In this way they reduce the abstraction gap between specification and realization.

Code written in the host-language can make the generation process fail. These
failures are solved by debugging framework code. Moreover, since DSLs work in a tool-
chain, defects introduced early in the process can generate corrupt realizations which
produce failures that manifest late, either interrupting the mapping or producing a
language that behaves unexpectedly.

2.3.2 Meta-Compilation Techniques

Meta-compilers are a special kind of compiler used to construct compilers of different
programming languages. They focus on language performance and support a wide
variety of general purpose languages. They integrate to a self-optimizing interpreter
defined by the user and infer a just-in-time compiler from it. RPython [Bolz 2009] and
GraalVM [GraalVM ,Wimmer 2012,Würthinger 2017,Wimmer 2019] are popular state
of the art meta-compilers.

2.3. Generation Techniques 17

Figure 2.2: Xtext artifacts generation multi-stage process.

18 Chapter 2. Language Implementation Techniques

C1. Abstractions for dynamic semantics. The semantics of the new language is
defined in an interpreter. The interpreter can be generated from DSL code using for
example DynSem, or using a Java API such as the one offered by Truffle [Wimmer 2012].
To enable JIT compilation, the interpreter must be capable of self optimization. This
kind of interpreters can be generated using a framework such as Truffle, where node spe-
cialization operations are expressed using Java annotations. While the interpreter and
node specialization operations are used as specification, the realization is the resulting
JIT compiler.

C2. Mapping from specification to realization. Defects in the original inter-
preter produce failures in the generated code and must be debugged at that level, losing
the causality with the original source-code. Failures in this stage prevent the genera-
tion of code from node rewriting instructions, and the posterior compilation of the full
interpreter. E.g. defects in node rewriting operations are debugged using tools to ana-
lyze compilation graphs. These tools allow to navigate guest-language source code from
AST nodes. There is an abstraction gap because developers must find back the causes of
specific compilation steps in their node specialization operations and interpreter code.

2.4 Self-Surgery Techniques

This category comprises LIT where abstraction specifications and abstraction realiza-
tions are the same. In consequence, the mapping between specification and realization
is not performed by a generator program2. Instead there is only one system where the
specifications are defined and applied.

This kind of systems provide a base language that has control over its own semantics
and implementation. This is possible for languages that provide behavioral intercession
reflection (see Section 2.4.1). Object-oriented reflective languages of this kind reify their
own semantics as well as the data used to execute a program in metaobjects.

Metaobjects represent language components like methods, classes, and metaclasses;
and even execution components like contexts, messages, etc. In self-surgery, develop-
ers implement new languages by manipulation of these metaobjects, never interacting
with low-level code, as most low-level language concepts are represented by high-level
metaobjects. Metaobject manipulation can even occur at run-time, while the system is
executing [Malenfant 1996].

2This category corresponds with Composition Technologies proposed by Biggerstaff et al. [Bigger-
staff 1987]. The reused components are the metaobjects of a language. Language specification is a
matter of modifying an existing language manipulating its metaobjects using well-defined protocols.
These protocols are called Meta Object Protocols (MOP) and are explained in Section 2.4.1.

2.4. Self-Surgery Techniques 19

Specifications are programs that modify the semantics of its own language, trans-
forming it into the new language. The realization is the same system where the specifica-
tions are executed, but after the execution of specifications. Examples of these systems
offering self-surgery are Smalltalk and CLOS, where self-surgery has been applied for
both implementing internal DSLs3 and prototyping new languages.

As an example, below we present the specification for the semantics of the boolean
operator ’not’ in Smalltalk. The meaning of ’not’ is specified in the method not of
classes True and False. These methods are written in Smalltalk code. Modifying these
methods modifies the semantics of Smalltalk.

1 " ’not’ operator definition in metaobjects "
2 True >> not
3 ^ false
4 False >> not
5 ^ true

2.4.1 Concepts About Reflection

Reflection is the ability of a system to observe and (possibly) change its own execu-
tion [Smith 1982]. A programming language is said to be reflective when it provides
reflective features, i.e. programs written in these languages are able to reflect on their
own execution and structure. A reflective system is a system providing a reflective
language and which is used to execute instructions written in this language.

Reflective Systems Classification. Considering what can be done with the self-
representation of a system, reflection can be classified as [Kiczales 1991]:

• Introspection: The system can dynamically observe itself but not modify itself.
This is possible when concepts of the runtime system are reified as ordinary objects
which can be queried and inspected. An example is to access the class of an object.

1 ’hello’ class "returns the class String"

• Intercession: The system can dynamically modify itself, including the customiza-
tion of its own interpretation or meaning. This is possible when modifications
to these reified objects reflect back to the runtime system. Adding and remov-
ing object fields and methods at runtime is a typical example of intercession is
dynamically adding an instance variable to an existing class.

3Internal DSLs are a particular form of API in a host general purpose language, often referred to
as a fluent interface [Fowler 2010].

20 Chapter 2. Language Implementation Techniques

1 Car addInstVarNamed: #driver

Another criterion to categorize reflective systems is considering what can be reflected.
According to this condition, two levels of reflection are identified:

• Structural reflection: The information reflected is the structure of the program,
offered to the programmer as data. In case the program structure is modified,
changes will be reflected at runtime. The capability of reading class structures
(e.g. Java) and modifying them (e.g. Python) are two examples of structural
reflection.

• Behavioral reflection: The ability to access system semantics. In case the se-
mantics is modified, it will involve a customization of the runtime behavior of
programs. Meta-Object Protocols (MOPs) are a common way to implement this
level of reflection.

A reflective system capable of intercession incorporates structures representing (as-
pects of) itself, and this representation is causally connected to the system it represents.
Then we can say that the system has an accurate representation of itself, and also the
status and computation of the system are always in compliance with this representation.

Metaobject protocols (MOP). In an object-oriented reflective language, objects
that define functionalities are called base objects while objects defining execution mech-
anisms are called metaobjects. Protocols to manipulate meta-objects are called meta-
object protocols ([Kiczales 1991]). Therefore, MOPs give users the ability to incremen-
tally modify the languages behavior and implementation.

Examples of reflective languages. The level of support for reflection varies across
languages. Java supports introspection, but not intercession. Python and Ruby sup-
port all operations except for behavioral intercession. Smalltalk and CLOS support all
kinds of reflection [Maes 1987, Smith 1984]: Performing self-surgery requires capacity
for behavioral intercession. In our analysis we include only Smalltalk and CLOS.

2.4.2 Smalltalk Self-Surgery

Smalltalk is a dynamic reflective object-oriented programming language. Smalltalk
reflection offers both introspection and intercession, and for which reflexivity is both
structural and behavioral.

2.4. Self-Surgery Techniques 21

C1. Abstractions for dynamic semantics specification. Smalltalk reflective
capabilities are offered in the form of metaobjects implementing protocols for their
modification (MOPs). Smalltalk metaobjects include first-class entities for most of the
elements of the language such as classes, methods, method dictionaries, etc. But also
for dynamic execution elements such as context, message, etc.

Developers can add reflective facilities by examining the system metaobjects and
inserting specific behavior. Some examples are the following.

• Variable read and write: If variable accesses are implemented using messages,
as in Self [Ungar 1987]then reflective mechanisms for messages will also work
for variables. Another alternative is to introduce active variables [Messick 1985].
However, this approach requires modifying the compiler to convert variable ac-
cesses into message sends to ActiveVariable objects, which in turn regulated access
to their contents.

• Sending a message: Messages sent by an object can be intercepted, but this re-
quires modifying the Smalltalk-80 compiler to wrap code around each send oper-
ation.

• Receiving a message: When a message sent to an object is not found in the
inheritance hierarchy of that object’s class, the Smalltalk virtual machine sends
the object the message doesNotUnderstand:. The original message selector and
message arguments are bundled together in a Message object and passed as the
argument to doesNotUnderstand:. Users can implement forwarding mechanisms,
no need for compiler modifications.

• Returns: If an object can intercept messages sent to it before dispatching them,
its dispatching routine can inspect results returned to it before returning them
itself. Thus, redefining returns falls out of redefining message dispatching.

Smalltalk has been extensively used for implementing and experimenting with new
languages. Some examples, classified in three families, are:

Semantic Extensions. Define new features from within the language itself:
Garf [Garbinato 1995], Distributed Smalltalk [Bennett 1987] or [McCullough 1987] in-
troduce object distribution in a transparent manner. Language features like multi-
ple inheritance [Borning 1982], backtracking facilities [LaLonde 1988], instance-based
programming [Beck 1993b, Beck 1993a], explicit metaclasses [Bouraqadi 2000], proto-
types [Bergel 2004], or inter-objects connections [Ducasse 1995] have been introduced.
Futures [Pascoe 1986,LaLonde 1991] or atomic messages [Foote 1989] are also based on
message passing control capabilities.

22 Chapter 2. Language Implementation Techniques

Definition of new object models. Introducing concurrent aspects such as active
objects ([Briot 1989]) and synchronization between asynchronous messages (Concurrent
Smalltalk [Yokote 1987]). Other works propose new object models like the composition
filter model [Aksit 1992]. or CodA [McAffer 1995] that is a metaobject protocol that
controls all the activities of distributed objects.

Internal DSLs. In [Ducasse 2006], Smalltalk is referred as "A Reflective Executable
Meta-Language", suitable to define DSLs in a similar way than object-oriented meta-
languages (such as MOF or EMOF), but with the additional capacity of allowing de-
scription of operational semantics. PetitParser [PetitParser]: a framework for building
modular parsers using Smalltalk code, applies this concept. This framework allows to
dynamically reuse, compose, transform and extend grammars. (i.e. the BNF ID ::=
letter letter | digit ; is expressed in PetitParser as id := #letter asParser , (#letter asParser
/ #digit asParser) star).

2.4.3 CLOS Self-Surgery

CLOS, the Common Lisp Object System, is a class-based object-oriented layer [DeMichiel 1987,
Bobrow 1988, Keene 1989, Gabriel 1991], implemented on top of Common Lisp. Like
Smalltalk, CLOS is a reflective language, offering both introspection and intercession,
and for which reflexivity is both structural and behavioral. Unlike Smalltalk, in CLOS
a class can have more than one superclass, and methods can be instance specific [Bo-
brow 1988].

C1. Abstractions for dynamic semantics specification. The CLOS MOP [Kicza-
les 1991] allows programmers to extend or modify both the syntax and the semantics
of the language itself.

In CLOS the message passing concept is replaced by the generic function.4 In con-
sequence, the MOP allows users to control all the aspects of the generic function appli-
cation, as message passing control is taken an entry point by the MOP [Kiczales 1991].

Developers can, for example, adjust aspects of the implementation strategy such as
instance representation, or aspects of the language semantics such as multiple inheri-
tance behavior [Kiczales 1993].

4A generic function is a group of methods. During the application of a generic function, methods
from that group are selected to constitute an effective method application. This is the method that is
executed.

2.5. LIT Evaluation 23

One limitation when compared to Smalltalk is that CLOS does not provide first-class
representations for execution concepts such as contexts and messages.

CLOS has been used to prototype experimental object-oriented paradigms such
as context orientation [Hirschfeld 2008], filtered [Costanza 2008], and predicate dis-
patch [Ernst 998,Ucko 2001].

2.4.4 Self-Surgery Limitations

Limitations to this approach exist due to the difficulty of changing core parts of the
system, breaking causal connections and meta-circularities at run-time [Chiba 1996],
leaving the system in an inconsistent state and reducing the range of supported guest-
languages.

The metastability problem is a well-known example of this. It occurs when meta-level
code (i.e. code affecting metaobjects) triggers the execution of its own code, producing
an infinite meta-call recursion and turning the system unusable [Kiczales 1991] This
problem occurs often when modifying core language features such as Integers, Floats,
and Arrays.

Denker et al. [Denker 2008] propose a solution to this issue by making reflection
"context-aware", meaning that the system knows when meta-level code is being executed,
and avoids meta-call recursions by copying problematic code and splitting execution in
different levels. However, when the introduced change affects a great number of system
components (i.e. changing the boolean operator ’not’), this solution is not enough. To
implement this sort of modifications the system must be rebuilt while having them into
consideration. By rebuilding the system we mean initializing its language runtime, as
described in Section refsec:soa-aot-runtime-initialization.

2.5 LIT Evaluation

After describing modern techniques for language implementation, we compare them
according to the evaluation criteria introduced in Section 2.2.1.

2.5.1 C1. Abstractions

Abstractions offered by LIT are compared regarding their expressiveness and their spec-
ifications abstraction level. A visual representation of the comparison is illustrated in
Figure 2.3.

24 Chapter 2. Language Implementation Techniques

The most expressive way to specify syntax and static semantics is by coding a com-
piler from scratch or extending an existing one, but the abstraction level of specification
is the lowest. Extensible compilers are the predecessors of DSLs for attribute gram-
mars. They proposed a compiler whose architecture could be extended by specifying
new AST nodes together with AST transformations. Polyglot [Caballero 2007], and
JaCo [Zenger 2001] are examples of this approach. At the other extreme of the chart
we find PetitParser, an example of using an internal DSL to define changes in the host-
language compiler. The chart is consistent with the popularity of nowadays solutions for
syntax and static semantics specification: DSLs for attribute grammars combined with
DSLs for advanced type checking and name binding are a good option that balances
expressiveness and level of abstraction.

The scenario for dynamic semantics specification is different. The most expressive
option is the interpreter, but as with compilers, its abstraction level is low. DSLs for
model transformations by themselves do not position well in the chart, however these
solutions are often applied in combination with other techniques, such as operational
semantics DSLs. DSLs for operational semantics have a good level of expressiveness,
however their abstraction level is lower than that of MOP and metaobjects. Abstractions
offered by self-surgery solutions are the most high-level, and their expressiveness remains
high. CLOS MOP is more expressive than Smalltalk’s metaobjects because it provides a
more flexible object-model, which makes it also more complex. One limitation in CLOS
is that it does not reify execution concepts, while Smalltalk does.

2.5.2 C2. Mapping From Specifications To Realizations

In generation techniques specifications and realizations are at different levels of abstrac-
tion. The logics to perform the mapping from one level to the next is found in the
generator program. DSLs for syntax and static semantics specification allow defects
to be are captured statically and debugged at the level of their specification code. By
contrast, defects in interpreters and DSLs for dynamic semantics often cannot be cap-
tured statically. Some of these defects make the generator program fail or produce
realizations that do not behave as expected. To find the cause of these failures, users
must debug either generator code or the realizations code. This situation forces devel-
opers to mentally track back failures manifested at a lower abstraction level to their
specifications.

Generation LIT implement different strategies to reduce the cognitive load required
to debug these failures: generation of annotated code, multi-level debuggers, and com-
pilation graphs are some examples. However, the abstraction gap in debugging tasks is
not a problem of implementation, but rather it arises as a natural result of placing the
logics for construction of language implementation in the generator program.

2.5. LIT Evaluation 25

Parser
/ Compiler

Attribute
Grammar DSL

Ex
pr

es
si

ve
ne

ss

Abstraction Level

AG DSL + NB DSL*

Extensible compiler

PetitParser

Syntax and Static Semantics

Interpreter
CLOS MOPOperational

Semantics DSL
Smalltalk
Metaobjects

DSL for Model
Transformations

Ex
pr

es
si

ve
ne

ss
Abstraction Level

Dynamic Semantics

*AG: Attribute Grammar
 NB: Name Binding

Figure 2.3: Comparison of abstractions for language specification in state of the art
LIT.

On the other hand, self-surgery LIT do not face the abstraction gap in debugging
tasks problem. The host debugger is useful to debug both specifications and realiza-
tions. However, preventing metastability issues requires from users deep understand-
ing about the system’s object-model. Metastability issues manifest as critical failures
which are hard debug because they make the system freeze or crash. Solutions to solve
meta-stability issues [Denker 2008] effectively reduce the efforts to debug these failures.
However, modifications to the semantics of the language that require to rebuild the full
object-model are still not well handled.

2.5.3 Conclusion

Syntax and static semantics are in general well handled by current LIT so we leave them
out of the context of this work. The alternatives for dynamic semantics specification are
multiple, which makes them more interesting to study. Operational semantics DSL face
the problem of hard-to-solve failures during the automatic mapping process. On the
other hand, self-surgery approaches do not face this problem. Additionally, the abstrac-
tion level of metaobjects and CLOS is higher than that of operational semantics DSL.
For these reasons we decide to focus our research on self-surgery techniques, studying
how to overcome their limitations.

26 Chapter 2. Language Implementation Techniques

2.6 Overcoming Self-Surgery Limitations: Language
Runtime Initialization

Language runtime initialization is required in high-level VM-based languages like Java,
Ruby and Smalltalk, however they perform it in two different ways: start-up initializa-
tion and ahead-of-time initialization.

In start-up initialization, the language runtime is initialized each time the system
starts. The process is defined as part of their VM initialization routines, which makes
it hard to isolate and modify. Examples of this are: Ruby [Koichi] and Java (e.g. as in
Javas bootstrap class loader [Oracle]).

In ahead-of-time initialization, the language runtime is initialized only once and
then saved as a memory dump in disk. Initialization code is implemented in a process
that is external to the Virtual Machine. The Bootstrap technique uses ahead-of-time
initialization. Two languages using Bootstrap to initialize their language runtime are
Pharo and CLOS.

2.6.1 Ruby and Python Runtime-Initialization

Ruby and Python bootstraps are very similar, therefore we explain only the case of
Ruby. Ruby’s bootstrap is implemented as part of its VM, which is written in C. The
implementation of this process 5 mixes Ruby and C code.

At the beginning of the process, stub objects6 (e.g. nil, true, the symbol table, etc)
and stub classes are created, as shown in Listing 2.2, where classes are created using
C instructions. The result is the class hierarchy shown in Figure 2.4. Then, multiple
modules containing classes are initialized, getting their definition from Ruby code. Once
the modules are initialized, the virtual machine is operational and able to execute code.

Since Ruby’s runtime initialization is implemented as part of the VM, there is no
clear separation between language runtime and VM. Modifying this process to alter
Ruby’s semantics is difficult due to the high coupling between C and Ruby code, and
because in case of failure, debugging C code is necessary. In this scenario, Ruby’s
abstractions (classes, objects, etc) are not available during the debugging process, as
only low-level tools (GCC debugger) are available to manipulate and inspect Ruby
objects.

5Version Yarv-MJIT [Kokubun]
6Stubs are temporary substitutes of elements in the runtime, which are necessary to build the rest

of elements in the runtime.

2.6. Overcoming Self-Surgery Limitations: Language Runtime
Initialization 27

1 void Init_class_hierarchy(void)
2 {
3 rb_cBasicObject = boot_defclass("BasicObject", 0);
4 rb_cObject = boot_defclass("Object", rb_cBasicObject);
5 rb_gc_register_mark_object(rb_cObject);
6

7 rb_cModule = boot_defclass("Module", rb_cObject);
8 rb_cClass = boot_defclass("Class", rb_cModule);
9 }

10 static VALUE
11 boot_defclass(const char ∗name, VALUE super)
12 {
13 VALUE obj = rb_class_boot(super);
14 ID id = rb_intern(name);
15

16 rb_name_class(obj, id);
17 rb_const_set((rb_cObject ? rb_cObject : obj), id, obj);
18 return obj;
19 }

Listing 2.2: Excerpt of Ruby’s language runtime initialization process.

Figure 2.4: Ruby initial class hierarchy.

28 Chapter 2. Language Implementation Techniques

2.6.2 Discussion

When language-runtime initialization is implemented as part of the VM, as in Ruby and
Python, the high-coupling between VM and language runtime makes the process hard
to modify. Therefore, we focus our research in ahead-of-time initialization techniques.

2.7 Bootstrap

Bootstrap is a high-level technique to implement ahead-of-time language runtime initial-
ization, applied by reflective languages who make a clear distinction between language
runtime (also named kernel) and VM, we represented in Figure 2.5. Bootstrap is not
yet a language implementation technique, because it is traditionally used to produce a
single language or a family of similar languages.

VM

Kernel (Language Runtime)

Application

toString
Object

TrueClass

true

JIT GC Interpreter. . .

Figure 2.5: VM and language runtime.

Bootstrapping a kernel is the process that builds the minimal structure of a language
that is reusable to define this language itself. The idea is to use as early as possible the
benefits of the resulting language by implementing a minimal core whose goal is to be
able to build the full system. Few languages implement ahead-of-time language-runtime
initialization in bootstrap. Below we present two existing systems implementing this
solution.

2.7. Bootstrap 29

2.7.1 Common Lisp Bootstrap

Common Lisp, like Smalltalk, has the concept of image apart from VM. Taking ideas
from [Rhodes 2008], Durand et al. [Durand 2019] bootstrap Common Lisp from a previ-
ous functional version of Common Lisp. They create a Common Lisp system by building
it from its associated source code (which is written in Common Lisp). They use vari-
ous tools and language processors to transform that source code into an executable file
(reusing the compiler in the host system), which is finally dumped to disk and loaded
by the VM.

Their approach is original because they build the CLOS MOP classes and generic
functions first, allowing them to use the CLOS machinery for building many other
parts of the system, thereby decreasing the amount of special-purpose code, improving
maintainability of the system, and increasing the level of abstraction.

Their technique represents great advantages to maintenance of the bootstrapped
system. Contrary to Ruby, there are no dependencies between CLOS code and other
code that require duplication of information that must be kept synchronized when some
code is modified.

Although their implementation takes advantage of abstractions provided by the
MOP, it is language specific. Introducing modifications requires experience with the
bootstrap process, with the resulting object-graph structure constraints, and with the
target VM.

2.7.2 Smalltalk Bootstrap

We have selected the programming language Pharo [Kiczales 1991], a Smalltalk inspired
language, to analyze Bootstrap in Smalltalk. This decision derives from the maturity
level of the Pharo bootstrap: Pharo’s official image is currently bootstrapped from its
sources.

The Pharo bootstrap generates kernels containing the language runtime that are
executed in the Pharo VM. Polito et al. [Polito 2015] have proven this technique effective
to generate Pharo-like languages (e.g. MetaTalk and Candle) while always targeting
the Pharo VM. Pharo-like languages are languages with an execution semantics close
to Pharo, but with a different class-model (e.g. Traits in Pharo7 are implemented in
classes, removing these classes from the kernel also removes Traits from the language).
Chapter 3 presents the Pharo bootstrap technique in detail.

The Pharo Bootstrap process occurs in stages as represented in Figure 2.6. An
7Traits are a composition mechanism alternative to multiple or mixin inheritance.

30 Chapter 2. Language Implementation Techniques

generator application, running in a previous functional version of Smalltalk, takes as
input a language specification and generates a kernel. The language definition is highly
coupled to both the bootstrap process and the target VM. Modifying this definition
or the generator application demands familiarity with the bootstrap process and VM
implementation.

Failures manifesting at different stages provide information about domains other
than language definition domains. The worst case scenario occurs when a failure man-
ifests during the kernel execution in the VM (e.g. a defect in the language definition
produces a segmentation fault in the VM). Defect backtracking assistance is not sup-
ported in general.

GLApp code (application code, written in guest language) is compiled into target
VM bytecode using the compiler in the host Smalltalk. The produced bytecode is loaded
into the kernel. Finally, the kernel is executed by the target VM.

The variety of languages that can be bootstrapped while targeting a single VM has
not been explored.

2.7.3 Discussion

We think that Bootstrap has the potential to become a LIT, because it applies the same
principles as self-surgery, being able to benefit from the same advantages for cognitive
distance reduction. We believe that it is possible to adapt bootstrap so that defini-
tion and generation of multiple languages is possible for developers with no previous
experience to bootstrap nor to virtual machine implementation.

Both Common Lisp and Smalltalk Bootstrap are high-level implementations to
language-runtime initialization. While Common Lisp bootstrap is not in a mature state,
Smalltalk implementations, such as Pharo, have a mature bootstrap process. Moreover,
previous work for bootstrapping Pharo-like languages exists [Polito 2015]. Additionally,
CLOS MOP, although expressive, remains complex. We take Pharo’s Bootstrap as the
starting point in our way to explore wether bootstrap can be transformed into a LIT or
not.

2.8 Conclusions

In this Chapter we have presented the state of the art in language implementation tech-
niques, paying particular attention to the cognitive burden they impose on developers
using them. We have seen that the specification of syntax and static semantics is well
supported by current solutions, but this is not true for dynamic semantics since DSLs

2.8. Conclusions 31

Kernel

Kernel +
(GL App)

Language
Definition

Bytecode

GLApp
Code

Live App

Kernel
Generation

GLApp
Installation

Parsing &
Compilation

Execution

General Bootstrap Process

Figure 2.6: Bootstrap multi-stage process.

usually require customizations introduced in the base language. The self-surgery ap-
proach to dynamic semantics specification has the advantage of preventing debugging
challenges associated to mapping between specifications and realizations. Also, the level
of abstraction of dynamic semantics specification is the highest among all studied tech-
niques. However, the variety of produced languages is limited by metastability issues.
This issues can be solved with the help of Bootstrap. We think that applying concepts
from self-surgery to Bootstrap reduces the cognitive distance, bringing the technique
one step forward to become a LIT. We have decided to take Pharo’s Bootstrap as the
starting point in our research, because it has a mature implementation and it has been
already used to define Pharo-like languages.

Chapter 3Challenges
Bootstrapping
Reflective Kernels
Contents

3.1 Pharo Bootstrap . 34

3.1.1 Pharo Bootstrap in a Nutshell 35

3.1.2 (A) Language Sources and Language Model (declarative) 36

3.1.3 (B, C) Generation Instructions (imperative) 37

3.1.3.1 (B) Reflective instructions 37

3.1.3.2 (C) Non-reflective instructions 38

3.2 Causes of Bootstrap Failures . 38

3.2.1 VM Constraints on the Kernel Structure 39

3.2.2 Classification of Defects and Failures 39

3.2.2.1 Classification of Defects 40

3.2.2.2 Classification of Failures 40

3.2.3 Taxonomy of Defects and Failures 41

3.3 Challenges Bootstrapping ObjVLisp 41

3.3.1 Pharo’s Metamodel Does Not Support Explicit Metaclasses . . . 43

3.3.2 Structural Def. causes VM Const. Fail at Generation (easy) . . . 43

3.3.3 Structural Def. causes VM Const. Fail at Generation (hard) . . 43

3.3.4 Reflective Def. causes Guest-Lang. Code Fail at Generation . . . 46

3.3.5 Reflective Def. causes VM Constraint Fail at Generation 47

3.3.6 Structural Def. causes VM Constraint Fail at Execution 51

3.3.7 Non-Reflective Def. causes VM-Constraint Fail at Execution . . 53

3.3.8 Application Def. causes Guest-Lang. Code Fail at Execution . . 55

3.4 Analysis Of Cognitive Distance In Bootstrap 58

3.4.1 Introduction to Cognitive Distance Representations 58

3.4.2 Causes Of Large Cognitive Distance In Bootstrap 58

3.5 Desirable Features Of A Bootstrap-Based LIT 61

3.5.1 Requirement 1 . 61

34 Chapter 3. Challenges Bootstrapping Reflective Kernels

3.5.2 Requirement 2 . 62

3.5.3 Requirement 3 . 62

3.6 Conclusions . 63

In this Chapter we analyze Bootstrap extensively, paying special attention to the
reasons for increasing cognitive distance. Section 3.1 uses Pharo [Ducasse 2017], a
Smalltalk based reflective language, as an example to present an in-deep explanation
of the bootstrap process. Section 3.2 analyzes the causes for failures appearing during
bootstraps and proposes a taxonomy where defects, failures, and underlying causes are
interrelated. Section 3.3 describes the process of bootstrapping a language different
from Pharo to concretely show challenges faced by developers. Section 3.4 analyzes the
reasons for increased cognitive distance in Bootstrap. Finally, Section 3.6 closes this
chapter with our final observations.

During this chapter, and the rest of this dissertation, we use the concepts about cog-
nitive distance, defects, and failures presented in Section 2.1. To the previous concepts
we add the ones below.

• Kernel: is the realization1 of the language-runtime to be generated. The kernel is
an array of bytes in host memory during its generation, and a binary file in disk
after its exportation.

• Bootstrapper: application that generates the new kernel.

• Host: system where the bootstrapper runs.

• Host-language: language of the host system.

• Guest-language: language whose kernel is generated.

3.1 Pharo Bootstrap

We use Pharo to present a deep explanation of the Bootstrap technique, and to analyze
causes of cognitive increment.

1Software abstractions, as explained in Section 1.1 and proposed by Krueger [Krueger 1992], have
two levels: specification and realization. Specification is at the abstraction’s highest-level of detail and
realization at the lowest.

3.1. Pharo Bootstrap 35

3.1.1 Pharo Bootstrap in a Nutshell

As presented in Figure 3.1, kernels are generated by a standard Pharo application,
named bootstrapper, which runs in a full Pharo system that serves as host. The process
starts when the bootstrapper reads the language sources ((A), see Section 3.1.2) and
produces a language model accordingly to the sources. Then, it applies kernel generation
instructions ((B, C), see Section 3.1.3)defined in the bootstrapper to generate the kernel.
During kernel generation, the host compiler is used to compile guest-language code into
bytecode which is then installed in the kernel.

Before exporting the kernel, the bootstrapper installs the guest-language applica-
tion (D) in the kernel. Even though language kernels are independent from applications,
in our analysis we must consider the application code because bootstrap late failures
manifest during the execution of application code. After this step, the kernel is serialized
and written as a file to disk, which ends the generation stage.

Bootstrapper
Create
Language ModelLanguage

Model
(Pharo objects)

Execute
Generation
Instructions

Kernel
(array of bytes)

Target VM

Kernel
(binary file)

Export
Kernel

Loads
and

Executes

Language
Sources

(plain text)

Kernel
(array of bytes)

Non-reflective
Instruction

mirror

kernel
object

uses VM
Simulator
to manipulate

interacts with

A

C

B Reflective
Instruction executed by

AST
Interpreter

interacts with

Install
Application

Kernel + GL App
(array of bytes)

Guest-lang
Application
(plain text)

D

G
en

er
at

io
n

St
ag

e
Ex

ec
ut

io
n

St
ag

e

Figure 3.1: Pharo bootstrap overview.

A kernel in host memory is, at the low-level, an array of bytes. Objects in the kernel,
named kernel-objects are manipulated through mirrors [Papoulias 2011]. Mirrors are

36 Chapter 3. Challenges Bootstrapping Reflective Kernels

objects in the host used to encapsulate the physical representation of kernel-objects.
Mirrors use the VM Simulator Library to manipulate the kernel. This library imple-
ments low-level operations to build and modify kernel-objects at the level of bits. The
VM Simulator Library is installed in the host, and it is specific for the Pharo VM.

The execution stage, or run-time, begins when the Pharo VM loads the kernel file,
and starts reading specific sections in it. At one point, the it retrieves the kernel’s entry
point, and starts bytecode interpretation. Kernels must fulfil the VM constraints (Sec-
tion 3.2.1), otherwise the VM fails.

Because to create a new language developers must modify language sources and
generation instructions, the language definition comprises all of these elements. The
rest of this section describes the language definition by parts.

3.1.2 (A) Language Sources and Language Model (declarative)

Language sources are plain text files defining the structure of classes and methods to
be installed in the kernel. They are used by the Bootstrapper to build the language
model. The next code is an excerpt of Pharo’s sources, showing the definition of the
class ProcessorScheduler (used to coordinate processes in the system) The definition
of its method activeProcess is also presented.

1 "(A) language sources"
2 class {
3 name: #ProcessorScheduler
4 superclass: #Object
5 instVarsNames: ’processList activeProcess’
6 classVarsNames: ’’
7 }
8 ProcessorScheduler >> activeProcess
9 "Answer the currently running Process."

10 ^ activeProcess

To avoid interaction with plain text, the Bootstrapper creates the language model
by creating sources into objects in the host system. These objects are named object-
models. They are instances of classes in the host system. The language metamodel is
the set of classes in the host-system whose instances are object-models. The metamodel
is an existent component of the host, used to model the host language itself. We call
class-models to object-models representing classes, and method-models to those repre-
senting methods. The Bootstrapper creates object-models according to specifications in
language sources.

3.1. Pharo Bootstrap 37

3.1.3 (B, C) Generation Instructions (imperative)

Generation instructions are imperative instructions executed to create kernel-objects
based on the contents of the model. Each object-model is installed in the kernel e.g. the
kernel-object ProcessorScheduler is based on the object-model with the same name, it
has Object as superclass and two instance variables named processList and activePro-
cess (Section 3.1.2).

Some kernel-objects are not represented in the model. However they still depend on
it, as they are created by instantiating kernel-classes defined by class-models. (e.g. the
object Processor is created by instantiating the kernel-class ProcessorScheduler).

Generation instructions can be written using both guest-language and host language
code. Depending on its language, we classify instructions as follows:

3.1.3.1 (B) Reflective instructions

Written in guest-language. They are reflective intercession operations through which
the guest-language modifies itself. The next code is an extract of Pharo’s Bootstrapper,
showing reflective instructions to create and initialize the lists of processes in the kernel.
In these instructions, the object Processor is created as an instance of ProcessorSched-
uler and stored as an entry inside Smalltalk. A list of processes is stored in Processor’s
first instance variable.

1 "(B) reflective instruction initializing the system’s process scheduler. The following is guest language code"
2 Smalltalk
3 at: #Processor
4 put: (ProcessorScheduler basicNew).
5 (Smalltalk at: #Processor)
6 instVarAt: 1
7 put: ((1 to: 80) collect: [:i | ProcessList new])

Reflective instructions make sense in the kernel context, not in the host. Meaning
that classes, methods and variables appearing in their code refer to objects in the kernel.
For this reason, they need to be evaluated in a special way. The Bootstrapper uses a
custom AST interpreter to evaluate reflective operations. Pharo’s parser is used to pass
from guest-language code to AST. The AST is then given to the AST interpreter. This
interpreter visits the AST nodes performing evaluation. Variable bindings are resolved
in the kernel context e.g. class names refer to classes installed in the kernel. Even though
message evaluation is applied on kernel-objects, the lookup of methods is done in class-
models of the language model. Method’s source code is obtained from method-models
found in these class-models.

38 Chapter 3. Challenges Bootstrapping Reflective Kernels

The result of the evaluation is a mirror pointing to the returned kernel-object. There-
fore, our previous code example, is actually implemented as follows.

1 Bootstrapper >> initializeProcessScheduler
2 | mirror |
3 "(B) + AST interp"
4 self interpreter evaluate: ’
5 Smalltalk
6 at: #Processor
7 put: (ProcessorScheduler basicNew).
8 (Smalltalk at: #Processor)
9 instVarAt: 1

10 put: ((1 to: 80) collect: [:i | ProcessList new])’.
11 mirror := self interpreter evaluate: ’
12 Smalltalk globals associationAt: #Processor.’.
13 ...

3.1.3.2 (C) Non-reflective instructions

These are instructions written in host language. Objects in the kernel are directly ma-
nipulated using their corresponding mirrors. The following code shows the continuation
of the method initializeProcessScheduler. The object Processor must be referenced
from an association stored in a specific position inside a special kernel-object named
special objects array. The Bootstrapper uses the method kernel to get an object repre-
senting the kernel in memory. The message specialObjectsArray sent to kernel returns a
mirror. The message at:put: is sent to this mirror to store the corresponding association.

The mirror directly manipulates its representation in the kernel. There is no need to
pass through guest-language code. Non-reflective operations are provided by mirrors.
They include basic reflective operations such as getting and setting values for instance
variables, getting the class of an object, getting and setting elements in collections, and
instantiation operations.

1 Bootstrapper >> initializeProcessScheduler
2 ...
3 "(C) non−reflective instruction"
4 self kernel specialObjectsArray at: 4 put: mirrorToProcessorAssoc

3.2 Causes of Bootstrap Failures

One of the main causes of increased cognitive distance in Bootstrap is the difficulty to
solve errors occurring during the generation of the kernel. In this Section, we analyze

3.2. Causes of Bootstrap Failures 39

the reasons behind these failures and their relationship to the language specification.

3.2.1 VM Constraints on the Kernel Structure

VMs manipulate data in memory while executing applications. Kernels structure is
partially fixed by the VM, as it contains data to be accesses and manipulated by the
VM. Data in the kernel must respect specific layouts in memory (at level of bits), and
certain data structures cannot be missing (e.g. basic elements representing the booleans
values true and false). We call VM constraints to the set of restrictions the VM imposes
on the structure of kernels.

In object-oriented languages, objects are the unit of data encapsulation. In Pharo,
everything is an object and even primitive types are instance of a class. Therefore,
Pharo VM restrictions concretely mean that the kernel must contain specific objects
and classes, and that their representation in memory must follow specific layouts. For
example, the Pharo VM expects that an object representing undefined values, namely
nil, is stored in a specific position in the kernel, and that its layout has a fixed size
of zero (i.e. nil cannot store data internally). Additionally, as in Pharo every object
must be instance of a class, the class UndefinedObject must also exist. This class must
respect the layout constraints imposed for its instances: UndefinedObject must declare
exactly zero instance variables.

Not all VM constraints are low-level. Some are related to VM assumptions on
relationships between language objects, and partially fix the language semantics. For
example, the Pharo VM assumes single inheritance for method lookup, forcing that each
class in the kernel has at most one superclass.

Bootstrapping a kernel that complies with VM constraints requires that every part
of the language definition (i.e. the bootstrapper, the kernel source code, and the lan-
guage model) from which the kernel is generated respect VM constraints. We say that
definitions and kernels are valid when they fulfill VM constraints, otherwise they are
corrupt.

3.2.2 Classification of Defects and Failures

Defects in the language definition produce failures at different moments of bootstrap,
even at run-time when the VM interprets application code. Defects in the VM are
beyond the scope of this research. We analyze and classify defects and their consequent
failures in bootstrap to finally propose the taxonomy of defects and failures presented
in Section 3.2.3.

40 Chapter 3. Challenges Bootstrapping Reflective Kernels

3.2.2.1 Classification of Defects

We classify defects according to their location in the definition of the language.

Structural (declarative). Structural defects are found in language sources, which
are used to build the the model. They are related to missing or corrupt definition of
classes. They always produce VM Constraints Failures (Section 3.2.2.2). In ObjV Lisp

bootstrap example, fully described in Section 3.3, failures presented in Sections 3.3.2, 3.3.3,
and 3.3.6 have their origin in structural defects.

Non-Reflective (imperative). Non-Reflective defects are found in Bootstrapper
code, which is written in host language. They are related to instructions that cor-
rupt the kernel structure. They produce VM Constraints Failures (Section 3.2.2.2).
We do not analyze non-reflective defects producing failures unrelated to kernel corrup-
tion (e.g. sending an inexistent message), because they are debugged using the host
debugger, just like normal host applications. Example in Section 3.3.7, corresponds to
this kind of defect.

Reflective (imperative). Reflective defects are found in reflective instructions, which
are written in guest-language. Some reflective defects produce kernel corruption, man-
ifesting as VM Constraints Failures at any stage of bootstrap and run-time (Sec-
tion 3.2.2.2). Some reflective defects do not produce kernel corruption, but they make
the AST interpreter fail, preventing their own execution, and manifesting as Guest-
Language Code Failures (Section 3.2.2.2) during kernel generation. Section 3.3.5 presents
presents an example where kernel corruption is produced.

Application (imperative). They are found in application code that is executed
at run-time. This code is written in guest-language. They do not relate to kernel
corruption, but to problems in the application. They produce Guest-Language Code
Failures (Section 3.2.2.2). They are are independent of VM constraints. Section 3.3.8
presents an example. Application defects produce failures at run-time, never before.
Information about the produced failure depends on debugging features implemented in
the kernel.

3.2.2.2 Classification of Failures

We classify failures according to their root cause.

3.3. Challenges Bootstrapping ObjVLisp 41

VM Constraints Fails. Produced when either class-models or the generated kernel
do not fulfill VM constraints. VM constraints are explained in Section 3.2.1. VM con-
straints failures arise at any stage of bootstrap, and manifest as either a handled excep-
tion, (i.e. showing information about the error), or as an unhandled exception (i.e. show-
ing no further information, such as in segmentation faults).

Guest-Language Code Fails. Produced when guest-language code cannot be exe-
cuted due to invalid operations (e.g. sending an inexistent message), or when its execu-
tion has an unexpected result. Failures of this kind are independent of VM constraints.
They manifest as either as an exception during the AST interpretation process, as a VM
exception during at run-time, or as an unexpected result, also at run-time. Debugging
requires debugging guest-language code, but no tools are available do do this.

3.2.3 Taxonomy of Defects and Failures

Based on the previous classification, we build a taxonomy where defects, failures, and
their underlying causes are interrelated. Figure 3.2 presents our taxonomy of defects
and failures arising during the bootstrap process. Each cell relates type of defect, with
stage of failure manifestation, with type of failure. From this table we conclude that:

• Structural and Non-Reflective defects are always related to VM Constraints, man-
ifesting as failures at any stage of the process.

• Application defects produce failures manifesting only at run-time. They are un-
related to VM constraints, having their cause in errors in guest-language code.

• Reflective defects producing failures manifested during the generation stage, are
caused by both: VM constraints and Semantic errors in guest-language code. In
the second case, the kernel generation process is always interrupted. In the first
case, the generation process is either interrupted due to kernel corruption, or a
corrupt kernel is fully generated. Therefore, failures due to this kind of defects,
manifesting at run-time, are always related to VM requirements.

3.3 Challenges Bootstrapping ObjVLisp

To present challenges associated to the bootstrap technique, in this Section we play the
role of a developer modifying Pharo’s bootstrap to generate ObjVLisp [Cointe 1987].
ObjVLisp is a minimal class-based language with explicit metaclasses (unlike Pharo,

42 Chapter 3. Challenges Bootstrapping Reflective Kernels

Figure 3.2: Taxonomy of Defects and Failures in Bootstrap.

which implements implicit metaclasses). ObjVLisp defines only two classes: OLObject
and OLClass (see Figure 3.3). We use the prefix OL to name classes to explicitly
distinguish them from classes in the host.

OLObject

OLClass

nil

Instance of
Inherits from

Figure 3.3: OLObject and OLClass are the only classes defined in ObjVLisp.

We create our language definition source code from scratch, editing plain text files
defining classes and methods in Tonel format. We define only two class-models: OLOb-
ject and OLClass. To provide a way to access methods installed in classes from language
code, we declare the instance variable methods in OLClass, where each class will store
its dictionary of methods.

1 class {
2 name: #OLObject
3 superclass: nil
4 }
5 class {
6 name: #OLClass
7 superclass: #OLObject
8 instVarsNames: ’methods’
9 }

3.3. Challenges Bootstrapping ObjVLisp 43

3.3.1 Pharo’s Metamodel Does Not Support Explicit Meta-
classes

The first challenge we face is that Pharo’s metamodel (Ring [Ring2]) is designed for
implicit metaclasses. Therefore, it automatically creates one metaclass for each class it
finds in the Tonel repository. Overcoming this challenge requires multiple modifications
to Ring. We do not explain here how this was done because it is just a technical matter,
but make clear that Pharo’s metamodel is not flexible enough to support modelling
languages too different from Pharo.

3.3.2 Structural Def. causes VM Const. Fail at Generation
(easy)

Undefined class-model produces failure during kernel generation Nevertheless we con-

tinue with the Bootstrapper execution, leaving the resolution of this problem for later.
The following failure is produced from method createStubForClassNamed:.

Error

Using the host debugger to understand this failure, we realize that it is produced
during the creations of stubs and that the names of 20 classes are accessed by their
name. We add these classes to our structural definitions and modify their names in the
Bootstrapper adding the prefix OL.

1 class {
2 name : #OLArray
3 superclass : #OLObject
4 instVarsNames: ’methods’
5 }
6 ...

3.3.3 Structural Def. causes VM Const. Fail at Generation
(hard)

Class-Model defining wrong format produces failure during kernel generation.

We execute again the Bootstrapper, obtaining a new failure as shown below.

44 Chapter 3. Challenges Bootstrapping Reflective Kernels

Error: # ’\\’ was sent to nil.

Figure 3.4 presents a screenshot of the host debugger at the moment this failure
manifests.

Figure 3.4: Host debugger showing the error presented in Sectionsec:uninitialized-soa

Debugging this failure, we realize that the problem occurs because the special
objects array mirror is not referencing any object in the kernel, but instead it points
to nil (the object nil in the host). Therefore, when the Boostrapper tries to store
an object for the first time in the special objects array, the method long64At:, called
by stObject:at:put: (both methods belonging to the VM Simulator Library) fails with a
non-intuitive failure (see the call stack in Figure 3.4).

To find the way to fix this error, we must debug the code that creates the special
objects array. Eventually we arrive again to VM Simulator code, and find the cause in
the method below.

3.3. Challenges Bootstrapping ObjVLisp 45

1 VMSimulator >> newBootstrapInstanceFromClassFormat: classFormat indexableSize: nElements classIndex:
classIndex

2 "Allocate an instance of a variable class, except CompiledMethod."
3 | instSpec numSlots newObj fillValue |
4 instSpec := self instSpecOfClassFormat: classFormat.
5 fillValue := 0.
6 instSpec caseOf: {
7 [self arrayFormat] −>
8 [numSlots := nElements.
9 fillValue := nilObj].

10 ...
11 ...
12 }
13 otherwise: ["some Squeak images include funky fixed subclasses of abstract variable
14 superclasses. e.g. DirectoryEntry as a subclass of ArrayedCollection.
15 Allow fixed classes to be instantiated here iff nElements = 0"
16 (nElements ~= 0 or: [instSpec > self lastPointerFormat]) ifTrue:
17 [^nil].
18 numSlots := self fixedFieldsOfClassFormat: classFormat].
19 ...

The previous method returns nil (line 17) because the variable instSpec, which
depends on classFormat (line 4) given as parameter, does not match the expected
value for arrayFormat (line 7). The argument classFormat is read from the language
model. Eventually we realize that the structural definition of OLArray is missing the
specification for its type, which should be variable. The correct definition should be:

1 class {
2 name : #OLArray
3 superclass : #OLObject
4 type: #variable
5 }

To prevent this problem from happening again, we decide to select and copy struc-
tural definitions from Pharo. However, Pharo’s kernel is too large and cherry picking
structural definitions is not an easy task.

Therefore, we decide base our structural definitions on a minimal hand-crafted
Pharo-like language named Candle. Candle defines only 49 classes, and implements ba-
sic support for basic type operations and basic IO support through files. Since Candle
implements implicit metaclasses we modify it to have explicit metaclasses like OvlispL.

46 Chapter 3. Challenges Bootstrapping Reflective Kernels

3.3.4 Reflective Def. causes Guest-Lang. Code Fail at Gener-
ation

Reflective instruction accessing undeclared variable produces failure during kernel gen-
eration.

Pharo Bootstrap uses a class installer defined as part of its structural definitions to
install the definitive version of classes in the kernel. In the same way, Candle implements
its own class installer. We modify it to fit ObjVLisp needs. ObjVLisp’s class installer
is implemented as a class and its methods in the guest-language structural definitions.
ObjVLisp’s class installer is the class OLClassBuilder.

As shown in the code extract below, the Bootstrapper executes guest-language code
that creates an instance of the class OLClassBuilder (line 5). The instance of OLClass-
Builder is configured according to information extracted from the class-model: super-
class, class name, instance variables and type (lines 6 to 9). By sending the message
build to this instance (line 11), the class defined by the class-model received as parameter
is installed in the kernel.

The Bootstrapper uses its custom AST interpreter to execute reflective generation
instructions (line 13), which are written in guest-language code. The result of the
evaluation is expected to be a mirror to the new class installed in the kernel.

1 Bootstrapper >> basicInstallClass: classModel
2 | type code mirror |
3 type := self typeFor: classModel.
4 code := ’| newClass |
5 newClass := (OLClassBuilder new
6 superclass: ’, classModel superclass name ,’;
7 name: ’, classModel name ,’;
8 instVarNames: ’, classModel instVarNames ,’;
9 type: ’, type ,’;

10 yourself)
11 build.
12 newClass’.
13 mirror := self interpreter evaluate: code.
14 ^ mirror

The next piece of code shows the structural definition of class OLClassBuilder, its
method build, and the method instSize are sent by build (line 11 in previous code
extract). We created this method by modifying the build method found in Candle, as
follows:

3.3. Challenges Bootstrapping ObjVLisp 47

1 OLClassBuilder
2 superclass: #OLObject
3 instVarsNames: ’name superclass instVarNames formats’
4

5 OLClassBuilder >> build
6 | theClass |
7 theClass := OLClass new.
8 theClass superclass: superclass.
9 theClass setFormat: ((self instSpec bitShift: 16) bitOr: self instSize).

10 theClass name: name.
11 ^ theClass.
12

13 OLClassBuilder >> instSize
14 ^ (superclass ifNil: [0] ifNotNil: [superclass instSize])
15 + instVarNames size

We execute the Boostrapper, but execution never concludes. We interrupt execution
opening a host debugger window, presented in Figure 3.5. The AST interpreter used to
execute reflective instructions has fallen into an infinite loop. Debugging guest-language
code by debugging the AST interpreter is not an easy task. Objects in the kernel are
accessed through mirrors that only show us their address in memory, as it is the case
for the receiver. To have hints about which code is being executed, it is necessary to
inspect the AST nodes, as shown for the case of the message node.

We realize that the receiver in this case is nil. This happened because we did not
initialize the value for instance variable names when the building class, preventing its
instance size from being calculated inside the method instSize. We fix this defect by
introducing a line of code that sends the message instVarNames: with the set of instance
variables before line 9.

3.3.5 Reflective Def. causes VM Constraint Fail at Generation

Reflective instruction corrupting the kernel produces failure during kernel generation.

After fixing our code as described above, we execute the Bootstrapper once again,
but the following failure is produced.

’Instance of EPPrimitiveFailed did not understand #bytecodes:’

The message bytecodes: is sent to an instance of EPPrimitiveFailed. Debugging
Bootstrapper code we realize that the Bootstrapper expected an instance of the class
OLCompiledMethod.

48 Chapter 3. Challenges Bootstrapping Reflective Kernels

Figure 3.5: Debugging guest-language code execution by using the host debugger to
debug AST interpreter execution.

3.3. Challenges Bootstrapping ObjVLisp 49

We debug Bootstrapper code, eventually arriving to VM simulator code where an
instance of OLCompiledMethod is created by executing a primitive (see Figure 3.6a).

We realize that the VM expects the value of instSpec for the class OLCompiled-
Method to be 24. We learn this value by evaluating the message firstCompiledMethod-
Format (line 8).

We check our structural definition for the class OLCompiledMethod and find its
type to be correctly set as compiledMethod. Consequentially, its class-model instSpec
is correctly set in 24. However, for some reason, the value of instSpec for the class in
the kernel does not match the one specified in its structural definition.

To discover why this is happening, we must debug the process used to install classes.
However, this is a complex task, because this co de is written in guest-language, and
it is interpreted by an AST interpreter. The only way to debug this code is debugging
the interpreter’s execution as it interprets guest-language code, by traversing its AST
nodes, as shown in Figure 3.6b.

We finally discover that the mistake is in the method OLClassInstaller » instSpec,
which returned the value 12 for the OLCompiledMethod class, instead of 24. Old versions
of Pharo VM used the value 12 for the instSpec of CompiledMethod. Candle’s class
builder code was outdated.

Finding this defect back in our reflective instructions took big efforts, since the host
debugger is not suitable to debug guest-language code.

1 OLClassBuilder >> instSpec
2 ^ self isImmediate
3 ifTrue: [7]
4 ifFalse: [self isCompiledMethod
5 ifTrue: [12]
6 ifFalse: [self isWeak
7 ifTrue: [4]
8 ifFalse: [self isPointers
9 ifTrue: [self isVariable

10 ifTrue: [self instSize > 0
11 ifTrue: [3]
12 ifFalse: [2]]
13 ifFalse: [self instSize > 0
14 ifTrue: [1]
15 ifFalse: [0]]]
16 ifFalse: [self isWords
17 ifTrue: [10]
18 ifFalse: [16]]]]]

Listing 3.1: OLClassBuilder » instSpec, copied from Candle, has a semantic defect in
line 5: instSpec for CompiledMethod should be 24 instead of 12 according to VM
constraints.

50 Chapter 3. Challenges Bootstrapping Reflective Kernels

(a) Debugging VM simulator code to understand Primitive Failure error shown in Section 3.3.5.

(b) Debugging AST Interpreter while executing reflective instructions shown in Listing 3.1.

Figure 3.6: Debugging primitive failure when instantiating OLCompiledMethod.

3.3. Challenges Bootstrapping ObjVLisp 51

3.3.6 Structural Def. causes VM Constraint Fail at Execution

Class-Model defining instance variables in wrong order produces failure during kernel
execution.

Candle’s structural definition for its equivalent to OLClass defines the next 3 in-
stance variables: superclass, methods, and format. We add the missing instance
variables superclass and format to OLClass:

1 class {
2 name : #OLClass
3 superclass : #OLObject
4 instVarsNames: ’methods superclass format’
5 }

We execute the Bootstrapper and successfully generate the kernel. When we load the
kernel in the Pharo VM. A failure occurs manifesting with the uninformative message
shown below.

Abort trap: 6

We debug VM code to find the cause of this error and realize that classes must
store their methods in their second instance variable, and their superclass in the first
instance variable. Therefore, the first two instance variables declared by OLClass must
be superclass and methods.

Listing 3.2 shows information shown by the VM debugger to find the cause of this
failure.

The first time a message is sent, the VM searches for it in the method dictionary
of the receiver’s class. This is is effectively a class object. The VM assumes that the
method dictionary is stored in its second instance variable. The VM finds instead, the
superclass of the current class in that position. It handles the error occurring when
trying to access a corrupt method dictionary, and tries to continue the lookup process
fetching the current class’ superclass. But in that position there is no class, instead
there is a method dictionary.

The current class is now a method dictionary. The VM tries again to find the
searched method in the method dictionary of the current class, failing but handling
again the error. The VM tries to continue the lookup process by fetching the current
class’ superclass. The first instance variable of a method dictionary is an immediate,
containing the number of methods it stores, in this case it is 43.

52 Chapter 3. Challenges Bootstrapping Reflective Kernels

1 [(lldb) bt
2 * thread #1, queue = ’com.apple.main-thread’, stop reason = EXC_BAD_ACCESS (

code=1, address=0x37)
3 frame #0: 0x0002994a Pharo‘longAtPointer(ptr="") at sqMemoryAccess.h: 141
4 frame #1: 0x000296bf Pharo‘longAt(oop=55) at sqMemoryAccess.h:164
5 * frame #2: 0x0002d2b5 Pharo‘lookupMethodInClass(class=235013248) at gcc3x-interp.

c:54877
6 frame #3: 0x0000e352 Pharo‘interpret at gcc3x-interp.c:5651
7 frame #4: 0x000295b8 Pharo‘enterSmalltalkExecutiveImplementation at gcc3x-interp.

c:51866
8 frame #5: 0x00002b91 Pharo‘interpret at gcc3x-interp.c:2452
9 ...

10 [(lldb) frame select 2
11 frame #2: 0x0002d2b5 Pharo‘lookupMethodInClass(class=235013248) at gcc3x-interp.

c:54877
12 54874 currentClass = class;
13 54875 while (currentClass != GIV(nil0bj)) {
14 54876 /* begin follow0bjField:ofObject: */
15 -> 54877 obj0op = longAt ((currentClass + BaseHeaderSize) + (((int)((usqInt)

(MethodDictionaryIndex) << (shiftForWord())))));
16 54878 assert(isNonImmediate(obj0op));
17 54879 if (((longAt(obj0op)) & ((classIndexMask()) - (

isForwarded0bjectClassIndexPun()))) == 0) {
18 54880 obj0op = fixFollowedFieldof0bjectwithInitialValue(

MethodDictionaryIndex, currentClass, obj0op);
19 [(lldb) p currentClass
20 (sqInt) $5 = 43

Listing 3.2: Debugging VM code to find the cause of the failure shown in Listing 3.5.
The defect is that the instance variables superclass and method dictionary declared
in the class Class are reversed in order.

The current class is now the immediate value 43. When the VM tries to fetch the
method dictionary of the current class, a segmentation fail occurs, because the current
class is an immediate (line 54877).

To prevent future failures of this kind, we check that all our structural definitions
for classes define instance variables in the same order they are defined in Candle and in
Pharo. However, we cannot know if all of them are required by the VM or not.

After applying these corrections, we generate the kernel again. We define the appli-
cation code as follows:

1 OLClass log: ’Hello from ObjVLisp’.
2 OLClass quit.

3.3. Challenges Bootstrapping ObjVLisp 53

This code is executed by the VM, when it VM loads and executes the kernel. This
application is installed in the kernel at the end of the generation process.

The message log uses File IO support inherited from Candle definitions. It creates a
file containing the message received as argument. The message quit calls a VM primitive
to finish the kernel execution.

We execute the kernel and it is a success. The file is created and it contains the
message as we expected.

Now we would like to test our kernel with more interesting applications.

3.3.7 Non-Reflective Def. causes VM-Constraint Fail at Exe-
cution

Class-Model With Wrong Name Produces Failure During Kernel Execution.

Pharo is a reflective system. In a nutshell, this means that programs are able to
reflect on their own execution and structure [Kiczales 1991]. An interesting example is
that it provides access to the run-time stack, through the pseudo-variable thisContext.
Whenever thisContext is referred to in a running method, the entire run-time context of
that method is reified and made available to the language as a series of chained Context
objects. The sender of a Context is the Context immediately before in the run-time
stack (e.g. the Context that was active at the moment the first Context was created).

To test that our kernel’s reflective capabilities integrate well with the Pharo VM,
we decide to install the next application, which logs the sender of the current context.

1 OLClass log: ’thisContext sender: ’, thisContext sender asString.
2 OLClass log: ’Good bye’.
3 OLClass quit

Failure manifestation. The kernel is generated again, it is then loaded and executed
by the Pharo VM. The execution is not interrupted by a critical failure. Instead, a
non-critical failure occurres during the execution. The message logged in the output
file (generated by the kernel as a product of its execution) is not as expected, but it is
the following.

’thisContext sender: -537223584
Good bye’

54 Chapter 3. Challenges Bootstrapping Reflective Kernels

The first line of the previous message was expected to be something like: ’thisContext
sender: OLClass » entryPoint’, since Contexts are printed showing the method selector
and class for which they were created.

Apparently, the message OLContext sender is returning a pointer to a space in
memory that does not contain an object, but contains something that can be interpreted
as an integer and it is printed as such.

Checking structural definitions. We check the structural definition of class OL-
Context and method OLContext » sender, finding the definitions below.

1 class {
2 name : #OLContext
3 superclass : #OLObject
4 instVarsNames: ’sender pc stackp method closureOrNil receiver’
5 type: #variable
6 }
7

8 OLContext >> sender
9 ^ sender

Not having found evident defects in structural definitions, we proceed to debug VM
code.

Inspecting guest-language objects using the VM debugger.
The VM debugger provides low-level tools to read objects in the kernel. Listing 3.3
shows an intermediate step during the VM execution, where the method OLContext »
sender was found and assigned to the variable objOop3 (line 54972).

The VM implementation provides the basic function printOop(address) to print
objects in the kernel, taking a memory address as argument. The object objOop3 has
a compiled method structure. The first variables are literals and the rest are bytecodes.

Debugging VM code.
We continue to debug and realize that the first bytecode in the method OLContext »
sender (bytecode 139) instructs the VM to execute a primitive. This primitive puts
at the top of the execution stack the object found right after the object’s header (see
Listing 3.4). The result of this operation, stored in the variable aValue, should be a
context but that is not the case.

3.3. Challenges Bootstrapping ObjVLisp 55

1 Process 14084 stopped
2 * thread #1, queue = ’com.apple.main-thread’, stop reason = step over
3 frame #0: 0x0002d8d8 Pharo‘ lookupMethodInClass(class=252536384) at gcc3x-

interp.c:54974
4 54971 && (((longAt(obj0o0p3)) & ((classIndexMask()) - (

isForwarded0bjectClassIndexPun()))) == 0)) {
5 54972 obj0op3 = fixFollowedFieldof0bjectwithInitialValue(index -

SelectorStart, methodArray, obj0op3);
6 54973 }
7 -> 54974 GIV(newMethod) = obj0op3;
8 54975 found = 1;
9 54976 goto 118;

10 54977 }
11 Target 0: (Pharo) stopped.
12 [(lldb) p print0op(obj00p3)
13 0xf0e5500: a(n) bad class class nbytes 21
14 0x20005 0xf0dd258 0xf0ede20
15 0x0f0e5514: 8b/139 08/8 01/1 00/0 7c/124 00/0 00/0 00/0
16 0x0f0e551c: 00/0
17 (sqInt) $15 = 0
18 [(lldb) p print0op(0xf0dd258)
19 0xf0dd258: a(n) bad class class nbytes 6
20 sender
21 (sqInt) $16 = 1

Listing 3.3: Inspecting the object OLContext » sender (a compiled method) using the
VM debugger (LLDB) low level tools.

Debugging Bootstrapper code.
We debug Bootstrapper code to find the reason causing a wrong compilation of the
method OLContext » sender. As shown in Figure 3.7, methods defined in the Context
class must be compiled using a special option called optionLongIvarAccessBytecodes.
However, the name of the class Context is hardcoded in the Bootstrapper code. This
produces a failure since our class is named OLContext.

3.3.8 Application Def. causes Guest-Lang. Code Fail at Exe-
cution

Application Code Sending Message With Argument Of Incorrect Type Produces Failure
During Kernel Execution

To test our kernel performing mathematical operations, we generate it again, but
this time we install the next application code:

56 Chapter 3. Challenges Bootstrapping Reflective Kernels

1 Process 13763 stopped
2 * thread #1, queue = ’com.apple.main-thread’, stop reason = step over
3 frame #0: 0x0000e4f5 Pharo‘ interpret at gcc3x-interp.c:5670
4 5667 if (localPrimIndex >= 264) {
5 5668 /* begin internalStackTopPut: x*/
6 5669 aValue = longAt(((LlongAtPointer(localSP)) + BaseHeaderSize) + (((sqInt) ((

usqInt) ((localPrimIndex - 264)) << (shiftForWord()))))
7 ->5670 longAtPointerput(localSP, aValue);
8 5671 goto 1859;
9 5672 }

10 5673 if (localPrimIndex == 256) {
11 Target 0: (Pharo) stopped.
12 (lldb) p print0op(aValue)
13 0xbfff88b1=-536886184
14 (sqInt) $7 = 0

Listing 3.4: Debugging VM code to find the cause of failure shown in Section 3.3.7

1 OLClass log: ’10 ln =’, 10 ln.
2 OLClass quit.

We execute it in the VM, the execution finishes correctly, but the log file generated
by the kernel does not contain what we expected.

1 ’Error: Strings only store Characters
2

3 CallStack:
4 ∗10 ln =∗ OLByteString(OLObject) >> error:
5 ∗10 ln =∗ OLByteString(OLString) >> at:put:
6 ∗10 ln =∗ OLByteString(OLSequenceableCollection) >> replaceFrom:to:with:startingAt:
7 ∗10 ln =∗ OLByteString(String) >> replaceFrom:to:with:startingAt:
8 ∗10 ln =∗ OLByteString(OLSequenceableCollection) >> copyReplaceFrom:to:with:
9 ∗10 ln =∗ OLByteString(OLSequenceableCollection) >> ,

10 ∗Class∗ OLClass(OLClass) >> start
11 ∗Class∗ OLClass(OLClass) >> entryPoint
12 ∗nil∗ OLUndefinedObject(nil) >> noMethod’

Listing 3.5: Error message logged in text file by the kernel when execution failure arises
due to defect in guest-language code

Our application code fails when the VM executes it. The logic to handle this failure
and log information is implemented inside the kernel, through methods contained in our
language structural definitions.

3.3. Challenges Bootstrapping ObjVLisp 57

Figure 3.7: Debugging Bootstrap code using the host debugger to find the cause of
failure shown in Section 3.3.7

Since our kernel does not provide advanced debugging tools, we must infer the error
back in our application code, by manually checking source files containing structural
definitions of methods involved in the error.

We realize that the problem is that we are trying to concatenate a string and a
number using " , " (the comma message). We fix our application code by adding the
message asString at the end of the first line, as follows:

1 OLClass log: ’10 ln =’, 10 ln asString.
2 OLClass quit.

58 Chapter 3. Challenges Bootstrapping Reflective Kernels

3.4 Analysis Of Cognitive Distance In Bootstrap

Designing a solution that overcomes bootstrap challenges requires understanding the
causes for cognitive distance increase in bootstrap. To make the concept of cognitive
distance more concrete, we propose representations presented in Section 3.4.1. We
analyze Bootstrap’s causes of high cognitive distance in Section 3.4.2. And finally, we
define the set of desirable features that a technique for bootstrapping different languages
should implement in Section 3.5.

3.4.1 Introduction to Cognitive Distance Representations

To provide a more concrete notion of cognitive distance we propose process diagrams
and defect backtracking support tables, and apply them to Bootstrap’s cognitive distance
representation (see Figures 3.8 and 3.9).

Process diagrams. Diagrams of language implementation processes that show the
kernel generation process in stages, along with input/output data flow represented by
solid arrows (see Figure 3.8). Failures are represented by saw-shaped labels on top of
the process where they manifest. Failures provide a symptom of their cause (this can be
an informative message, a system freeze, a system crash, etc). The domain to which the
symptom belongs is encoded in an acronym and defined at the bottom of the diagram.
Round-shaped labels on top of user-defined inputs represent the domains of expertise
required to write the input. Finally, red-dotted arrows represent the flow of mental
defect backtracking operations that developers must carry out to trace back the cause
of a failure. When defect backtracking is supported, no red arrow is displayed.

Defect backtracking support table. Tables that summarize defects, failures, and
defect backtracking support (see Figure 3.9). Rows define inputs written by developers.
Columns represent failures occurring during a specific stage. Domain labels in each cell
represent defects producing the kind of failure defined by the cell column, and located
in the user input defined by the cell row. Check marks indicate that defect backtracking
is supported, while cross marks indicate the opposite.

3.4.2 Causes Of Large Cognitive Distance In Bootstrap

In Bootstrap, the language definition comprises both the definition of language ele-
ments (language model) and the process that generates the kernel (initialization instruc-
tions). The model is specified in plain text. The abstraction level for this specification

3.4. Analysis Of Cognitive Distance In Bootstrap 59

Legend

Domains of Expertise

Language Definition

Kernel

Kernel +
(GL App)

Language
Model

GLD

PVM
Initialization
Instructions

GLD

AL
BS
PVM

Bytecod
e

GLApp
Code

GLD

Live App

Kernel
Generation

GLD

PVM

BS

AST

GLApp
Installation

GLD

PVM AL

Parsing &
Compilation

PL

Execution PVM

Bootstrap

User defined input Generated component

Process Backtracking flow

Input/Output flow

GLD Guest Language
GLD Failure message about Guest Language

PL Failure message about Pharo Language
Pharo VM

Bootstrap

Application Loading
AST Failure message about AST Interpreter
AL Failure message about GLApp Loading
PVM Failure message about Pharo VM
BS Failure message about Bootstrap ProcessPVM

AL

BS

Figure 3.8: Cognitive Distance in Bootstrap.

is high (Tonel format2), but manual edition of text files is prone to errors. Initialization
instructions are specified in both Pharo code and guest-language code. The abstraction
level for this specification is high, but identifying the right place to apply modifications

2https://github.com/pharo-vcs/tonel

60 Chapter 3. Challenges Bootstrapping Reflective Kernels

Bootstrap
Kernel

Generation

GLD PVM BS AST

GLApp
Installation

GLD PVM AL

Parsing &
Compilation

PL

Execution

PVM

✘
✘
✔

-
✘
✘

✘
✘

✘
✘

✔
✘ ✘

✘
✘PVM

GLD

PVM

GLD GLD

PVMPVM

BS

PVM

GLD

PVM

GLD

PVM

GLD

Language
Model

Initialization
Instructions

GLApp
Code

GLD

PVM

GLD

AL
BS
PVM

GLD ✔

✘
✘
✔

-

✘
✘

-

✔
✘

✘
✘

-

✘
✘

✘
✘-

-

✘
✘

✘

✘
✘

✘
✘

PVM

GLD

PVM

GLD

GLD

AST

PVM

GLD

PVM

GLD

PVM

GLD

AL

PVM

GLD

PVM

GLD

PVM

GLD

PVM

GLD

GLD

Failure message
Expertise
Domain

Defect
Expertise

Domain

Figure 3.9: Bootstrap defect backtracking required domains

requires dealing with bootstrapper code, including low-level operations.

Language model creation and modification requires knowledge about the target VM
implementation. Developers unfamiliar with the VM are prone to corrupt the model,
because sections fulfilling VM constraints are unidentifiable a priori. Definition of initial-
ization instructions additionally requires knowledge about the bootstrapping process,
because the code to generate the kernel is mostly language specific and its modification
relies on user expertise. Defective initialization instructions can corrupt the kernel, mak-
ing application loading fail. Initialization instructions definition also requires knowledge
about the process of application loading.

The most important cause for cognitive distance increase is the abstraction gap
and temporal distance between defects and failures. Failures manifest at a different
abstraction level than the abstraction level of their original cause in the language def-
inition (e.g. a segmentation fault produced by the VM, and caused by the missing
definition of one element in the language definition). Traditional debugging tools do
not provide appropriate support when failures and defects belong to different abstrac-
tion levels [Chis 2015]. Additionally, late manifestation of errors force developers to
debug code not written by them, demanding familiarity with domains out of the lan-
guage definition, such as VMs, compilers and the bootstrap process itself. The greater
the distance between defects and failures, the more difficult it is to track the infection
chain [Zeller 2005].

Even for small kernels, bootstrapping takes considerable time. For example, boot-
strapping OvlispL takes in average 32,2 seconds in a machine with the following char-
acteristics. Processor: 2,9GHz quad-core Intel Core i7-7700HQ, cache 6MB. Memory:
16 GB 2133MHz LPDD3. Storage: PCIe SSD 512GB.

3.5. Desirable Features Of A Bootstrap-Based LIT 61

User feedback arrives late, because the effects of modifying the language definition
are visible only at run-time, unless a failure occurs during generation in which case
the kernel is not generated. Even small modifications require the generation process
to be executed from start to finish. The same situation occurs for application code.
The kernel must be generated each time the application code is changed. The only
way to have proper debugging tools for the application is to install them in the kernel,
incrementing its size and complexity.

3.5 Desirable Features Of A Bootstrap-Based LIT

According to Krueger [Krueger 1992] proper abstractions together with automatic gen-
eration of code are the key aspects to implement efficient software reuse techniques. We
have applied his ideas in the elaboration of the evaluation criteria for LIT presented in
Section 2.2.1 and summarized as follows:

C1. Specification abstractions must be expressive and similar to abstractions used for
conceptualization of language syntax and semantics.

C2. The mapping between abstraction specification and realization must be automatic,
providing proper debugging support where appropriate.

The previous criteria combined with our analysis of cognitive distance in Bootstrap
presented in Section 3.4 has resulted in the desirable features of a bootstrap-based LIT
that we propose below.

3.5.1 Requirement 1

"Specification abstractions provided by the technique must be succinct, expressive, close
to abstractions used for conceptualization of language syntax and semantics."

In reflective languages, metaobjects represent the semantics of the new language.
In a bootstrap-based LIT, abstractions for language specification must be at the same
level as language metaobjects or above. It is important to keep the kernel generation
process at that abstraction level from the user’s point of view.

The solution must hide the non-customizable aspects of the bootstrap process and
provide specific extension points for customization. Expertise about VM implementa-
tion should not be required, nor expertise about the bootstrap process.

62 Chapter 3. Challenges Bootstrapping Reflective Kernels

3.5.2 Requirement 2

"The mapping between abstraction specification and realization must be automatic and
efficient."

The technique must infer as much information as possible from user defined code,
limiting code redundancy. The generation process should execute without user inter-
vention unless failures occur. The process should be efficient, and immediate feedback
as well as live interaction with kernel-objects should exist.

3.5.3 Requirement 3

"In the case the mapping from specification to realization fails, the technique should
provide debugging support that answers developer questions formulated at the level of
their abstraction specifications."

The technique must provide defect backtracking support. According to C2 (Sec-
tion 3.5), the mapping from specifications to realizations must be automatic. Effective
automation demands support for debugging when the process fails. The debugger must
display meaningful and immediate information, emulating the style of live self-surgery.
Keeping the debugging process at the abstraction level of language specification is es-
sential for closing abstraction gaps and limiting the domains of expertise required from
developers.

We propose a set of tools for solving each category of failure presented in our tax-
onomy. These tools are illustrated in Figure 3.10 and explained below.

Ahead of Time Model Validations +
Base Language Model

Kernel Health Tests + Host Debugger

Kernel Health Tests + Guest Lang Debugger

Guest Lang Debugger

Figure 3.10: Solutions to Bootstrap Defects and Failures.

3.6. Conclusions 63

Ahead Of Time Model Validations. Automatic detection of defects in declarative
definitions must occur before kernel generation, interrupting the process if corruption
is detected. This measure prevents all failures caused by Structural Defects3 arising
during the generation and execution stages.

Kernel Health Tests. Reflective and non-reflective definitions are imperative and
cannot be tested before their execution. Kernel health must be constantly checked
to stop the generation process as soon as corruption occurs, and a debugger must be
automatically opened, displaying the instruction that caused the failure.

Guest Language Debugger. The host debugger is not suitable for debugging guest-
language, because it does not allow controlling the execution flow (stepping) of code,
and because it hinders access to guest-language variables and abstractions, since they
must be accessed from interpreter abstractions such as the interpreter’s execution stack
and opaque inspectors for mirrors. Custom debugging tools for reflective instructions
and application code. Inspectors for kernel-objects displaying information at least at
the same abstraction level than object-models definition.

If the defect is found in a reflective instruction, there are two abstraction levels of ex-
ecution: bootstrapper code and reflective code (e.g. as in the example from Section 3.3.4,
the method basicInstallClass: in the bootstrapper executes a reflective instruction that
sends the message build to create new classes). The debugger must provide information
about both levels of execution, allowing users to understand the failure in both levels.
This technique ensures kernel-health before writing to disk. Failures during execution
due to VM constraints are prevented this way.

3.6 Conclusions

This chapter presented an in-depth analysis of the Bootstrap technique paying special
attention to the causes of increased cognitive distance. We have provided a taxonomy
of defects and explained their origins and the resulting failures. We have shown the
limitations of the existing bootstrap process through a case of study. To make our
analysis of cognitive distance more concrete, we have proposed visual representations
where defect backtracking operations and the need for expertise in different domains
are displayed. Based on this analysis, we have proposed a set of desirable features that
a bootstrap-based language generation technique should provide in order to minimize
cognitive burden on developers.

3A quick reminder: structural defects have their cause only in VM constraints

64 Chapter 3. Challenges Bootstrapping Reflective Kernels

The next chapter puts our recommendations and gives a first design of a bootstrap-
based LIT.

Chapter 4Bootstrap-Based
Language
Implementation:
MetaL
Contents

4.1 MetaL in a Nutshell . 66

4.2 MetaL by Example: Generating OvlispL 68

4.2.1 General Bootstrap Process . 68

4.2.2 Metamodel Definition . 68

4.2.3 Definition of Roles . 72

4.2.4 Model Construction . 74

4.2.4.1 Core Class-Models . 74

4.2.4.2 Automatic Model Completion 75

4.2.4.3 User-Defined Model Transformations 78

4.2.5 Kernel Generation, Writing, and Execution 78

4.3 Debugging OvlispL Bootstrap in MetaL 80

4.3.1 Solving Structural Defects . 80

4.3.2 Solving Reflective Defects . 81

4.4 Kernel and Model Validations . 85

4.4.1 Model Validations: Roles . 85

4.4.2 Roles and Smart Mirrors . 85

4.4.3 Kernel Validations: Smart Mirrors 87

4.4.4 Extending validations for a new VM 87

4.5 Conclusions . 88

The previous chapter presented a thorough analysis of the bootstrap technique
stressing the causes for cognitive distance increase whose analysis lead to the elabo-
ration of the required features of a bootstrap-based LIT. This chapter presents MetaL,

66 Chapter 4. Bootstrap-Based Language Implementation: MetaL

an implementation of our approach for a bootstrap-based LIT that aims at cognitive
distance reduction. MetaL is an open source project published in a public repository1.

We begin giving a general explanation of the solution in Section 4.1. This is followed
by a more detailed explanation of the technique in Section 4.2 using the case study from
the previous chapter. Next, in Section 4.3 we introduce defects from the previous chapter
into our case study and we show how they are solved in MetaL. Then, we elaborate about
MetaL’s validations in Section 4.4. Finally, Section 4.5 offers a summarizes the most
important ideas of this chapter.

4.1 MetaL in a Nutshell

MetaL is our framework for bootstrapping reflective kernels. MetaL focuses on minimiz-
ing the cognitive distance for developers by bringing the advantages of self-surgery (i.e. same
abstraction level of specifications an realizations, and immediate feedback into the Boot-
strap technique, keeping language definition and debugging tasks at a high abstraction
level.

MetaL kernel generation process is represented in Figure 4.1. Users provide a meta-
model of the new language, which comprisess a set of classes in the host. These classes
represent on the one hand the structure of language metaobjects, and on the other
hand operations for these metaobjects. The semantics the the new language is defined
in its metaobjects. Syntax definition is out of MetaL’s scope, so all generated languages
always have the same syntax as Pharo.

The language reified model is generated by instantiating metamodel classes. It is
composed of objects in the host that call model-objects. These objects are related among
each other in an object-graph. Users specify the way to construct the model through
MOP operations to create and transform model-objects.

Generating a kernel requires initializing the environment of the new system, e.g. ini-
tialization of globals, creation of a system dictionary, etc. Initialization instructions are
specified by users in two possible ways: reflective operations written in guest-language
code, or MOP operations to manipulate objects in the kernel through smart-mirrors,
an improved version of Bootstrap mirrors. Finally, the kernel is dumped in disk and
executed by the target VM.

MetaL provides the definition of the model and metamodel of an abstract minimal
reflective language used by developers as base-language. Users define new metamodels by
extending classes in base-language metamodel, and defining extension points for model

1https://github.com/carolahp/MetaL

4.1. MetaL in a Nutshell 67

transformations and, optionally, custom kernel initialization instructions and custom
variable bindings.

To ensure compatibility with the target VM, MetaL reifies VM requirements in a set
of roles which are associated to object-models and metamodel classes. These roles are
used to validate both model and kernel during their construction, ensuring compliance
with VM constraints.

Host system

4. Application Installation

Empty
language

model 2. Model Construction

language
model

3. Kernel Generation

Kernel
(in host memory)

VM constraints

Object
Role

Class
Role

Context
Role

Method
Dictionary

Role

Array
Role

.

.

.

 validate
 against

 validate
 againts

Model transformation
(MOP operations

on object-models)

reflect upon

Target VM

Kernel + (App)
 (binary file)

Export

Constraints
reified in

Reflective init ops
(guest-language code)

Application
Classes &
Entry Point

Non-Reflective init ops
(MOP operations
on smart-mirrors)

reflect upon

Language Metamodel

5. Kernel Writing

1. Model instantiation

6. Kernel ExecutionExecutes

 provided by developer

generated by MetaL

Figure 4.1: MetaL bootstrap process.

68 Chapter 4. Bootstrap-Based Language Implementation: MetaL

4.2 MetaL by Example: Generating OvlispL

To introduce MetaL, we describe the generation of OvlispL, a simplified version of Ob-
jVLisp [Cointe 1987]. ObjVLisp is a minimal class-based language where classes are
first-class objects. Like ObjVLisp, OvlispL has explicit metaclasses and defines only
two classes: Object and Class. Having explicit metaclasses means that each class is in-
stance of one metaclass, and that one metaclass can have multiple instances. Therefore,
unlike Pharo, there is no parallel hierarchy between classes and metaclasses. Class is
the first metaclass and it is instance of itself. Unlike ObjVLisp, OvlispL implements
single inheritance. This is to keep the example simple. Further examples include an
implementation of ObjVLisp with multiple inheritance (Section 5.2).

4.2.1 General Bootstrap Process

Kernel implementation in MetaL starts with the definition of the language metamodel.
Defining a metamodel is done by extending classes from MetaL’s base metamodel pre-
sented in Figure 4.2. Section 4.2.2 offers an explanation of metamodel definition.
OvlispL’s metamodel is presented in the left section of Figure 4.3. It contains only
two classes: OvlispLanguageModel to represent the language, and OvlispClassModel to
represent classes. Once the metamodel is ready the bootstrap process can start.

The bootstrap process occurs in three steps: language model construction, kernel
generation in memory, and kernel writing to disk. These steps are illustrated in List-
ing 4.1, where the instructions to bootstrap OvlispL are presented. First, an instance
of OvlispLanguageModel is created providing a name for the kernel and an application
entry point that is the code to be executed by the VM when it loads the generated ker-
nel. We say that the model is empty because it consists in only one object representing
the language. The full model is constructed by sending the message build. This means
that multiple object-models are created and added to the model. Model construction
is described in Section 4.2.4. Then, the kernel is generated in memory, and finally it
is written to disk. Executing the kernel in the target VM is done by sending the mes-
sage executeInVM, the result of the execution is displayed in Pharo’s Terminal. Kernel
generation, writing, and execution are described in Section 4.2.5.

4.2.2 Metamodel Definition

To bootstrap OvlispL, we must first define its metamodel by extending classes from
MetaL’s base metamodel. The base metamodel is composed of several classes, which

4.2. MetaL by Example: Generating OvlispL 69

-remote
-parent
-objectName
-role

ObjectModel

+customInstall()
+language()

-superclass
-methodDict
-format

ClassModel

+bindingOf(symbol)
+metaclass()

Global
VarModel

-owningClass
-definingClass

SlotModel

-selector
-sourceCode

MethodModel

-classesSet

PackageModel

LanguageModel
+createCoreClasses()
+transform()
+bindingOf(symbol)

Undeclared
VarModel

+fromNode(ast)

Temp
VarModel

+role()
+isFirstClass()
+firstClassInstVarNames()
+firstClassBasicMethods()

ObjectModel class

LanguageModel class
+customRoles()
+classModelClass()

-key
-value

Literal
VarModel

ClassModel class
+methodModelClass()
+instanceVariableSlotModelClass()
+packageModelClass()

+tempVarModelClass()
MethodModel class

VariableModel
+emitStore(compiler)
+emitValue(compiler)

Indexable
SlotModel
-index

Instance
Variable

SlotModel
-name

Legend
- instanceVariable

+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

- classVariable

Figure 4.2: MetaL Base Language Metamodel.

are installed in the host-system (Pharo). MetaL builds ObjVLisp’s model by creating
instances of these classes. The resulting model is a graph of objects representing Ob-
jVLisp language elements to be installed in the generated kernel. This graph constitutes
the model of the language and it is composed by instances of classes in the metamodel,
we call these objects object-models. OvlispL’s model and metamodel are illustrated in
Figure 4.3. Boxes in the metamodel section represent classes installed in the host sys-
tem, while boxes in the model section are instances of these classes, i.e. object-models.

70 Chapter 4. Bootstrap-Based Language Implementation: MetaL

Base Metamodel

Model

Kernel

Application

Object

+superclass()
+name()
+metaclass()

-superclass
-methodDict
-format
-name
-metaclass

Class

Car
OvlispClassModel

- metaclass
- name

- superclass
- methodDict
- format

ClassModel

OvlispLanguageModel

LanguageModel

Legend
- instanceVariable
+ instanceSideMethod()

Inherits from
Instance of

Color code for object-models in Model
Instance of OwnerClassModel

OvLisp Metamodel

Figure 4.3: OvlispL metamodel and model.

4.2. MetaL by Example: Generating OvlispL 71

1 model := OvlispLanguageModel
2 newWithName: ’Ovlisp’
3 withEntryPoint:
4 ’System log: Car metaclass name. " prints Class "
5 System log: Car metaclass metaclass name. " prints Class "
6 System log: Car superclass name. " prints Object "
7 System log: Car superclass superclass asString. " prints nil "
8 System quit’.
9 model build.

10 model generateKernel.
11 model writeKernel.
12 model kernelInDisk executeInVM

Listing 4.1: Instructions to bootstrap OvlispL.

Colors relate object-models with their class in the metamodel. OvlispL’s model only
comprises instances of OvlispClassModel, except for the object-model representing the
language. In model diagrams we make the distinction between kernel and application.
Classes belonging to the application are installed in the kernel during bootstrap, as our
kernels do not support code compilation at run-time.

Figure 4.2 illustrates MetaL’s base metamodel. All class names contain the suffix
’Model’ to express that their instances are object-models. Several language elements,
such as packages (PackageModel), methods (MethodModel), and slots (SlotModel) have
a representation in this model. To define OvlispL we only need to focus on the next
three classes: LanguageModel, ClassModel, and ObjectModel.

Since OvlispL implements explicit metaclasses, each class must know its metaclass.
Therefore, object-models representing classes (we call them class-models) must store a
reference to the class-model representing their metaclass. However, ClassModel only
declares three instance variables: superclass, methodDict, and format. Consequently,
Ovlisp’s metamodel needs its own version of ClassModel. For this reason, we subclass
ClassModel creating the class OvlispClass, which declares two extra instance variables:
metaclass and name (see Listing 5.3). Name is included to easily identify classes once
they are installed in the kernel. Additionally the user must provide accessor methods for
each extra instance variable it declares (this requirement is explained in Section 4.2.5).

Among other kinds of relationships, object-models relate to each other through "con-
tainment" relationships (e.g. a method belongs to a class, a class belongs to a language,
etc), see Figure 4.2. The instance variable parent, declared in ObjectModel, stores this
information. The class LanguageModel represents the new language itself. A language
model contains a single instance of this class, which acts as root of the membership
graph, i.e. every object-model eventually belongs to the language. LanguageModel is

72 Chapter 4. Bootstrap-Based Language Implementation: MetaL

1 ClassModel subclass: #OvlispClass
2 instanceVariableNames: ’metaclass name’
3

4 OvlispClass >> metaclass
5 ^ metaclass
6

7 OvlispClass >> metaclass: aClassModel
8 metaclass := aClassModel
9

10 OvlispClass >> name
11 ^ name
12

13 OvlispClass >> name: aString
14 name := aString
15

16 LanguageModel subclass: #OvlispLanguage
17 instanceVariableNames: ’’
18

19 OvlispLanguage class >> classModelClass
20 ^ OvlispClass

Listing 4.2: OvlispL metamodel definition

an abstract class, thus subclassing it is mandatory when defining a new language. The
method classModelClass must be defined by the developer to indicate MetaL the class
used by default to instantiate class-models.

4.2.3 Definition of Roles

MetaL’s bootstrapping process is agnostic to the language model given as input. How-
ever, some class-models play special roles during the generation process. Role assigna-
tion allows MetaL accessing class-models generically by their role rather than by their
name, helping to keep the bootstrapper agnostic to the model (more about roles in Sec-
tion 4.4). Roles also allow automatic modifications to the model to make it compliant
with VM constraints.

MetaL defines 28 roles (the complete list is given in Appendix C). Users defining
class-models that have a role must specify it as illustrated in Listing 4.3. Users do not
need to define one class-model for every existing role, since MetaL is able to complete
the model automatically. To define OvlispL we care about only two roles: #Class and
#ProtoObject. The way to define them is shown in Listing 4.3: the class named ’Object’
has role #ProtoObject, and the class named ’Class’ has the role #Class.

The class-model with role #ProtoObject is by default the root of the inheritance
hierarchy, i.e. it inherits from nil, and all classes in the model inherit from it (unless

4.2. MetaL by Example: Generating OvlispL 73

1 OvlispLanguage >> customClassRoles
2 ^ { #ProtoObject −> ’Object’ .
3 #Class −> ’Class’ }

Listing 4.3: OvlispL definition of class-model roles

otherwise stated by the user).

Understanding the role #Class requires a short explanation about the relationship
between metamodel and classes installed in the kernel (we name them kernel-classes).
Class-models represent classes to be installed in the kernel. In OvlispL, class-models are
instance of the class OvlispClass, which inherits three instance variables from Class-
Model and declares one extra instance variable to store a reference to the class-model’s
metaclass (MetaL ignores instance variables declared in ObjectModel, as they are only
used for bootstrapping purposes).

Kernel-classes must define the same instance variables as their corresponding class-
model 2, i.e. superclass, methodDict, format, and metaclass. At the same time, the
VM expects from the kernel that, as in Pharo, kernel-classes are normal objects in the
kernel, and therefore that they are instance of a kernel-class. In consequence, there must
be one kernel-class that declares the four instance variables superclass, methodDict,
format, and metaclass, and whose instances are kernel-classes. The class-model defining
this special kernel-class is the one with role #Class.

In OvlispL, OvlispClass is the only class in the metamodel mapped to a class-model.
However, as shown in further examples, this mapping is also possible for other classes
in the metamodel, such as Package, Slot, and Method. The mapping between classes
in the metamodel and class-models is based on roles. Classes in the metamodel can also
define a role. As shown in Figure 4.2, the class ObjectModel class defines the method
role, which returns nil. However, this method is overridden in some of ObjectModel
class subclasses, such as in PackageModel class, MethodModel class, Slot class, and
ClassModel class. In ClassModel class the method role returns the value #Class.
Except for roles #Class and #Method, roles defined by these classes are optional, and
it is up to the user wether to include them in the model or not. Further examples show
how to specify this.

2We remark the distinction between declaring and defining an instance variable. The class Point
declares two instance variables: x and y. Instances of this class define these two instance variables:
they store values for each one of them. The confusion arises because in Pharo classes are also objects
and therefore they are instance of a class. In consequence they declare instance variables for their
instances, and also define values for their own instance variables, which are declared in their metaclass.

74 Chapter 4. Bootstrap-Based Language Implementation: MetaL

4.2.4 Model Construction

Now that OvlispL metamodel is defined, its model can be created. The following code
excerpt shows how to do this.

1 model := OvlispLanguage
2 newWithName: ’Ovlisp’
3 withEntryPoint:
4 ’System log: Car metaclass name.
5 ...
6 System quit’.
7 model build.
8 ...

When instantiating the class OvlispLanguage, users specify the name for the gen-
erated kernel file in disk, and the entry point code. The entry point contains the
instructions to be interpreted by the VM when the kernel is loaded and executed. Our
entry point logs the name of Class’s metaclass and then quits, terminating the execu-
tion (like exit(0) in C). The entry point uses the class System, defined in MetaL’s base
reflective kernel definition (see Section 4.2.4.2).

The model is empty. Creating the rest of object-models is done by sending the
message build. The method build populates the model in three steps: creating user-
defined core class-models, automatically completing the model to make it valid (i.e. VM
compliant), and applying user-defined transformations.

4.2.4.1 Core Class-Models

Core class-models are class-models necessary to initialize other class-models, and their
creation is specified in the method createCoreClasses. MetaL provides a default im-
plementation of this method, as shown in Listing 4.4. Users must override or extend
this method when their language introduces additional core class-models.

The need for core-classes to be installed first follows the next ideas. As explained
in Section 4.2.3, the class-model with role #ProtoObject (this is Object in OvlispL) is
by default the superclass of class-models. When a class-model is created, Object must
already exist. The same situation occurs with Class, as it is the metaclass by default.
For this reason, Object and Class are core and must be created in a special way. The
problem is evident when checking the method initialize3 defined in ClassModel, and
specialized in OvlispClass (see Listing 4.4). This method assumes the existence of core
class-models.

3Object instantiation in Pharo occurs two steps: allocation and initialization. Initialization instruc-
tions are defined in the method initialize of the object’s class

4.2. MetaL by Example: Generating OvlispL 75

In OvlispL, Class and Object are the only two core class-models. Users overriding
this method create and manipulate (core) class-models using methods from MetaL’s
MOP. A description of the MOP is presented in Appendix B. As shown in Listing 4.4,
core class-models are created in three steps:

• Basic instantiation (lines 3, 4), sending the message basicNewClassWithRole:,
which creates a new class-model but does not initialize it.

• Addition to the language-model (lines 6, 7), the class-model is added to the lan-
guage.

• Initialization (lines 9, 10), performed only after adding all core class-models to
the language

1 LanguageModel >> createCoreClasses
2 | objectModel classModel |
3 objectModel := self basicNewClassWithRole: #ProtoObject.
4 classModel := self basicNewClassWithRole: #Class.
5

6 self addClass: objectModel.
7 self addClass: classModel.
8

9 objectModel initialize.
10 classModel initialize.
11

12 ClassModel >> initialize
13 self isProtoObject
14 ifFalse: [superclass := self language classWithRole: #ProtoObject].
15 methodDict := IdentityDictionary new.
16 format := self defaultFormat.
17 role ifNotNil: [role transform: self]
18

19 OvlispClass >> initialize
20 super initialize. "execute the method initialize defined in ClassModel"
21 metaclass := self parent classWithRole: #Class.
22 name := objectName

Listing 4.4: Definition of core class-models in OvlispL

4.2.4.2 Automatic Model Completion

Up to this point the model is still not valid, as it does not fulfill VM constraints (see
Section 3.2.1). MetaL applies automatic transformations according to VM constraints to

76 Chapter 4. Bootstrap-Based Language Implementation: MetaL

make it valid. Then, it transforms the model according to the classes in the metamodel.
Finally, it completes the model loading source code files.

Completion According to VM Constraints. MetaL uses roles to automatically
transform the model, making it compliant with VM constraints. A full list of the 28
roles defined by MetaL is presented in Appendix C. Roles in MetaL are objects that
reify VM constraints on kernel-classes and class-models. They encapsulate low-level
information about them, such as index in class table, index in special object array,
and format for class-models. Information about format includes restrictions on instance
variables declared in the class-model.

For each role having no class-model that defines it in the model, a class-model is
automatically created according to the role specifications. For example, the class Array
is created, its superclass is set as Object, its layout is set as ’variable’, its role is set as
#Array. The object role #Array defines the value 51 for the index in the class table, 8
for the index in special objects array, 2 for the instance specification, ’variable’ for the
layout, and forbids the definition of instance variables in Array.

User-defined class-models having a role are also transformed, making them compliant
with specifications of their role. These transformations are performed in the method
initialize of ClassModel as shown in Listing 4.4. The role transforms the class according
to VM constraints. For example, the instance variables superclass, methodDict, and
format are added to the class-model Class. Roles are explained in more depth in
Section 4.4.1

Completion According to the Metamodel. Classes in the metamodel with a role
are used to transform class-models with the same role. For example, in OvlispL, the
class-model Class has the role #Class, same as OvlispClass. Class is transformed such
as it declares the same instance variables as OvlispClass. MetaL automatically adds
the instance variables metaclass and name to Class. MetaL also creates by default
accessor methods for these variables automatically and adds them the class-model. This
option can be disabled. These methods are also object-models (we name them method-
models). They are instances of the class MethodModel. An extract of OvlispL model
after completion is presented in Figure 4.4, the full model contains 28 classes, one for
each role.

Kernel Source Code Loading. By default, MetaL completes the model loading the
source code of a provided base reflective kernel4. Alternatively, users can provide their

4https://github.com/carolahp/base-reflective-kernel

4.2. MetaL by Example: Generating OvlispL 77

Object

>> metaclass
>> metaclass:
>> name
>> name:

superclass
methodDict
format
metaclass
name

Class

nil

Instance of
Inherits from

Array

array
tally

Method
Dictionary

stackPointer
method
receiver

Context

Figure 4.4: Extract of OvlispL model after automatic completion by MetaL. Automat-
ically created classes are in thick lines, their structure is as defined by corresponding
roles. Class instance variables and methods have been automatically created.

78 Chapter 4. Bootstrap-Based Language Implementation: MetaL

own source code, in which case they must execute the following code before sending the
message build to the model. Sources must be specified in Tonel format5.

1 ...
2 model sourceCodePath: ’/path/to/sources’.
3 model build
4 ...

We implement OvlispL using MetaL’s base reflective kernel sources provided by de-
fault. The base kernel defines a class-based language with single inheritance, which
is extended by MetaL according to OvlispL definition. Classes representing primitive
types (UndefinedObject, True, False, Array, Float etc), language elements (e.g. Ob-
ject, Class, MethodDictionary, etc), and execution elements (e.g. Context, Process,
Message, etc) are included, along with classes implementing IO operations (System,
File, Stream, etc). There are 67 classes in total. These classes implement a methods
to support operations for primitive types, basic reflective operations (instVarAt:, class,
...), and basic IO operations based on files.

4.2.4.3 User-Defined Model Transformations

Users are able to define custom transformations to the model, that are applied after
automatic transformations and source code loading. Transformations must be defined
in the method transform of the class representing the language. In this case, we remove
the method-model metaclass: from the class-model Class. This is shown in the
following code extract.

1 OvlispLanguage >> transform
2 | classModel |
3 classModel := self classNamed: #Class.
4 classModel removeLocalMethod: (classModel localMethodNamed: #metaclass:)

4.2.5 Kernel Generation, Writing, and Execution

After the model is built, users generate the kernel sending the message generateKernel
to the model as presented in Listing 4.1. This method assembles the kernel in host
memory. A kernel in memory is, at the low-level, an array of bytes. It starts empty
and by the end of the generation process it contains the language runtime of the new
language.

Custom kernel initialization operations are not necessary to generate OvlispL. After
5https://github.com/pharo-vcs/tonel

4.2. MetaL by Example: Generating OvlispL 79

defining the model, a user can simply execute the commands to generate, write and
execute the kernel, as MetaL is able to infer information from metamodel and roles to
automatize the rest of the process. The following paragraphs explain some key concepts
helping MetaL to maximize automation.

Automatic installation of classes. MetaL is able to automatically infer which
classes must be installed first in the kernel (e.g. Class in OvlispL, Metaclass and
Metaclass class in Pharo) by detecting circular references in the class metaclass chain of
class-models (even if class-models in a language do not store their metaclass in a field,
overriding the method metaclass in ClassModel is mandatory).

Even though OvlispL defines its own representation for classes (e.g. the fields meta-
class and name are not defined in the base metamodel), special instructions to install
classes are not needed.

The method installCustom completes the basic installation of classes in the ker-
nel. It can be overridden or extended when necessary. The set of missing instance
variable names is obtained from the metamodel as shown in line 3 of the following
code excerpt. In line 8 the value defined in class-model for each field is get. In
line 9 that value is set to the corresponding kernel-object. perform: is a reflective
method in Pharo to send messages using the name of the message selector. Val-
ues defined by the class-model for metaclass and name are host objects, but they
used to set an instance variable of a kernel-object. Next we explain how this is done.

1 ClassModel >> installCustom
2 | missing |
3 missing := self class allModelInstVarNames
4 difference: ClassModel allModelInstVarNames.
5 missing
6 do: [:each |
7 | value |
8 value := self perform: each.
9 self remote perform: each , ’:’ with: value].

10 self test
11

12 ObjectModel class >> allModelInstVarNames
13 ^ self allInstVarNames
14 difference: ObjectModel allInstVarNames

Smart Mirrors to interact with kernel-objects. The automatic class installation
is possible thanks to MetaL’s Smart Mirrors, which are host objects wrapping and
raising the level of abstraction of traditional mirrors used in bootstrap to manipulate
kernel-objects. Smart mirrors combine information from the metamodel and roles to

80 Chapter 4. Bootstrap-Based Language Implementation: MetaL

provide inspectors and high-level methods. In particular, smart mirrors provide accessor
methods to modify the instance variables of a kernel-object, even when they do not define
such methods. This feature uses reflective features in Pharo to intercept message sends
for undefined methods. Smart mirrors provide automatic transformation of basic host
objects (numbers, arrays, dictionaries, etc) and object-models into kernel-objects. Smart
mirrors together with roles and the metamodel, expand the possibilities for automation
raising the level of abstractions for users.

Kernel writing and execution. After generation, the kernel is written to disk,
saved as a file. Users have two options to execute the kernel file. Download a Pharo
VM and execute it giving the kernel file as argument. Or alternatively, send the message
executeInVM, which does the same as before but automatically, and displays the result
of the execution in Pharo’s Terminal. The following piece of code illustrates all previous
steps.

1 ...
2 model generateKernel. "generate kernel in memory"
3 model writeKernel.
4 model kernelInDisk executeInVM

4.3 Debugging OvlispL Bootstrap in MetaL

To illustrate MetaL’s defect backtracking support, we present a set of examples of
defects in the definition of OvlispL. Presented defects are selected from Section 3.3. We
compare how MetaL overcomes challenges studied in Chapter 3.

4.3.1 Solving Structural Defects

Structural defects, explained in Section 3.2.2.1, are those producing model corruption.
For example, removing VM required class-models or applying forbidden transformation
operations produces model corruption. This is automatically detected by MetaL, always
before kernel generation starts.

In the example from Section 3.3.2, the class Array is not defined. In traditional
Bootstrap the failure is manifested during the generation and it solving requires debug-
ging the bootstrapper code. In MetaL, Array is loaded by default as it has a defined
role. However, removing this class from the model produces the following failure before
kernel generation, when the model is tested.

4.3. Debugging OvlispL Bootstrap in MetaL 81

ClassModelNotFound: required class with role #Array not found.

The example from Section 3.3.3 sets the wrong format value for the class Array.
In traditional Bootstrap, this defect produces a failure during kernel generation and
solving requires debugging low-level code from the VM simulator. In MetaL, operations
setting the wrong format for a class-model with role fail to execute. This is for both
MOP operations, and wrong definitions in kernel source code (in Tonel format). The
following error message is displayed:

Incompatible type ’format’ for class #Array (Role #Array).
Correct type is ’variable’

In the example from Section 3.3.6, instance variables of Class are defined in the
wrong order. In traditional Bootstrap, the defect produces a failure in the VM during
kernel execution. To find the failure’s cause, debugging VM code is necessary. The same
defect in MetaL produces a failure during model build, when testing before generation.

4.3.2 Solving Reflective Defects

Reflective defects are found in reflective generation instructions and therefore they are
written in guest-language code, as explained in Section 3.2.2.1.

Reflective instruction fails. The example from Section 3.3.4 presents a defective
reflective instruction that sends an invalid message to an undeclared variable. In tra-
ditional Bootstrap, solving requires to debug the code of the AST interpreter used to
evaluate reflective instructions.

The bootstrap interpreter is compatible with MetaL and it is used by default for
reflective instruction evaluation. But stepping operations necessary to implement a
debugger are not supported. MetaL implements its own interpreter to debug and also
evaluate reflective instructions. This interpreter enables stepping operations for guest-
language code and better integration with the metamodel.

Continuing the example, we load in OvlispL model the source code file for Class-
Builder used in the original example. Introducing the desired defect requires editing
the source of the method build in ClassBuilder. MetaL provides integration with code
edition tools provided by Pharo. The code browser in Figure 4.5 displays the code of
build after edition.

82 Chapter 4. Bootstrap-Based Language Implementation: MetaL

Figure 4.5: Editing OvlispL code using Pharo’s code browser.

Even though to generate OvlispL in MetaL, a class builder is not required because
automatic installation of classes is enough, we override installCustom and define class
installation through reflective code.

1 OvlispClass >> installCustom
2 | type code |
3 type := self type.
4 code := ’| newClass |
5 newClass := (ClassBuilder new
6 superclass: ’, self superclass name ,’;
7 name: ’, self name ,’;
8 type: ’, type ,’;
9 yourself)

10 build.
11 newClass’.
12 remote := self evaluateCode: code.
13 ^ remote

The execution of reflective code fails opening two debuggers as shown in Figure 4.6.
In the back there is the host debugger, the one in front is MetaL’s debugger for guest-
language code. This debugger provides basic debugging operations. To the left there
is the execution stack, in the middle the list of variables in that page. Seeing that

4.3. Debugging OvlispL Bootstrap in MetaL 83

instVarNames value is nil is straightforward.

Figure 4.6: Debugging OvlispL code execution using MetaL’s Kernel Debugger.

84 Chapter 4. Bootstrap-Based Language Implementation: MetaL

Reflective instruction corrupts the kernel. The example from Section 3.3.5 is
produced because reflective code sets a wrong format to the class CompiledMethod. In
Bootstrap, the kernel generation fails with a non descriptive message. VM simulator
and bootstrapper code must be debugged.

In MetaL the failure manifests during generation, specifically during kernel health
testing. The host debugger opens displaying the following information.

Wrong InstSpec in remote class #CompiledMethod. It does not match model.
Expected: 24 but found: 12

The host debugger, presented in Figure 4.7, presents the point in execution where the
test fails. Since kernel tests are applied by MetaL automatically in different steps of the
execution process, the defect causing corruption should be close. In the execution stack,
the message sent immediately before test is installCustom. Reflective code debugging
is done using MetaL’s special debugger.

Figure 4.7: Kernel health-test fails during kernel generation.

4.4. Kernel and Model Validations 85

4.4 Kernel and Model Validations

The reification of VM constraints distinguishes MetaL from other language implementa-
tion approaches, where the requirements of target components are hidden in their code,
resulting in the need to debug generated or code external to the user when failures
occur.

In the following two sections we present validations provided by MetaL.

4.4.1 Model Validations: Roles

Models are automatically tested on every step of its construction, ensuring they are
valid before the kernel generation process starts. MetaL provides default tests in the
base metamodel, but users are able to extend tests according to their needs.

The method test in ObjectModel subclasses is executed by MetaL for testing by
default. The following example shows test in ClassModel. If the class-model has role,
the role test its structure. When testing a model, every object-model in composition
with the model is tested, for example method-models are tested in line 5. The tests below
check for structural flaws that apply to every class-model, e.g. cycles in the inheritance
chain, like a class inheriting from itself, produce errors in VM’s method lookup and are
forbidden.

1 ClassModel >> test
2 self hasRole ifTrue: [self role test: self].
3

4 self assert: self methodDict isDictionary.
5 self methodDict do: [:method | method test].
6

7 self testInheritanceChainCycles.
8 self assert: self metaclass isNotNil.
9 ...

The method role returns a host object that is a reification of the VM requirements
for the class with that specific role.

4.4.2 Roles and Smart Mirrors

Roles obtain information about VM requirements from a set of classes defined by MetaL
and installed in the host system. These classes provide methods through which VM
constraints are accessed. Their names are prefixed with ’Remote’ (e.g. RemoteArray,
RemoteClass, etc), and all of them inherit from the class Remote, also defined by

86 Chapter 4. Bootstrap-Based Language Implementation: MetaL

MetaL in the host system. Subclasses of Remote are mapped to roles: each subclass of
Remote implements the method role where the name of the associated role is returned.
While the class side of Remote subclasses provides static information to validate class-
models implementing that corresponding role, the instance side is used to instantiate
smart-mirrors, providing high-level operations, tests, and inspectors for kernel-objects.

To make the previous ideas more concrete we introduce an example. In Pharo, the
class MethodDictionary defines a special kind of dictionary where classes store their
methods. This class, and its instances, play a fundamental role since the VM obtains
methods from them in method lookup routines. Therefore, MetaL defines the mandatory
role #MethodDictionary. RemoteMethodDictionary is a class in the host system defined
by MetaL. An instance of this class is a smart-mirror pointing to an object in the kernel
that is instance of the class MethodDictionary, also installed in the kernel (this is a
VM required class, therefore it must exists). The class side of RemoteMethodDictionary
encodes VM constraints for the class with role #MethodDictionary. The instance side
provides high-level messages to access and manipulate method dictionaries in the kernel.
As an example, the method at:ifAbsent: presented below, searches for the value of key
in the kernel-object pointed by the smart-mirror. The result is an object that also lives
in the kernel. Therefore the returned value is a mirror pointing to the corresponding
kernel-object.

1 RemoteMethodDictionary class >> role
2 ^ #MethodDictionary
3 RemoteMethodDictionary class >> modelInstSpec
4 ^ 3
5 RemoteMethodDictionary class >> modelInstVarNames
6 ^ #(#tally #array)
7 RemoteMethodDictionary >> at: key ifAbsent: aBlock
8 | index assoc |
9 index := self findElementOrNil: key.

10 assoc := self array at: index.
11 assoc isNilObject
12 ifTrue: [^ aBlock value].
13 ^ assoc asRemoteAssociation value

Smart-mirrors raise the level of abstraction for kernel manipulation. Their meth-
ods extend MetaL’s MOP, giving users high-level operations to specify non-reflective
instructions.

Class-Model Automatic Transformations Class-models with a Role are automat-
ically transformed by MetaL to fulfil VM requirements. Automatic transformations are
performed before user-defined transformations. The following code excerpt shows the
method used by roles to transform the class-model received as argument. The value

4.4. Kernel and Model Validations 87

for the class layout is set. Missing instance variables are added, respecting the defi-
nition order set by the Role. Finally, if the role defines methods for the class-model,
method-models are created from their source code and then added to the class-model.

1 Role >> transform: aClassModel
2 aClassModel layout: (self layoutClass on: aClassModel).
3 roleInstVars := self modelInstVarNames.
4 roleInstVars
5 doWithIndex: [:ivname :index | self addSlot: ivname index: index].
6 role modelDefaultMethodsSrc do: [:assoc |
7 self addLocalMethodFromSource: assoc value selector: assoc key asSymbol
8].

4.4.3 Kernel Validations: Smart Mirrors

Kernel corruption due to defective imperative instructions is possible even when the
language model is structurally correct. As each object-model knows its correspond-
ing remote object, validations are performed by asking object-models to validate their
corresponding remote. Each remote is a smart mirror, and therefore instance of a Re-
mote subclass. These classes have a corresponding test method. These methods use
a high-level reflective MOP on remotes. These validations are implemented using the
role pattern used in static language model validations. To extend these validations the
process is the same as extending static validations.

To illustrate the previous ideas we propose the following example: Consider objects
in the kernel representing compiled methods. These objects are accessed by the VM
during execution. Defects in their structure make the VM fail. Subclasses of Remote
implement the method test, where the kernel-object pointed by that smart mirror is
checked to ensure its structural soundness with VM requirements. As an example, the
following code shows the method test in the class RemoteCompiledMethod.

1 RemoteCompiledMethod >> test
2 self assert: self basicClass instSpec = RemoteCompiledMethod modelInstSpec
3 description: ’Incorrect format of compiled method: Wrong instSpec of its class’.
4 self localBytecodes do: [:bc | bc isInteger].
5 self literals do: [:lit | lit test]

4.4.4 Extending validations for a new VM

We provide 28 different templates, one for each role required to use the full features of
the target VM. In the case a new feature of the target VM, or a change in the target

88 Chapter 4. Bootstrap-Based Language Implementation: MetaL

VM, it is possible to extend the set of templates. To do this the user must define a new
template or modify an existing template and register them in the method ClassModel
» templateForRole:. Template subclasses define whether a role is mandatory or not.

MetaL’s design makes it possible to change the target VM, since VM requirements
are encapsulated in classes.

4.5 Conclusions

This chapter has introduced MetaL through a study case, showing that its development
style resembles self-surgery. The main abstraction for specification is the metamodel.
This metamodel is extended by users to define new languages. Low-level requirements
about the VM and most of kernel building logics are hidden from users. The bootstrap-
per application is generic and users do not need to modify it. The selected study case
is the same study case used in the previous chapter to illustrate bootstrap limitations.

We illustrate cognitive distance reduction and debugging capabilities in MetaL in-
troducing bugs to the definition of our example kernel and solving them with the help
of MetaL’s tools working in combination (i.e. MetaL’s MOP, validations, automatic
code generation, smart-mirrors, and debugger).

In the following Chapter we test our approach challenging its ability to generate
languages other than OvlispL while maintaining the cognitive distance low. We analyze
weaknesses and their causes, proposing possible solutions for improvement.

Chapter 5MetaL Evaluation:
Bootstrapping
Kernels
Contents

5.1 OvlispL
slot . 92

5.1.1 Application . 94

5.1.2 Metamodel . 94

5.1.3 Model . 95

5.1.4 Discussion . 96

5.2 ObjV Lisp . 96

5.2.1 Application . 96

5.2.2 Metamodel . 97

5.2.3 Model . 99

5.2.4 Discussion . 100

5.3 OvlispL
ns . 101

5.3.1 Application . 101

5.3.2 Metamodel . 101

5.3.3 Model . 102

5.3.4 Discussion . 105

5.4 CandleL . 106

5.4.1 Application . 106

5.4.2 Metamodel . 106

5.4.3 Model . 108

5.4.4 Discussion . 112

5.5 OwnerL . 112

5.5.1 Application . 112

5.5.2 Metamodel . 115

5.5.3 Model . 115

5.5.4 Kernel Initialization . 118

5.5.5 Discussion . 120

90 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

5.6 OvlispL
dyn . 120

5.6.1 Application . 120

5.6.2 Metamodel . 121

5.6.3 Model . 121

5.6.4 Discussion . 124

5.7 Experiment by External User . 124

5.8 Analysis Of Cognitive Distance In MetaL 124

5.9 Evaluation of MetaL . 127

5.9.1 Meeting Requirement 1 . 127

5.9.2 Meeting Requirement 2 . 128

5.9.3 Meeting Requirement 3 . 129

5.9.4 Limitations . 129

5.10 Conclusions . 130

In the previous chapter we presented MetaL, an implementation of our bootstrap-
based LIT approach. In this chapter we describe our experience for validating our
technique and answering RQ2. Using MetaL, we generate seven kernels with important
semantic differences. Taking into account available abstractions, capacity for automa-
tion, and defect backtracking support, we evaluate the effectiveness of the technique
for keeping a low cognitive burden on developers. In addition to being a validation of
MetaL, our experiments are a contribution in the exploration of the range of different
kernels supported by the Pharo VM.

We generate kernels by extending the definition of OvlispL
1 or the base language

definition. The family of kernels generated by us is illustrated in Figure 5.1. These
kernels are the following.

• OvlispL
slot introduces a first-class representation of instance variables using slots,

showing that extending kernels with pre-defined features provided by MetaL is
simple (Section 5.1).

• ObjV Lisp implements multiple-inheritance for classes, showing that reflective fea-
tures from the base kernel definition are powerful and easy to use (Section 5.2).

1OvlispL is a minimal class-based language with single inheritance and explicit metaclasses presented
in Section 4.2)

91

Base Language
Metamodel

Legend
Extends

Figure 5.1: Tree of kernels generated to validate MetaL.

• OvlispL
ns introduces a basic implementation of namespaces, showing that variable

binding of object fields is specified at a high-level of abstraction, as methods in
the metamodel (Section 5.3).

• CandleL extends MetaL’s base language introducing implicit metaclasses à la
Pharo and class variables, showing that MetaL is not limited to OvlispL like
languages (Section 5.4).

• OwnerL introduces a control-policy to the execution of reflective operations, show-
ing that the process of designing and implementing a model that challenges VM
constraints is kept at the abstraction level of the language specification (Sec-
tion 5.5).

• OvlispL
dyn introduces dynamic binding for temporary variables, showing that

customizations to bytecode compilation are specified at a high-level of abstrac-
tion (Section 5.6).

Then we present an additional experiment done by an external user in Section 5.7).
This experiment not only shows MetaL’s ability to produce different kernels, but also
its ease of use. Finally, we close with a discussion about MetaL’s limitations and pos-
sible improvements in Section 5.9.4 followed by the main conclusions of the chapter in
Section 5.10.

MetaL Base Metamodel

As a help for the reader, we present MetaL’s base metamodel introduced for the first
time in Section 4.2.1. Kernels generated by us extend this metamodel or OvlispL’s.

92 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

-remote
-parent
-objectName
-role

ObjectModel

+customInstall()
+language()

-superclass
-methodDict
-format

ClassModel

+bindingOf(symbol)
+metaclass()

Global
VarModel

-owningClass
-definingClass

SlotModel

-selector
-sourceCode

MethodModel

-classesSet

PackageModel

LanguageModel
+createCoreClasses()
+transform()
+bindingOf(symbol)

Undeclared
VarModel

+fromNode(ast)

Temp
VarModel

+role()
+isFirstClass()
+firstClassInstVarNames()
+firstClassBasicMethods()

ObjectModel class

LanguageModel class
+customRoles()
+classModelClass()

-key
-value

Literal
VarModel

ClassModel class
+methodModelClass()
+instanceVariableSlotModelClass()
+packageModelClass()

+tempVarModelClass()
MethodModel class

VariableModel
+emitStore(compiler)
+emitValue(compiler)

Indexable
SlotModel
-index

Instance
Variable

SlotModel
-name

Legend
- instanceVariable

+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

- classVariable

Figure 5.2: MetaL Base Language Metamodel (Identical to Figure 4.2).

5.1 OvlispL
slot

OvlispL
slot is an extension to OvlispL that implements instance variables as first-class

objects named slots. Slots are a useful tool to control the semantics of variable evaluation
in a language. For this reason, MetaL provides special support for their implementation
as described below.

5.1. OvlispL
slot 93

Ovlisp Metamodel

Base Metamodel

Model

Kernel

Application

Object
+ instVarAt()
+ instVarAtPut(val)

+allSlots()
+slotNamed(str)

- superclass
- methodDict
- format
- name
- slots

Class

- index
- name

InstanceVariableSlot

+ read(obj)
+ write_to(val,obj)

Boook
-author
-title

OvlispSlot
Metamodel

-slots
OvslotClassModel

+* firstClassInstVarNames() :
 {‘superclass’,’methodDict’,
 ‘format’,’name’,slots’}

OvslotInstanceVariableSlotModel

+ isFirstClass() : true
+ firstClassInstVarNames() : {‘index’,
 name}

-metaclass
-name

OvlispClassModel

+ isFirstClass() : true

- superclass
- methodDict
- format

ClassModel

+role() : #InstanceVariableSlot
+firstClassBasicMethods()

InstanceVariableSlotModel
- name

+ isFirstClass() : false

SlotModel
- owningClass

+role() : #IndexableSlot

IndexableSlotModel
- index

Legend
- instanceVariable

+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

- classVariable

Color code for object-models in Model
Instance of OvlslotClassModel
Instance of OvslotInstanceVariableSlotModel

Figure 5.3: OvlispL
slot metamodel and model.

94 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

5.1.1 Application

The code below is the entry point installed in the kernel. In this code, slot objects
are used to read the instance variables in an object. The expected output is ”Ernest
Hemingway The Old Man and the Sea". Methods read: and write:to: define the
mechanism used by slots to access variables. Book is not part of the kernel but of the
application.

1 "entry point code"
2 | book |
3 book := Book new.
4 (Book slotNamed: #author) write: ’Ernest Hemingway’ to: book.
5 (Book slotNamed: #title) write: ’The Old Man and the Sea’ to: book.
6 Book allSlots do: [:slot |
7 System log: (slot read: book) asString]

5.1.2 Metamodel

OvlispL
slot’s metamodel and model are presented in Figure 5.3. Colors reveal of which

metamodel class is a object-model instance. Users do not need to create a class to
represent slots because MetaL already uses slots to represent instances variables, but
their representation as objects is not installed in the kernel by default.

Class-models are divided in two groups: kernel and application. Classes belonging
to the application are installed in the kernel during bootstrap, as our kernel does not
contain a compiler and cannot install classes at run-time.

Listing 5.1 shows the code to create the metamodel. The metamodel is an extension
of OvlispL’s, but it has one extra class to represent slots. The class OvlispClassModel
declares one extra field named slots where class-models store their instance variables
as a collection of slots. To specify "containment" relationships between classes in the
metamodel, the methods classModelClass and instanceVariableSlotModelClass are de-
fined.

Slots as first-class objects. The class OvslotSlotModel overrides the method is-
FirstClass to indicate that it should be mapped to a class-model with the same role,
#InstanceVariableSlot. For each class in the metamodel declared as "first class", i.e. re-
turning true from isFirstClass, MetaL automatically creates a class-model with the
same role, adding it to the model.

5.1. OvlispL
slot 95

1 OvlispLanguage subclass: #OvslotLanguageModel
2 instanceVariableNames: ’’
3

4 OvlispClass subclass: #OvslotClassModel
5 instanceVariableNames: ’slots’
6

7 InstanceVariableSlotModel subclass: #OvslotSlotModel
8 instanceVariableNames: ’’
9

10 OvslotLanguageModel class >> classModelClass
11 ^ OvslotClass
12

13 OlslotClassModel class >> instanceVariableSlotModelClass
14 ^ OvslotSlot
15

16 OvslotSlotModel class >> isFirstClass
17 ^ true

Listing 5.1: OvlispL
slot metamodel definition

MetaL provides a default implementation for them, returned by the method first-
ClassBasicMethods from the class side of InstanceVariableSlotModel. The default im-
plementation is used to create the methods read: and write:to:, adding them to the
class-model with role #InstanceVariableSlot. This mechanism is not unique to #Instance-
VariableSlot. Class-models mapped to a "first class" metamodel class, are automatically
transformed to declare the same instance variables as that class and to include methods
defined in firstClassBasicMethods.

5.1.3 Model

Our entry point sends the message allSlots to the class Point. We need to create this
method and add it to the class-model Class2 as shown in Listing 5.2.

No further customizations are necessary. Users do not need to initialize the variable
slots because ClassModel in MetaL already use slots to represent their instance variables,
however these slots are not installed in the kernel by default. Declaring an extra field
named slot in a subclass of ClassModel and making InstanceVariableSlot "first class" is
all that it takes to create a kernel where instance variables are first-class objects. Now,
we can build the model and generate the kernel to execute it with the target VM.

2When a message is sent to an object in Pharo, the method lookup starts in the class of that object
and, if not found, it continues up in the inheritance hierarchy. In OvlispL Point is instance of Class,
therefore the message allSlots is first searched in Class.

96 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

1 " provided by MetaL "
2 InstanceVariableSlot >> read: anObject
3 ^ thisContext object: anObject instVarAt: index
4

5 InstanceVariableSlot >> write: aValue to: anObject
6 ^ thisContext object: anObject instVarAt: index put: aValue
7

8 " defined by the user "
9 Class >> allSlots

10 self superclass
11 ifNil: [^ slots asOrderedCollection].
12 ^ self superclass allSlots asOrderedCollection
13 addAll: slots;
14 asArray
15

16 Class >> slotNamed: aSymbol
17 ^ (self allSlots
18 select: [:slot | slot name = aSymbol asSymbol]) anyOne

Listing 5.2: OvlispL
slot important model definitions

5.1.4 Discussion

Creating a language that uses one of MetaL’s pre-defined features is done in a few
steps. MetaL is able to automatize the generation of the class-model associated to the
implemented feature (e.g. the class-model InstanceVariableSlot including its methods),
but integration with other classes must be done manually: methods for querying slots
in Class were created by hand. Ideally, we would like users to be able to integrate
language features modularly.

5.2 ObjV Lisp

ObjV Lisp [Cointe 1987] is a minimal class-based language with explicit metaclasses
and multiple-inheritance of methods and instance variables. In this example, reflective
capabilities in MetaL base kernel are used to implement multiple inheritance.

5.2.1 Application

To test multiple inheritance of methods and instance variables, we create two classes:
Animal and Pet, and a third class named Dog that inherits from both previous classes.
This is illustrated in Figure 5.4, in the application section. The following code creates
a dog, setting values for its instance variables: both inherited and declared by itself.

5.2. ObjV Lisp 97

The message fullData access all instance variables in dog to return a string for display.
This method does not use accessors to get the value of variables, instead, the name of
variables is directly put in the code. The expected result is "Spike, black, mixed".

1 " entry point "
2 | dog |
3 dog := Dog new
4 name: ’Spike’
5 color: ’black’;
6 breed: ’mixed’.
7 System log: dog fullData asString.
8 System quit
9

10 Dog >> fullData
11 ^ name, ’, ’, color, ’, ’, breed

5.2.2 Metamodel

ObjV Lisp metamodel and model are presented in Figure 5.4. We have extended
OvlispL

slot metamodel, inheriting its implementation of slots. We define two extra
classes: ObjVLispMultiClassModel and ObjVLispMultiSlotModel to represent classes with
multiple-inheritance and their instance variables. Class-models in the Kernel section
are instance of ObjVLispClassModel, while those in the Application are instance of
ObjVLispMultiClassModel.

ObjVLispMultiClassModel is key in our design. Listing 5.3 presents its implementa-
tion. This class inherits the variable superclass where class-models store the reference
to one of its superclasses. For the rest, it declares one extra instance variable named
superclasses where references to extra superclasses is stored in a collection. The value
for superclasses is initialized as an empty collection, as shown in the method initialize.
By default, the metaclass of a class-model representing a multiclass (we call them "multi
classes") is set as MultiClass, and its superclass as MultiObject.

The method addSuperclass: adds the class-model received as argument to the collec-
tion of superclasses. To implement multiple inheritance of methods, we add a reference
to each method inherited from the new superclass to the method dictionary of the class.
The message at:ifAbsentPut: ensures that the reference is added only if the method is
not already present. In this way we do not override local methods with methods defined
in superclasses. Conflicting inherited methods, i.e. multiple superclasses defining the a
method with the same selector, is not explicitly handled. The method inherited is that
from the superclass that is before in the collection of superclasses. Notice that we are
not creating a copy of the method, instead we are just adding a reference to the method
in the superclass into the method dictionary of the subclass.

98 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

OvlispSlot Metamodel

Ovlisp Metamodel

Base Metamodel

Application

Model

Kernel

Application

ObjVlisp
Metamodel

ObjVLisp
ClassModel

ObjVLispInstanceVariable
SlotModel

+ isFirstClass() : true
+ firstClassInstVarNames() :
 {‘index’, ‘name’}

+emitStore(compiler)
+emitValue(compiler)
+role() : #InstanceVariableSlot

InstanceVariableSlotModel
- name

OvlispClassModel
-metaclass
-name

+ role() : #Class
+ isFirstClass() : true

- superclass
- methodDict
- format

ClassModel

-superclasses

ObjVLisp
MultiClassModel

+ role() : #MultiSlot
+ isFirstClass() : true
+ firstClassInstVarNames() :
 {‘index’, ‘name’}

ObjVLisp
MultiSlotModel

-name

+ emitStore(compiler)
+ emitValue(compiler)
+ role() : #Slot
+ isFirstClass() : false

SlotModel
- owningClass

Object
- superclass
- methodDict
- format
- slots

Class

- superclasses
MultiClass

MultiSlot
+ read(obj)
+ write(val,obj)

- index
- name

InstanceVariableSlot

+ read(obj)
+ write(val,obj)

+ fullData()
- breed

Dog

+ initialize()

- instVarsDict
MultiObject

+color()
-color
Animal

+name()
-name

Pet

OvslotClassModel
-slots

OvslotInstanceVariable
SlotModel

+ isFirstClass() : true

+role() : #IndexableSlot

IndexableSlotModel
- index

Color code for object-models in Model
Instance of ObjVLispClassModel
Instance of ObjVLispInstanceVariableSlotModel
Instance of ObjVLispMultiSlotModel
Instance of ObjVLispMultiClassModel

Legend
- instanceVariable

+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

- classVariable

Figure 5.4: ObjV Lisp metamodel and model.

5.2. ObjV Lisp 99

Multiple inheritance of instance variables relies in the method allSlots, which takes
into account extra superclasses for calculating all the slots of a class-model. As it
happens with methods, we do not handle conflicts. If two superclasses declare instance
variables with the same name, the subclass inherits only one instance variable with that
name.

1 ObjVLispMultiClassModel >> initialize
2 super initialize.
3 self metaclass: (self language classNamed: #MultiClass).
4 self superclass: (self language classNamed: #MultiObject).
5 superclasses := #()
6

7 ObjVLispMultiClassModel >> addSuperclass: aClassModel
8 superclasses := superclasses asOrderedCollection
9 add: aClassModel;

10 asArray.
11 aClassModel methodDict
12 do: [:method | self methodDict at: method selector ifAbsentPut: method]
13

14 ObjVLispMultiClassModel >> allSlots
15 | result extraSlots |
16 " get my slots and slots inherited by normal inheritance "
17 result := super allSlots asSet.
18 " add slots inherited from extra superclasses "
19 extraSlots := self superclasses flatCollect: #allSlots.
20 result := result addAll: extraSlots.
21 ^ result

Listing 5.3: Important methods in ObjV Lisp metamodel

5.2.3 Model

The most important elements in our model are those used to implement reading and
writing of instance variables. Their definition is presented in Listing 5.4. The class-
model MultiObject declares the instance variable instVarsDict where objects store the
value of each one of their instance variables. Every object that is instance of MultiObject,
or one of its subclasses, has its own dictionary to store the value of its fields. For example,
an instance of Animal that defines its color as "white", has the register #color -> ’white’
stored in its dictionary of instances.

The reflective methods read: and write:to: in MultiSlot are executed each time an
instance variable declared by a "multi-class" is respectively evaluated or assigned. Users
do not need to explicitly call these methods. It is the Pharo compiler who introduces an

100 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

instruction that sends the message read: or write:to: when it encounters the name of
a slot variable in the code. However, this is not the case for InstanceVariableSlots, for
which the reflective message send is not introduced. That is why ObjVLispMultiSlotModel
does not inherit from InstanceVariableSlotModel, but from SlotModel. The mechanism
to introduce (or not) the reflective message send is defined in the methods emitStore:
and emitValue: in SlotModel and its subclasses.

1 MultiSlot >> read: anObject
2 ^ anObject instVarsDict at: name
3

4 MultiSlot >> write: aValue to: anObject
5 ^ anObject instVarsDict at: name put: aValue
6

7 MultiObject >> initialize
8 super initialize.
9 instVarsDict := Dictionary new.

10 self class allSlots do: [:slot |
11 instVarsDict at: slot name ifAbsentPut: nil]
12

13 MultiClass >> allSlots
14 | result extraSlots |
15 result := super allSlots asSet.
16 " add slots inherited from extra superclasses "
17 extraSlots := self superclasses flatCollect: #allSlots.
18 result := result addAll: extraSlots.
19 ^ result

Listing 5.4: Important definitions in ObjV Lisp model

5.2.4 Discussion

The Pharo VM implements single inheritance for methods and instance variables. With
ObjV Lisp we have shown that reflective features in the base metamodel are useful to
overcome semantic constrains imposed by the Pharo VM. Our implementation of multi-
ple inheritance is naive, as it does not take into account the resolution of conflicts arising
due to collision of names. There is also the efficiency problem, as we use dictionaries
for objects to store the values of their variables. However, our goal was to experiment
with MetaL. We believe that a more robust implementation can be done using MetaL.

Multiple inheritance cannot be introduced in classes inside the kernel, as the infinite
call recursion problem arises (e.g. the value of an instance variable is obtained from
a dictionary which must read the value of its own instance variables to obtain the
required value, the value of a dictionary instance variable is obtained from a dictionary

5.3. OvlispL
ns 101

which needs to read its own instance variables, and so on). However, introducing this
problem in a kernel during bootstrap does not make the host system crash, contrary to
what would happen in Self-Surgery. Moreover, we can debug guest-language code using
MetaL’s debugger to find the reason of circularities.

5.3 OvlispL
ns

In Pharo, classes and globals are visible from the whole system and, even though classes
are classified in packages, packages do not affect variable scoping. Introducing names-
paces in Pharo would increment system modularity and limit dependencies between
system parts [Teruel 2012]. In this section, we provide a simplified implementation of
namespaces where packages define a scope in between classes and the full environment,
resulting in modified class visibility (a class is only visible from classes in the same pack-
age). Our implementation of namespaces also provides support for definition of classes
with the same name, which is not possible in standard Pharo. Packages are represented
as first-class objects and they are visible from the whole system. Referencing a class
from an external package is done by sending the message > to the package using the
name of the class as argument. Importing packages is not covered in this example.

5.3.1 Application

The kernel’s entry point, presented in Listing 5.5, tests that definition of multiple classes
sharing the same name is possible and that class visibility is limited to packages. We
create classes according to Figure 5.5. Application, Multimedia, and HairSalon are
packages containing classes. The entry point is installed in the class Application. We
expect that the result of the message getClip is an instance of the class Clip in the
same package as the receiver’s class. Finally, we expect that the last line of code prints
nil, as Clip is not found in package App.

5.3.2 Metamodel

MetaL represents packages as object-models by default. Similarly to the slots example
presented in Section 5.1, users add the field packages to OvlispNSClassModel, and
create a subclass of PackageModel that returns true from method isFirstClass. Users
do not need to initialize the value of the variable packages, as classes already know their
package. To install a class in the kernel, MetaL uses accessor methods (e.g. package

102 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

1 " entry point code "
2 | winamp stylist |
3 winamp := (Multimedia > #Winamp) new.
4 stylist := (HairSalon > #Hairdresser) new.
5

6 winamp getClip play. "prints ’la la la’"
7 stylist getClip putIn. "prints ’click’"
8

9 Hairdresser >> getClip
10 ^ Clip new
11

12 Winamp >> getClip
13 ^ Clip new
14

15 " in HairSalon "
16 Clip >> putIn
17 System log: ’click’
18

19 " in Multimedia "
20 Clip >> play
21 System log: ’la la la’

Listing 5.5: OvlispL
ns entry point

and package:) to get the instance variables defined in that class and install convert
them into kernel-objects. This was explained in Section 4.2.5.

5.3.3 Model

To compile code, the Pharo compiler receives source code together with an environment
and a class, both used as context for binding names with variables. The environment
is a dictionary containing references to classes and globals that are visible from the
compiled code. The environment is used as the last scope for variable lookup (the last
place to check). The class also serves as a scope for variable lookup. The compiler sends
the message bindingOf: to the class received as context to obtain the variable bound to
a given name. In this way, the compiler delegates the responsibility of variable binding
to classes and environments.

When a method is compiled during bootstrap, the class of the method together with
its environment are given to the compiler to use as context. The class’ environment is
obtained by sending the message environment to the class.

The default implementation of bindingOf: in ClassModel and LanguageModel is
presented in Listing 5.6. In that code we can see that the environment of a class is the
language, and the language scans all classes and globals when looking for the binding

5.3. OvlispL
ns 103

Base Metamodel

Model

Multimedia

Application
Legend

- instanceVariable
+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

Kernel

App

HairSalon

Object Class
-superclass
-methodDict
-format
-name
-package

OvlispNS
Metamodel

-package
OvlispNSClassModel

+name()
+shortName()

OvlispClassModel

-metaclass
-name

-superclass
-methodDict
-format

ClassModel

-classesDict
Package

+>(symbol)

Clip
+play()
+stop()

+ role() : #Package
+ isFirstClass() : false

-name
-classesSet

PackageModel

- classesDict

OvlispNSPackageModel

+isFirstClass() : true
+firstClassInstVarNames() :
 {‘name’,‘classesDict’}

Clip
+putIn()
+takeOut()

Hairdresser
+getClip()

Application
+entryPoint()

Winamp
+getClip()

Color code for object-models in Model
Instance of OvlispNSClassModel
Instance of OvlispNSPackageModel

Figure 5.5: OvlispL
ns metamodel and model.

104 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

of a name. The internal lookup of variables in a class is implemented in the method
innerBindingOf:, which must be defined by the user. In OvlispL this method returns nil,
because instance variables are the only kind of variables and their value is not defined
in the class, nor in the environment.

1 ClassModel >> environment
2 ^ self language
3

4 LanguageModel >> bindingOf: aSymbol
5 | result |
6 result := self
7 classNamed: aSymbol
8 ifAbsent: [nil]
9 ifPresent: [:class |

10 class ensureRemote. " install remote if it does not exist "
11 class].
12 result := result
13 ifNil: [(self globalVariableNamed: aSymbol) ifNil: [^ nil]].
14 ^ self newGlobalBindingFor: aSymbol
15

16 ClassModel >> bindingOf: varName
17 | aSymbol |
18 aSymbol := varName asSymbol.
19

20 ^ (self innerBindingOf: aSymbol) ifNil: [
21 self environment bindingOf: aSymbol
22]
23 ClassModel >> innerBindingOf: varName
24 self subclassResponsibility

Listing 5.6: Default variable bindings in MetaL.

Restricting class visibility to packages requires the modification of methods used for
variable binding. In our implementation, as presented in Listing 5.7, the environment of
a class is now its package. Additionally, the method bindingOf: in OvlispNSLanguage-
Model does not scan its classes, but instead it scans in packages. Finally, the method
bindingOf: in package has been implemented, scanning in classes and, if no class named
that way is found, delegating binding to the Language.

5.3. OvlispL
ns 105

1 OvlispNSClassModel >> environment
2 ^ self package
3

4 OvlispNSPackageModel >> environment
5 ^ self language
6

7 OvlispNSLanguageModel >> bindingOf: aSymbol
8 (self globalVariableNamed: aSymbol)
9 ifNil: [(self packageNamed: aSymbol ifAbsent: [nil]) ifNil: [^ nil]].

10 ^ self newGlobalBindingFor: aSymbol
11

12 OvlispNSPackageModel >> bindingOf: aSymbol
13 | result |
14 result := self
15 classNamed: aSymbol
16 ifAbsent: [nil]
17 ifPresent: [:classModel | classModel ensureRemote].
18 result := result
19 ifNil: [(self environment bindingOf: aSymbol) ifNil: [^ nil]].
20 ^ self environment newGlobalBindingFor: aSymbol
21

22 ClassModel >> bindingOf: varName
23 | aSymbol |
24 aSymbol := varName asSymbol.
25 ^ (self innerBindingOf: aSymbol) ifNil: [
26 self environment bindingOf: aSymbol
27]
28

29 OvlispNSClassModel >> innerBindingOf: aSymbol
30 ^ nil

Listing 5.7: Variable bindings in OvlispL
ns.

5.3.4 Discussion

With OvlispL
ns we have introduced static resolution of class names to the language,

limiting the visibility of classes to their package. This modification in the architecture
cannot be applied in self-surgery, because a part of the system depends on core classes
such as Array and Number. Hiding these classes would produce failures in core parts
of the system.

With this example we have also shown that modifying the scope of environment
and class variables is done in MetaL by changing methods in the metamodel. The
abstraction level is kept high during the whole process.

106 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

5.4 CandleL

CandleL is a Pharo-like language, i.e. same semantics as Pharo but different model
of classes, defined by Polito et.al. [Polito 2015] taking MicroSqueak as base. Unlike
OvlispL, it implements implicit metaclasses "à la Pharo", as illustrated in Figure 5.6.
This means that for each class a metaclass (whose only instance is the class) is implicitly
added to the system [Goldberg 1983]3.

Same as in Pharo, implicit metaclasses are named after their only instance name,
adding the suffix ’class’ (e.g. Point class is Point’s metaclass). CandleL implements
class variables in the same way Pharo does. However, CandleL classes differ from Pharo
metaclasses in their definition, declaring a different set of instance variables and they
do not support Traits.

5.4.1 Application

1 | jack spike |
2 System log: Dog numberOfDogs asString. " prints 0 "
3 jack := Dog new.
4 System log: jack numberOfDogs asString. " prints 1 "
5 spike := Dog new.
6 System log: spike numberOfDogs asString. " prints 2 "
7

8 Dog class >> new
9 NumberOfDogs := NumberOfDogs + 1.

10 ^ super new
11

12 Dog class >> numberOfDogs
13 ^ NumberOfDogs
14

15 Dog >> numberOfDogs
16 ^ NumberOfDogs

Listing 5.8: CandleL entry point testing class variables.

5.4.2 Metamodel

We extend MetaL’s base metamodel as illustrated in Figure 5.6. The class CandleClass-
Model represents normal classes in CandleL’s, while CandleMetaclassModel is used to

3Smalltalk-80: the Language and its Implementation, chapter 5

5.4. CandleL 107

Base Metamodel
Kernel

Model
Application

Object

+new()
Dog class

Candle
Metamodel

-classVars

Candle
ClassModel

-superclass
-methodDict
-format

ClassModel

-key
-value

ClassVariable

Dog
-name
-NumberOfDogs

-soleInstance

Candle
MetaclassModel

-soleInstance
Metaclass

-superclass
-methodDict
-format

Behavior

Object class

Behavior class Metaclass class

Class class
-classVars

Class

ClassVariable class

Candle
ClassVarModel

-key
-value

LiteralVarModel

Legend
- instanceVariable

+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

- classVariable

Color code for object-models in ModelColor code for object-models in Model
Instance of CandleClassModel

Instance of CandleMetaclassModel
Instance of CandleClassVarModel

Figure 5.6: CandleL metamodel and model.

108 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

represent their implicit metaclasses. In Figure 5.6 classes having the suffix ’class’ in
their name are instances of CandleMetaclassModel (we call them "meta-classes"), all
others are instance of CandleClassModel (we call them simply "classes"). Finally, the
class CandleClassVariableModel represents class variables.

5.4.3 Model

CandleL and OvlispL models are different at the core level. CandleL’s model core con-
struction must be specified. However, following steps about model automatic completion
and kernel generation do not need intervention form the user.

Initialization of class-models. All meta-classes have Metaclass as their metaclass.
On their side, classes have as metaclass a meta-class with the same name as them plus
the suffix ’class’. This is expressed in methods metaclass as presented in Listing 5.9.
Similarly to OvlispL, classes have Object as their superclass by default. This is not
the case for meta-classes, whose superclass is Object’s metaclass, i.e. Object class.
Therefore, we override the method defaultSuperclass in CandleMetaclassModel. Each
time a class is created, its meta-class should be also created. This is implemented in the
method initialize in CandleClassModel. Finally, to automatize the process of choosing
the class in the metamodel that should be used to create a given class-model, MetaL
offers the hook classModelFor: where the decision is taken based on the name of the
new class-model.

Creation of core class-models . From the previous initialization methods, it is
possible to infer which are the core-classes in our model. Core-classes, as explained in
Section 4.2.4.1 are those needed to initialize other classes. Therefore, Object, Class,
Metaclass, and Object class are core, and therefore they must be created by us in the
method createCoreClasses as presented next. Behavior is not core, its introduction
can be done in later transformations.

Something to remark is the introduction of the user-defined role #Metaclass. MetaL
allows the definition of custom-roles, which must be mapped to a class in the metamodel.
In this case, the class CandleMetaclassModel is the one representing the role #Metaclass.
There fore the class-model with role #Metaclass is automatically transformed by MetaL,
adding the instance variable soleInstance. The source-code of methods to be added to
the class can be defined in the method firstClassBasicMethods (in the class side of the
class). In this way, when extending a metamodel, the new language inherits also the
definition of special method-models.

5.4. CandleL 109

1 CandleClassModel >> metaclass
2 ^ self language ensureClassNamed: self name, self language metaclassSuffix
3

4 CandleMetaclassModel >> metaclass
5 ^ self language classWithRole: #Metaclass
6

7 CandleMetaclassModel >> defaultSuperclass
8 ^ (self language classWithRole: #ProtoObject) metaclass
9

10 CandleClassModel >> initialize
11 super initialize.
12 self metaclass initializeWithSoleInstance: self
13 classVars := Dictionary new
14

15 CandleMetaclassModel >> initializeWithSoleInstance: aClassModel
16 soleInstance := aCandleClass.
17 superclass := soleInstance superclass
18 ifNil: [self parent classWithRole: #Class]
19 ifNotNil: [soleInstance superclass metaclass]
20

21 CandleLanguageModel class >> classModelFor: aString
22 ^ (aString endsWith: self metaclassSuffix)
23 ifTrue: [CandleClassModel]
24 ifFalse: [CandleMetaclassModel]
25

26 CandleLanguageModel class >> metaclassSuffix
27 ^ ’ class’

Listing 5.9: Initialization of class-models in CandleL.

1 CandleLanguageModel >> createCoreClasses
2 | object class metaclass objectClass |
3 object := self basicNewClassWithRole: #ProtoObject.
4 class := self basicNewClassWithRole: #Class.
5 metaclass := self basicNewClassWithRole: #Metaclass.
6

7 self addClass: object.
8 self addClass: class.
9 self addClass: metaclass.

10

11 object superclass: nil.
12 class superclass: object.
13 metaclass superclass: object.
14

15 objectClass := (self basicNewClassNamed: object name, self metaclassSuffix)
16 parent: self;
17 yourself.
18 objectClass superclass: class.

110 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

19 self addClass: objectClass.
20

21 metaclass initialize.
22 object initialize.
23 class initialize.
24 objectClass initialize

Initialization of class variables. We create the class-model Dog, which declares
the instance variable name and the class variable NumberOfDogs. This last variable
must be initialized during bootstrap, otherwise our application fails the first time Dog
is instantiated because the message + is send to nil. In MetaL, the initial value of a
literal variable can be one of the following:

• A host object mapped to a role in MetaL, e.g. arrays, dictionaries, integers, strings,
etc.

• Reflective code that returns the value when evaluated.

• A block using non-reflective instructions to obtain the value from the kernel.

MetaL initializes the values of variables automatically in the kernel. No custom
initialization instructions are needed. In this example we use reflective code to define
the initial value of NumberOfDogs 0. Using a reflective instruction is an overkill in this
case, we do it to illustrate the idea.

1 CandleLanguageModel >> transform
2 | dogClass classVar |
3 dogClass := self ensureClassNamed: #Dog.
4 dogClass addSlot: #name.
5 classVar := CandleClassVar named: #NumberOfDogs parent: dogClass
6 classVar initializationCode: ’1 − 1’.
7 dogClass classVars at: #NumberOfDogs put: classVar.

Definition of class variable semantics. The mechanisms used by the compiler to
do name binding were described in Section 5.3.2. In CandleL, we implement the logic
for class variable lookup in the method innerBindingOf: in the class CandleClassModel
and CandleMetaclassModel. If the lookup fails in the class and its superclasses, the
search continues in the environment.

Method innerBindingOf: in class CandleClassModel is presented in Listing 5.10. If
the variable is found in the dictionary of class variables, return its binding. Dictionaries
in Pharo define the method bindingOf:, which returns an association (key -> value) if

5.4. CandleL 111

the key exists, otherwise it returns nil. In CandleL, class variables are inherited by the
subclasses of a class. Therefore, if the binding is not found, we continue the lookup in
the superclass.

If the receiver is a class, the method innerBindingOf: defined in CandleMetaclass-
Model is used to calculate the variable binding. This method simply returns the binding
calculated in its instance side.

1 LanguageModel >> bindingOf: aSymbol
2 | result |
3 result := self
4 classNamed: aSymbol
5 ifAbsent: [nil]
6 ifPresent: [:class |
7 class ensureRemote.
8 class].
9 result := result

10 ifNil: [(self globalVariableNamed: aSymbol) ifNil: [^ nil]].
11 ^ self newGlobalBindingFor: aSymbol
12

13 ClassModel >> bindingOf: varName
14 | aSymbol |
15 aSymbol := varName asSymbol.
16

17 ^ (self innerBindingOf: aSymbol) ifNil: [
18 self environment bindingOf: aSymbol
19]
20

21 CandleClassModel >> innerBindingOf: aSymbol
22 (self classVars bindingOf: aSymbol)
23 ifNotNil: [:binding | ^ binding].
24 self superclass
25 ifNotNil: [:supercl | ^ supercl innerBindingOf: aSymbol].
26 ^ nil
27

28 CandleMetaclassModel >> innerBindingOf: varName
29 ^ self soleInstance innerBindingOf: varName
30

31 Dog >> numberOfDogs
32 ^ NumberOfDogs
33

34 Dog class >> new
35 NumberOfDogs := NumberOfDogs + 1.
36 ^ super new

Listing 5.10: Metamodel definitions for variable binding in base metamodel and CandleL

112 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

5.4.4 Discussion

With CandleL we show that MetaL is not limited to OvlispL like languages and that
defining a language with core differences in its model can be done with low efforts.
Even though CandleL’s metamodel introduces a new abstraction: metaclasses, MetaL’s
automatic features continue to work. Using MetaL we were able to modify the structure
of classes and metaclasses without the need to completely understand the constrains
imposed by the VM, showing that MetaL removes the need of knowledge about the
VM implementation. There was no need to specify custom initialization instructions,
even when CandleL introduces different circular referencing loops, i.e. Metaclass and
Metaclass class. In this way we have shown that MetaL reduces the need from users
to handle Bootstrap circular process. These benefits come from MetaL’s usage of roles
to access classes in a generic way, and also from automatic detection of cycles in the
model, adapting kernel initialization behavior according to each case.

The most challenging part in CandleL definition is model initialization. A correct
identification of core-classes is essential to build the model. This can be challenging
to unexperienced users, and they should base their first kernels in existing examples.
Defects introduced in the process of model construction are debugged with the host
debugger. We have shown that defining the semantics for a new kind of variable is done
at a high-level of abstraction in a hook of the metamodel. Finally, we have shown that
MetaL is capable of generating a Pharo-like language.

5.5 OwnerL

Ownership has been heavily studied in literature from a type perspective. In addition
some works such as the one of [Gordon 2007, Teruel 2015] proposed language designs
to take advantages of ownership in the context of dynamically-typed languages. Con-
straints faced by Teruel et al. in their implementation set an interesting case for language
kernel implementation. Showing how MetaL supports such language is the point of this
section.

OwnerL is a language core that provides an access control policy to reflective oper-
ations in a similar way as mentioned in [Teruel 2015]. Reflection is a powerful feature
but it might lead to violations in encapsulation and even to security vulnerabilities.

5.5.1 Application

To understand the problem let’s start with an example of how reflection breaks object’s
encapsulation. The example in Listing 5.11 is used to illustrate this, and it is installed as

5.5. OwnerL 113

the kernel’s entry point. We have two Person objects Alice and Bob, each with its own
private reference to its own wallet object. In Smalltalk (contrary to Java) encapsulation
is strict. It forbids instances of the same class to access the internal state of each other.
However, the method Person»steal:, presented below, shows that by using the reflective
method instVarNamed:, it is possible for an instance of Person to violate encapsulation
and withdraw money from the credit card of another instance of Person. Our goal is
to forbid this kind of behavior. Therefore, we expect that an exception is raised when
this application is executed in the OwnerL kernel.

1 Person>>initialize
2 wallet := Wallet new.
3 wallet add: CreditCard new
4

5 Person>>steal: aPerson
6 notMyWallet := aPerson instVarNamed: #wallet.
7 notMyCard := notMyWallet instVarNamed: #creditCard.
8 notMyPin := notMyCard instVarNamed: #pin.
9 notMyCard withdraw: 1000 euros pin: notMyPin

10

11 alice := Person new.
12 bob := Person new.
13 alice steal: bob

Listing 5.11: OwnerL entry point, where reflection is used to break object. In OwnerL
this code should raise an exception.

In our example we make Alice steal from Bob. We see in the code that once Alice
has access to Bob’s wallet leaked reference, she is able to introspect the wallet in the
same way she did with Bob, allowing her to even execute unauthorized actions, such as
withdrawing money from his credit card. This example is not exclusive to Pharo since
equivalent implementations of the message instVarNamed: exist in other languages that
offer reflective capabilities such as Python, Ruby and Java.

Conceptual Strategy This problem of possible violations of the encapsulation has
been addressed in the literature. For example, Teruel et al. [Teruel 2015] proposed to
implement a language that provides an access-control policy to reflective calls, based on
object dynamic ownership. This access-control policy dynamically determines whether
an object is authorized to perform reflective operations on another object. The policy
takes into account the relationships between objects. In our example, the relationship
between Bob and his wallet is not the same as the relationship between Alice and Bob’s
wallet. The difference is that Bob owns its wallet while Alice does not.

114 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

Formally, the transitive relationship of ownership is as follows: An object A owns
an object B if:

• A and B are the same object.

• A instantiated B in this case we say that A is the direct owner of B.

• A owns an object C that is the direct owner of B.

For the sake of simplicity we limit our example to control access to reflective oper-
ations of introspection, leaving outside reflective modifying capabilities.

The access-control policy establishes that A is allowed to send reflective messages
to B if and only if A owns B.

Implementation Strategy Strategies to implement this control policy in a program-
ming language are many and varied. One of them is saving the owner of each object
in a hash table. However this strategy does not scale well with the number of objects.
Another possibility is to encapsulate the reflective operations in separate objects, so
called metaobjects, each of which would keep a reference to the object it controls. This
strategy is extensively discussed in [Teruel 2015], where they describe a mirror-based
architecture for controlling access to reflection.

Unlike [Teruel 2015], our strategy does not depend on mirrors to control access to
reflection. Instead, we chose to implement a simpler strategy, described below:

• Add an instance variable in each object, which saves a reference to the object’s
owner.

• In the method that creates instances, add an instruction that sets the value of the
instance variable owner.

• Add an owner verification step in reflective methods controlled by our policy.

However, adding an instance variable definition in the class Object (root of the
inheritance hierarchy) is forbidden by the VM, because the VM imposes that instances
of certain classes with a role have specific structure in memory. For example: instances
of the class Array, String and Float.

To overcome the limitations presented above, we build a model where the owner
is declared as an extra instance variable in classes where this action is not forbidden
by the VM. We extend the structure for classes that do not support the declaration of
extra instance variables. We add in their metaclasses a new instance variable named

5.5. OwnerL 115

instancesDict that maps all their instances to their corresponding owner. These dictio-
naries must be initialized during the kernel generation through imperative initialization
instructions.

5.5.2 Metamodel

Figure 5.7 shows OwnerL’s metamodel and model. In the model, the instance variable
owner has been added only to classes where the VM allows it. This model also includes
the instance variable instancesDict defined in Class to store ownership relationships of
objects whose layout prevents them from storing this information themselves.

5.5.3 Model

The method OwnershipLModel»transform, shown in the following code extract, applies
transformation operations to the model after VM required roles have been loaded.

1 OwnershipLModel>>transform
2 (self classWithRole: #ProtoObject) inHierarchyAddInstVarOwner.
3 self modifyReflectiveMethods.
4 self modifyInstantiationMethods

Adding owner instance variable and accessors. The method inHierarchyAddIn-
stVarOwner, implemented by us and presented in the following code extract, shows how
the instance variable owner is added to the full class hierarchy starting in its root:
Object. When trying to add the instance variable owner to a class where the VM con-
straints forbids it, MetaL signals the exception ForbiddenAddInstVar. In this case, the
instance variable is not added to the class.

The accessors owner and owner: are different according to wether the instance
variable owner was successfully added to the class or not. In classes where the addiction
of the variable owner is successful, accessors simply return or modify this variable. In
classes where the addition of owner fails, the accessors owner: and owner use the
variable instanceDict to store and access the information about the object’s owner.

Modifying reflective methods. Methods in the language model are loaded from
the basic language definition source code. Methods Object»instVarNamed: and Ob-
ject»instVarNamed:put: are modified to implement the control restriction policy, as
shown in the next code extract. We focus on instVarNamed: as an example. We

116 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

Ovlisp Metamodel

Base Metamodel

Model
Application

Kernel

Object
-owner()
-owner(obj)
-pvtInstVarNamed()

+privateNew()
+basicNew()

-superclass
-methodDict
-format
-name
-instancesDict
-owner

Class

+new()
InstancesDictionaryMeta

Person
-wallet
-owner

Owner
Metamodel

-instancesDict
OwnerClassModel

OvlispClassModel
-metaclass
-name

-superclass
-methodDict
-format

ClassModel

InstancesDictionary
+init()
+grow()
+at_put(indx,obj)

-owner
Dictionary

-array
-tally

Set -x
-y
-owner

PointArray

Wallet
-pin
-owner

-pvtInstVarNamed()
ObjectP

Legend
- instanceVariable

+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

- classVariable

Color code for object-models in Model
Instance of OwnerClassModel

Figure 5.7: OwnerL metamodel and model.

5.5. OwnerL 117

1 OwnershipLClassModel>>inHierarchyAddInstVarOwner
2 | setter getter |
3 [self addInstVar: #owner.
4 setter := ’owner
5 ^ owner’.
6 getter := ’owner: anObject
7 owner := anObject’]
8 on: ForbiddenAddInstVar
9 do:

10 [setter:= ’owner
11 ^ self class instancesDict at: self’.
12 getter:= ’owner: anObject
13 ^ self class instancesDict at: self put: anObject’].
14

15 self methodModel fromSource: getter).
16 self methodModel fromSource: setter).
17 self subclasses do: [:subclass |
18 subclass inHierarchyAddInstVarOwner]

Listing 5.12: User defined method to add instance variable owner and accessors.

change the method’s source code to signal an exception if the object who sent the con-
structor message is not the owner of the object who received this message. Otherwise,
the private version of the same method is executed. To prevent application classes from
using accessing the private versions of reflective methods, we create the class ObjectP
that inherits from object and overrides private methods. Application classes inherit
from ObjectP.

1 OwnershipLModel>>modifyReflectiveMethods
2 | classModel |
3 classModel := self classNamed: #Object.
4 classModel
5 renameMethod: #instVarNamed:
6 as: #privateInstVarNamed:.
7 classModel
8 addLocalMethodFromSource:
9 ’instVarNamed: aName

10 ^ self owner = thisContext sender sender receiver
11 ifFalse: [ForbiddenOperationException signal]
12 ifTrue: [self privateInstVarAt: aName]’

Modifying instantiation methods. To detect which methods in the language model
create instances, we query the model searching for methods using VM primitives asso-
ciated to instance creation, we implement the code in 5.13. As a result we obtain the
next methods: Class » basicNew, and Class » basicNew:. We rename these methods
into privateNew and privateNew: respectively. We create new methods basicNew, ba-

118 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

sicNew:, which use their private versions to create the new instance and then set their
owner.

According to the ownership model, the owner of an object is the object who in-
stantiated it. However, methods basicNew, basicNew: are not directly used. They
are used through constructor methods. Therefore, the real owner is the receiver of the
method that sends the constructor message. This is reflected in Listing 5.13 line 7. The
following code extract shows the implementation of the new method basicNew as an
example. This implementation ensures that each time a new instance is created, its
owner is automatically set as the object who sent the message that sent the message
basicNew.

1 owner allMethods
2 select: [:method | method sendsInstantiationPrimitive]
3

4 OwnershipLModel>>modifyInstantiationMethods
5 | classObject |
6 classObject := self classNamed: #Object.
7 classObject renameMethod: #basicNew: into: #privateNew.
8 classObject addMethodFromSource:
9 ’basicNew

10 ^ self privateNew
11 owner: thisContext sender sender receiver;
12 yourself’

Listing 5.13: Finding instantiation method-models.

5.5.4 Kernel Initialization

Infinite recursion during instance creation. Each time a class is installed in the
kernel, its instancesDict variable must be initialized containing a new Dictionary. Our
first implementation uses a reflective instruction as follows.

1 OwnerLClass >> installCustom
2 | dictionary |
3 dictionary := self evaluateCode: ’Dictionary new’.
4 self remote instancesDict: dictionary.

However this implementation is incorrect because it produces an infinite call stack
problem at the moment instancesDict is created. This occurs because the bootstrapped
language is reflective. As dictionary are used to store the relationship between objects
and owners, we need to provide an implementation of dictionary that avoids creating

5.5. OwnerL 119

objects using the standard API. Because the standard API creates new dictionaries to
hold owners of objects created by the first dictionary producing an infinite recursion.

Creating new dictionaries to store the relationship between objects and owners,
would require creating a dictionary to initialize instancesDict of a class Dictionary.
If this creation uses the updated constructor with owner support, it would require
initializing instancesDict of class Dictionary, hence leading to an infinite recursion.

Solving infinite recursion during instance creation. To solve this problem, we
must find methods creating instances, which are used by dictionaries. We must provide
an implementation that does not produce this problem, while keeping our restriction
policy valid.

We simulate the execution of the following code that creates a new dictionary and
adds 1000 values in it. By implementing the hook markIn: we mark methods sending
messages basicNew, and basicNew:.

1 owner evaluateCode:
2 ’| d |
3 d := Dictionary new.
4 1 to: 1000 do: [:i |
5 d at: i put: i + 1]’.

The method marking process is implemented in one of MetaL hooks, which is ex-
ecuted when the corresponding message-model is accessed during the simulated inter-
pretation of code. Its implementation is presented below.

1 " retrieve marked messages "
2 owner allMethods select: [:method | method properties at: #sendsNew ifAbsent: false]
3

4 OwnerLMethod >> markIn: currentContext
5 {(self language classNamed: #Class) localMethods at: #basicNew .
6 (self language classNamed: #Class) localMethods at: #basicNew: .
7 (self language classNamed: #Object) localMethods at: #basicCopy}
8 includes: self
9 ifTrue: [currentContext sender sender methodModel

10 propertyNamed: #sendsNew put: true].

As a result we get: Set»init:, Set » grow, Dictionary»at:put:, and AssociationMeta »
key:value: These methods create new instances of Association and Array using messages
basicNew and basicNew:. With this information we create a subclass of Dictionary called
InstanceDictionary, that overrides the methods at:put, grow, and init: with versions that
use privateNew and privateNew: to create new instances. We also create a metaclass
for InstanceDictionary, called InstanceDictionaryMeta, which overrides the method new:

120 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

to prevent this object from setting an owner.

5.5.5 Discussion

With OwnerL we have implemented an access control policy in a kernel while respecting
VM constraints. In this example, we have shown how MetaL’s MOP prevents corruption
of the model during its construction, using model transformation operations together
with validations. Moreover, in Listing 5.12 we show how the language model is manip-
ulated programmatically, while relieving the user from the burden of dealing with VM
requirements. The user ignores which classes accept the instance variable owner and
relies on the exception signaled by MetaL to install the correct accessor method.

One of the challenges generating OwnerL is the infinite recursion problem that arises
when using dictionaries that depend, in their turn, on the creation of new dictionaries
and so on. We have shown that MetaL provides support to solve this problem, limit-
ing the expertise required about the Bootstrap process. Finally, OwnerL shows how
MetaL prevents failures at run-time, in this case due to infinite instance creation. In
consequence, abstraction leaps are limited thanks to tools provided by MetaL, such as
method marking to perform dynamic execution analysis of guest-language code.

5.6 OvlispL
dyn

OvlispL
dyn is a extension to OvlispL that implements dynamic temporary variables.

This means that the binding for temporaries is dynamic instead of static, allowing
reading and writing of temporaries from methods that do not declare them.

5.6.1 Application

To test dynamic temporaries we design the application in Listing 5.14. The method test
in TestDyn declares a temporary variable named tmp. This variable is read and written
from the methods readTmp and writeTmp: in the class TestExt. None of these methods
declares the variable, but they have access to it because they implement dynamic scope
for temporary variables.

5.6. OvlispL
dyn 121

1 "entry point code"
2 TestDyn new test
3

4 "application definitions"
5 Object subclass: #TestDyn
6 instanceVariableNames: ’’
7

8 Object subclass: #ExtDyn
9 instanceVariableNames: ’’

10

11 ExtDyn >> readTmp
12 ^ tmp

13

14 ExtDyn >> writeTmp: value
15 tmp := value
16

17 TestDyn >> test
18 | tmp object |
19 object := ExtDyn
20 temp := ’first’
21 object readTmp. "<− first"
22 object writeTmp: ’second’.
23 tmp."<− second"
24 object readTmp. "<− second"

Listing 5.14: OvlispL
dyn application

5.6.2 Metamodel

OvlispL
dyn metamodel and model are presented in Figure 5.8. The most important

metamodel classes are OvdynDynClassModel, OvdynMethodModel, and OvdynDynVar-
Model. They represent classes containing methods with dynamic temporaries, methods
with dynamic temporaries, and dynamic temporaries respectively.

Dynamic variables work under the same principles as slots. But, unlike slots, dy-
namic variables belong to methods instead of classes. A dynamic variable knows its
index and name, which are defined at compilation time. If the variable belongs to a
method that defines it (e.g. tmp in TestDyn » test), then its index is its position in the
collection of temporaries declared in the method (in Pharo collections are one based).
If the variable belongs to a method that does not define it (e.g. tmp in TestExt »
readTmp), then its index is zero.

5.6.3 Model

When a dynamic method is compiled and a temporary variable node is visited, cus-
tom bytecode to read and write the variable is generated as specified in the methods
emitValue: and emitStore:. In Listing 5.15 it is shown how these methods generate the
custom bytecode. For example, in emitValue: we can see that to read the variable, the
message read is sent to the temporary variable itself, which is an instance of the class
DynamicVar. Accessing this variable at run-time is possible because during compilation
we store the variable in an extra literal. In line 5 the new literal is created. The value
of the additional binding is the kernel-object representing the dynamic variable. With

122 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

Base Metamodel

Ovlisp Metamodel

Model

Kernel

Application

Object

Class…
Class

- index
- name

DynamicVar

+ read(obj)
+ write(obj)

ExtDyn
+ readTemp()
+ writeTemp(val)

OvlispDyn
Metamodel

OvdynDynClassModel
+methodModelClass () :
 OvdynMethodModel

OvdynDynVarModel
+emitStore(compiler)
+emitValue(compiler)
+role() : #DynVar
+isFirstClass() : true

-metaclass
-name

OvlispClassModel

+ isFirstClass() : true

- superclass
- methodDict
- format

ClassModel

TempVarModel

+ fromNode: ast

+emitStore(compiler)
+emitValue(compiler)

VariableModel

Legend
- instanceVariable

+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

- classVariableColor code for object-models in Model
Instance of OvlispClassModel
Instance of OvdynDynClassModel

OvdynUndeclared
VarModel

+newFrom_inCtx_with
Analyzer()

TestDyn
+ test()

Undeclared
VarModel

OvdynMethodModel
tempVarModel () :
 OvdynTempVarModel

MethodModel

+ selector()
+ sourceCode()

+ literalNames()
CompiledMethod

+ dynVarNamed(name)

Class…
ByteArray

Instance of MethodModel
Instance of OvdynMethodModel

Figure 5.8: OvlispL
dyn metamodel and model.

5.6. OvlispL
dyn 123

the message ensureRemote we ensure that the kernel-object is installed and obtain a
mirror pointing to it.

Listing 5.15 shows the methods in DynamicVar used for reading and writing dynamic
temporaries. The method read looks for the variable up in the execution contexts before
the current one, asking for the variable name to the method associated to each context.
Because methods store dynamic variables in an extra literal, they can return the variable
when they declare it or return nil when they do not declare it. The implementation for
writing is the same as for reading, but one extra argument for the new value is taken
into account.

1 OvdynDynVarModel >> emitValue: methodBuilder
2 "generate bytecode to call the reflective read

method of DynamicVar"
3 methodBuilder
4 pushLiteralVariable:
5 (AdditionalBinding
6 key: #dynvar
7 value: self ensureRemote);
8 send: #read
9

10 OvdynDynVarModel >> emitStore: methodBuilder
11 "generate bytecode to call the reflective write

method of DynamicVar"
12 | tempName |
13 tempName := ’0slotTempForStackManipulation’.
14 methodBuilder
15 addTemp: tempName;
16 storeTemp: tempName;
17 popTop;
18 pushLiteralVariable:
19 (AdditionalBinding
20 key: #dynvar
21 value: self ensureRemote);
22 pushTemp: tempName;
23 send: #write:

Listing 5.15: OvlispL
dyn metamodel

definition extract

1 Object subclass: #DynamicVar
2 instanceVariableNames: ’index name’
3

4 DynamicVar >> read
5 | context var |
6 context := thisContext sender.
7 [context isNil] whileFalse: [
8 var := context method dynamicVarNamed: name.
9 (var isNil not) ifTrue: [

10 ^ context tempAt: var index].
11 context := context sender
12].
13 ^ nil
14 DynamicVar >> write: anObject
15 | context var |
16 context := thisContext sender.
17 [context isNil] whileFalse: [
18 var := context method dynamicVarNamed: name.
19 (var isNil not) ifTrue: [
20 ^ context tempAt: var index put: anObject].
21 context := context sender
22].
23 ^ nil

Listing 5.16: OvlispL
dyn model

definition extract

Finally, the class OvdynUndeclaredVarModel is used to handle the case when excep-
tions due to undefined variables arise during the compilation of dynamic methods. The
default behavior in MetaL is rising an exeption. In this example, when an undefined
variable is found in the body of a method, it is replaced by a dynamic variable that is
compiled and accesses using the mechanism described before.

124 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

5.6.4 Discussion

With OvlispL
dyn we have generated a kernel where the semantics of temporary vari-

ables is modified. Our solution is based in the introduction of reflective calls during
compilation time, to make variable evaluation dynamic. This is the same mechanism
implemented by slots. We have achieved this in MetaL without the need of interacting
with compiler code, in great part thanks to the hook for undeclared variables.

The reflective features offered by the VM, such as a reification of the current exe-
cution context, were necessary in our implementation. Users who are not familiar with
the reflective capabilities offered by the Pharo VM could have trouble finding a good
strategy to implement this behavior.

5.7 Experiment by External User

In the Pharo community, the user Erick Stel has used MetaL in his project of building
Smalltalk environments that use the browser as a view/frontend [Stel 2020]. He uses
MetaL to generate a minimal Smalltalk image that runs inside the web browser. This
image handles all ’view’ logic of his application. For running this Smalltalk image in
the web browser he uses SqueakJS, a virtual machine implemented in JavaScript that
executes in a web browser regular Smalltalk images based on the OpenSmalltalk image
format. At run-time, he copies classes and methods from a regular Smalltalk image to
the minimal Smalltalk image, to dynamically create the ’view’ of the application. So the
minimal image is further extended with classes and methods at run-time rather than
generation-time. Since both images share the same format, methods are copied based
on their bytecode rather than source code. This allows the minimal image to be really
minimal: neither parser nor compiler are necessary. This minimal Smalltalk image is
155Kb in size. It is an extension to CandleL, but with some classes/methods removed
and others added. With this minimal image it is possible to create WebComponents
inside the web browser, handle events and send relevant events back to the Smalltalk
image on the ’server’.

5.8 Analysis Of Cognitive Distance In MetaL

We rely on the experiments presented in this chapter together with the generation
of OvlispL presented in Section 4.2 to analyze cognitive distance in MetaL. We use
the visual representations introduced in Section 3.4.1 to depict this concept for both
Bootstrap and MetaL.

5.8. Analysis Of Cognitive Distance In MetaL 125

Bootstrap MetaL

Legend

User defined input MetaL provided component

Generated componentProcess Backtracking flow

Input/Output flow

Domains of Expertise

GLD

MOP

Guest Language

MetaL’s Meta Object Protocol

GLD Failure message about Guest Language
MOP Failure message about MOP

PL
SA Failure message about Semantic analysis

Failure message about Pharo Language
Pharo VM

Bootstrap

Application Loading

AST Failure message about AST Interpreter
AL Failure message about GLApp Loading
PVM Failure message about Pharo VM
BS Failure message about Bootstrap ProcessPVM

AL

BS

Kernel

Kernel +
(GL App)

Bytecode

GLApp
Code

GLD

Live App

Language Definition

Language
Metamodel
Extensions

GLD

MOP

Extensible
Language

Metamodel

Base
Language

Model

Language
Model

Base Language
Model

Transformations

GLD

Initialization
Instructions

GLD

name bindings

Parsing &
CompilationPL

Execution GLD

Language
Model

Generation
GLD

MOP

Language
Model

TransformationMOP

GLD

Kernel
Generation MOP

GLD

GLApp
Installation MOP

GLD

SA

X

Language Definition

Kernel

Kernel +
(GL App)

Language
Model

GLD
PVM

Initialization
Instructions

GLD

AL
BS
PVM

Bytecode

GLApp
Code

GLD

Live App

Kernel
Generation

GLD

PVM

BS

AST

GLApp
Installation

GLDPVM

AL

Parsing &
Compilation

PL

Execution PVM

Figure 5.9: Cognitive Distance in Bootstrap.

126 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

Figure 5.9 confronts the process diagrams of Bootstrap and MetaL. In Bootstrap,
multiple domains of expertise are required from developers to achieve both creation of
a language definition and debugging failures. This is not the case for MetaL, which
only requires knowledge about the semantics of the new language and MetaL’s MOP.
One exception are failures arising during semantic analysis, which require debugging
compiler code. These failures occur when users design their own strategies for bytecode
compilation (e.g. dynamic temporaries in OvlispL

dyn).

The Figure shows that MetaL prevents failures due to VM constraints from arising
at run-time, removing the need to debug VM code.

MetaL

Bootstrap
Kernel

Generation

GLD PVM BS AST

GLApp
Installation

GLD PVM AL

Parsing &
Compilation

PL

Execution

PVM

✘
✘
✔

-
✘
✘

✘
✘

✘
✘

✔
✘ ✘

✘
✘PVM

GLD

PVM

GLD GLD

PVMPVM

BS

PVM

GLD

PVM

GLD

PVM

GLD

Language
Model

Initialization
Instructions

GLApp
Code

GLD

PVM

GLD

AL
BS
PVM

GLD ✔

✘
✘
✔

-

✘
✘

-

✔
✘

✘
✘

-

✘
✘

✘
✘-

-

✘
✘

✘

✘
✘

✘
✘

GLApp
Installation

Parsing &
Compilation

PL

Execution

✘✔

✘-
✔

✔

✔

✔

✔Language
Metamodel
Extensions

GLD

MOP

Base Lang
Model TransfGLD

Initialization
InstructionsGLD

GLApp
CodeGLD

Language
Model

Generation

GLD MOP

Language
Model

Transformation

MOPGLD

✔

-

✔

✔

✔
✔GLD

MOP

GLD

MOP

SA

GLD

GLD GLD

GLD

Kernel
Generation

✔

-

✔ -

✔

✔

MOPGLD

GLD

MOP

GLD

GLD

GLD GLD

PVM

GLD

PVM

GLD

GLD

AST

PVM

GLD

PVM

GLD

PVM

GLD

AL

PVM

GLD

PVM

GLD

PVM

GLD

PVM

GLD

GLD

GLD

GLD

GLD

GLD

GLD

Failure message
Expertise
Domain

Defect
Expertise

Domain

Failure message
Expertise
Domain

Defect
Expertise

Domain

Figure 5.10: Cognitive distance comparison between MetaL and Bootstrap.

Figure 5.10 presents a more detailed visualization for defect backtracking support.

5.9. Evaluation of MetaL 127

In Bootstrap’s diagram the red arrows point at the need for mental defect backtrack-
ing. In MetaL, mental backtracking of defects due to unfulfilled VM requirements is
never necessary. However, defects in the application code can produce failures during
execution of the kernel. Most of the times, debugging these failures is possible before
generating the kernel, using the guest-language debugger. However, if the application
code relies on code that was compiled in a special way (e.g. the reflective call to the
method read: in the class Slot), debugging guest-language code is not supported.

5.9 Evaluation of MetaL

We have proposed three desirable features for a bootstrap-based LIT in Section 3.5.
The following sections analyze the effectiveness of these features in MetaL according to
the experiments carried on.

5.9.1 Meeting Requirement 1

"Specification abstractions provided by the technique must be succinct, expressive, close
to abstractions used for conceptualization of language syntax and semantics."

Languages generated in MetaL are reflective and have their semantic expressed in
their metaobjects. In MetaL, the metamodel is used to specify the structure and be-
havior of these metaobjects. Defining a metamodel does not require knowledge about
any domain other than the new language metaobjects.

We position it in relation to abstractions offered by state of the art LIT in Fig-
ure 5.11. MetaL’s metamodel has the same level of abstraction as Pharo’s metaobjects.
We place the metamodel above metaobjects in terms of expressivity because metaob-
jects modification occurs at run-time, which reduces the range of possible modifications
due to metastability issues. MetaL, being a bootstrap technique, solves metastability
issues, overcoming self-surgery limitations.

MetaL’s base reflective model allows simple languages, such as OvlispL, to be de-
fined only by the extension of a few classes from the base metamodel and basic model
transformations. Thanks to MetaL’s MOP, model transformations are expressed in
high-level methods that preserve the model compliance with the target VM constraints.
This is possible because VM constraints are reified as Roles. Roles are objects in the
host encoding low-level information about the VM. In addition to making the MOP
aware of VM constraints, roles allow the implementation of a generic bootstrapper,
which hides non-customizable kernel initialization instructions and offers only specific
extension points for kernel customization. VM constraints remain hidden from the user.

128 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

Interpreter
CLOS MOPOperational

Semantics DSL

 Smalltalk
Metaobjects

DSL for Model
Transformations

Ex
pr

es
si

ve
ne

ss

Abstraction Level

Dynamic Semantics

MetaL
 Metamodel

Figure 5.11: Comparison of abstractions for dynamic semantics specification in LIT
including MetaL

5.9.2 Meeting Requirement 2

"The mapping between abstraction specification and realization must be automatic and
efficient."

MetaL is designed to infer the most information from the metamodel as possible.
Automatic model completion from metamodel definitions (Section 4.2.4.2) and smart
mirrors (Section 4.4.2) apply this concept. MetaL is also able to automatically infer
which classes must be installed first in the kernel (e.g. Class in OvlispL, Metaclass
and Metaclass class in Pharo) by detecting circular references in the class instantiation
chain. MetaL’s test of the model and kernel are also automatically extended based in
the metamodel definition.

Additionally, smart-mirrors provide high-level means to interact with kernel-objects,
inspect them, validate them, and modify them. The effects of user-actions are immedi-
ately visible in the kernel, making the development experience more live.

Finally, MetaL introduces optimizations to make the development experience more
dynamic. Section 3.4 mentions that generating OvlispL in the original Bootstrap imple-
mentation takes 32,2 seconds in average. Using the same machine to generate OvlispL
in MetaL takes 3,6 seconds in average, producing a percentage fall in the kernel gener-
ation time of 88,8%. Hardware characteristics are the same as in Section 3.4. Proces-

5.9. Evaluation of MetaL 129

sor: 2,9GHz quad-core Intel Core i7-7700HQ, cache 6MB. Memory: 16 GB 2133MHz
LPDD3. Storage: PCIe SSD 512GB.

5.9.3 Meeting Requirement 3

"In the case the mapping from specification to realization fails, the technique should
provide debugging support that answers developer questions formulated at the level of
their abstraction specifications."

Generation LIT offer tools for automatic detection of static defects. MetaL’s equiv-
alent static checking are the ahead-of-time validations applied to the model. The key
difference between Generation LIT and MetaL is that the first must deal with the ab-
straction gap between specifications and realizations. In MetaL, most of imperative
code written by the user (specification) has the same abstraction level as the generated
language (realization). Therefore realization code is debugged at the level of its specifi-
cation. This feature is characteristic from self-surgery techniques, and it is also present
in MetaL. In this sense, MetaL benefits from the advantages of Self-Surgery Techniques.

Detection of non-static defects is implemented with the help of health tests for the
kernel and the basic debugger for guest-language code. Combining both techniques,
the debugging process is kept at the same abstraction level as the language definition,
i.e. model, metamodel, and user-defined kernel initialization instructions.

MetaL’s MOP uses Roles to detect invalid model transformation operations at the
moment of their execution, Roles are also used to test the model at each step of its
construction and to test the kernel during its generation. Failing tests and forbidden
model transformations interrupt the bootstrap process displaying an informative error.
In this way, MetaL reduces the temporal distance between defects and failures. Reducing
this temporal gap decreases the difficulty to find defects back in user code [Chis 2015].
Tests in MetaL are extensible, users can define their own set of tests according to their
needs.

5.9.4 Limitations

During our work with MetaL we encountered the limitations presented below. Some
of these limitations represent opportunities for improvement and they are used as a
motivation to continue with our research.

Semantic Correctness Is Not Ensured Nor Tested. MetaL ensures compatibility
with target VM. However, semantic correctness of the generated language is not ensured.

130 Chapter 5. MetaL Evaluation: Bootstrapping Kernels

In MetaL, language semantics can only be tested through observation of the result of
simulating execution of guest-language. Integrating Unit Tests to be applied to the
guest-language before its dump to kernel would help to validate semantic correctness of
guest languages.

Advanced Semantic Modifications Require Expertise About The VM Reflec-
tive Features. New semantics usually require a combination of the next two activi-
ties: Creating/Modifying classes and methods (e.g. Prototypes functions and instVars
lookup) and taking advantage of reflective capabilities offered by the VM (e.g. OwnerL
kernel using the pseudo-variable thisContext). In MetaL, even if expertise about the VM
implementation is not needed, creating the strategy to implement a specific semantic
feature requires familiarity with the reflective capabilities provided by the target VM.
This situation is similar to that of self-surgery techniques, where users must know the
reflective capabilities of the host language to be able to modify its semantics.

Limited Code Reuse. Specification of semantic features traverses classes, since a
single feature is implemented in multiple classes, e.g. Slots require the introduction of
the class Slot, the addition of an instance variable in Class and respective methods to
access slots from Classes. Hence, the code for one concern is scattered among different
classes. We believe that overcoming this limitation cannot be done if we continue to stick
to the class paradigm. Aspect-oriented programming (AOP) proposes to modularize
such cross-cutting concerns into a new abstraction called Aspect. Implementing an
aspect-oriented bootstrap is an interesting idea that would rise the abstraction level of
the language specification, and would increase code reuse by allowing the definition of
semantic features only once, to be re-used in different kernels. We explore this idea in
the following chapter.

5.10 Conclusions

This chapter has presented experiments by us and by an external user to validate MetaL.
For all generated kernels, MetaL was able to prevent failures due to VM constraints
arising during kernel execution. Therefore, debugging VM code was not necessary.
The idea that MetaL is easy to use is reinforced by the experiment performed by an
external user. The presented experiments foster the idea that Bootstrap-based language
implementation technique is possible.

We have obtained a partial answer for RQ1: metamodels are effective abstractions
for language specification in that they have the same abstraction level as metaobjects
and surpass the latter in their expressiveness. However, we have identified an inherent

5.10. Conclusions 131

limitation about code reuse. The class paradigm hinders the modularity of specifica-
tions, producing repetition of code in kernels that share part of their semantics. This
limitation motivates the next Chapter, where we explore the application of the aspect-
oriented paradigm into Bootstrap.

Chapter 6Aspect-Oriented
Bootstrap:
AspectMetaL
Contents

6.1 AOP in a Nutshell . 134

6.2 AspectMetaL Overview . 135

6.2.1 General Process . 135

6.2.2 AspectMetaL Aspects . 136

6.3 AspectMetaL By Example: Generating OvlispL
scv 138

6.3.1 Semantic Features . 138

6.3.2 Metamodel Definition . 139

6.3.3 Definition Of A New Aspect . 140

6.3.4 Aspect Reuse . 142

6.3.5 Deployment Ordering . 144

6.4 Discussion . 145

6.4.1 Abstractions In AspectMetaL . 145

6.4.2 Code Reuse In AspectMetaL . 145

6.4.3 Limitations . 146

6.5 Conclusions . 147

In the previous chapter, we have presented our experience using MetaL, an im-
plementation of our approach for bootstrapping kernels with a low cognitive load on
developers. We have confirmed that kernel generation tasks are kept at a high ab-
straction level and that the definition of languages other than Pharo-like languages is
possible. But we have identified one important limitation: code reuse is hindered be-
cause the specification for a single semantic feature is scattered among different classes
in the metamodel.

In this chapter, we present AspectMetaL, an extension to MetaL, which allows spec-
ification of kernels at the level of semantic features. To achieve this AspectMetaL uses

134 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

aspect-oriented programming. In particular, AspectMetaL is implemented in PHAN-
tom [Fabry 2012], an aspect language for Smalltalk. AspectMetaL is a proof of concept
of AOP’s applicability to Bootstrap.

We start this chapter by giving a brief introduction to aspect-oriented programming
and PHANtom in Section 6.1. This is followed by an overview of AspectMetaL’s ap-
proach for kernel specification in Section 6.2. To expose the most important features
of AspectMetaL we demonstrate its use in the generation of an example kernel in Sec-
tion 6.3. A discussion about AspectMetaL is offered in Section 6.4. Finally, our main
conclusions about applying AOP to Bootstrap are presented in Section 6.5.

6.1 AOP in a Nutshell

AspectMetaL uses aspect-oriented programming to solve MetaL’s limitations to code
reuse. This section provides a brief introduction to the most relevant concepts of AOP,
particularly applied to PHANtom. PHANtom [Fabry 2012] is a dynamic aspect language
for Smalltalk, chosen by us to implement AspectMetaL. A more complete description of
PHANtom and AOP is offered in Appendix D.

Aspect-Oriented Programming (AOP) is a paradigm that seeks to solve the issue
of code for one concern scattered among different classes by proposing a new kind of
abstraction: the aspect [Kiczales 1997]. Aspects represent application features which
are typically scattered across methods and classes. An aspect not only implements the
behavior of a concern, but it also handles the moment at which the behavior should be
executed. In PHANtom, the execution steps of an application correspond to method
executions. Aspects are able to identify in the stream of method executions those which
are interesting to them. They achieve this with the help of pointcuts, which work as
queries to select join points. The behavior of the aspect is implemented in advices. An
aspect can define multiple advices and multiple pointcuts. The aspect links advices with
pointcuts such as when the application execution reaches a join point that matches a
specific pointcut, the advices linked to the pointcut are executed.

In a nutshell, pointcuts define the when, advices define the what, and aspects use
advices together with their pointcuts to define cross-cutting functionalities of an appli-
cation.

6.2. AspectMetaL Overview 135

6.2 AspectMetaL Overview

AspectMetaL is built on top of MetaL. The main difference between AspectMetaL and
MetaL is that the first has a first-class representation of the metamodel. The metamodel
is manipulated by aspects. Having a first-class metamodel allows implementing an
architecture to organize the aspects in charge of its modification. In AspectMetaL, one
aspect defines one semantic feature and metamodels are defined by the set of aspects
used to transform an existing metamodel. Unlike MetaL, users do not need to create
new classes to conform the metamodel of the new language. Instead, they select aspects
among those provided by AspectMetaL or create their own. Aspects take care of cross-
cutting concerns for implementation of semantic features because they are able to modify
multiple classes in an existing metamodel and even to create new ones if required. These
modifications result in the metamodel that is used to build the model and eventually
to generate the kernel.

To make our explanations more concrete, let us consider the language OvlispL, a
class-based language with explicit metaclasses presented in Section 4.2. Having explicit
metaclasses means that each class is instance of one metaclass, and that one metaclass
can have multiple instances. Therefore, unlike Pharo, there is no parallel hierarchy
between classes and metaclasses. In OvlispL, Class is the first metaclass and it is
instance of itself.

6.2.1 General Process

Listing 6.1 shows the code to define and generate the OvlispL kernel in AspectMetaL,
and Figure 6.1 illustrates the process corresponding to the execution of this code.

The first line of Listing 6.1 shows the creation of the only aspect used to specify
OvlispL. This aspect is an instance of the class SimpleLanguageAspect, which is prede-
fined in AspectMetaL. The constructor of this class, on:with:, receives as its arguments
the two classes that are modified by the aspect.

The second line shows that the metamodel is represented by an instance of Lan-
guageMetamodel. This class is provided by AspectMetaL. The constructor method
newFrom:withName:withEntryPoint: receives as its first argument the collection of as-
pects defining the language and as its second and third, the name and the entry point
code for the kernel.

When the message install is sent to the metamodel (1), the aspect is deployed,
modifying the classes LanguageModel and ClassModel. Besides from changing their
structure (e.g. adding/removing instance variables), the aspect installs specific behaviors

136 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

according to its requirements. The method model provides access to the language
model, which is an instance of LanguageModel. Hence, all tools to build and modify
the model, to debug guest-language code, to generate and execute the kernel (2 & 3),
etc are available just as in MetaL. Finally, sending the message uninstall reverts the
base metamodel to its original state.

1 aspect := SimpleLanguageAspect on: LanguageModel with: ClassModel.
2 metamodel := LanguageMetamodel
3 newFrom: { aspect }
4 withName: ’Ovlisp’
5 withEntryPoint: ’...some code...’.
6 metamodel install. "1. aspects modify the base metamodel"
7 metamodel model build. "2. construct the model"
8 metamodel model generateWriteAndExecute. "3. generate & execute the kernel"
9 metamodel uninstall "4. revert the metamodel to its original state"

Listing 6.1: OvlispL definition and kernel generation in AspectMetaL.

6.2.2 AspectMetaL Aspects

As illustrated in Figure 6.1, the only aspect used to define OvlispL is an instance of
SimpleLanguageAspect. This class adds the instance variable metaclass to the class
ClassModel and modifies two of its methods: innerBindingOf: and metaclass. It also
modifies methods from the class LanguageModel: createCoreClasses and classMod-
elClass. These modifications alter the model construction and the kernel generation
process. Listings 6.2 and 6.3 offer a more complete description of these modifications.

Aspects classification. Up to this time, the aspects we have worked with in Aspect-
MetaL there classified in two groups.

• Field Aspects: they implement semantic features as fields in classes and/or meta-
classes (e.g. class vars, slots, class pools, etc).

• Language Aspects: associated to semantic features affecting relationships between
classes (e.g. implicit and explicit metaclasses)

Multiple aspects defining a kernel. A language more complex than OvlispL re-
quires additional aspects to define its metamodel. While SimpleLanguageAspect belongs
to the first category, InstVarSlotsAspect belongs to the second one. The latter defines

6.2. AspectMetaL Overview 137

instance variables as first-class objects represented by slots. This aspect is also prede-
fined in AspectMetaL. Both aspects are used in the definition of OvlispL

slot, a kernel
presented in Section 5.1 where instance variables are first-class objects represented by
slots. In AspectMetaL, the OvlispL

slot metamodel definition and kernel generation is as
follows.

1 metamodel := LanguageMetamodel
2 newFrom: { SimpleLanguageAspect on: LanguageModel with: ClassModel .
3 InstVarSlotsAspect on: ClassModel }
4 withName: ’OvlispSlots’
5 withEntryPoint: ’...some code...’.
6 metamodel model build.
7 metamodel model generateWriteAndExecute.
8 metamodel uninstall "uninstall before generating another kernel"

InstVarSlotsAspect’s constructor on:, takes only one class as an argument. This is
that class which declares the new kind of field. E.g. in OvlispL

slot the class ClassModel
declares a new instance variable named slots for class-models to store the collection of
slots representing their instance variables.

AspectMetaL provides only a small set of predefined aspects. But even if they were
numerous, they would not cover the full range of possible semantic features for kernels.
Users are able to define their own aspects by subclassing existing ones. In the following
section we use an example to continue our presentation of AspectMetaL, describing the
creation of an aspect defined by the user.

138 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

1 ObjectModel subclass: #ClassModel
2 instanceVariableNames: ’superclass
3 methodDict
4 format’
5 classVariableNames: ’’
6

7 ClassModel >> metaclass
8 self subclassResponsibility
9

10 ClassModel >> innerBindingOf: aSymbol
11 self subclassResponsibility
12

13 LanguageModel >> classModelClass
14 self subclassResponsibility
15

16 LanguageModel >> createCoreClasses
17 self subclassResponsibility
18

19

20

21

22

23

24

25

26

27

Listing 6.2: OvlispL metamodel before
modification

1 ObjectModel subclass: #ClassModel
2 instanceVariableNames: ’superclass
3 methodDict
4 format metaclass’
5 classVariableNames: ’’
6

7 ClassModel >> metaclass
8 ^ metaclass
9

10 ClassModel >> innerBindingOf: aSymbol
11 ^ nil
12

13 LanguageModel >> classModelClass
14 ^ ClassModel
15

16 LanguageModel >> createCoreClasses
17 | objectModel classModel |
18 objectModel := self basicNewClassWithRole:

#ProtoObject.
19 classModel := self basicNewClassWithRole:

#Class.
20

21 self addClass: objectModel.
22 self addClass: classModel.
23

24 objectModel initialize.
25 classModel initialize.

Listing 6.3: OvlispL metamodel after
modification

6.3 AspectMetaL By Example: Generating OvlispL
scv

To proceed with AspectMetaL description, we use the definition of a new language,
called OvlispL

scv, to present a more in-depth view of aspects, demonstrating how user
defined aspects are created in AspectMetaL.

6.3.1 Semantic Features

OvlispL
scv (i.e. OvlispL with slots & class variables) is a class-based language with ex-

plicit metaclasses (like OvlispL described in Section 6.2.1), first-class instance variables
as slots (like OvlispL

slot described in Section 6.2.2), and class variables. Class vari-

6.3. AspectMetaL By Example: Generating OvlispL
scv 139

ables, like in CandleL (presented in Section 5.4), are variables declared and defined in
a class, and shared by the all instances of that class. The original design of ObjVLisp,
as described in [Cointe 1987], states that the class variables of a class are the instance
variables of its metaclass. We take a different approach: each class stores in one of its
instance variables a dictionary that contains its class variables.

6.3.2 Metamodel Definition

The OvlispL
scv metamodel takes as input one aspect per each semantic feature: Sim-

pleLanguageAspect for explicit metaclasses, InstVarSlotsAspect for first-class instance
variables, and ClassVarsAspect for class variables.

Listing 6.4 presents the metamodel definition together with a simple entry point and
application created to show that class variables are shared among different instances of
the same class. The class Screen has three class variables named Red, Green, and
Blue which are initialized to their corresponding values in the method initializeClassVars.
The method displayMacaw in the class Screen shows a tricolored macaw on the screen.
The second time the macaw is displayed, the color blue is replaced by yellow.

This code reveals what is expected from the class ClassVarsAspect, showing that
the class should not only handle metamodel structural modifications to let classes store
their class variables, but it should also support the declaration and initialization of
class variables and their addition to specific classes. In the example code, the three
class variables for the class Screen are declared in the collection cvCustom and they
are given to the aspect cvAspect through the message customFields:. Class variables
are initialized in a reflective instruction, which is also given to cvAspect through the
message initializationInstructions:.

140 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

1 " Class vars declaration "
2 cvCustom :=
3 { #Screen −> { #Red . #Green . #Blue } } .
4

5 " Aspects "
6 cvAspect :=
7 (ClassVarsAspect on: ClassModel)
8 customFields: cvCustom;
9 initializationInstructions:

10 ’Screen new initializeClassVars’
11 yourself.
12

13 slotAspect := InstVarSlotsAspect
14 on: ClassModel.
15

16 langAspect := SimpleLanguageAspect
17 on: LanguageModel
18 with: ClassModel.
19

20 " Entry point "
21 code := ’| screen |
22 screen := Screen new.
23 screen displayMacaw.
24 Screen new blue: (Color r: 1 g: 1 b: 0).
25 screen displayMacaw’

26

27 " Metamodel "
28 metamodel :=
29 LanguageMetamodel
30 newFrom: { langAspect .
31 slotAspect .
32 cvAspect }
33 withName: ’OvlispSCV’
34 withEntryPoint: code
35

36

37 " Application "
38 Screen >> displayMacaw
39 self displayFeathersIn: Blue .
40 self displayWingsIn: Green .
41 self displayBodyIn: Red .
42

43 Screen >> blue: aColor
44 Blue := aColor
45

46 " Class vars initialization "
47 Screen >> initializeClassVars
48 Red := Color r: 1 g: 0 b: 0.
49 Green := Color r: 0 g: 1 b: 0
50 Blue := Color r: 0 g: 0 b: 1

Listing 6.4: OvlispL
scv metamodel and application

Figure 6.2 presents the metamodel that we want to obtain for OvlispL
scv. This

metamodel is the result of all modifications performed by the three aspects defining the
kernel. Modifications are marked placing them inside dotted line rectangles and they
are classified according to the aspect that originates them. Each modification category
has a different style of rectangle.

6.3.3 Definition Of A New Aspect

AspectMetaL offers an abstract class called FieldAspect for users to define new aspects
by subclassing it. We create the class ClassVarsAspect and give an implementation for
the inherited abstract methods as shown in Listing 6.5. The metamodel modifications
produced by these methods correspond to those in blue dashed line rectangles illustrated
in Figure 6.2.

The first definition presented is that of FieldAspect as offered by AspectMetaL. This

6.3. AspectMetaL By Example: Generating OvlispL
scv 141

class declares three instance variables:

• classModelClass to store the class of class-models which are capable of having
class variables. This is ClassModel in OvlispL

scv.

• fieldModelClass to store the class of object-models representing class variables.
This is ClassVarsModel in OvlispL

scv.

• customValues to store the collection of associations declaring class variables for
class-models. Set up in Listing 6.4, line 8.

MetaL’s base metamodel does not include a class representing class variables. There-
fore, ClassVarsAspect is responsible for its creation and subsequent elimination. This is
done in the methods setUpNewClasses and tearDownNewClasses, which are executed
when the aspect is deployed and undeployed.

1 " Abstract aspect provided by AspectMetal "
2 PhAspect subclass: #FieldAspect
3 instanceVariableNames: ’classModelClass

fieldModelClass customValues’
4

5 FieldAspect subclass: #ClassVarsAspect
6 instanceVariableNames: ’’
7

8 ClassVarsAspect >> setUpNewClasses
9 fieldModelClass := self class

10 installClass: #ClassVarModel
11 superclass: LiteralVarModel "<−from base

metamodel "
12

13 ClassVarsAspect >> tearDownNewClasses
14 self class uninstallClass: fieldModelClass
15

16 ClassVarsAspect >> fieldName
17 ^ #classVars
18

19 ClassVarsAspect >> fieldModelClassRole
20 ^ #ClassVariable
21

22 ClassVarsAspect >> fieldModelClassIsFirstClass
23 ^ true

24

25 ClassVarsAspect >> fieldValueFor: aClassModel
26 ^ Dictionary new " Default value for field "
27

28 ClassVarsAspect >>
29 fieldValueFor: aClassModel
30 from: aValue " Custom value for field "
31 self assert: aValue isCollection.
32 " from aValue create class−var−model dict "
33 ^ (aValue
34 collect: [:each | fieldModelClass
35 named: each
36 parent: aClassModel]) asDictionary
37

38 ClassVarsAspect >>
39 transformLanguage: aLanguageModel
40 | cvModel |
41 cvModel := aLanguageModel classWithRole:

#ClassVariable.
42 cvModel removeLocalMethod: (cvModel

localMethodNamed: #classVars:)
43

44 ClassVarsAspect >>
45 innerBindingOf: aSymbol in: aClassModel
46 ^ aClassModel classVars bindingOf: aSymbol

Listing 6.5: User defined ClassVarAspect in AspectMetaL.

The method fieldName returns the name of the instance variable to be added in
classModelClass (i.e. in ClassModel). We name it classVars. The method field-

142 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

ModelClassRole determines the value to be returned by the method role in ClassVar-
Model class. In our example the role is named ’ClassVariable’. We also implement the
method fieldModelClassIsFirstClass to return true. This causes AspectMetaL to modify
the method isFirstClass in ClassVarModel class making it return true. As explained
in Section 5.1.2), when this method returns true, a class-model mapping the class field-
ModelClass (i.e. ClassVarModel) is automatically created and added to the language
model. This new class-model is named after the role of the metamodel class it maps,
i.e. ’ClassVariable’.

The method fieldValueFor: returns the default value of the instance variable class-
Vars for class-models with no custom values associated. This value is an empty dictio-
nary. The method fieldValueFor:from transforms the collection received as its second
argument into a dictionary of object-models, each representing a class variable. This
value is set in Listing 6.4 line 8. These object-models are instances of ClassVarModel
and in the model section of Figure 6.2 are those variables with a solid green vertical
rectangle to their right in the class-model Screen.

Class-models mapping metamodel classes (i.e. Class, InstanceVariableSlot, and
ClassVariable) have accessor methods for their instance variables automatically gener-
ated by MetaL. Late modifications to the model are implemented in the hook transform
in LanguageModel as explained in Section 4.2.4.3. Adding custom behaviors to this
method from an aspect is done by implementing them in the method transformLan-
guage:. AspectMetaL sets up the aspects to execute custom behaviors at the right time.

Finally, the method innerBindingOf:in: implements behaviors to be added to the
method innerBindingOf: in ClassModel. This method is fundamental for the lookup
of variables during bytecode compilation and AST interpretation (which is necessary
to evaluate reflective instructions). A complete explanation of this method was offered
in Section 5.3.3. Our implementation looks for the variable name in the dictionary of
instance variables. This is done by sending the message bindingOf: to the dictionary
containing class variables. If the variable is not found, this method returns nil.

6.3.4 Aspect Reuse

In the previous sections we have described the implementation of an aspect that imple-
ments class variables and we used it to generate OvlispL

scv. However, this aspect is not
specific for this kernel. We can reuse ClassVarsAspect each time we want to generate a
new language with, among other features, class variables. Unless the metamodel of the
language defines extra representations of class-models, ClassVarsAspect can be directly
used to generate different kernels. Otherwise, the aspect can be extended.

6.3. AspectMetaL By Example: Generating OvlispL
scv 143

Reusing an existing aspect. The simplest example is OvlispL
cv, a language with

the same semantics as OvlispL
scv but without first-class instance variables as slots.

OvlispL
cv metamodel definition is as follows1.

1 cvAspect := ClassVarsAspect on: ClassModel.
2 langAspect := SimpleLanguageAspect on: LanguageModel with: ClassModel.
3

4 metamodel := LanguageMetamodel
5 newFrom: { langAspect . cvAspect }
6 withName: ’OvlispCV’
7 withEntryPoint: ’...some code...’

This code works because the implementation of ClassVarsAspect is completely de-
coupled from InstVarSlotsAspect, as well as from any other field aspect. This is not
exclusive of ClassVarsAspect. Field aspects are independent from each other, unless
they extend the behavior of an existing aspect.

Extending aspects. In some languages the implementation of class variables pro-
vided by ClassVarsAspect is not enough and needs to be extended. For example,
implementing class variables in CandleL (described in Section 5.4) requires modifying
two metamodel classes: CandleClassModel and CandleMetaclassModel. While Class-
VarsAspect is able to modify CandleClassModel accordingly to class variable semantics
in CandleL, modifications required by Metaclass are out of ClassVarAspect’s scope.
We recognize two ways to extend2 aspects.

Create complementary aspect(s) for the original aspect. One alternative
is to create a new aspect, that we call ClassVars1Aspect, to modify CandleMetaclass-
Model. Implementing class variables in CandleL would need two aspects, as presented
below.

1 cvAspect := ClassVarsAspect on: CandleClassModel.
2 cv1Aspect := ClassVars1Aspect on: CandleMetaclassModel.

Subclass the original aspect. Another alternative is to create ClassVars1Aspect
as a subclass of ClassVarsAspect, in which case the previous problem does not exist.
Implementing class variables in CandleL would need only one aspect that takes two
classes as its arguments, as presented below.

1Declaration and initialization of custom class variables were removed for simplicity
2We use the term "extend" in the colloquial sense, we are not necessarily referring to subclassing

144 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

1 cv1Aspect := ClassVars1Aspect on: CandleClassModel on: CandleMetaclassModel.

6.3.5 Deployment Ordering

An important issue when working with multiple aspects is that their order of execution
can modify the resulting behavior. This problem is also present in our example kernel
OvlispL

scv, where both SimpleLanguageAspect and ClassVarAspect specify different
behaviors for the method innerBindingOf: in ClassModel.

While the behavior from SimpleLanguageAspect is returning nil (see Listing 6.3),
the one from ClassVarAspect searches for the name of the variable in the dictionary
of class variables. If SimpleLanguageAspect is executed before ClassVarAspect, the
method innerBindingOf: always returns nil.

The default aspect ordering for execution in AspectMetaL is defined by the order of
aspects in the collection given as an argument to the metamodel constructor method.
But this mechanism is not enough when aspects have more than one conflicting method.
For example, in the method innerBindingOf: we want to execute ClassVarAspect before
SimpleLanguageAspect, but in the method transform of the class LanguageModel we
may want the opposite.

AspectMetaL takes advantage of the mechanisms for behavior execution ordering
offered by PHANtom to allow users define the ordering of aspects when modifying the
same method. The code extract below shows how this is done. The messages pcIn-
nerBindingOf and pcTransformLanguage are sent to cvAspect but they could have been
sent to langAspect or slotAspect with the same results. In each case the returned value
is the PHANtom pointcut associated to the message innerBindingOf: in ClassModel
or transform in LanguageModel accordingly. More about PHANtom is presented in
Appendix D.

6.4. Discussion 145

1 " Aspects "
2 cvAspect :=
3 (ClassVarsAspect on: ClassModel)
4 customFields: cvCustom;
5 initializationInstructions:
6 ’Screen new initializeClassVars’
7 yourself.
8

9 slotAspect := InstVarSlotsAspect
10 on: ClassModel.
11

12 langAspect := SimpleLanguageAspect
13 on: LanguageModel
14 with: ClassModel.
15

16 cvAspect pcInnerBindingOf precedence: #(’ClassVarAspect’ ’SimpleLanguageAspect’).
17 cvAspect pcTransformLanguage precedence: #(’SimpleLanguageAspect’ ’ClassVarAspect’ ’InstVarSlotsAspect’).

6.4 Discussion

Our analysis of applying AOP to Bootstrap provides some answers and also raises several
questions that require further experiments to be answered.

6.4.1 Abstractions In AspectMetaL

MetaL’s aspects are as expressive as the metamodel, as they are able to represent the
same range of semantic features. But their abstraction level is much higher than that
of the metamodel as depicted in Figure 6.3.

6.4.2 Code Reuse In AspectMetaL

We discuss aspect reuse compared to metamodel reuse, considering also aspect exten-
sions.

AspectMetaL improves code reuse over MetaL. According to our experience
with AspectMetaL we believe that AspectMetaL increases code reuse compared to MetaL.
To make this idea concrete, consider the languages OvlispL

scv and OvlispL
cv discussed

in Section 6.3.4. Passing from OvlispL
scv to OvlispL

cv in MetaL is done by subclassing
and implementing again ClassModel and LiteralVariable. This is necessary because the
subclass of ClassModel in OvlispL

scv contains a partial implementation of slots. For

146 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

this reason, we cannot reuse OvlispL
scv implementation of class variables. By contrast,

OvlispL
cv definition in AspectMetaL reuses the full implementation of class variables

created for OvlispL
scv.

As a result, the combination of existing aspects provides a very high abstraction
level for language specification based on semantic features. However, some aspect com-
binations are not possible. In these cases, extending an aspect is necessary. Below we
discuss the two methods for aspect extension proposed in Section 6.3.4.

Problems of complementary aspect for aspect extension. The problem with
this approach is that the complementary aspect depends on the original one. In par-
ticular, the class ClassVarModel is created by ClassVarsAspect but ClassVars1Aspect
depends on it to create class-var-models. This situation brings us the following ques-
tions: What are the different dependency relationships between aspects in the context
of Bootstrap? Metamodels describe relationships between class-models: containment,
instance of, superclass, etc. Are there equivalent relationships arising among aspects?

Problems of aspect subclassing for aspect extension. The problem with this
approach is that it makes aspects grow in complexity. The new class would declare a
new instance variable to save a reference to the extra metamodel class. But what would
happen if we wanted to implement CandleL with multiple inheritance and class vari-
ables? The implementation of multiple inheritance, as described in Section 5.2, requires
the creation of a metamodel class to represent class-models which provide multiple
inheritance. In the example from Section 5.2 this extra class is named ObjVLispMul-
tiClassModel. CandleL with multiple inheritance would have at least three metamodel
classes representing class-models. Should we subclass ClassVars1Aspect to define a
new aspect whose constructor takes three arguments? At which point should we stop
making aspects grow? Should we give each modified class as an argument, or should
we use dependency relationships among metamodel classes to deduce other arguments
from only one? (e.g. the method classModelMetaclassClass in CandleLanguageModel
returns CandleMetaclassModel).

6.4.3 Limitations

We have identified two main limitations of applying AOP to Bootstrap, as presented
below.

AspectMetaL and MetaL cannot share the same metamodel. In MetaL, users
create subclasses of metamodel classes. The new classes declare custom instance vari-

6.5. Conclusions 147

ables, e.g. a subclass of ClassModel declares an instance variable named slots. As a
result, AspectMetaL cannot transform ClassModel to declare the instance variable slots,
because one of its subclasses declares it already. Given this situation, AspectMetaL and
MetaL cannot share the same metamodel. We suggest two possible solutions for this
problem. The first alternative is to duplicate the base metamodel. The second is to
modify AspectMetaL, such as it does not take an existing metamodel as its starting point.
Instead of using aspects to modify an existing metamodel, a set of aspects would define
the metamodel from scratch. Exploring proper abstractions to represent the metamodel
modularly and a protocol to make the metamodel parts interact and integrate to each
other is necessary.

Efficiency and debugging tools. PHANtom implementation uses method-wrappers
to execute behaviors defined by aspects during the execution of the bootstrap process.
As a result, the call stack provided by the host debugger is polluted with several messages
unrelated to bootstrap, but sent by PHANtom. This causes debugging tasks to become
difficult, because stepping through the bootstrap execution cannot be done efficiently.
On the other hand, PHANtom efficiency is not optimal yet, because the generation of
join points and invocation of advices is based on meta-level operations. Both of these
problems are recognized in [Fabry 2012], where they mention that these problems arise
due to implementation concerns. They propose solutions, such as creating a special
syntax and developing tooling support for PHANtom. However, these problems are not
specific to PHANtom. Computational overhead [Maes 1988] and the unclear separation
of base and meta-level code [Bracha 2004] are well known problems that arise when
controlling the runtime behavior of reflective facilities. Papulias et al. [Papoulias 2017]
propose a set of meta-level control dimensions that they call the reflectogram. They ar-
gue that reifying the reflectogram is useful to control the meta-level execution, providing
proper control of the underlying language semantics, i.e. PHANtom in our case.

6.5 Conclusions

This chapter explored the application of AOP to Bootstrap as a means to solve the code
reuse limitation found in MetaL. To do this we have developed an aspect-oriented layer
on top of MetaL that allows language specification at the level of semantic features.
These features are represented by aspects, which apply modifications to an existing
metamodel according to the semantic features they implement.

We have performed brief experiments to test this approach. Based on our results,
we believe that code reuse is improved, because aspects are weakly coupled between
each other. On the contrary, user defined metamodel classes, as in MetaL, are tightly

148 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

coupled to other classes, hindering code reuse. This experience has given us the insight
to pose questions about abstractions to represent semantics, aspects, and their effects to
the metamodel. However, to find their their answer we need to do further experiments.

6.5. Conclusions 149

Metamodel

LanguageModel
 +createCoreClasses()
 +transform()
 +bindingOf(symbol)
 +classModelClass() :
 ClassModel

Base Metamodel

 - superclass
 - methodDict
 - format
- metaclass

ClassModel

+bindingOf(symbol)
+innerBindingOf(symbol)
+metaclass()
+metaclass(classModel)

LanguageModel
 +createCoreClasses()
 +transform()
 +bindingOf(symbol)
 +classModelClass()

 - superclass
 - methodDict
 - format

ClassModel

+bindingOf(symbol)
+innerBindingOf(symbol)
+metaclass()

Legend

- instanceVariable

+ instanceSideMethod()

+ classSidemethod() : returnedValue
Contained by

- classVariable

Modified by SimpleLanguageAspect

+ abstractInstanceSideMethod()

1. Metamodel install

Model

Kernel

Application

2. Build
 Model4. Metamodel uninstall

Target VM

Kernel (+ App)
(binary file)

Executes

3. Generate Write And Execute Kernel

Color code for
object-models in Model

Instance of ClassModel

Figure 6.1: AspectMetaL process overview. The base metamodel is automatically mod-
ified by aspects and used for model construction and kernel generation. Then it is
restored to its original state.

150 Chapter 6. Aspect-Oriented Bootstrap: AspectMetaL

OvlispSCV
Metamodel

LanguageModel
+loadKernel()
+transform()
+bindingOf(symbol)

Color code for object-models in Model

 +isFirstClass() : true
 +innerBindingOf ()
 + metaclass()
 + metaclass(classModel)
 + slots()
 + slots(collection)
 + classVars()
 + classVars(dictionary)

 -superclass
 -methodDict
 -format
-metaclass
 -slots
 -classVars

ClassModel

LanguageModel
+loadKernel()
+transform()
+bindingOf(symbol)

+role() :
 #ClassVariable
+isFirstClass() : true

ClassVarModel

+role() :
 #InstanceVariableSlot
+isFirstClass() : true

InstanceVariableSlotModel
- name

Model
Application

Kernel

+instVarAt()
+instVarAtPut()

Object

-key
-value

ClassVariable

+blue(color)
+displayMacaw()

Screen
-Red
-Green
-Blue

+slotNamed()
+allSlots()

-slots
-classVars

Class

LiteralVarModel
-key
-value

+ isFirstClass() : false

SlotModel
- owningClass

+role() : #IndexableSlot

IndexableSlotModel
- index

+ read(obj)
+ write_to(val,obj)

-index
-name

InstanceVariableSlot

Legend

- instanceVariable

+ instanceSideMethod()
+classSidemethod() : returnedValue

Contained by
Inherits from
Instance of

Modified by ClassVarsAspect (CVA)
Modified by InstVarsSlotsAspect (IVSA)

- classVariable

Modified by both IVSA & CVA

Modified by SimpleLanguageAspect (SLA)

Modified by both SLA & CVA
Color code for object-models in Model

Instance of ClassModel

Instance of ClassVarModel
Instance of InstanceVariableSlotModel

Figure 6.2: OvlispL
scv metamodel after aspects modifications and model

6.5. Conclusions 151

Interpreter
CLOS MOPOperational

Semantics DSL

 Smalltalk
Metaobjects

DSL for Model
Transformations

Ex
pr

es
si

ve
ne

ss

Abstraction Level

Dynamic Semantics

MetaL
 Aspects

MetaL
 Metamodel

Figure 6.3: Comparison of abstractions for dynamic semantics specification in LIT
including AspectMetaL

Chapter 7Conclusions
Contents

7.1 Contributions . 153
7.1.1 MetaL . 154

7.1.2 AspectMetaL . 154

7.1.3 Research Questions & Hypotheses 155

7.2 Future Work . 157

In this chapter we summarize the contributions of this dissertation and present our
future work. We start presenting our two main contributions: MetaL and AspectMetaL,
to then answer our research questions and evaluate our hypothesis. We close this dis-
sertation with the presentation of our future work.

7.1 Contributions

This dissertation is a contribution to the fields of programming language bootstrap and
programming language engineering. In particular, we studied the design of a language
implementation technique based on bootstrap of language kernels. To the best of our
knowledge we are the first to explore this possibility.

Our technique focuses on cognitive distance reduction for the final user. Combining
different tools and techniques we improve the effectiveness of provided abstractions and
reduce the efforts to generate kernels from their specifications.

To achieve effective abstractions we reify the requirements of the target virtual ma-
chine into high-level representations that are used to ensure the structural soundness of
kernels, guaranteeing compatibility with the target VM. To reduce the efforts to produce
the kernel, we provide debugging tools for specifications that take advantage from the
benefits of reflective systems. When specifications are written in the same language that
is being generated, the abstraction gap between specifications and realizations (i.e. im-
plementation) is nonexistent.

The two main contributions of this work are MetaL and AspectMetaL. With MetaL
we studied the application of concepts from self-surgery to bootstrap to achieve cog-
nitive distance reduction. We also explored the boundaries for the range of different
semantics supported by the technique and target VM. With AspectMetaL we explored
the integration of the aspect-oriented programming paradigm into bootstrap improving
code reuse and easing abstraction selection from users.

154 Chapter 7. Conclusions

We proceed to summarize the main characteristics of MetaL and AspectMetaL, and
then we answer the research questions and consider the hypotheses proposed in Sec-
tion 1.4 and Section 1.5.

7.1.1 MetaL

MetaL is a framework for bootstrapping kernels that focuses on cognitive distance re-
duction [Hernández Phillips 2021]. With MetaL we show that it is possible to benefit
from the reflective capabilities of the guest-language to make its development style
close to self-surgery. In particular, abstraction gaps were effectively reduced and ex-
ternal code debugging was avoided in great part thanks to reification of VM con-
straints, which allows having a MOP that ensures model correctness by construction
and also forcing early manifestation of failures through automatic validations [Hernán-
dez Phillips 2019,Polito 2021].

The experience performed by the external user is a good sign of MetaL’s effectiveness
in reducing the cognitive distance. Even if his sole experience is not enough evidence
to prove the success of our approach, we consider it relevant, considering that Pharo’s
bootstrap has been available for several years but its complexity often discourages people
from start experimenting with it.

With MetaL, besides confirming the importance of effective abstractions and debug-
ging support to decrease cognitive distance, we remark the big impact that meaningful
and immediate feedback has on the technique. Performing kernel bootstraps while able
to see the kernel and interact with it in a "live" way, marks a turning point in the
process.

7.1.2 AspectMetaL

AspectMetaL is an aspect-oriented layer on top of MetaL that raises the abstraction
level of specifications, offering kernel specification at the level of semantic features. As-
pectMetaL allows users to combine these features while never modifying the metamodel,
improving code reuse.

AspectMetaL provides evidence that AOP is useful for implementing bootstraps of
language kernels because its capacity to automatically extend the metamodel allows to
reify the metamodels and their modifications.

Thanks to AOP, metamodel modifications are expressed modularly, which not only
improves code reuse but also makes the implementation of each semantic feature trans-
parent by isolating it in a single aspect. This is the opposite from what we have in

7.1. Contributions 155

MetaL, where it is hard to reunite and understand the implementation of a single se-
mantic feature because its code is spread in several classes.

7.1.3 Research Questions & Hypotheses

We implemented MetaL and AspectMetaL to answer research questions presented in
Section 1.4 and validate hypotheses presented in Section 1.5.

Answering RQ1: What abstractions for language specification reduce the
cognitive distance in a bootstrap-based LIT?

The main abstraction provided by MetaL is the metamodel, which is a meta-representation
of metaobjects. Kernels generated by us presented in Chapter 5 were all specified using
a metamodel, showing its flexibility. In our experience generating these kernels, we
never needed to become aware of VM implementation details. Moreover, we were able
to generate OwnerL bypassing one VM constraint by dynamically capturing an excep-
tion signaled by MetaL, relieving us from the burden of knowing which classes signaled
the exception.

During our experience generating kernels in MetaL, abstractions to hide VM con-
straints and the bootstrap process have shown flexible and capable of adapting ac-
cordingly to the user-defined metamodel. For example, most of the generated kernels
introduced modifications to Class (e.g. new instance variables), even though this class-
model has an associated role. Its customization is possible because the role #Class
allows extensions, but this is not always the case. Roles such as Array, which do not
accept changes and signal an exception when an operation tries to change it.

We acknowledge that generating seven kernels plus one external experiment to val-
idate MetaL is not enough to ensure the framework’s generality. It is possible that we
are missing to test semantic features whose specification in the metamodel is not easy to
implement. Nevertheless, we claim that Bootstrap cognitive distance is reduced when
the same kernel is generated in Bootstrap and MetaL.

In AspectMetaL, aspects are the main abstraction for kernel specification. Each as-
pect represents a single semantic feature. The specification of a kernel in AspectMetaL is
declarative code that states which aspects compose the kernel. The abstraction level of
kernel specifications in comparison to metamodels drastically rises in AspectMetaL. Ex-
periments presented in Chapter 6 show how aspects are fully reused in combination with
other aspects to define new kernels. This cannot be done when using the metamodel.

Our answer to RQ1 recognizes that both MetaL and AspectMetaL abstractions re-

156 Chapter 7. Conclusions

duce cognitive distance, and both have their own limitations. We believe that there is
not a single answer and that the chosen solution depends on the application, on the
target users, and the context. For example, AspectMetaL would be effective to intro-
duce students to Bootstrap, while MetaL would be more appropriate for researchers
prototyping new languages.

Answering RQ2: What mechanisms support the automatic mapping from
specification to realization in a bootstrap-based LIT?

In MetaL, mapping from specifications to realizations is implemented in the generic
bootstrap process. In the case this process fails, MetaL provides debugging tools that
intend to emulate the those offered by self-surgery techniques. These debugging tools
focus on: first, early manifestation of corruption to shorten the distance between de-
fects and failures; second, on closing the abstraction gap between specifications and
realizations; and third, on immediate feedback for the user through high-level mirrors
to inspect and manipulate kernel-objects.

To evaluate the previous strategy we rely on our experience generating kernels pre-
sented in Chapter 5 together with the example kernel OvlispL presented in Chapter 4
Model corruption was always detected before kernel generation starts. Kernel corrup-
tion was always detected during kernel generation, stopping the process. Debugging
VM code was never needed.

The debugger for reflective code together with smart-mirrors have shown effective
in closing the abstraction gap between specifications (reflective instruction) and realiza-
tions (kernel-object targeted by smart-mirror). From our experience we recognize that
the previous elements are among the most useful to generate kernels.

We acknowledge that our own experience with the previous debugging tools is not
enough to validate their effectivity in a general context. However, we state that they
are effective to support the generation of kernels presented in this dissertation.

For the moment we provide a limited answer to RQ2: combining early detection of
corruption through automatic tests, a debugger for reflective code, and smart-mirrors
supports automatic mapping from specification to realization for the example kernels
presented in this work.

7.2. Future Work 157

7.2 Future Work

Improve Kernel Sources Versioning. Currently we use the metamodel. Model
transformations are either stored in methods in the metamodel or the resulting model
is saved to disk in Tonel format. While the first method does not escalate well with the
number of model transformations, the second requires from the user to manage code
versioning manually because there is no way to do it from the host. MetaL is missing
tools for versioning the source code of kernels.

Kernel as a First-Class Object. Such as classes create objects, "meta-kernels"
would create kernels. Gemerating that interact with each other could be used in interest-
ing scenarios, such as decentralized computation and IoT. If kernels are first-class then
they would be able to define their own protocols for communication with other kernels.
Finding suitable abstractions to model kernels and their source code is necessary.

Pharo bootstrap. Bootstrapping Pharo in MetaL would improve its efficiency. It
would also help developers to make Pharo’s kernel smaller, because model and kernel
health are monitored, and debugging tools are available. A smaller kernel means better
maintainability and thus evolution support for the language.

Tests to check semantic correctness of guest-language. MetaL ensures compat-
ibility with target VM, however, semantic correctness of the generated language is not
ensured. In MetaL, language semantics can only be tested through observation of the
result of simulating execution of guest-language. Integrating Unit Tests to be applied to
the guest-language before its dump to kernel would help to assure semantic correctness
of produced kernels.

PHANtom Debugging Support. AspectMetaL current debugging support is not
enough, and all its benefits risk being ignored if its debugging support does not improve.
Implementing proper debugging for PHANtom, or for any other solution that relies on
reflective functionalities (such as reflexivity and the reflectogram) depends on solving
the meta-execution control problem.

Chapter AAssociated
Publications
A.1 Journals

Carolina Hernández Phillips, Guillermo Polito, Luc Fabresse, Noury Bouraqadi,
Stéphane Ducasse, Pablo Tesone
Language Runtime Generation: Reducing the Cognitive Distance between Defects and
Failures. Science of Computer Programming, 2021 (to be submitted).

A.2 Conferences

Guillermo Polito, Pablo Tesone, Stéphane Ducasse, Luc Fabresse, Théo Rogliano,
Pierre Misse-Chanabier, and Carolina Hernández Phillips
Cross-ISA Testing of the Pharo VM: Lessons Learned While Porting to ARMv8 Man-
aged Programming Languages (MPLR) 2021.

A.3 Workshops

Carolina Hernández Phillips, Guillermo Polito, Luc Fabresse, Noury Bouraqadi,
Stéphane Ducasse, Pablo Tesone
Challenges Bootstrapping Reflective Kernels. IWST - International Workshop on Smalltalk
Technology, Colocated within the 27th International Smalltalk Conference - 2019, 2019.

A.4 Vulgarization

Carolina Hernández Phillips
MetaL : un framework pour bootstrapper de petites images Pharo. Programmez! Le
magazine des développeurs. 11/12 2020 Numero 243.

Chapter BMetaL MOP
ObjectModel class
named: aString
parent: aLanguageModel

constructor

role returns the role of the metamodel class (e.g. #Class
for ClassModel)

isFirstClass returns true if the metamodel class should map a class-
model in the model

ObjectModel
test tests this model-object according to the VM constraints
install generates the remote kernel-object in the kernel

ensureRemote installs the remote kernel-object if not installed it, and
returns it

remote returns a mirror to the corresponding kernel-object

role returns the role of the receiver

role: aRole sets the role of the receiver

markIn: aContext hook containing action to be executed when the object-
model is accessed during interpretation of guest-code

environment returns the receiver’s environment scope for compila-
tion

debugCode: aString opens the guest-language debugger to debug the code
received as argument

evaluateCode: aString evaluates the guest-language code received as argument
and returns a mirror pointing to the resulting kernel-
object

Table B.1: Core MetaL MOP Methods in ObjectModel.

162 Appendix B. MetaL MOP

LanguageModel class
classModelClass returns the class in the host system used to instantiate

class-models
newWithName: name
withEntryPoint: someCode

constructor, returns an empty language model

LanguageModel
build builds the basic model and applies user-defined trans-

formations
transform user-defined transformations object-models in the lan-

guage
createCoreClasses user-defined initialization for the first object-models in

the language
classNamed: aString returns the class in the language with that name
classWithRole: aString returns the class in the language with that role
ensureClassNamed: aString creates the class-model if not defined, and adds it to

the language
basicNewClassNamed: aS-
tring

create a class-model omitting initialization

addClass: aClassModel adds a class to the language
allClasses returns the collection of all classes in the language
allGlobals returns the collection of globals in the language
bindingOf: aSymbol returns binding of a variable if found in the receiver’s

scope
browse open a code browser showing all packages, classes and

methods in the model

Table B.2: Core MetaL MOP Methods in LanguageModel.

163

ClassModel
methodModeClass returns the class for method-models in this class

superclass: aClassModel sets the superclass
superclass returns the superclass
addLocalMethod
FromSource: source
selector: symbol

creates a new method-models and adds it to the
methodDict

addMethod: aMethodModel adds a method-model to the methodDict
localMethods returns method-models defined in methodDict
methodDict returns the dictionary where the class stores its meth-

ods

install installs this class in the runtime as instance of it meta-
class

format returns the layout of instances of this class
format: anInt sets the layout of instances of this class
metaclass returns this receiver metaclass
bindingOf: aSymbol returns the binding of a variable if found in the re-

ceiver’s scope
innerBindingOf: aSymbol returns the local binding of a variable if found in the

receiver’s scope

Table B.3: Core MetaL MOP Methods in ClassModel.

MethodModel class
tempVarModelClass returns the metamodel class to model temporaries
MethodModel

fromSource: code constructor

Table B.4: Core MetaL MOP Methods in MethodModel.

Chapter CMetaL Roles
Role Class format Instance variables Class

table
index

S.O.A.
index

Required
to
load
kernel

Array indexable, no inst vars forbidden 16 & 51 8 Yes
Association fixed size key, value
Bitmap 32-bit indexable forbidden 5
ByteString 8-bit indexable forbidden
ByteSymbol 8-bit indexable forbidden
BlockClosure indexable, with inst vars outerContext

startpc
numArgs

37 37 Yes

ByteArray 8-bit indexable forbidden 50 27
ByteString 8-bit indexable forbidden 52 7
ByteSymbol 8-bit indexable forbidden
Character immediate forbidden 2 20
CompiledMethod 8-bit indexable forbidden 17
Context indexable, with inst vars sender

pc
stackp
method
closureOrNil
receiver

36 11 Yes

Table C.1: Roles in MetaL for a 32 bits Pharo VM. "S.O.A" stands for special objects
array. Indexes are 1 based (part 1).

166 Appendix C. MetaL Roles

Role Class format Instance variables Class
table
index

S.O.A.
index

Required
to
load
kernel

Dictionary fixed size tally
array

False zero sized forbidden
Float 32-bit indexable forbidden 34 10 Yes
LargeNegativeInteger 8-bit indexable forbidden 32 43 Yes
LargePositiveInteger 8-bit indexable forbidden 33 14 Yes
Message fixed size selector

args
lookupClass

35 16

Metaclass fixed size superclass
methodDict
format

MethodDictionary indexable, with inst vars tally
array

Point fixed size x
y

53 13

Process fixed size nextLink
suspendedContext
priority
myList

28

ProcessList fixed size firstLink
lastLink

ProcessScheduler fixed size suspendedProcessLists
activeProcess

SmallInteger immediate forbidden 1 & 3 6 Yes
True zero sized forbidden
Semaphore fixed size firstLink

lastLink
excessSignals

19

UndefinedObject zero sized forbidden

Table C.2: Roles in MetaL for a 32 bits Pharo VM. "S.O.A" stands for special objects
array. Indexes are 1 based (part 2).

Chapter DAspect-Oriented
Programming (AOP)

AspectMetaL uses aspect-oriented programming (AOP) to solve MetaL’s limitations to
code reuse. This section provides a brief introduction to AOP followed by the introduc-
tion of PHANtom, the aspect language AspectMetaL is implemented in.

D.0.1 AOP Concepts

Aspect-Oriented Programming (AOP) is a paradigm that seeks to solve the issue of code
for one concern scattered among different classes by proposing a new kind of abstraction:
the aspect. An aspect not only implements the behavior of a concern, but it also handles
the time at which the behavior should be executed. To achieve this, the execution steps
of an application are conceptually reified in join points. Aspects are able to identify
among the stream of join points those which are interesting to them with the help of
pointcuts, which work as queries to select join points. The behavior of the aspect is
implemented in advices. An aspect can define multiple advices and multiple pointcuts.
The aspect links advices with pointcuts such as when the application execution reaches
a join point that matches a specific pointcut, the advices linked to the pointcut are
executed.

D.0.2 PHANtom

PHANtom [Fabry 2012] is a dynamic aspect language for Smalltalk. Its constructs are
first-class objects. Aspects are as classes in that they can be instantiated and their
behavior is present in methods or blocks of code. PHANtom has no special syntax.
Instead, aspects and their components are built by instantiating Smalltalk objects.
PHANtom is dynamic because it allows for clases and aspects to be added, removed
and changed at run-time.

We present a brief introduction to PHANtom constructs, since they are used in our
description of AspectMetaL implementation.

168 Appendix D. Aspect-Oriented Programming (AOP)

Join points. They correspond to method executions. Meaning that each time an
object receives a message, that is a join point. A stream of join points is produced
during the execution of an application. They are characterized by the type of the
receiver and by the selector of the message.

Pointcuts. They are responsible of determining when the behavior of an aspect is
executed. They are predicates over the stream of join points. The pointcut in the
example below matches all executions of the method with selector build where the
receiver of the method is an instance of LanguageModel.

1 pc := PhPointcut receivers: ’LanguageModel’ selectors: ’build’ context: #(receiver)

The last argument of the constructor method makes the receiver of the message available
for advices linked to this pointcut.

Advices. They define the behavior to be executed when a pointcut matches. This
behavior is defined either in a regular method or in a block. The following example
shows an advice whose behavior is specified in a block.

1 adv := PhAdvice
2 before: pc
3 advice: [:ctx | Transcript show: (’Building model: ’, ctx receiver name); cr.]

The advise adv is executed (i.e. its block is evaluated) right before the execution of
matches of the pointcut pc. The receiver of the message is obtained from the context
variable.

Class modifiers. They are used to add and remove variables and methods in classes,
enabling modular class extensions. The class modifier in the example below adds a new
instance variable named ’metaclass’ to the instance side of the class ClassModel.

1 cm := PhClassModifier new
2 on: (PhPointcut receivers: ’ClassModel’ selectors: #any asParser); "static pointcut"
3 addNewInstanceVar: ’metaclass’;

The pointcut in the first argument matches any method in the class ClassModel, because
the expression #any asParser acts like a wildcard. The modification is performed only
once.

Aspects. Aspects are classes implementing cross-cutting behavior using pointcuts,
advices, and class modifiers. An aspect contains a collection of class modifiers and

169

advices, and each advice references a pointcut. Aspects need to be deployed to become
active. When they are undeployed, the affected classes return to their original state.

In AOP, when multiple aspects define behaviors on the same pointcut, dynamic
control of aspect execution becomes relevant. PHANtom allows for advice execution
ordering, a key point for specification of semantic features in kernels as we will see.

Bibliography

[Aksit 1992] Mehmet Aksit, Lodewijk Bergmans and Sinan Vural. An Object-Oriented
Language-Database Integration Model: The Composition-Filters Approach. In
O. Lehrmann Madsen, editeur, Proceedings ECOOP ’92, volume 615 of LNCS,
pages 372–395, Utrecht, the Netherlands, June 1992. Springer-Verlag.

[Beck 1993a] Kent Beck. Instance specific behavior: Digitalk implementation and the
deep meaning of it all. Smalltalk Report, vol. 2(7), May 1993.

[Beck 1993b] Kent Beck. Instance specific behavior: How and Why. Smalltalk Report,
vol. 2(7), May 1993.

[Beizer 1990] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand Rein-
hold Co., New York, NY, USA, 1990.

[Bennett 1987] John K. Bennett. The Design and Implementation of Distributed
Smalltalk. In Conference proceedings on Object-oriented programming systems,
languages and applications, OOPSLA ’87, pages 318–330, New York, NY, USA,
1987. ACM.

[Bergel 2004] Alexandre Bergel, Christophe Dony and Stéphane Ducasse. Prototalk: an
Environment for Teaching, Understanding, Designing and Prototyping Object-
Oriented Languages. In Proceedings of 12th International Smalltalk Conference
(ISC’04), pages 107–130, September 2004.

[Biggerstaff 1987] T.J. Biggerstaff and C. Richter. Reusability Framework, Assessment,
and Directions. IEEE Software, vol. 4, no. 2, pages 41–49, March 1987.

[Biggerstaff 1992] Ted J Biggerstaff. An assessment and analysis of software reuse. In
Advances in Computers, volume 34, pages 1–57. Elsevier, 1992.

[Bobrow 1988] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonia E.
Keene, Gregor Kiczales and D.A. Moon. Common Lisp Object System Specifi-
cation, X3J13. Rapport technique 88-003, (ANSI COMMON LISP), 1988.

[Bolz 2009] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski and Armin Rigo.
Tracing the meta-level: PyPy’s tracing JIT compiler. In ICOOOLPS ’09: Pro-
ceedings of the 4th workshop on the Implementation, Compilation, Optimization
of Object-Oriented Languages and Programming Systems, pages 18–25, New
York, NY, USA, 2009. ACM.

http://dx.doi.org/10.1145/38765.38836
http://dx.doi.org/10.1145/38765.38836
http://dx.doi.org/10.1145/38765.38836
http://dx.doi.org/10.1145/38765.38836
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/1565824.1565827

172 Bibliography

[Borning 1982] Alan H. Borning and Daniel H.H. Ingalls. Multiple Inheritance in
Smalltalk-80. In Proceedings at the National Conference on AI, pages 234–237,
Pittsburgh, PA, 1982.

[Bouraqadi 2000] Noury Bouraqadi. Concern Oriented Programming using Reflection.
In Workshop on Advanced Separation of Concerns — OOPSLA 2000, 2000.

[Bracha 2004] Gilad Bracha and David Ungar. Mirrors: design principles for meta-level
facilities of object-oriented programming languages. In Proceedings of the Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA’04), ACM SIGPLAN Notices, pages 331–344, New York,
NY, USA, 2004. ACM Press.

[Bravenboer 2008] Martin Bravenboer, Karl Trygve Kalleberg, Rob Vermaas and Eelco
Visser. Stratego/XT 0.17. A language and toolset for program transformation.
Science of computer programming, vol. 72, no. 1-2, pages 52–70, 2008.

[Briot 1989] Jean-Pierre Briot. Actalk: A Testbed for Classifying and Designing Ac-
tor Languages in the Smalltalk-80 Environment. In S. Cook, editeur, Proceed-
ings ECOOP ’89, pages 109–129, Nottingham, July 1989. Cambridge University
Press.

[Caballero 2007] Juan Caballero, Heng Yin, Zhenkai Liang and Dawn Song. Polyglot:
Automatic Extraction of Protocol Message Format Using Dynamic Binary Anal-
ysis. In Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, CCS ’07, pages 317–329, New York, NY, USA, 2007. ACM.

[Chiba 1996] Shigeru Chiba, Gregor Kiczales and John Lamping. Avoiding Confusion in
Metacircularity: The Meta-Helix. In Kokichi Futatsugi and Satoshi Matsuoka,
editeurs, Proceedings of ISOTAS ’96, volume 1049, pages 157–172. Springer,
1996.

[Chis 2015] Andrei Chis, Marcus Denker, Tudor Girba and Oscar Nierstrasz. Practical
domain-specific debuggers using the Moldable Debugger framework. Journal of
Computer Languages, Systems and Structures, vol. 44, pages 89–113, 2015.

[Cointe 1987] Pierre Cointe. Metaclasses are First Class: the ObjVlisp Model. In Pro-
ceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 156–167,
December 1987.

[Costanza 2008] Pascal Costanza, Charlotte Herzeel, Jorge Vallejos and Theo D’Hondt.
Filtered dispatch. In Proceedings of the 2008 Symposium on Dynamic languages,
pages 1–10, 2008.

http://dx.doi.org/10.1145/1315245.1315286
http://dx.doi.org/10.1145/1315245.1315286
http://dx.doi.org/10.1145/1315245.1315286
http://dx.doi.org/10.1145/1315245.1315286
http://dx.doi.org/10.1145/1315245.1315286
http://dx.doi.org/10.1007/3-540-60954-7_49
http://dx.doi.org/10.1007/3-540-60954-7_49
http://dx.doi.org/10.1007/3-540-60954-7_49
http://dx.doi.org/10.1007/3-540-60954-7_49
http://dx.doi.org/10.1016/j.cl.2015.08.005
http://dx.doi.org/10.1016/j.cl.2015.08.005
http://dx.doi.org/10.1016/j.cl.2015.08.005
http://dx.doi.org/10.1016/j.cl.2015.08.005

Bibliography 173

[DeMichiel 1987] Linda G. DeMichiel and Richard P. Gabriel. The Common Lisp Object
System: An Overview. In J. Bézivin, J-M. Hullot, P. Cointe and H. Lieberman,
editeurs, Proceedings ECOOP ’87, volume 276 of LNCS, pages 151–170, Paris,
France, June 1987. Springer-Verlag.

[Denker 2008] Marcus Denker, Mathieu Suen and Stéphane Ducasse. The Meta in
Meta-object Architectures. In Proceedings of TOOLS EUROPE 2008, volume 11
of LNBIP, pages 218–237. Springer-Verlag, 2008.

[Ducasse 1995] Stéphane Ducasse, Mireille Blay-Fornarino and Anne-Marie Pinna. A
Reflective Model for First Class Dependencies. In Proceedings of 10th Inter-
national Conference on Object-Oriented Programming Systems, Languages and
Applications (OOPSLA ’95), pages 265–280. ACM, October 1995.

[Ducasse 2006] Stéphane Ducasse and Tudor Gîrba. Using Smalltalk as a Reflective
Executable Meta-Language. In International Conference on Model Driven En-
gineering Languages and Systems (Models/UML 2006), volume 4199 of LNCS,
pages 604–618, Berlin, Germany, 2006. Springer-Verlag.

[Ducasse 2017] Stéphane Ducasse, Dmitri Zagidulin, Nicolai Hess, Dimitris
Chloupis Originally written by A. Black, S. Ducasse, O. Nierstrasz, D. Pollet
with D. Cassou and M. Denker. Pharo by example 5. Square Bracket Associates,
2017.

[Durand 2019] Irène A Durand and Robert Strandh. Bootstrapping Common Lisp using
Common Lisp. In EUROPEAN LISP SYMPOSIUM, 2019.

[Ernst 998] "Michael Ernst, Craig Kaplan and Craig Chambers". "Predicate Dispatch-
ing: A Unified Theory of Dispatch". In "Eric Jul", editeur, "ECOOP ’98—Object-
Oriented Programming", volume "1445" of "Lecture Notes in Computer Science",
pages "186–211". "Springer", "1998".

[Fabry 2012] Johan Fabry and Daniel Galdames. PHANtom: a modern aspect language
for Pharo Smalltalk. Software: Practice and Experience, pages n/a–n/a, 2012.

[Foote 1989] Brian Foote and Ralph E. Johnson. Reflective Facilities in Smalltalk-80. In
Proceedings OOPSLA ’89, ACM SIGPLAN Notices, volume 24, pages 327–336,
October 1989.

[Fowler 2005] Martin Fowler. Language Workbenches: The Killer-App for Domain-
Specific Languages, June 2005. http://www.martinfowler.com/articles/languageWorkbench.

html.

[Fowler 2010] Martin Fowler. Domain-specific languages. Pearson Education, 2010.

http://dx.doi.org/10.1007/978-3-540-69824-1_13
http://dx.doi.org/10.1007/978-3-540-69824-1_13
http://dx.doi.org/10.1007/978-3-540-69824-1_13
http://dx.doi.org/10.1007/11880240_42
http://dx.doi.org/10.1007/11880240_42
http://dx.doi.org/10.1007/11880240_42
http://dx.doi.org/10.1007/11880240_42
http://dx.doi.org/10.1002/spe.2117
http://dx.doi.org/10.1002/spe.2117
http://dx.doi.org/10.1002/spe.2117
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.martinfowler.com/articles/languageWorkbench.html

174 Bibliography

[Frakes 2005] William B Frakes and Kyo Kang. Software reuse research: Status and
future. IEEE transactions on Software Engineering, vol. 31, no. 7, pages 529–
536, 2005.

[Gabriel 1991] Richard P Gabriel, Jon L White and Daniel G Bobrow. CLOS: Integrat-
ing object-oriented and functional programming. Communications of the ACM,
vol. 34, no. 9, pages 29–38, 1991.

[Garbinato 1995] Benoit Garbinato, Rachid Guerraoui and Karim R Mazouni. Imple-
mentation of the GARF replicated objects platform. Distributed Systems Engi-
neering, vol. 2, no. 1, page 14, 1995.

[Goldberg 1983] Adele Goldberg and David Robson. Smalltalk 80: the language and
its implementation. Addison Wesley, Reading, Mass., May 1983.

[Gordon 2007] Donald Gordon and James Noble. Dynamic ownership in a dynamic
language. In Pascal Costanza and Robert Hirschfeld, editeurs, DLS ’07: Pro-
ceedings of the 2007 symposium on Dynamic languages, pages 41–52, New York,
NY, USA, 2007. ACM.

[GraalVM] GraalVM. GraalVM. http://www.graalvm.org, visited on 2021-08-31.

[Hernández Phillips 2019] Carolina Hernández Phillips, Guillermo Polito, Luc Fabresse,
Stéphane Ducasse, Noury Bouraqadi and Pablo Tesone. Challenges in Debug-
ging Bootstraps of Reflective Kernels. In IWST19 - International workshop on
Smalltalk Technologies, 2019.

[Hernández Phillips 2021] Carolina Hernández Phillips, Guillermo Polito, Luc Fabresse,
Noury Bouraqadi, Stéphane Ducasse and Pablo Tesone. Language Runtime Gen-
eration: Reducing the Cognitive Distance between Defects and Failures. (to be
submitted). 2021.

[Hirschfeld 2008] Robert Hirschfeld, Pascal Costanza and Oscar Nierstrasz. Context-
Oriented Programming. Journal of Object Technology, vol. 7, no. 3, March 2008.

[JetBrains] JetBrains. Meta Programming System. http://www.jetbrains.com/mps.

[Keene 1989] Sonia E. Keene. Object-oriented programming in common-lisp. Addison
Wesley, 1989.

[Kiczales 1991] Gregor Kiczales, Jim des Rivières and Daniel G. Bobrow. The art of
the metaobject protocol. MIT Press, 1991.

http://www.graalvm.org

Bibliography 175

[Kiczales 1993] Gregor Kiczales, J.Michael Ashley, Luis Rodriguez, Amin Vahdat and
Daniel G. Bobrow. Metaobject protocols: Why we want them and what else
they can do. In Object-Oriented Programming: the CLOS Perspective, pages
101–118. MIT Press, 1993.

[Kiczales 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean-Marc Loingtier and John Irwin. Aspect-Oriented Program-
ming. In Mehmet Aksit and Satoshi Matsuoka, editeurs, Proceedings ECOOP
’97, volume 1241 of LNCS, pages 220–242, Jyvaskyla, Finland, June 1997.
Springer-Verlag.

[Koichi] Sasada Koichi. Yet Another Ruby VM. http://www.atdot.net/yarv, visited on 2021-
08-31.

[Kokubun] Takashi Kokubun. Yarv-Mjit compiler (Ruby). https://github.com/k0kubun/

yarv-mjit, visited on 2021-08-31.

[Konat 2012] Gabriël Konat, Lennart Kats, Guido Wachsmuth and Eelco Visser.
Declarative name binding and scope rules. In International Conference on Soft-
ware Language Engineering, pages 311–331. Springer, 2012.

[Krueger 1992] Charles W. Krueger. Software Reuse. ACM Computing Surveys, vol. 24,
no. 2, pages 131–183, 1992.

[LaLonde 1988] Wilf R. LaLonde and Mark Van Gulik. Building a Backtracking Facil-
ity in Smalltalk Without Kernel Support. In Proceedings OOPSLA ’88, ACM
SIGPLAN Notices, volume 23, pages 105–122, November 1988.

[LaLonde 1991] Wilf LaLonde and John Pugh. Inside Smalltalk: Volume 2. Prentice
Hall, 1991.

[Maes 1987] Pattie Maes. Concepts and Experiments in Computational Reflection. In
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 147–155,
December 1987.

[Maes 1988] Pattie Maes. Issues in Computational Reflection. In D. Nardi P. Maes,
editeur, Meta-Level Architectures and Reflection, pages 21–35. Elsevier Science
Publishers B.V. (North-Holland), 1988.

[Malenfant 1996] J. Malenfant, M. Jacques and F.-N. Demers. A tutorial on behavioral
reflection and its implementation. In Proceedings of Reflection, pages 1–20, 1996.

[McAffer 1995] Jeff McAffer. Meta-level Programming with CodA. In W. Olthoff, edi-
teur, Proceedings ECOOP ’95, volume 952 of LNCS, pages 190–214, Aarhus,
Denmark, August 1995. Springer-Verlag.

http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://dx.doi.org/10.1007/BFb0053381
http://www.atdot.net/yarv
https://github.com/k0kubun/yarv-mjit
https://github.com/k0kubun/yarv-mjit
http://dx.doi.org/10.1145/62083.62094
http://dx.doi.org/10.1145/62083.62094
http://dx.doi.org/10.1145/62083.62094
http://dx.doi.org/10.1145/62083.62094
http://dx.doi.org/10.1145/38807.38821
http://dx.doi.org/10.1145/38807.38821
http://dx.doi.org/10.1145/38807.38821

176 Bibliography

[McCullough 1987] Paul L. McCullough. Transparent Forwarding: First Steps. In Pro-
ceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 331–341,
December 1987.

[Messick 1985] Steven L Messick and Kent L Beck. Active variables in smalltalk-80.
Rapport technique, Technical Report CR-85-09, Computer Research Lab, Tek-
tronix, 1985.

[Metaborg] Metaborg. Spoofax. http://www.metaborg.org, visited on 2021-08-31.

[Metacase] Metacase. MetaEdit+. http://www.metacase.com, visited on 2021-08-31.

[Oracle] Oracle. Java Virtual Machine Startup. https://docs.oracle.com/javase/specs/jvms/se16/

html/jvms-5.html, visited on 2021-08-31.

[Papoulias 2011] Nikolaos Papoulias, Noury Bouraqadi, Marcus Denker, Stéphane
Ducasse and Luc Fabresse. Towards Structural Decomposition of Reflection with
Mirrors. In Proceedings of International Workshop on Smalltalk Technologies
(IWST’11), Edingburgh, United Kingdom, 2011.

[Papoulias 2017] Nick Papoulias, Marcus Denker, Stéphane Ducasse and Luc Fabresse.
End-User Abstractions for Meta-Control: Reifying the Reflectogram. Science of
Computer Programming, vol. 140, pages 2–16, 2017.

[Pascoe 1986] Geoffrey A. Pascoe. Encapsulators: A New Software Paradigm in
Smalltalk-80. In Proceedings OOPSLA ’86, ACM SIGPLAN Notices, volume 21,
pages 341–346, November 1986.

[PetitParser] PetitParser. PetitParser. https://github.com/moosetechnology/PetitParser, visited
on 2021-08-31.

[Polito 2015] Guillermo Polito, Stéphane Ducasse, Luc Fabresse and Noury Bouraqadi.
A Bootstrapping Infrastructure to Build and Extend Pharo-Like Languages. In
Onward! 2015, 2015.

[Polito 2021] Guillermo Polito, Pablo Tesone, Stéphane Ducasse, Luc Fabresse, Théo
Rogliano, Pierre Misse-Chanabier and Carolina Phillips. Cross-ISA Testing of
the Pharo VM: Lessons Learned While Porting to ARMv8. In MPLR21, Ger-
many, 2021.

[Rascal] Rascal. Rascal Metaprogramming Language. http://www.rascal-mpl.org, visited on
2021-08-31.

[Rhodes 2008] Christophe Rhodes. Sbcl: A sanely-bootstrappable common lisp. In In-
ternational Workshop on Self Sustainable Systems (S3), pages 74–86, 2008.

http://www.metaborg.org
http://www.metacase.com
https://docs.oracle.com/javase/specs/jvms/se16/html/jvms-5.html
https://docs.oracle.com/javase/specs/jvms/se16/html/jvms-5.html
http://dx.doi.org/10.1016/j.scico.2016.12.002
http://dx.doi.org/10.1016/j.scico.2016.12.002
http://dx.doi.org/10.1016/j.scico.2016.12.002
https://github.com/moosetechnology/PetitParser
http://www.rascal-mpl.org

Bibliography 177

[Ring2] Ring2. Ring2 Github Repository. https://github.com/pavel-krivanek/Ring2, visited on
2021-08-31.

[SDF3] SDF3. SDF3 Overview. http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/

introduction.html, visited on 2021-08-31.

[Sillito 2008] J. Sillito, G.C. Murphy and K. De Volder. Asking and Answering Ques-
tions during a Programming Change Task. IEEE Transactions on Software En-
gineering, vol. 34, no. 4, pages 434–451, jul 2008.

[Smith 1982] Brian Cantwell Smith. Reflection and Semantics in a Procedural Language.
Ph.D. thesis, MIT, Cambridge, MA, 1982.

[Smith 1984] Brian Cantwell Smith. Reflection and Semantics in Lisp. In Proceedings
of POPL ’84, pages 23–3, 1984.

[Spinellis 2018] Diomidis Spinellis. Modern Debugging: The Art of Finding a Needle in
a Haystack. Commun. ACM, vol. 61, no. 11, pages 124–134, October 2018.

[Stel 2020] Erick Stel. New type of web application using HTML, CSS and Smalltalk.
https://www.youtube.com/watch?v=qvY7R6te7go, 2020. Accessed: 2021-03-10.

[Teruel 2012] Camille Teruel, Stéphane Ducasse and Marcus Denker. Toward a mod-
ularization of Pharo: Analysis of the design space for a new module system.
In 9ème édition de la conférence MAnifestation des JEunes Chercheurs en Sci-
ences et Technologies de l’Information et de la Communication-MajecSTIC 2012
(2012), 2012.

[Teruel 2015] Camille Teruel, Stéphane Ducasse, Damien Cassou and Marcus Denker.
Access Control to Reflection with Object Ownership. In Dynamic Languages
Symposium (DLS’2015), 2015.

[Ucko 2001] Aaron Mark Ucko. Predicate dispatching in the common lisp object. Mas-
ter’s thesis, Massachusetts Institute of Technology, 2001.

[Ungar 1987] David Ungar and Randall B. Smith. Self: The Power of Simplicity. In
Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22, pages 227–242,
December 1987.

[Vergu 2015] Vlad Vergu, Pierre Neron and Eelco Visser. DynSem: A DSL for dynamic
semantics specification. In 26th International Conference on Rewriting Tech-
niques and Applications (RTA 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2015.

https://github.com/pavel-krivanek/Ring2
http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/introduction.html
http://www.metaborg.org/en/latest/source/langdev/meta/lang/sdf3/introduction.html
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1109/TSE.2008.26
http://dx.doi.org/10.1145/800017.800513
http://dx.doi.org/10.1145/800017.800513
http://dx.doi.org/10.1145/800017.800513
http://dx.doi.org/10.1145/3186278
http://dx.doi.org/10.1145/3186278
http://dx.doi.org/10.1145/3186278
https://www.youtube.com/watch?v=qvY7R6te7go
http://dx.doi.org/10.1145/2816707.2816721
http://dx.doi.org/10.1145/2816707.2816721
http://dx.doi.org/10.1145/2816707.2816721
http://dx.doi.org/10.1145/38765.38828
http://dx.doi.org/10.1145/38765.38828
http://dx.doi.org/10.1145/38765.38828

178 Bibliography

[Visser 2004] Eelco Visser. Program Transformation with Stratego/XT: Rules, Strate-
gies, Tools, and Systems in StrategoXT-0.9. In C. Lengaueret al., editeurs,
Domain-Specific Program Generation, volume 3016 of Lecture Notes in Com-
puter Science, pages 216–238. Spinger-Verlag, June 2004.

[Wegner 1983] Peter Wegner. Varieties of reusability. In Workshop on Reusability in
Programming, pages 30–44, 1983.

[Willink 2011] Edward Daniel Willink. Re-engineering eclipse MDT/OCL for xtext.
Electronic Communications of the EASST, vol. 36, 2011.

[Wimmer 2012] Christian Wimmer and Thomas Würthinger. Truffle: a self-optimizing
runtime system. In Proceedings of the 3rd annual conference on Systems, pro-
gramming, and applications: software for humanity, pages 13–14, 2012.

[Wimmer 2019] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul
Wögerer, Peter B Kessler, Oleg Pliss and Thomas Würthinger. Initialize once,
start fast: application initialization at build time. Proceedings of the ACM on
Programming Languages, vol. 3, no. OOPSLA, pages 1–29, 2019.

[Würthinger 2017] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas
Wöss, Lukas Stadler, Chris Seaton, Gilles Duboscq, Doug Simon and Matthias
Grimmer. Practical Partial Evaluation for High-Performance Dynamic Language
Runtimes. In PLDI’17, 2017.

[XSemantics] Eclipse XSemantics. XSemantics. http://projects.eclipse.org/projects/modeling.

xsemantics, visited on 2021-08-31.

[Xtext] Eclipse Xtext. Xtext. http://www.eclipse.org/Xtext, visited on 2021-08-31.

[Yokote 1987] Yasuhiko Yokote and Mario Tokoro. Experience and Evolution of Concur-
rentSmalltalk. In Proceedings OOPSLA ’87, ACM SIGPLAN Notices, volume 22,
pages 406–415, December 1987.

[Zeller 2005] Andreas Zeller. Why programs fail: A guide to systematic debugging.
Morgan Kaufmann, October 2005.

[Zenger 2001] Matthias Zenger and Martin Odersky. Implementing extensible compilers.
In ECOOP Workshop on Multiparadigm Programming with Object-Oriented
Languages. Citeseer, 2001.

http://dx.doi.org/10.1007/b98156
http://dx.doi.org/10.1007/b98156
http://dx.doi.org/10.1007/b98156
http://dx.doi.org/10.1007/b98156
http://dx.doi.org/10.1145/3140587.3062381
http://dx.doi.org/10.1145/3140587.3062381
http://dx.doi.org/10.1145/3140587.3062381
http://projects.eclipse.org/projects/modeling.xsemantics
http://projects.eclipse.org/projects/modeling.xsemantics
http://www.eclipse.org/Xtext

Bootstrap-Based Language Development
Carolina Hernández Phillips

Abstract: Programming languages need to evolve as software requirements change, but their prototyping
and extension comes at the cost of great development efforts. Bootstrap is a technique to support the
evolution of a single language or a family of similar languages, specially used in the implementation of
reflective languages. However, bootstrapping new languages is a challenging task due to the lack of proper
abstractions for language specification, late manifestation of errors, and abstraction leaps during debugging
tasks.

In this dissertation we study the design of a bootstrap based language development technique that
supports the generation of multiple languages with low efforts. For this we introduce MetaL, a bootstrapping
framework where language specification is based on metamodels and reflective instructions. Thanks to its
Meta Object Protocol (MOP), MetaL ensures model correctness and kernel health, detecting corruption
early during the generation process.

To validate our approach, we report on the successful generation of seven object-oriented language ker-
nels, plus an experiment by an external user. These experiments show that MetaL: reduced developer efforts
in each study case and that MetaL is applicable in real world scenarios. Nevertheless, this experience also
shows that relying on metamodels for language specification hinders code reuse. To solve the previous limi-
tation we propose AspectMetaL, an aspect-oriented layer on top of MetaL that allows language specification
at the level of semantic features. To validate AspectMetaL, we generated 3 kernels by combining both se-
mantic features and learning that AOP is effective for improving code reuse and rising the abstraction level
for language specification.

Keywords: bootstrapping, programming language design, reflective languages, language runtime initial-
ization.

Développement Linguistique Basé Sur Bootstrap
Carolina Hernández Phillips

Résumé: Les langages de programmation doivent évoluer au fur et à mesure que les exigences des logiciels
changent, mais leur prototypage et leur extension se font au prix de grands efforts de développement. Le
bootstrap est une technique permettant de soutenir l’évolution d’un langage unique ou d’une famille de lan-
gages similaires, spécialement utilisée dans l’implémentation de langages réflectifs. Cependant, l’amorçage
de nouveaux langages est une tâche difficile en raison du manque d’abstractions appropriées pour la spéci-
fication du langage, de la manifestation tardive des erreurs et des sauts d’abstraction pendant les tâches de
débogage.

Dans cette thèse, nous étudions la conception d’une technique de développement de langage basée
sur l’amorçage qui permet de générer plusieurs langages avec peu d’efforts. Pour cela, nous introduisons
MetaL, un cadre d’amorçage où la spécification du langage est basée sur des métamodèles et des instructions
réfléchies. Grâce à son Meta Object Protocol (MOP), MetaL assure la correction du modèle et la santé du
noyau, en détectant la corruption au début du processus de génération.

Pour valider notre approche, nous rapportons la génération réussie de sept noyaux de langages orientés
objet, ainsi qu’une expérience réalisée par un utilisateur externe. Ces expériences montrent que MetaL : a
réduit les efforts des développeurs dans chaque cas d’étude et que MetaL est applicable dans des scénarios
du monde réel. Néanmoins, cette expérience montre également que le fait de s’appuyer sur des métamodèles
pour la spécification du langage entrave la réutilisation du code. Pour résoudre la limitation précédente,
nous proposons AspectMetaL, une couche orientée aspect au-dessus de MetaL qui permet la spécification du
langage au niveau des caractéristiques sémantiques. Pour valider AspectMetaL, nous avons généré 3 noyaux
en combinant les deux caractéristiques sémantiques et nous avons constaté que la POA est efficace pour
améliorer la réutilisation du code et augmenter le niveau d’abstraction pour la spécification du langage.

Mots clés: bootstrapping, conception de langage de programmation, langages réflectifs, initialisation de
l’exécution du langage.

	Introduction
	Abstractions for Language Definition
	Reflective Languages
	Bootstrap
	Problem Statement
	Hypothesis
	Results
	Research Question 1
	Research Question 2 and Hypothesis 1

	Contributions
	Thesis Outline

	Language Implementation Techniques
	Cognitive Distance
	Language Implementation Techniques (LIT)
	LIT Evaluation Criteria
	LIT Classification

	Generation Techniques
	Language Workbenches
	Meta-Compilation Techniques

	Self-Surgery Techniques
	Concepts About Reflection
	Smalltalk Self-Surgery
	CLOS Self-Surgery
	Self-Surgery Limitations

	LIT Evaluation
	C1. Abstractions
	C2. Mapping From Specifications To Realizations
	Conclusion

	Overcoming Self-Surgery Limitations: Language Runtime Initialization
	Ruby and Python Runtime-Initialization
	Discussion

	Bootstrap
	Common Lisp Bootstrap
	Smalltalk Bootstrap
	Discussion

	Conclusions

	Challenges Bootstrapping Reflective Kernels
	Pharo Bootstrap
	Pharo Bootstrap in a Nutshell
	(A) Language Sources and Language Model (declarative)
	(B, C) Generation Instructions (imperative)
	(B) Reflective instructions
	(C) Non-reflective instructions

	Causes of Bootstrap Failures
	VM Constraints on the Kernel Structure
	Classification of Defects and Failures
	Classification of Defects
	Classification of Failures

	Taxonomy of Defects and Failures

	Challenges Bootstrapping ObjVLisp
	Pharo's Metamodel Does Not Support Explicit Metaclasses
	Structural Def. causes VM Const. Fail at Generation (easy)
	Structural Def. causes VM Const. Fail at Generation (hard)
	Reflective Def. causes Guest-Lang. Code Fail at Generation
	Reflective Def. causes VM Constraint Fail at Generation
	Structural Def. causes VM Constraint Fail at Execution
	Non-Reflective Def. causes VM-Constraint Fail at Execution
	Application Def. causes Guest-Lang. Code Fail at Execution

	Analysis Of Cognitive Distance In Bootstrap
	Introduction to Cognitive Distance Representations
	Causes Of Large Cognitive Distance In Bootstrap

	Desirable Features Of A Bootstrap-Based LIT
	Requirement 1
	Requirement 2
	Requirement 3

	Conclusions

	Bootstrap-Based Language Implementation: MetaL
	MetaL in a Nutshell
	MetaL by Example: Generating OvlispL
	General Bootstrap Process
	Metamodel Definition
	Definition of Roles
	Model Construction
	Core Class-Models
	Automatic Model Completion
	User-Defined Model Transformations

	Kernel Generation, Writing, and Execution

	Debugging OvlispL Bootstrap in MetaL
	Solving Structural Defects
	Solving Reflective Defects

	Kernel and Model Validations
	Model Validations: Roles
	Roles and Smart Mirrors
	Kernel Validations: Smart Mirrors
	Extending validations for a new VM

	Conclusions

	MetaL Evaluation: Bootstrapping Kernels
	OvlispLslot
	Application
	Metamodel
	Model
	Discussion

	ObjVLisp
	Application
	Metamodel
	Model
	Discussion

	OvlispLns
	Application
	Metamodel
	Model
	Discussion

	CandleL
	Application
	Metamodel
	Model
	Discussion

	OwnerL
	Application
	Metamodel
	Model
	Kernel Initialization
	Discussion

	OvlispLdyn
	Application
	Metamodel
	Model
	Discussion

	Experiment by External User
	Analysis Of Cognitive Distance In MetaL
	Evaluation of MetaL
	Meeting Requirement 1
	Meeting Requirement 2
	Meeting Requirement 3
	Limitations

	Conclusions

	Aspect-Oriented Bootstrap: AspectMetaL
	AOP in a Nutshell
	AspectMetaL Overview
	General Process
	AspectMetaL Aspects

	AspectMetaL By Example: Generating OvlispLscv
	Semantic Features
	Metamodel Definition
	Definition Of A New Aspect
	Aspect Reuse
	Deployment Ordering

	Discussion
	Abstractions In AspectMetaL
	Code Reuse In AspectMetaL
	Limitations

	Conclusions

	Conclusions
	Contributions
	MetaL
	AspectMetaL
	Research Questions & Hypotheses

	Future Work

	Associated Publications
	Journals
	Conferences
	Workshops
	Vulgarization

	MetaL MOP
	MetaL Roles
	Aspect-Oriented Programming (AOP)
	AOP Concepts
	PHANtom

	Bibliography

