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advanced tools and architectures. Reflective operations are used for implementing tools and development
environments (e.g., compilers, debuggers, inspectors) or language features (e.g., distributed systems, exceptions,
proxies, aspect-oriented programming). In addition, languages are evolving, introducing better concepts, and
revising practices and APIs. Since 2008 Pharo has evolved from Squeak and its reflective API has evolved
accordingly, diverging consequently from the original Smalltalk reflective API. With more than 500 reflective
methods identified, Pharo has one of the largest reflective feature sets ranging from structural reflection to
on-demand stack reification. Those operations are often built on top of the other, creating different layers of
reflective operations, from low-level to high-level ones.

There is a need to understand the current reflective APIs to understand their underlying use, potential
dependencies, and whether some reflective features can be scoped and optional. Such an analysis is challenged
by new metaobjects organically introduced in the system, such as first-class instance variables, and their
mixture with the base-level API of objects and classes.

In this article, we analyze the reflective operations used in Pharo 12 and their interdependencies. We
propose a classification based on their semantics and we identify a set of issues of the current implementation.
Such an analysis of reflective operations in Pharo is important to support the revision of the reflective layer
and its potential redesign.

Meta-object protocols

1. Introduction Reflection has always been a thorn in the side of Java static analysis
tools. Without a full treatment of reflection, static analysis tools are
both incomplete because some parts of the program may not be included
in the application call graph, and unsound because the static analysis
does not take into account reflective features of Java that allow writes
to object fields and method invocations. However, accurately analyzing
reflection has always been difficult, leading to most static analysis tools
treating reflection in an unsound manner or just ignoring it entirely. This
is unsatisfactory as many modern Java applications make significant use
of reflection [1].

Reflective operations are powerful APIs that let developers build
advanced tools or architectures that otherwise would have to be imple-
mented in language implementation engines, would require complex
infrastructure (such as code representation), or may simply not be pos-
sible. These reflective features support the implementation of tools (e.g.,
compilers, debuggers, inspectors), frameworks and libraries (e.g., seri-
alization, persistence, logging), and language infrastructure (e.g, ex-
ceptions, distributed systems, continuations, green threads). Such a set
of tools and frameworks are both used during the development and

deployment of applications (See Section 2). While the quote above is about Java, this tension is exacerbated

Giving too much power to developers is, however, also a burden.
Reflective features defeat static analysis [1] and are usable as security
exploits. For example, they allow malicious users to violate encapsu-
lation or execute methods that were not intended to be executed [2—
5].

* Corresponding author.

in the case of deeply reflective languages such as Smalltalk descen-
dants. Pharo, for example, as a descendant of Smalltalk is the essence
of a reflective language with advanced reflective operations such as
bulk pointer swapping [6], on-demand stack reification, and first-class
resumable exceptions. In addition, in Smalltalk-80 and many of its
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derivatives, reflective facilities are mixed with the base-level API of
objects and classes [7-9]. They are a key part of the kernel of the
language and libraries. Finally, since 2008 the Pharo programming lan-
guage continuously evolved: new concepts were added (slots, packages,
pragmas...). There is a need for a deep analysis of reflective features.

In this paper, we present an analysis of existing reflective features
in Pharo 12. We scope the analysis to runtime reflection to focus on
the core reflective features of the language and its associated virtual
machine. Pharo inherited the reflective operations and facilities origi-
nally present in Squeak and Smalltalk-80, and extended them over the
years. Some reflective methods like Object>instVarAt: are still present
and used, some names have changed and new reflective facilities have
appeared.

Extension. This paper extends the workshop paper Pharo: a reflective
language — A first systematic analysis of reflective APIs [10] with two
new analyses whose goal is to better understand how existing reflective
operations could be redesigned into a modular reflective API.

We chose to use the term reflective API to talk about reflective
methods, as it highlights the fact that this is a programming interface
offered by Pharo to developers.

The contributions of this article are:

+ an up-to-date catalogue of the reflective features in Pharo,

» a classification and an analysis of such operations,

+ a discussion of potential re-designs of such reflective operations,

» Extension: a dependency analysis between the reflective cate-
gories,

» Extension: a classification of layers appearing between the reflec-
tive categories.

These contributions are of key importance since they set the foun-
dation for a redesign of the reflective capabilities of Pharo for example
to offer optional reflective capabilities and more controlled ones in the
context of a more secure and modular version of the language [11].

The outline of the paper is as follows: first, we explain the need
for reflective features in Section 2. In Section 3 we highlight why we
need a classification. Section 4 presents an overview of the reflective
APIs based on the classes supporting them and their interactions. In
Section 5 we present with a high-level perspective the analysis of
the runtime reflective APIs in Pharo 12. The technical report [12]
lists the detailed selectors. For each of the categories, we analyze the
capabilities it provides and how they are used in Pharo. Section 6
presents the dependencies of reflective categories. Section 7 presents
the layered architecture of reflective operations. Section 8 presents
a high-level discussion of considerations to be taken into account to
improve such APIs. It also sketches some points for the design of a
future MetaObject Protocol(MOP) for Pharo.

2. The need for reflective behavior

Reflection is the ability of a program to manipulate as data something
representing the state of the program during its execution. There are two
aspects of such manipulation: introspection and intercession [...] [13]

Reflective features in object-oriented languages are central to the
development of advanced behavior ranging from enhanced develop-
ment tools to new paradigm implementation such as Aspect-Oriented
Programming [14]. In the middle of the 90s, reflection was heavily ex-
plored: structural [15,16], computational [17,18], message-based [17,
19], compile-time [20] and partial reflection [21,22].

Reflection is an important tool that enables many important features
of modern languages [23]. For example, message-passing control is one
of the cornerstones of a broad range of applications and an important
feature of reflective systems. Applications that use message-passing
control are roughly sorted into three main categories.
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« The first category is application analysis and introspection that are
based on tools that display interaction diagrams, class affinity
graphs, and graphic traces [24-27].

The second category is language extension. In such a case, message
passing control allows one to define new features from within
the language itself: Garf [28], Distributed Smalltalk [29], or [30]
transparently introduce object distribution. Language features
such as multiple inheritance [31], backtracking facilities [32],
and instance-based programming [33,34] have been introduced.
Futures [35,36] or atomic messages [18,37] are also based on
message-passing control capabilities.

The third category is the definition of new object models, intro-
ducing concurrent aspects such as active objects (Actalk [15])
and synchronization between asynchronous messages (Concur-
rent Smalltalk’ [38]). Other work proposes new object reflec-
tive models such as CodA which is a meta-object protocol that
controls all the activities of distributed objects [18], meta he-
lix [39] or submethod reflection using Abstract Syntax Tree (AST)
annotation [23,40].

More elaborate schemes have been proposed (e.g., partial behav-
ioral reflection [21,22]) that provide a more flexible and fine-grained
way to specify both the location being reflected and the metaob-
ject invoked. Context-oriented [41] or aspect-oriented programming
implementations are often based on reflection [42,43].

The importance and need for reflective features are also illustrated
by the effort to offer them in more static languages such as C++ [20],
Ada [44], and Java [21,45-47].

Often virtual machine implementations impose restrictions on the
changes that are possible [48]. For example, even if Pharo is one of
the most advanced reflective languages due to its large spectrum of
capabilities, some reflective features (typically intercession e.g., tracing
any instance variables accesses or any message sends) are not possible
due to their inherent runtime cost. Indeed, virtual machines are engines
highly optimized for speed.

3. The need for an up-to-date reflective feature classification

More than 25 years of evolution. Between 1996 and 2008, Squeak
evolved from the original Smalltalk reflective API with many contri-
butions. In 2008 Pharo was born from Squeak. Pharo on its turn saw
many different contributions. To give an idea of the activity in Pharo,
since 2019 and the versioning of Pharo on GitHub, Pharo has around
100 yearly contributors (with up to 30 regular ones). As of the writing
of this article, its commit history counting only since 2019 is more
20 000 commits.

For an up-to-date analysis. Back in 1996, Rivard [8] proposed the
first classification of Smalltalk reflective features. Such classification
is, however, old, and includes aspects such as the compiler which are
orthogonal to runtime reflective features. In addition, it is based on
VisualWorks a proprietary Smalltalk that is not easily accessible nowa-
days. Finally, it does not take into account traits [49-52], first-class
instance variables, and the introduction of new tools using reflection
such as the new inspector framework [53], reflectivity [23], object-
centric debugging [27], error handling infrastructure [54], and on the
fly deprecated message rewritings [55] to name a few. Callau et al. [56]
studied the use of dynamic features of programming languages and
used Pharo as a case study. Their study is limited and focuses on the
use of a limited set of elements. They do not embrace the full reflective
APIs. Demers and Malenfant proposed to compare reflective capabilities
in logic, functional, and object-oriented programming [57], but it is not
related to a concrete Pharo implementation.

! Concurrent Smalltalk is based on the extension of the virtual machine
and new byte-code definition. However, the synchronization of asynchronous
messages uses the doesNotUnderstand: technique.
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Fig. 1. The structural Pharo metamodel: Class aggregates variables, methods, constant management (SharedPools) and method annotation (Pragma) and exposes related APIs.
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Fig. 2. Metaobjects controlling the reflective APIs of Pharo.

Importance of the analysis. Deploying an application with unneeded
reflective facilities produces, however, potential safety issues: reflective
operations might be used to bypass security measures or affect the
stability of the executing application [11].

Removing unneeded reflective operations requires, however, a com-
plete understanding of their usage and analysis to see if they can be
separated from the language kernel and core libraries. The challenge
is how to improve the modularity and security of the language core,
without affecting the features used by tools, frameworks, and libraries.
For example, serialization libraries such as STON highly use reflective
operations to serialize and deserialize objects; removing those opera-
tions to improve the security of the application impedes the use of
such a library. This is why in future work, we will analyze more
precisely the potential issues that reflective operations may generate
in productive applications and their impact on the safety and security
of the application. As a first step in that direction, there is a need
for a deep and up-to-date analysis that embraces the full spectrum of
reflective features. This is what we develop from Section 4 and this is
why we list the complete API in the technical report [12].

4. Metaobjects, classes and their related APIs

Before giving an overview of the API, we briefly present the struc-
tural metamodel of Pharo. The current version is Pharo 12.

4.1. Pharo structural meta model

A class is a central entity in Pharo’s structural meta-model [9]. We
briefly describe it, since a large part of the API is currently associated
with classes.

« A class defines instance variables or slots. Since several versions of
Pharo, slots (first-class instance variables) have been introduced
and the fusion between instance variables and slots is under
development. A class also defines class variables (a.k.a static vari-
ables) and uses zero or more shared pools which are collections
of constants.

A class inherits from another class and has zero or more sub-

classes. Since a couple of versions, a class is composed of traits
(class fragments defining methods and state).
A class contains methods. Methods have a selector and are anno-

tated using zero or more Pragmas [58].

4.2. Overview of the reflective APIs

Fig. 2 shows an overview of the reflective API of Pharo, structured
with the classes that expose such APIs in the Pharo 12 release.
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Fig. 3. Reflective category dependency graph. The size of the circle corresponds to the number of selectors in the category. Line thickness depends on the number of dependent

selectors. For more details see Appendix B.

MetaObjects. Grey boxes represent first-class objects. Object, Slot,
Class, ClassVariable, and CompiledMethod are structural metaob-
jects. The classes CompiledMethod and CompiledBlock are two entry
points to AST nodes and sub-method reflective APIs. We decided not to
add such a dimension since submethod reflection is optional and can
be seen as compile-time reflection [54].

Implementation objects. We put the MethodDictionary, Compiled-
Block, and BlockClosure in a white box because it is unclear whether
we need or not a metaobject for them. Indeed in Pharo, the method
dictionary is rather simple and does not offer a reflective entry point per
se. It is more of an implementation object. Similarly, BlockClosure can
be introspected as an object it is unclear that it represents a metaobject.

Perspective. The dashed package-like packages represent two aspects
of the system: on the one hand Memory which allows users to iterate
memory with methods such as nextlnstance and, on the other hand,
Runtime which represents the execution aspect of the system with Con-
text (stack reification), Messages, Thread, and Environment (keeping
class and variable binding).

Note that some APIs are not controlled by metaobjects per se. For
example, the Reference API is an API defined on Object as such every
object may override it.

5. A classification and analysis of runtime reflective operations

Rivard [8] classified reflective operations in the following cate-
gories: Meta-Operation (objects), Structure (class), Semantics (compiler),
Message Sending, and Control State (thread). The Semantics part is just a
description of the compilation process and involved classes—as such
it is not relevant for our analysis since it boils down to adding a
new compiled method to a method dictionary. We complement and
revisit this classification by adding References, and Memory Scanning
(See Table 1).

We propose a detailed and systematic description of the APIs and
runtime reflective behavior. Our classification subsumes the one of
Rivard. In addition, we distinguish APIs supporting introspection from
modification since modification has more impact in terms of state
encapsulation. We are aware that systematically presenting lists may be
tedious for the reader, this is why the technical report [12] describes
systematically all the APIs.

Table 1 gives an overview of the classification: it groups reflective
methods into APIs and APIs in high-level categories. The categories are
sorted alphabetically. The letters are used to understand Fig. 3.

For each of the APIs we briefly describe it, list its key methods (we
often group similar ones), the offered possibilities, and the areas of
improvement when appropriate.

Finally, note that the existence of an API is more important than
the fact that we classify it under a given heading. For example, asking
an object to reflectively execute a method is listed together with other
execution-oriented APIs and not directly in the object-centered API.
In addition, the next subsections are organized to follow Rivard’s
classification order.

Sections 6.2 and 7 identify dependencies and layers among the
categories.

5.1. Methodology

To analyze and classify the reflective API we focus on the base image
of Pharo 12, build 636.> We manually identified reflective methods
by reading the code of the base image, specifically code belonging
to the explicit list of metaobjects and packages present in Figs. 1
and 2. We identified reflective methods using definitions of reflection
from [13,59] and categorized them based on a categorization that

2 Pharo-12.0.0+build.836.sha.8b241ecb87492515bbdd975557ecf8491a4a
f88b (64 Bit).
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Table 1
Overview of the reflective categories and APIs alphabetically sorted. Leading letters are
used for Fig. 3.

Categories APIs

Al—Bulk pointer swapping

A—Chasing and Swapping pointers A2—Find pointers to

B1—Class kind testing

B2—Class variable inspection
B3—Class/Metaclass shift
B4—Instance variable inspection
B5—Iterating and querying hierarchy
B6—Pragma

B7—Selectors and methods inspection
B8—Shared pool inspection

B9—Slot inspection

B10—Traits

Bl1—Variable lookup

B—Class structural Inspection

Cl—Anonymous class creation
C2—Class variable modification
C3—Fluid Builder class creation
C4—Hierarchy modification
C5—Instance variable modification
C6—O0Id class creation
C7—Selector/Method modification
C8—Shared pool modification
C9—lot modification

C—<Class structural Modification

D1—Memory Scanning

D—M: S i
emory scanning D2—Instances of a class

El—Arbitrary method/primitive execution
E2—Control message passing
E3—Message send reification

E4—Method lookup

E5—Reflective message send
E6—Runtime and Evaluation

E—Message sending & code
execution

F1—Accessing object class
F2—Accessing object identity
F3—State inspection

F—Object Inspection

G1—Object class change

G—Object Modification G2—State modification

H1—Context

H—Stack Manipulati
Stack Manipulation H2—Controlling the stack

I1—Class references
12—Method element references
I3—Method slot uses

I—Structural queries On methods

builds on top of Rivard’s. We then tagged the identified reflective
methods with a pragma® parametrized with its reflective category.

Using this methodology we identified and marked 532 methods with
344 unique selectors as reflective. This number shows the extent of the
reflective API in Pharo [12]. The reflective method category tagging
was proposed as a pull request to the Pharo repository and accepted by
the community in September 2023.* In what follows, we refer as reflec-
tive method any method that is marked in our list. A reflective operation
is an operation performing reflection and implemented through one or
more methods.

In the remainder of this section, we present and analyze the reflec-
tive methods and operations we found, divided into categories. Later,
in Section 6, we analyze the dependencies between these categories.

5.2. Object inspection reflective operations

The first category of reflective operations is centered around object
inspection. Rivard [8] described these operations in the Meta-Operations
category, but he grouped inspection and modification. Our category is
composed of three subcategories:

3 A pragma is a method annotation in Pharo’s parlance.
4 https://github.com/pharo-project/pharo/pull/14821.
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« State inspection to read the values of the variables of an object.
+ Accessing object identity to identify an object.
» Accessing object class to read the class of an object.

In Pharo, all instance variables are private, meaning they are not
readable and writable by any other object. They are only accessible
through getter or setter methods. Developers decide which instance
variables are accessible by implementing or not methods to access
them. Pharo also includes class instance variables and shared variables,
these work in the same fashion as instance variables, and the analysis
for instance variables is directly extensible to them. Using the State
inspection operations is breaking the encapsulation and bypasses the
decisions of the developer.

Several methods exist on the class Object allowing access to the
state of internal variables. Key examples of this category are Ob-
ject>instVarAt: and Object>instVarNamed:, which read an instance
variable of an object from its index or name respectively. These opera-
tions combine well with those in the Accessing object class subcategory
to work on object internal structure e.g., Behavior>alllnstVarNames.

Possibilities offered. The State inspection operations give a uniform API
to inspect all the instance variables of any object, including classes.
They are particularly useful for designing tools addressing crosscut-
ting needs, like debugging, inspecting an object, serializing it... The
Accessing object identity supports checking the identity of an object.
basicldentityHash is used for implementing identityHash variants,
scanning for an object in a method dictionary, and testing.

Examples of uses.

« Serializing objects.
» Inspecting objects.
» Implementing hash methods.

This use raises the question of whether accessing object identity is
a reflective operation and not just part of the base-level object API in
a language where references are ubiquitous.

Areas of improvement.

» In the analyzed Pharo version, there is currently no provided
solution for intercession on state read or write on a class or even
on a specific object. This requires using additional libraries or
implementing ad hoc solutions [60]. Such tools rely heavily on
reflection, and loading several tools at the same time might lead
to bugs and instabilities due to incompatibilities between them.

5.3. Object modification reflective operations

The second category of reflective operations is centered around
object modification. It is the counterpart of the first one and it is
composed of State modification, Manipulating object identity, and
Object’s class change.

+ State modification to write the values of variables of an object.

* Manipulating object identity to manipulate the identity of an
object.

» Object’s class change to change the class of an object.

Possibilities offered. The State modification operations allow one to
bypass encapsulation and modifying variables of third-party objects.
This could be used to write variables in an unanticipated way when
they were originally designed to not be changed via base-level message
passing. This is for example useful for deserialization. They allow one
to build tools that will modify objects. The Object’s class change
operations allow one object to become an instance of another class,
which is particularly important in Pharo’s live environment when a
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class has to be rebuilt. The Manipulating object identity category
contains only one operation becomeForward:copyHash:®

Examples of uses.

+ Copying objects.

+ Deserializing objects.

» Modifying object on the fly in the debugger.
» Migrate instances between two class versions.

Areas of improvement. The API on object class change is weak and
limited. The object state may be lost in the process and some constraints
(the two classes should have the same format) make it difficult to
change the actual class. Overriding the methods providing these oper-
ations provides a way to limit reflection at the cost of limiting services
such as instance migration provided by the environment.

5.4. Class structural inspection reflective operations

This category groups reflective APIs that query the class structure
and its constituents: methods, variables (instance/class/slots). It is
composed of the following subcategories:

+ Class/metaclass shift to navigate between a class and its meta-
class.

« Iterating and querying hierarchy to query class hierarchies.

« Instance variable inspection, Class variable inspection, Shared
pool inspection, Slot inspection to query variable definitions. Slot
inspection provides a higher level view compared to Instance
variable inspection. Slots are either defined locally in a class or
imported, for example from a trait. Thus the existence of the
localSlots and slots operations.

+ Selector and method inspection to query the set of methods/
selectors implemented by a class.

+ Variable lookup the access the binding of a variable.

 Pragmas to query pragmas.

+ Class kind testing to query the state of a class (installed, obsolete,
anonymous...).

Possibilities offered. The structural class introspection is large. It is
mainly used by tools. It supports the interpretation of object inspection.
Iterating and querying hierarchy methods support navigation of the
graph with messages such as superclass and allSubclasses. Selector
and method inspection methods allow one to check existing selectors
and methods. All variable query operations allow one to list existing
variables. Some methods such as isKindOf: or respondsTo: produce
suboptimal designs when used at the base level. respondsTo: allows
one to query if an object understands a given selector.

Examples of uses.

+ Object Serialization and Deserialization.
+ Code browsing.
+ Object inspection.

Areas of improvement.

+ There is spurious redundancy between isClassSide and isMeta.
Such double methods should be corrected.

+ As a general remark, the question of the systematic application
of the Law of Demeter should be discussed because it bloats
the APIL. For example, messages such as selectSuperclasses: /
selectSubclasses: do not seem to be necessary. In addition,
withAllSuperAndSubclasses and includesBehavior: look su-
perfluous.

5 Using becomeForward:copyHash: to swap a reference it is possible to
change the object identity.
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» We see the old protocol with cryptic names such as instSize to
mean instanceVariableSize.

The duality of instance variables and slots is an artifact of the
current evolution of Pharo. Nevertheless, this is important that in
the future, instance variables get fully replaced by slots and that
the corresponding reflective APIs get merged.

The duality of selectors versus methods should be evaluated.
Since a method dictionary always has the selector of the method
as a key, the API could favor selectors for most of the queries and
only favor one access to compiled methods (via methods such as
methodNamed:).

5.5. Class structural modification reflective operations

This category is the counterpart of the previous one. It is composed
of the following APIs whose objectives are clear: Hierarchy modi-
fication, Instance variable modification, Shared pool modification,
Slot modification, Selector/Method modification, Old class creation,
Fluid class creation, and Anonymous class creation. It focuses on the
modification of the structural relation a class has with its constituents.

Possibilities offered. Structural modification operations allow the user
to modify the current structure/shape of classes. They include opera-
tions to add/remove subclasses, instance variables, and class variables.
We distinguish introspection and modification APIs because we want to
stress that modification is destructively modifying the executed system
and that as such they represent more powerful operations.

In addition to the traditional class creation API (kept for back-
ward compatibility) and the fluid API, Pharo introduced the notion of
anonymous classes (message newAnonymousSubclass) [2]. It helps
to define instance-specific methods.

Examples of uses.

+ Reflective code modification.
» Object-Centric Reflection.
+ Proxy implementations.

Areas of improvement.

» The unification of Slots and variables should be continued to
avoid duplication at the reflective API level.

+ About Selector/Method modification. The ‘silently’ prefix raises
the question of the management of the notification of modifi-
cation. Indeed, some tools need to be notified to react to new
elements. Nevertheless, this duality suggests a layered API where
low-level API elements are identified.

» The API Anonymous class creation can be packaged separately
from the Fluid class creation.

5.6. Method creation reflective operations

The API Compiled method creation is a low-level API that supports
the definition of compiled methods. Such an API is often ignored but
it is central because it is responsible for the creation of new compiled
methods.

Possibilities offered. Compiled method creation offers the possibility
to create a compiled method and this even without the need for the
compiler.

Examples of uses. This API supports the modularization of the system
core such as making the compiler optional in the system bootstrap. It
is used by Hermes a binary code loader. It is an important asset that
supports the bootstrap of Pharo [61] and ensures that the compiler is
loadable into a system without having a compiler to compile and install
code.
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Areas of improvement. Since the code for creating compiled methods is
just the code of the CompiledMethod class. It has not been explicitly
designed to be a MOP API. Revisiting this central API in the context of
the Selector/Method modification and the interplay between the two
could lead to a stronger MOP.

5.7. Structural queries on methods reflective operations

This category supports the cross-referencing between methods, in-
stance variables, and classes. It is composed of two subcategories:

» Method slot uses to query usages of variable read/writes.
* Method element references to query internal implementation of
methods.

Possibilities offered. These two subcategories are central for all the
cross-referencing and code navigation in Pharo.

Examples of uses. These operations are important for the IDE and tools.

+ query method senders and implementors
+ query methods reading/writing a variable

Areas of improvement.

» The duality of selectors and methods could be handled better,
e.g, whichMethodsReferTo: vs. whichSelectorsReferTo:. We
suggest not exposing the compiled method, since it is always
possible to get the method out of a selector. It would lead to a
more compact APIL

Method slot uses looks like an optional API that can be packaged
with the tools. A unification between the two APIs would produce
a more coherent API.

5.8. Message sending and code execution reflective operations

This category of operations allows us to explicitly send messages,
handle lookup failures, or execute compiled methods. It is composed of
different subcategories:

* Reflective message send to lookup and execute methods.

+ Arbitrary method/primitive execution to execute methods with-
out lookup.

* Method lookup to simulate the method lookup.

+ Control message passing to control message sends.

» Message send reification to access message information.

In Pharo, when sending a message to an object, the first step is
to search the message selector in the class hierarchy of the message’s
receiver. This is the lookup. Once a compiled method is found in
the receiver’s class or one of its superclasses, the method is applied
to the receiver. When the lookup does not find any corresponding
method, doesNotUnderstand: is sent to the receiver with the mes-
sage reified as an instance of MessageSend. This allows the re-
ceiver to specialize message error. The APIs are central to bringing
flexibility to applications. In particular Reflective message send with
its perform: methods is important for pluggable UI logic. While the
methods of Reflective message send do a method lookup, methods
of Arbitrary method/primitive execution allow us to execute directly
a compiled method or a primitive operation.® While the methods of
Reflective message send do a method lookup, methods of Arbitrary
method/primitive execution allow us to execute directly a compiled
method or a primitive.”

6 A primitive operation is a call to a virtual machine internal behavior.
7 A primitive operation is a call to a virtual machine internal behavior.
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Possibilities offered. These operations allow us to explicitly send a
message and handle failure cases. The selector sent is determined dy-
namically from an input, a string, or a symbol. Run a specific primitive
operation or version of a compiled method without needing to install
a method in the class hierarchy.

Examples of uses.

+ Implementing frameworks with naming flexibility such as in
SUnit.

» Decouple user interfaces from model objects.

+ Proxy implementations.

» Debugging and profiling.

Areas of improvement.

+ Pharo offers two ways of representing a message via the class
MessageSend and Message. This situation shows that the addi-
tion of concepts was not done carefully to avoid duplication. Mes-
sage represents a message when an error occurs (doesNotUnder-
stand:). It supports the possibility to perform a lookup via the
message sendTo: which is the counterpart of doesNotUnder-
stand:. MessageSend represents the concept of sending a mes-
sage and holds in addition a receiver. Such a class is not used by
the runtime and offers an API compatible with block closures: The
messages value: and its variants allow one to execute a message.
We suggest merging MessageSend into Message since this last
one is used to reify messages on error.

Having several ways to express the same behavior can be im-
proved. There are, for example, three different reflective methods
implementing similar behavior in Arbitrary method/primitive
execution. We suggest that only methods on CompiledMethod
should be kept. The definition on ProtoObject would have the
pernicious side effect of making domain developers think that it
is safe to use such messages.

The direct execution of a compiled method as offered by the
Arbitrary method/primitive execution API is dangerous because
the system does not check that the executed method can be
executed on the receiver. This is usually ensured by the lookup.
Therefore while it makes sense to use methods of the Reflective
message send API, we believe domain developers should not be
exposed to the Arbitrary method/primitive execution API. In
addition, this API should be packaged separately to expose its
nature.

5.9. Chasing and atomic pointer swapping reflective operations

The APIs in this category are Find pointers to and Bulk pointer
swapping (supports the atomic swapping to references). The first one
is rarely mentioned but Pharo supports the possibility of identify-
ing pointers to a given object (e.g, ProtoObject>pointersTo and
ProtoObject>pointsTo:).

Possibilities offered. Find pointers to is useful for building tools to
identify a memory leak; it is optional and its use is well-scoped.

The second one, Bulk pointer swapping, is one of the hallmarks
of Smalltalk reflective APIs. Pharo’s implementation implements this
operation efficiently by using forwarders at the VM level [6]. It should
be noted that Pharo offers two semantics for swapping: become: which
symmetrically swaps the pointers and becomeForward: which is one
way. In addition, one cannot be used to express the other at the
language level.

Examples of uses.

* Memory leak analyzers.
» Dynamically updating existing instances to new class shapes.
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Areas of improvement. Such API while useful during development ses-
sions should be limited during deployment. A precise analysis of the
use of Bulk pointer swapping should be done to differentiate the
places where it is mandatory from the places where it is a convenient
optimized solution. It should be noted that Find pointers to could
be implemented on top of a full memory scan API such as the ones
presented in the next section. Similarly, a slower version of Bulk
pointer swapping could be possible.

5.10. Memory scanning reflective operations

This category contains two subcategories: Memory scanning that
supports the traversal of the complete heap and Instances of a class
that gives access to all the instances of a class.

Possibilities offered. This API is usually not mentioned in the literature
but it is at the core of live programming [62]. The method nextObject
and nextlnstance are key to building other functionalities such as
alllnstances.

Examples of uses. The main use is the migration of instances between
two versions of one class. All objects need to be obtained to be migrated
to the new class and be potentially rebuilt if there are changes in their
shape e.g, if a variable is added/removed. Other uses such as collecting
all instances of a class are more anecdotal and reflect the lack of an
explicit registration mechanism in the domain.

Areas of improvement. Understanding whether such a reflective API can
be optional and only be loaded on demand would be a step toward
building a more compact, tidier, and secure reflective MetaObject
protocol.

5.11. Stack manipulation reflective operations

This category groups together all APIs that support traversing and
modifying the execution stack. These APIs are accessible from two main
entry points: the Process class that provides access to the existing
processes and their suspended execution stack, and the thisContext
pseudo-variable that provides access to the current method execution.
Both these entry points provide instances of Context that represent a
method execution and make the execution stack in a linked list.

Possibilities offered. Stack manipulation operations provide on the one
hand low-level access to the call stack (e.g., sender, programCounter),
context meta-data (e.g., method), and context operand stack (e.g,
push:, pop and at:), and on the other hand support for continuations
built on top of the previous APIs (e.g., return:, resume:).

Examples of uses.

+ Implementing exceptions.
» Debuggers.
 Bytecode interpretation.

Areas of improvement. Stack manipulation support for stack modifi-
cation and intercession is, at the moment of this writing, limited. A
single class Context is allowed, and its instances are reified on-demand
by the execution engine by the Virtual Machine implementation. This
means that the APIs described above cannot be refined in subclasses to
modify the behavior of method execution. Currently, such fine-grained
intercession is achieved by bytecode rewriting using frameworks such
as reflectivity [23].

Additionally, the fact that essential language features such as excep-
tions are built on top of it makes this support mandatory. Optional stack
manipulation requires a major redesign such as a re-implementation
of such essential features on the Virtual Machine, or at the extreme
considering exceptions as optional reflective features too.
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6. Reflective API interdependencies

We extend the categorization of reflective operations shown in
Section 5 with inter-category (Section 6.2) and inter-method dependencies
(Section 7). Understanding the dependencies between reflective APIs
will help in evolving the current API. This means, for example, restruc-
turing parts of the API to fit better in the system or, identifying optional
APIs that could be packaged separately. This would lead to a simpler,
lighter base language, with potentially less threats to the stability of
the system. In this section, we present an analysis of interdependencies
between the categories presented in Section 5.

6.1. Methodology

We identify dependencies between reflective methods using static
analysis based on their selectors, given that Pharo is a dynamically-
typed language without type annotations. We say that reflective selec-
tor A depends on reflective selector B if any method with the selector A
sends a message with selector B. Unless specified otherwise, we focus
only on users who are reflective methods themselves. When relevant,
we extend our analysis to base-level users.

Unless stated otherwise, when analyzing categories interdependen-
cies we leave outside of our analysis some selectors that present both
reflective implementors and not reflective implementors. This is the
case of largely used selectors such as at:, at:put: and size that are
implemented as reflective methods in Context but have non-reflective
counterparts in collections. We also ignore from our analysis a dozen
other selectors that have reflective implementors in different categories.
(See Appendix A for the full list.)

Thus, the uses of these selectors do not necessarily imply dependen-
cies on the reflective version of the method.

Section 6.2 presents a high-level view of the interdependencies in
the reflective categories. For the sake of presentation, the dependency
analysis removes, in addition to the previous list of selectors, the
selector class as it is the one with the highest number of connections
(28 other selectors have at least one method depending on class).

6.2. Reflective categories interdependencies overview

Fig. 3 presents a graph that illustrates how all reflective categories
connect with their dependencies. The figure shows that most reflective
categories are building on each other.

Based on this data we identified four types of categories based on
their dependency topology, shown in Fig. 4:

« Isolated categories: These categories do not depend on any other
categories and no other category depends on them.

* Provider categories: These categories do not depend on any other
categories but they provide operations that are used by other
categories.

* Client categories: These categories depend on other categories, but
no other reflective category depends on them.

» Hub categories: These categories depend on a lot of other cate-
gories and many other categories depend on them.

Isolated and Client categories are two types of categories that could
be the first candidates for being packaged in a library. This would also
require analyzing the base-level uses of their APIs in the base image,
which is outside the scope of this paper.

6.3. Isolated reflective categories

Memory Scanning - Memory Scanning, Object Inspection - Access-
ing object identity, and Chasing and swapping pointers - Bulk pointer
swapping are not relying on any other categories because they rely on
primitive operations. There is also no other reflective category relying
on them. To understand how they fit in Pharo, in this specific section
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Fig. 4. Categories according to the number of incoming and outgoing dependencies.

analyze all users — reflective and not — in the base image, not only
the ones that are reflective methods. As explained below, they provide
low-level APIs that are either not used in the base image (ie., their
selector appears neither in reflective nor non-reflective code) or used
for low-level implementation details like defining equality and growing
collections in memory.

For Memory Scanning—Memory Scanning, implementations of
both nextObject and someObject are directly calling primitive oper-
ations. Those are two low-level methods that allow us to iterate on
the memory. The only sender of nextObject in the base image is a
regression test on ProtoObject checking for a previous image crash.
someObject is never used.

For Object Inspection—Accessing object identity, 7 out of 11 meth-
ods are calling primitive operations, two have an internal dependency
to basicldentityHash. The two remaining methods are the overrid-
ing versions of basicldentityHash and identityHash for Smallinteger
which are based on the value of the integer itself. Those methods are
used to implement hash functions and check for equality. They are not
used by other reflective features.

The three members of Chasing and swapping pointers—Bulk pointer
swapping rely on three methods in Array that call the primitive
operations. While the method become: is only used for some tests,
becomeForward:copyHash: is used in a proxy implementation in the
Iceberg package, a version control package. becomeForward: is the
most used of the three, but for non-reflective purposes: during the
bootstrap to handle undeclared variables, to edit the specialObject-
sArray, to manage internal representations of collections and method
dictionaries, and to convert weak announcements into strong ones.

6.4. Provider categories

We have four categories that are not relying on any other categories,
but are providing APIs used by others :

* Class structural inspection—Class/Metaclass shift. Its imple-
mentations of classSide, instanceSide, and variants rely on the
metamodel and its hierarchy. In terms of selectors that have been
removed for clarity, it is only using class once. Its messages are
however used in a dozen of other categories.

Class structural inspection—Slot inspection. Slots are stored in
the metaobjects of Pharo in a collection. Their implementation
does not rely on primitive operations. Accessing the slots and
querying them are used to access the state of an object or class
and modify it, but also to create or modify the instance variables
of a class. This covers seven categories of reflective operations.

+ Object Inspection—Accessing object class Its four methods rely
on the same primitive operation, either directly or indirectly. It
is usually used either for comparisons or to access the API of
the class. In terms of reflective API Context>objectClass: and
MirrorPrimitives class>classOf are used to access instance vari-
ables, send messages, and execute arbitrary methods/primitive
operations. With more than 4800 senders in both the base-level
and reflective methods, class is one of the selectors that is the
most used in the Pharo image. This is why in the rest of this
article, ProtoObject>class is excluded when looking at the con-
nections between categories. The class method is used directly by
15 out of 40 categories, from which 13 use only class from this
category.

Class structural inspection—Traits. Like slots, traits do not rely
on primitive operations. They are implemented in the metaobjects
of Pharo. In the reflective API, they are only used in the Class
structural inspection—Class kind testing to test for users of a
class defining a trait.

6.5. Client categories

We have eleven categories which are relying on other categories and
are not used by others:

+ Chasing and swapping pointers—Find pointers to

* Class structural inspection—Pragma

* Class structural modification—Anonymous class creation

* Class structural modification—Class variable Modification

* Class structural modification—Instance variable modification

* Class structural modification—Old class creation

* Class structural modification—Selector/Method modification

» Memory Scanning—Instances of a class

* Message sending and code execution—Arbitrary method/
primitive execution

* Object Modification—Object class change

» Stack Manipulation—Context

» Structural queries on methods—Method slot uses

As there are eleven client categories, we focus on highlighting
commonalities instead of detailing each of them. Five of them are from
the bigger category: Class structural modification. Client categories
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usually provide higher-level APIs, like Structural queries on methods—
Method slot uses. For example, in Class structural modification—
Instance variable modification, the methods relying on other cate-
gories are the ones offering to add or remove instance variables by
their names. Those methods hide the complexity of the implementation
with slots, which is powerful but more complicated to understand.
Another case is the old class creation API. These API methods have been
rewritten to rely on the new fluid class builder. We believe that it has no
users because of the migration to the new API. This API is only present
for retro-compatibility and class creation required by other reflective
APIs like slot modification using the new API.

6.6. Iterating and querying hierarchy, a hub category

In Fig. 3, we identify one hub category in the top left that presents
many more connections than the others. In Fig. 4 we see that this
category appears to rely on three other categories for its implemen-
tation and has 16 categories using it directly. The Class structural
inspection—Iterating and querying hierarchy is a hub category. In
particular, its user with the strongest connection is Class structural
inspection—Instance variable inspection. The operations to iterate and
query the class hierarchy are used to look up for instance variable
definitions. The three categories it relies on are:

* Class structural inspection—Class kind testing. The two mes-
sages isTrait and isMetaclassOfClassOrNil are used respectively
in the implementations of includesBehavior: and subclassesDo:
to check for specific cases in the Metaclass class.

Class structural inspection—Class/Metaclass shift. Both instance-

Side and classSide are used by three Metaclass methods: sub-

classes, subclassesDo: and obsoleteSubclasses. Those three

methods rely on the instance side to get the subclasses: instances
of Metaclass have a parallel hierarchy to the instances of class.

The subclasses of the class side are the same as the class side of

the instance side’s subclasses.

» Message sending and code execution—Runtime and Evaluation.
The messages value: and value:value: are used to evaluate blocks
in eight methods, including five enumeration and iteration meth-
ods, and a method looking for a superclass verifying a criteria
passed as a block. These are false positives due to polymorphism
between reified messages and blocks.

7. Layers and internal dependencies in reflective categories

To analyze the dependencies within a single category, we build
visualizations showing each selector’s dependencies (See Section 6.1
for the dependency heuristic). All selectors belonging to the studied
categories are in black while selectors from other categories have other
colors. To get a more detailed view in this analysis, we keep all selectors
including the one excluded previously.

The graph is laid out to show the hierarchy of dependencies with
dependent selectors placed below the ones they depend on. Two se-
lectors with a dependency relationship are placed as close as possible
while respecting the vertical positioning. (For example in Fig. 5 sender
is just above pointersToExcept:among: instead of being higher on the
graph). This leads to the apparition of some visual layers (see the blue
annotations on the following figures).

7.1. Chasing and swapping pointers—Find pointers to

The category Chasing and swapping pointers—Find pointers to is
an example of the layers that emerge in some reflective APIs. When
looking at the graph in Fig. 5 we see that the method pointsTo: is the
core one of this category, with all others except pointOnlyWeaklyTo:
relying on it. This pointsTo: method tests for the presence of the
parameter either as the class or in the instance variables of the receiver.
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By building on top of this method, we get more complex operations that
allow one to get all pointers to an object.

We also notice that pointersTo: and pointersToAmong: rely re-
spectively on pointersToExcept: and pointersToExcept:among:. The
simpler APIs rely on the ones with more parameters for their imple-
mentations, therefore avoiding code duplication and facilitating code
evolution. The presence of those simpler APIs in addition to the ones
with more parameters reflects the absence of default parameters in
Pharo.

pointsOnlyWeaklyto: is isolated in the category because it provides
an independent operation: when calling it, a precondition is that the
receiver is pointing to the parameter. This method tests if the references
are weak or not. To do so it is using a lower level API, as information
on the strength of references is not available at the abstraction level of
pointsTo:.

7.2. Memory Scanning—Instances of a class

The category Memory Scanning—Instances of a class is another
example of a layered API. Here we got three root methods in the
category allowing to access the instances of a class: alllnstancesOrNil,
somelnstance, and nextlnstance. More complicated iteration methods
and methods accessing sub-instances are built on top of those.

We notice in Fig. 6 that alllnstancesOrNil and alllnstances look
similar but do not depend on each other. This is due to both of them
relying on the same primitive operation. While allinstancesOrNil fail
when running out of memory, alllnstances has a backup implementa-
tion, which relies on somelnstance to get the first instance of a class
and nextlnstance to iterate. The presence of both operations could be
due to historical and retro-compatibility reasons.

Another noticeable point is the fact that while alllnstancesDo:
relies on alllnstances, allSubinstances relies on allSubinstancesDo:.
This is because allSubinstances requires iterating over instances of
subclasses, and therefore if one wants to call a method on all subin-
stances, it is better to apply it directly rather than creating a new
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collection and then reiterate over it. While unintuitive, this is an
optimization for subinstances.

7.3. Message sending and code execution - Runtime and Evaluation &
message sending and code execution - Reflective message send

Fig. 7 shows in black the Runtime and Evaluation subcategory,
and in teal operations of the Reflective message send subcategory.
The former relies on the latter. Moreover, these categories are orga-
nized in different layers. In Reflective message send, the simpler
APIs, with few arguments each as a different parameter, rely on the
perform:withArguments: that takes an array of arguments in its
second parameter. Finally perform:withArguments: itself relies on
perform:withArguments:inSuperclass:. This is a similar structure as
hashing and swapping pointers—Find pointers to category, seen in
Section 7.1.

Runtime and Evaluation contains value, cull: and their variants
with one or more arguments. Variants of value assume that they are
given the appropriate amount of arguments, while variants of cull
ignore exceeding arguments. This leads to a horizontal layer in the API
with all the variants of value relying on the perform: variant with
the corresponding number of arguments. Variants of cull: rely both
on the value variant with the same number of arguments if there is
the right number of arguments, and the cull: version with one less
argument in case there are too many arguments. The cull: method with
only one argument relies instead on the value message if no arguments
are expected. This highlights the cost of using cull: variants when the
number of arguments is known.

Once again here we observe that the absence of default argu-
ments in Pharo leads to more methods being created to compensate.
With empty default parameters, variants of cull:, value:, and perform:
could be summarized by three methods with the maximum number of
parameters.

8. Discussions

As we have seen in the previous sections, if reflective operations are
extremely powerful and useful to implement tools to navigate Pharo’s
live environment [63], they are also impeding application safety in
multiple ways. Analyzing and designing a new modular MOP is a clear
challenge. In this section, we discuss various aspects ranging from the
analysis we presented to the consideration to be taken into account.
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8.1. Threats to validity

By construction, this study is susceptible to false negatives on reflec-
tive methods, both false positives and false negatives on dependencies.

False negatives in reflective methods. As the identification of reflective
methods was done manually, we might have missed some packages
and methods as we could not read through the whole image. Therefore
some reflective methods might not be identified and tagged as such.
However, with 532 identified methods, we believe that the presented
study is representative of the Pharo reflective API. Moreover, those
tags have been submitted to Pharo, reviewed, and integrated for later
versions.

False positives in dependency identification. Having base-level methods
being polymorphic with reflective ones might lead to false positives
during the static analysis. While we identified a few selectors (at:,
at:put:, size and value) for which identified dependencies are not
reliable, some others might have slipped through unidentified. In the
dependency graph of selectors, selectors belonging to more than one
category are shown. However, we do not differentiate between the de-
pendencies of methods belonging to different categories. This may lead
to some false positives. For example, if a single method implementing
the selector has a dependency, the categories of the other methods
implementing this selector will show the dependency even if it is not
their version of the method.

False negatives in dependency identification. As we removed selectors be-
longing to several categories when drawing the category dependencies
graph, some dependencies relationships are missing. However, only 13
selectors on 344 are removed and they belong to varied categories. This
leads us to the conclusion that no strong dependencies are going by
unidentified.

One of the limits of the study is that we only look at direct depen-
dencies between reflective methods. Therefore if a reflective method
calls a non-reflective method, which itself calls a second reflective
method, the dependency between both reflective methods will not be
identified.

Non-formal definition of layers. While visual layers used in Section 7
offer a way to understand the hierarchy of dependencies, they do not
have a formal definition. Slightly different visualizations of depen-
dencies could generate other layers. However, as the organization of
the selectors by the visualizations is specified, this makes those more
reproducible.
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8.2. General concerns

About dual entities. On several occasions, the MOP proposes a kind of
duplicated API: one for selectors and the other for compiled methods, or
one for a variable and its name. Having only one API based on the ob-
ject is not good because it forces the developer to have an object when
it may not be possible. It means that using a name is a good approach.
In particular, such metaobjects (compiled method, slot) expose their
name. We suggest reducing the API spectrum by not proposing two
APIs but instead favoring one based on the name for query and access.
For modifications, the developer will query first based on the name to
access an object and then perform the corresponding operation. In that
regard, the question of the application of the Law of Demeter should
be evaluated since it tends to produce larger APIs.

Absence of clear layers between base-level and meta-level. On several
occasions, we see the need to identify the level of API. Indeed some
methods require mere index (instVarAt:) while some others require
names (instVarName:). While the first one is needed, we suggest (1)
a clear naming convention that helps understand the level of the func-
tionality, (2) a better naming (methods named instSize that returns the
number of instance variables that feel outdated in a modern language).
Finally, some APIs are large because basic functionality is augmented
with helper behavior built on top of such basic functionality. While this
is a good practice to promote code reuse and offer developers stronger
APIs, we suggest laying off such APIs and making sure that high-level
APIs are optional with clearly identified users.

About metaobject Protocol and piecemeal growth. In Smalltalk, reflection
is exposed as methods of objects that modify the internals of the system
and the causal connection makes sure that the modifications get in
effect. We see this approach as an organic one and from this perspective
we say that the metaobject Protocol of Smalltalk has been less designed
than the one of CLOS [64].

We suggest that the design of a new MOP should consider how
certain objects represent customization points and avoid piecemeal
and accidental MOP growth. For example, in CLOS it is possible to
specify at the metaclass level, the class of the executed method. The
Method class is then a natural metaobject exposing a method that can
be specialized to for example count the number of executions of the
methods. In Pharo, the hook to specify the class of a method is not clear.
More important, when a method is executed no identified method is
called before the method execution. Frameworks such as Method Proxy,
MethodWrappers [26] build such functionality using VM hooks such
the possibility to place any object in a system dictionary and that such
an object receives the message run:with:in:.

A MOP may decide to expose customization points as dedicated ob-
jects and not necessarily objects that are currently been executed [18].
For example in CodA, different lifetime aspects of objects (message-
send, message received, state access, execution, ...) are reified via
specific metaobjects.

Execution-time reflection. In our analysis, we have centered on the
reflective API during the execution time. We analyzed the operations
that are executed during code execution. In this sense, we have left
outside operations performed outside the execution of the code. Op-
erations such as static code analysis and rewriting, memory dump
inspection and modification, refactoring, and on-load code rewriting
or instrumentation are not performed during execution time. Those
operations are outside our definition of reflective operations.

Compiler. In contrast to Rivard [8] who considers the compiler as
part of the reflective API of the system, in our analysis we keep it
out. We have taken this decision as the reflective API provides ways
of creating and installing methods. In Pharo reflective API a method
is created from its bytecode, literals, and header. The complexity of
generating such a set of bytecode, literals, and header for the method
is outside the reflective API. The compiler has as input the source code
of the method. Through a series of complex transformations (such as
parsing, AST building, AST rewriting, AST optimizations, Intermediate
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Representation Building, and bytecode generation) the compiler gener-
ates the bytecode, literals, and headers. A compiler is just one possible
source of these elements. For example, in Pharo, we have a binary code
loader that generates and installs methods. This binary code loader is
used without the compiler to load code during the bootstrap process of
the image. The compiler and the binary code loader both use the same
reflective API, that allows them to create and install new methods in the
running environment. Moreover, it is possible to have more alternative
tools to generate methods profiting Pharo reflective APIL.

Package loading/unloading missing. The existing reflective API does not
present a clear metamodel to handle the concept of Packages. Even
though this concept is used outside the execution of code. It is a key
element in the metamodel of Pharo. It is used to load, unload, and
version classes, methods, and extensions existing in Pharo. Moreover,
it is the key element to support method extensions.

A clear reflective API is required to handle the loading, unloading,
versioning, and modification of packages in Pharo. Also, clear modeling
of the package allows for additional points of extension to the meta-
model and the ability to improve existing tools (e.g., scoping extensions,
dependencies).

We have left outside of this paper the analysis of the features and a
possible design of such Package API, but we recognize the importance
of such reflective API.

Architecture for notification. In our analysis, we have found that there
is no clear API for handling the notifications of changes. Tools working
on the metamodel of Pharo require a good integration to be notified of
changes. For example, a Code Browser requires a clear way of getting
notifications when a new method or class is added to the system.
Also, there are scenarios where the tools modify the system but this
modification should not be notified. For example, when instrumenting
a method, if the original method is replaced there is no need for the
Code Browser to be notified.

A clear notification API should guarantee that the tools and libraries
scope the notifications they want to produce and consume.

An extensive analysis of this notification architecture is outside
the scope of this paper, however, we realize that such a notification
architecture is required.

About definition and method reification. In early versions of Squeak, a
compiled method did not know its class or its selector. It was then
expensive to ask a compiled for its selector since it required scanning
all the methods installed in a class. Over the years compiled methods
saw their API and representation improved. At the same time, there is a
need to be able to represent methods that are not installed in a class, for
example, to browse multiple versions of a method or perform branch
analysis [65]. In this scenario, there is a need to represent a method
with a source code that is not one of the currently installed compiled
methods. Similarly, several meta-models such as Ring and Ring2 have
been designed to support the analysis of code not loaded in an image
(browsing, crossreferencing, remote browser...). There is a need to have
method definitions as well as compiled methods. This raises the ques-
tion of whether the tools should not manipulate method definitions and
not compiled methods. Such method definitions could be connected to a
compiled method when the compiled method is installed in the system.
From a reflective API, compiled methods could be more executable
objects and expose only information related to their execution and
for all the other needs the tools could request the associated method
definition. By making sure that the tools and reflective API always go
from a method definition to the compiled method, we could restrain
the compiled method API. Such architecture, however, should be built
and validated because, in an image for development, it would double
the number of objects representing methods or special caches should
be done to support method cross-referencing.
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8.3. Mirror architecture

At the language level, Mirrors [59,66] aims for stratification of
meta-level facilities and gives access to reflective capability based on
a reference to a mirror factory. Mirrors were implemented in several
languages, for example, Self [66], StrongTalk [67] and Newspeak [68].
Mirrors offer a mirror implementation in Pharo. However, given that
MirrorPrimitives is a class, it is registered in the global environment,
making access to this facility possible from anywhere. This defeats the
idea of restricting access to reflection through the use of references to
mirror factories. In [69] the authors advocate that mirrors should also
address structural decomposition. Mirrors should not only be the entry
points of reflective behavior but also be the storage entities of meta-
information. Pharo offers a first implementation of Mirrors (with APIs
to read/write fields, check the class and the identity of an object, and
execution of a method with another receiver) but it is not systematically
used and adds another mechanism.

8.4. Controlling reflection

Optional reflective features. Our analysis identified some APIs of re-
flective behavior that are optional. This is important and we suggest
continuing this effort to obtain a minimal core with modular and
optional extensions. This is particularly interesting because the expec-
tations of a development session should be automatically the same as
the one of a deployed application. Of course, this is handy to be able
to do fancy reflective actions on deployed applications to debug them,
but this is important that MOP designers consider other scenarios such
as more constrained application deployment setup.

Controlling reflection. N. Papoulias et al. [70] proposes a model for
the reification of the control of reflection. Indeed controlling the run-
time behavior of reflective facilities introduces several challenges, such
as computational overhead, the possibility of meta-recursion, and an
unclean separation of concerns between the base and the meta-levels.
They present five dimensions of meta-level control from related litera-
ture that try to remedy these problems. These dimensions are namely:
temporal and spatial control, placement control, level control, and
identity control. Making a reflective feature optional and identifying
its dependencies is one way to control it.

External reflection. Another approach is to separate the implementation
of the language from the reflective API. Lorenz proposes a pluggable
reflection [71], in which the reflective API should be external to the
language. This solution allows tools using reflectivity to process infor-
mation coming from different sources (source code, live environment)
as long as the same external API is available. This solution aims at
flexibility and interoperability. While this might seem to not fit the
model of the Smalltalk/Pharo live environment with all its embedded
tools, having such an external reflective API could remote debugging
while removing the reflectivity inside the image.

9. Conclusion

This article acknowledged that the runtime reflection offered by
Pharo needed a deep and systematic analysis after the evolution of
Squeak and the subsequent evolution of Pharo since 2008. The analysis
of Rivard [8] while interesting is simply dated. Indeed Pharo metaob-
jects evolved and got [49-52], first-class instance variables, and the
introduction of new tools using reflection such as the new inspector
framework [53], reflectivity [23], object-centric debugging [27], er-
ror handling infrastructure [54] and on the fly deprecated message
rewritings [55]. This is not counting the full rewrite of the compiler.

In this article, we presented a new systematic and deep analysis of
the reflective APIs revealing some often undocumented aspects such
as memory scanning or method installation. In addition, the analysis
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proposes some potential improvements to the existing MOP. The dis-
cussion raises the bar of the analysis because MOP designers should
challenge the monolithic perception that a MOP should be omnipotent
and cover all the aspects all the time. We believe that a faceted MOP
where on-demand reflective operations can be made available is the
way to create a more versatile system that has different varieties of
flavors depending on the kind of applications that one wants to deploy
and their companion security properties.
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Appendix A. Ignored selectors

In our analysis, we have ignored some selectors. Some of the ignored
selectors are left out of the diagrams and figures to make them more
readable (like class), others are highly polymorphic selectors used in
non-reflective libraries and frameworks, and they introduce noise in the
whole analysis especially producing false positives in the dependency
analysis (like at:). In this section, we explain the reasons for ignoring
them and the complete list of ignored selectors.

Selector class is removed by default for presentation’s sake. An
analysis of its uses is in Section 6.4, in paragraph Object Inspection—
Accessing object class.

The following selectors are removed due to polymorphism with
non-reflective selectors:

e at:
 at:put:
» value
. size

The following selectors are removed due to polymorphism across
multiple reflective categories:

valueWithEnoughArguments:
outerContext
usingMethods
receiver
numArgs
arguments
arguments:
instVarAt:put:
selector
selector:
receiver:
isClass

sender
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Swapping pointers |A2 - Find pointers to
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| - chasing and t — Bulk pointer swapping

[BI - Class kind testing
B2 — Class variable inspection

B3 - Class/Metaclass shift

B4 — Instance variable inspection

IB5 — Iterating and querying hierarchy
B6 — Pragma

187 — Selectors and methods inspectior
B8 — Shared pool inspection

B9 — Slot inspection

B10 — Traits

|B11 — Variable lookup

B — Class structural
Inspection

[C1— Anonymous class creation
IC2 - Class variable modification
IC3 — Fluid Builder class creation
(C4 — Hierarchy modification

(C5 — Instance variable modification

IC - Class structural

Modification (C6 - Old class creation
C7 - Selector/Method modification
(C8 — Shared pool modification
IC9 — Slot i
ID — Memory D1 — Memory Scanning
|Scanning ID2 — Instances of a class

[E1— Arbitrary method/primitive executjon 3
[E2 — Control message passing
[E3 - Message send reification
E4 - Method lookup 1
[ES — Reflective message send 1
[E6 — Runtime and Evaluation

£ — Message sending
{And code execution

[FT— Accessing object class

IF - Object Inspection |F2 — Accessing object identity

IF3 — State inspection 4 2
|G - Object Modification E; - ng:( class change H i n
I — Stack ML - Context

2 - Controlling the stack 1

11— Class references
o aiructural QUEries 2 — ethod element references [ o]

13— Method siot uses 3 4

Fig. B.8. Matrix of dependencies between categories. The category in row X depends on the category in Column Y if there is a number at the intersection. The number corresponds
to the number of different selectors depending on the other category.

Appendix B. Dependency matrix

Fig. B.8 presents a table with all the categories and the interde-
pendency of them. The intersection of categories shows the number of
selectors used by the category on top of the category on the right. A
higher number shows a higher level of dependency between the two
categories.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]

B. Livshits, J. Whaley, M.S. Lam, Reflection analysis for java, in: Proceedings of
Asian Symposium on Programming Languages and Systems, 2005.

S. Ducasse, Evaluating message passing control techniques in Smalltalk, J.
Object-Oriented Program. (JOOP) 12 (6) (1999) 39-44.

G. Richards, C. Hammer, B. Burg, J. Vitek, The eval that men do: A large-scale
study of the use of eval in JavaScript applications, in: Proceedings of Ecoop
2011, 2011.

M.S. Miller, M. Samuel, B. Laurie, I. Awad, M. Stay, Caja Safe Active Content
in Sanitized Javascript, Technical Report, Google Inc., 2008.

G.C. Hunt, J.R. Larus, Singularity: rethinking the software stack, SIGOPS Oper.
Syst. Rev. 41 (2) (2007) 37-49.

E. Miranda, C. Béra, A partial read barrier for efficient support of live object-
oriented programming, in: International Symposium on Memory Management,
ISMM’15, Portland, United States, 2015, pp. 93-104.

A. Goldberg, D. Robson, Smalltalk-80: The Language, Addison Wesley, 1989.

F. Rivard, Smalltalk: a reflective language, in: Proceedings of REFLECTION’96,
1996, pp. 21-38.

A.P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker, Pharo by
Example, Square Bracket Associates, Kehrsatz, Switzerland, 2009, p. 333.

I. Thomas, S. Ducasse, P. Tesone, G. Polito, Pharo: a reflective language - a first
systematic analysis of reflective APIs, in: IWST 23 - International Workshop on
Smalltalk Technologies, Lyon, France, 2023.

C. Teruel, S. Ducasse, D. Cassou, M. Denker, Access control to reflection with
object ownership, in: Dynamic Languages Symposium, DLS’2015, 2015.

I. Thomas, S. Ducasse, P. Tesone, G. Polito, A Classification of Runtime Reflective
Operations in Pharo, Technical Report, Inria - Evref, 2023.

D.G. Bobrow, R.P. Gabriel, J. White, CLOS in context — The shape of the design,
in: A. Paepcke (Ed.), Object-Oriented Programming: The CLOS Perspective, MIT
Press, 1993, pp. 29-61.

G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, J.
Irwin, Aspect-Oriented Programming, in: M. Aksit, S. Matsuoka (Eds.), European
Conference on Object-ORiented Programming, ECOOP’97, Springer-Verlag, 1997,
pp. 220-242.

14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J.-P. Briot, P. Cointe, Programming with explicit metaclasses in Smalltalk-80, in:
Proceedings OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 419-432.

N. Bouraqadi, T. Ledoux, F. Rivard, Safe metaclass programming, in: Proceedings
OOPSLA 98, 1998, pp. 84-96.

J. Ferber, Computational reflection in class-based object-oriented languages, in:
Proceedings OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 317-326.

J. McAffer, Meta-level programming with coda, in: W. Olthoff (Ed.), Proceedings
ECOOP ’95, in: LNCS, vol. 952, Springer-Verlag, Aarhus, Denmark, 1995, pp.
190-214.

W. Cazzola, Evaluation of object-oriented reflective models, in: Proceedings
of ECOOP Workshop on Reflective Object-Oriented Programming and Systems
(EWROOPS 98), in 12th European Conference on Object-Oriented Programming
(ECOOP 98), Brussels, Belgium, on 20th-24th, 1998, pp. 3-540.

S. Chiba, A metaobject protocol for C++, in: Proceedings of OOPSLA ’95, in:
ACM SIGPLAN Notices, vol. 30, 1995, pp. 285-299.

E. Tanter, J. Noyé, D. Caromel, P. Cointe, Partial behavioral reflection: Spatial
and temporal selection of reification, in: Proceedings of OOPSLA ’03, ACM
SIGPLAN Notices, 2003, pp. 27-46.

D. Rothlisberger, M. Denker, E. Tanter, Unanticipated partial behavioral reflec-
tion: Adapting applications at runtime, J. Comput. Lang. Syst. Struct. 34 (2-3)
(2008) 46-65.

S. Costiou, V. Aranega, M. Denker, Sub-method, partial behavioral reflection
with reflectivity: Looking back on 10 years of use, Art Sci. Eng. Program. 4 (3)
(2020).

J.H. Heinz-Dieter Bocker, What tracers are made of, in: Proceedings of
OOPSLA/ECOOP ’90, 1990, pp. 89-99.

F. Pachet, F. Wolinski, S. Giroux, Spying as an object-oriented programming
paradigm, in: Proceedings of TOOLS EUROPE 93, 1993, pp. 109-118.

J. Brant, B. Foote, R. Johnson, D. Roberts, Wrappers to the rescue, in: Pro-
ceedings European Conference on Object Oriented Programming, ECOOP’98, in:
LNCS, vol. 1445, Springer-Verlag, 1998, pp. 396-417.

S. Costiou, M. Kerboeuf, C. Toullec, A. Plantec, S. Ducasse, Object miners:
Acquire, capture and replay objects to track elusive bugs, J. Object Technol.
19 (1) (2020) 1:1-32.

B. Garbinato, R. Guerraoui, K.R. Mazouni, Distributed programming in GARF,
in: R. Guerraoui, O. Nierstrasz, M. Riveill (Eds.), Proceedings of the ECOOP
’93 Workshop on Object-Based Distributed Programming, in: LNCS, vol. 791,
Springer-Verlag, 1994, pp. 225-239.

J.K. Bennett, The design and implementation of distributed Smalltalk, in:
Conference Proceedings on Object-Oriented Programming Systems, Languages
and Applications, OOPSLA ’87, ACM, New York, NY, USA, 1987, pp. 318-330.
P.L. McCullough, Transparent forwarding: First steps, in: Proceedings OOPSLA
’87, ACM SIGPLAN Notices, Vol. 22, 1987, pp. 331-341.


http://refhub.elsevier.com/S2590-1184(24)00017-0/sb1
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb1
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb1
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb2
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb2
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb2
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb3
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb3
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb3
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb3
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb3
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb4
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb4
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb4
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb5
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb5
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb5
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb6
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb6
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb6
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb6
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb6
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb7
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb8
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb8
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb8
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb9
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb9
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb9
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb10
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb10
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb10
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb10
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb10
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb11
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb11
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb11
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb12
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb12
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb12
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb13
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb13
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb13
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb13
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb13
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb14
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb14
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb14
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb14
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb14
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb14
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb14
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb15
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb15
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb15
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb16
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb16
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb16
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb17
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb17
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb17
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb18
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb18
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb18
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb18
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb18
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb19
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb19
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb19
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb19
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb19
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb19
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb19
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb20
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb20
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb20
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb21
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb21
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb21
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb21
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb21
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb22
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb22
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb22
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb22
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb22
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb23
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb23
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb23
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb23
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb23
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb24
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb24
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb24
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb25
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb25
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb25
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb26
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb26
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb26
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb26
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb26
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb27
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb27
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb27
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb27
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb27
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb28
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb28
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb28
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb28
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb28
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb28
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb28
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb29
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb29
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb29
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb29
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb29
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb30
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb30
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb30

I. Thomas et al.

[31]

[32]

[33]

[34]

[35]

[36]
[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

A.H. Borning, D.H. Ingalls, Multiple inheritance in Smalltalk-80, in: Proceedings
at the National Conference on Al, Pittsburgh, PA, 1982, pp. 234-237.

W.R. LaLonde, M.V. Gulik, Building a backtracking facility in Smalltalk without
kernel support, in: Proceedings OOPSLA ’88, ACM SIGPLAN Notices, Vol. 23,
1988, pp. 105-122.

K. Beck, Instance specific behavior: How and why, Smalltalk Rep. 2 (7) (1993).
K. Beck, Instance specific behavior: Digitalk implementation and the deep
meaning of it all, Smalltalk Rep. 2 (7) (1993).

G.A. Pascoe, Encapsulators: A new software paradigm in Smalltalk-80, in:
Proceedings OOPSLA ’86, ACM SIGPLAN Notices, Vol. 21, 1986, pp. 341-346.
W. Lalonde, J. Pugh, Inside Smalltalk: Volume 1, Prentice Hall, 1990.

B. Foote, R.E. Johnson, Reflective facilities in Smalltalk-80, in: Proceedings
OOPSLA ’89, ACM SIGPLAN Notices, Vol. 24, 1989, pp. 327-336.

Y. Yokote, M. Tokoro, Experience and evolution of ConcurrentSmalltalk, in:
Proceedings OOPSLA ’87, Vol. 22, 1987, pp. 406-415.

S. Chiba, G. Kiczales, J. Lamping, Avoiding confusion in metacircularity: The
meta-helix, in: K. Futatsugi, S. Matsuoka (Eds.), Proceedings of ISOTAS ’96, Vol.
1049, Springer, 1996, pp. 157-172.

M. Denker, S. Ducasse, A. Lienhard, P. Marschall, Sub-method reflection, in:
Journal of Object Technology, Special Issue. Proceedings of TOOLS Europe 2007,
Vol. 6/9, ETH, 2007, pp. 231-251.

P. Costanza, R. Hirschfeld, Language constructs for context-oriented program-
ming: An overview of ContextL, in: Proceedings of the Dynamic Languages
Symposium, DLS’05, ACM, New York, NY, USA, 2005, pp. 1-10.

N. Bouraqadi, A. Seriai, G. Leblanc, Towards unified aspect-oriented pro-
gramming, in: Proceedings of 13th International Smalltalk Conference, ISC’05,
2005.

A. Bergel, R. Hirschfeld, S. Clarke, P. Costanza, Aspectboxes — Controlling the
visibility of aspects, in: Joaquim Filipe, Boris Shiskov, Markus Helfert (Eds.),
Proceedings of the International Conference on Software and Data Technologies,
ICSOFT 2006, 2006, pp. 29-38.

P. Rogers, A. Wellings, OpenAda: Compile-time reflection for ada 95, in: Reliable
Software Technologies - Ada Europe, in: LNCS, vol. 3063, Springer, 2004.

1. Welch, R.J. Stroud, Kava — Using bytecode rewriting to add behavioural reflec-
tion to Java, in: Proceedings of the 6th USENIX Conference on Object-Oriented
Technology, COOTS’2001, San Antonio, Texas, USA, 2001, pp. 119-130.

B. Redmond, V. Cahill, Iguana/J: Towards a dynamic and efficient reflective
architecture for java, in: Proceedings of European Conference on Object-Oriented
Programming, Workshop on Reflection and Meta-Level Architectures, 2000.

B. Redmond, V. Cahill, Supporting unanticipated dynamic adaptation of appli-
cation behaviour, in: Proceedings of European Conference on Object-Oriented
Programming, Vol. 2374, Springer-Verlag, 2002, pp. 205-230.

G. Chari, D. Garbervetsky, S. Marr, S. Ducasse, Fully reflective execution
environments: Virtual machines for more flexible software, Trans. Softw. Eng.
45 (2018) 858-876.

S. Ducasse, N. Schérli, R. Wuyts, Uniform and safe metaclass composition, J.
Comput. Lang. Syst. Struct. 31 (3-4) (2005) 143-164.

S. Ducasse, O. Nierstrasz, N. Schérli, R. Wuyts, A.P. Black, Traits: A mechanism
for fine-grained reuse, ACM Trans. Program. Lang. Syst. (TOPLAS) 28 (2) (2006)
331-388.

P. Tesone, S. Ducasse, G. Polito, L. Fabresse, N. Bouragadi, A new modular
implementation for stateful traits, Sci. Comput. Program. 195 (2020) 1-37.

P. Tesone, G. Polito, L. Fabresse, N. Bouragadi, S. Ducasse, Preserving instance
state during refactorings in live environments, Future Gener. Comput. Syst. 110
(2020) 1-17.

15

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Journal of Computer Languages 80 (2024) 101274

A. Chis, O. Nierstrasz, A. Syrel, T. Girba, The moldable inspector, in: 2015
ACM International Symposium on New Ideas, New Paradigms, and Reflections
on Programming and Software (Onward!), in: Onward! 2015, ACM, New York,
NY, USA, 2015, pp. 44-60.

S. Costiou, T. Dupriez, D. Pollet, Handling error-handling errors: dealing with
debugger bugs in pharo, in: International Workshop on Smalltalk Technologies
- IWST 2020, 2020.

S. Ducasse, G. Polito, O. Zaitsev, M. Denker, P. Tesone, Deprewriter: On the fly
rewriting method deprecations, J. Object Technol. (JOT) 21 (1) (2022).

O. Callau, R. Robbes, D. Rothlisberger, E. Tanter, How developers use the
dynamic features of programming languages: the case of smalltalk, in: Mining
Software Repositories International Conference, MSR’11, 2011.

F.-N. Demers, J. Malenfant, Reflection in logic, functional and object-oriented
programming: a short comparative study, in: IJCAI'95 Workshop on Reflection
and Metalevel Architectures and their Applications in Al, 1995.

S. Ducasse, E. Miranda, A. Plantec, Pragmas: Literal messages as powerful method
annotations, in: International Workshop on Smalltalk Technologies, IWST’16,
Prague, Czech Republic, 2016.

G. Bracha, D. Ungar, Mirrors: design principles for meta-level facilities of object-
oriented programming languages, in: Proceedings of the International Conference
on Object-Oriented Programming, Systems, Languages, and Applications (OOP-
SLA’04), ACM SIGPLAN Notices, ACM Press, New York, NY, USA, 2004, pp.
331-344.

S. Costiou, V. Aranega, M. Denker, Reflection as a tool to debug objects, in:
International Conference on Software Language Engineering, SLE, 2022, pp.
55-60.

G. Polito, Virtualization Support for Application Runtime Specialization and
Extension (Ph.D. thesis), University Lille 1 - Sciences et Technologies - France,
2015.

P. Tesone, Dynamic Software Update for Production and Live Programming
Environments (Ph.D. thesis), Université de Lille - IMT Lille Douai, 2018.

J. Kubelka, R. Robbes, A. Bergel, The road to live programming: Insights from
the practice, in: Proceedings of the 40th International Conference on Software
Engineering, ICSE "18, ACM, New York, NY, USA, 2018, pp. 1090-1101.

G. Kiczales, J. des Rivieres, D.G. Bobrow, The Art of the Metaobject Protocol,
MIT Press, 1991.

V. Uquillas Gémez, S. Ducasse, T. D’Hondt, Meta-models and infrastructure for
smalltalk omnipresent history, in: Smalltalks’2010, 2010.

D. Ungar, R.B. Smith, Self: The power of simplicity, in: Proceedings OOPSLA 87,
ACM SIGPLAN Notices, Vol. 22, 1987, pp. 227-242.

L. Bak, G. Bracha, S. Grarup, R. Griesemer, D. Griswold, U. Holzle, Mixins in
Strongtalk, in: ECOOP ’02 Workshop on Inheritance, 2002.

P. Tesone, G. Polito, L. Fabresse, N. Bouragadi, S. Ducasse, Instance migration
in dynamic software update, in: Meta’16, Amsterdam, Netherlands, 2016.

N. Papoulias, N. Bouraqadi, M. Denker, S. Ducasse, L. Fabresse, Towards struc-
tural decomposition of reflection with mirrors, in: Proceedings of International
Workshop on Smalltalk Technologies, IWST’11, Edingburgh, United Kingdom,
2011.

N. Papoulias, M. Denker, S. Ducasse, L. Fabresse, Reifying the reflectogram, in:
30th ACM/SIGAPP Symposium on Applied Computing, Salamanca, Spain, 2015.
D.H. Lorenz, J. Vlissides, Pluggable reflection: decoupling meta-interface and
implementation, in: ICSE ’03: Proceedings of the 25th International Conference
on Software Engineering, IEEE Computer Society, Washington, DC, USA, 2003,
pp. 3-13.


http://refhub.elsevier.com/S2590-1184(24)00017-0/sb31
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb31
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb31
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb32
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb32
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb32
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb32
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb32
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb33
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb34
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb34
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb34
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb35
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb35
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb35
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb36
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb37
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb37
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb37
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb38
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb38
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb38
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb39
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb39
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb39
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb39
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb39
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb40
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb40
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb40
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb40
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb40
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb41
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb41
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb41
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb41
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb41
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb42
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb42
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb42
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb42
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb42
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb43
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb43
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb43
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb43
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb43
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb43
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb43
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb44
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb44
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb44
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb45
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb45
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb45
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb45
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb45
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb46
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb46
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb46
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb46
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb46
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb47
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb47
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb47
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb47
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb47
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb48
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb48
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb48
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb48
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb48
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb49
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb49
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb49
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb50
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb50
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb50
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb50
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb50
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb51
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb51
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb51
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb52
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb52
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb52
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb52
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb52
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb53
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb53
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb53
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb53
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb53
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb53
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb53
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb54
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb54
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb54
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb54
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb54
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb55
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb55
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb55
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb56
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb56
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb56
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb56
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb56
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb57
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb57
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb57
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb57
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb57
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb58
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb58
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb58
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb58
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb58
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb59
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb60
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb60
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb60
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb60
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb60
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb61
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb61
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb61
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb61
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb61
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb62
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb62
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb62
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb63
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb63
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb63
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb63
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb63
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb64
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb64
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb64
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb65
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb65
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb65
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb66
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb66
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb66
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb67
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb67
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb67
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb68
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb68
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb68
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb69
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb69
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb69
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb69
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb69
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb69
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb69
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb70
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb70
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb70
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb71
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb71
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb71
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb71
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb71
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb71
http://refhub.elsevier.com/S2590-1184(24)00017-0/sb71

	Pharo: A reflective language—Analyzing the reflective API and its internal dependencies
	Introduction
	The need for reflective behavior
	The need for an up-to-date reflective feature classification
	Metaobjects, classes and their related APIs
	Pharo structural meta model
	Overview of the reflective APIs

	A classification and analysis of runtime reflective operations
	Methodology
	Object inspection reflective operations
	Object modification reflective operations
	Class structural inspection reflective operations
	Class structural modification reflective operations
	Method creation reflective operations
	Structural queries on methods reflective operations
	Message sending and code execution reflective operations
	Chasing and atomic pointer swapping reflective operations
	Memory scanning reflective operations
	Stack manipulation reflective operations

	Reflective API Interdependencies
	Methodology
	Reflective categories interdependencies overview
	Isolated reflective categories
	Provider categories
	Client categories
	Iterating and querying hierarchy, a hub category

	Layers and internal dependencies in reflective categories
	Chasing and swapping pointers—Find pointers to
	Memory Scanning—Instances of a class
	Message sending and code execution - Runtime and Evaluation & Message sending and code execution - Reflective message send 

	Discussions
	Threats to validity
	General concerns
	Mirror architecture
	Controlling reflection

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Ignored Selectors
	Appendix B. Dependency matrix
	References


