
A New Architecture Reconciling Refactorings and
Transformations
Balša Šarenac1, Nicolas Anquetil2, Stéphane Ducasse2 and Pablo Tesone2

1University of Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6, 21102 Novi Sad, Serbia
2University Lille, Inria, CNRS, Centrale Lille, UMR 9189 - CRIStAL, F-59000 Lille, France

Abstract
Refactorings are behavior-preserving code transformations. They are a recommended software devel-
opment practice and are now a standard feature in modern IDEs. There are however many situations
where developers need to perform mere transformations (non-behavior-preserving) or to mix refactor-
ings and transformations. Little work exists on the analysis of transformations implementation, how
refactorings could be composed of smaller, reusable, parts (simple transformations or other refactorings),
and, conversely, how transformations could be reused in isolation or to compose new refactorings. In
a previous article, we started to analyze the seminal implementation of refactorings as proposed in
the PhD of D. Roberts, and whose evolution is available in the Pharo IDE. We identified a dichotomy
between the class hierarchy of refactorings (56 classes) and that of transformations (70 classes). We also
noted that there are different kinds of preconditions for different purposes (applicability preconditions or
behavior-preserving preconditions). In this article, we go further by proposing a new architecture that:
(i) supports two important scenarios (interactive use or scripting, i.e., batch use); (ii) defines a clear API
unifying refactorings and transformations; (iii) expresses refactorings as decorators over transformations,
and; (iv) formalizes the uses of the different kinds of preconditions, thus supporting better user feedback.
We are in the process of migrating the existing Pharo refactorings to this new architecture. Current
results show that elementary transformations such as the Add Method transformation is reused in
24 refactorings and 11 other transformations; and the Remove Method transformation is reused in 11
refactorings and 7 other transformations.

Keywords: Refactorings, transformations, preconditions, source code transformation, behav-
ior preservation

1. Introduction

Refactorings are behavior-preserving code transformations. The seminal work of Opdyke [1]
and the Refactorings Browser (the first implementation of refactorings by Roberts and Brant
[2, 3, 4, 5]) paved the way to the spread of refactorings [6]. They are now a standard feature
in modern IDEs [7, 8, 9, 10, 11]. A lot of research has been done on refactorings such as for
their detection [12], missed application opportunities [13, 14], practitioner use [7, 8, 9, 10],

Submitted to COLA November 2023 special issue on Smalltalk Technologies
$ balsasarenac@uns.ac.rs (B. Šarenac); nicolas.anquetil@inria.fr (N. Anquetil); stephane.ducasse@inria.fr
(S. Ducasse); pablo.tesone@inria.fr (P. Tesone)
� 0000-0003-2953-2118 (B. Šarenac); 0000-0003-1486-8399 (N. Anquetil); 0000-0001-6070-6599 (S. Ducasse);
0000-0002-5615-6691 (P. Tesone)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:balsasarenac@uns.ac.rs
mailto:nicolas.anquetil@inria.fr
mailto:stephane.ducasse@inria.fr
mailto:pablo.tesone@inria.fr
https://orcid.org/0000-0003-2953-2118
https://orcid.org/0000-0003-1486-8399
https://orcid.org/0000-0001-6070-6599
https://orcid.org/0000-0002-5615-6691
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

their definition [15, 16, 17, 18, 19], or atomic refactorings for live environments [20]. Several
publications focus on scripting refactorings [21, 22, 23, 24, 25]. Finally, some work has attempted
to speed up existing refactoring engines, as for Java [26].

Still, from a daily development perspective, refactorings and their behavior-preserving forms
are not enough [15, 27, 28]. Non-behavior-preserving code transformations are also needed
[18, 19, 29]. For example, consider replacing all the invocations of a given message with another
one (which we call ReplaceMessageSend(msg1,msg2)). ReplaceMessageSend is not equivalent
to RenameMethod: the former requires msg2 to exist, whereas the latter does not require it to
exist. Also, the former (ReplaceMessageSend) does not need to deal with possible overriding
implementations of msg1 whereas the refactoring must rename them too.

ReplaceMessageSend should just update all the msg1 invocations to msg2 invocations. Such
a transformation will typically not preserve behavior, yet it is a need that arises in real develop-
ment situations. It is clear that ReplaceMessageSend has similarities with the RenameMethod
refactoring, but it would be awkward 1 to perform it by applying RenameMethod only. When in
need of such a source code transformation, a developer is left to perform the changes manually
or with a code rewriting engine that can be cumbersome to use [28].

Defining some specific code transformations such as ReplaceMessageSend and letting the
Pharo developers define their own transformations are our long-term engineering goals. In this
paper, we explore a new refactoring engine architecture to do so. Note that our goal is not to
provide an out-of-the-box, language-independent, solution for these problems. However, we
believe that the architecture presented in this article can be used to model other dynamically-
typed object-oriented languages such as Ruby, Python, Javascript, Lua with an effort to handle
specific language semantics adaptation. Refactoring engines must be language-specific and
sometimes even editor-specific. Nevertheless, in the discussions, we will try to highlight the
parts that are specific to our situation, so that readers can reuse our ideas.

We worked on the seminal implementation of refactorings as specified in the Ph.D. of D.
Roberts [5] and available in the Pharo IDE [30]. To make the discussions clear, we name:

• Legacy version: The version of the Refactoring Browser that has been available in
Smalltalk and Pharo up to Pharo version 11. In this paper and the code, legacy version
classes are prefixed with “RB”. This implementation follows mostly the descriptions [2, 3, 4]
and the specification in the Ph.D. of D. Robert [5]. There are some small differences that do
not impact our work. For example, the PhD uses postconditions while the implementation
does not.

• New architecture: The version presented in this article, whose implementation is
available in Pharo 12, features classes that are prefixed with ’Re’. It is important to
note that not all classes in the legacy refactoring engine have yet been migrated to the
new architecture. Therefore, in the new architecture some classes are still from the old
architecture and are prefixed with “RB”, whereas the ones that have been migrated are
prefixed with “Re”.

1The developer would need to copy msg2 in a paste buffer; then remove it before executing the rename refactoring;
then rename manually (without refactoring) msg2 back into msg1; and finally, paste back the copied method to its
original definition!

In the legacy version (Pharo 11), the inheritance hierarchy of refactorings contains 56 classes,
and the one of transformations, 70 classes. The implementation does not allow for simple
reuse of refactorings in different conditions (namely non-behavior-preserving transformation
of the source code). It is not possible to combine different refactorings to achieve a higher-level
evolution of the code [28].

Based on this situation, we defined a new architecture that supports two scenarios: interactive
use and scripting (batch) use of refactorings. This new architecture defines a clear interplay
between refactorings and transformations by offering a compatible API. It simplifies refactoring
implementation by defining them as decorators over transformations. In such an architecture,
transformations have applicability preconditions and refactorings have behavior-preserving
preconditions [31]. The reification of conditions (preconditions’ elementary components) also
supports better user feedback. All such changes improve the reuse of transformations and
refactorings as well as the precondition logic.

This article revisits the duality of refactorings and transformations, and how they can
be reused together [29, 31]. Although it may seem trivial to state that refactorings can be
decomposed in preconditions + transformations, it is not. Our work highlights that there
are different kinds of preconditions and our new architecture clearly separates applicability
preconditions and behavior-preserving preconditions.

Our contributions are the following:

• A new architecture supporting interactive and scripting uses of refactorings and transfor-
mations. This new architecture is based on driver objects that support the interactive
application of refactorings.

• The unification of the refactoring and transformation APIs for simpler use and ease of
combination;

• The definition of refactorings as decorators on transformations improving their reuse;

• The separation of the different kinds of preconditions (applicability preconditions in
transformations, behavior-preserving preconditions in refactorings) improves their reuse.

We are well aware that Pharo Refactoring Browser (legacy version) is only one refactoring
engine. It has evolved since 1996 in the hands of multiple developers introducing new refactor-
ings and reorganizing the code. Just as the Java refactoring engine [26], it has shortcomings.
The paper does not aim to criticize one particular implementation of the refactoring engine but
rather identify possible issues in this implementation to infer more generic rules.

The outline of the paper is the following: Section 2 sets the vocabulary used in the paper and
illustrates the need for a more flexible and versatile refactoring engine from a user (i.e., develop-
ers) point of view. It makes the case for supporting two important usage scenarios, interactive
and scripting, and it stresses the need for transformations and refactorings. Section 3 details the
legacy version implementation of the refactoring engine, highlighting its shortcomings regarding
the needs expressed before. Section 4 presents the new architecture which introduces drivers;
unification of the refactorings and transformations APIs; and reification of pre-conditions. Each
of these new concepts is presented in turn. Section 5 presents a first evaluation of the new

architecture that shows that it supports better reuse of precondition, refactoring, and transfor-
mation logic. Section 6 discusses the process of migrating to the new architecture and some of
its benefits. The paper closes with the related work discussion (Section 7) and the conclusions
(Section 8).

2. The need for a more flexible and versatile refactoring engine

In this section, we define the domain of our study: We look at source code modifications from
a user (i.e. developer) point of view, to highlight the need for both refactorings (behavior-
preserving modifications) and, transformations, behavior-agnostic modifications. We discuss
also the need to share as much logic as possible between the two. By behavior agnostic, we
mean that the modification of the source code has no knowledge of, and does not care about,
the behavior of the code.

We start by defining the vocabulary that is used in this paper, then we show that there is
a need for both refactorings and transformations, as well as a need to reuse their logic and
support different usage scenarios.

2.1. Definitions

We first clarify the vocabulary used in this paper.

Refactoring: behavior preserving modification of the source code. Refactorings were intro-
duced by Opdyke [1] and first specified and implemented in Smalltalk by Roberts and
Brant [2, 3, 4]. Then they were intensively studied as shown in Section 7.

Transformation: behavior agnostic modification of the source code. This is a modification of
the source code without consideration for the impact on its behavior. Transformations
should, however, not be syntax agnostic or semantic agnostic, which means, they should
take care of producing source code that is syntactically correct (it parses) and semantically
correct (it compiles);

Precondition: Typically, the implementation of refactorings includes some preconditions that
may check the possibility of applying the refactoring. For example, the refactoring
Rename Method(oldName, newName) first checks that an oldName method exists and,
that a newName method does not already exist;

Applicability precondition: A precondition checking that a refactoring can be applied, i.e.,
that the transformation can be applied (independently of behavior preservation) [31]. An
applicability precondition may be checking, for example, that an entity targeted by the
refactoring, exists, or that given information (such as names) is correct [15].

Behavior-preserving precondition: A precondition checking whether the application of
refactoring would break the system once applied [31]. For example, the Remove Class
refactoring checks that the class is not referenced anymore, that it does not have subclasses,
or that it is not a metaclass.

Note that the differentiation of the two types of preconditions is important because transfor-
mations do not care about program behavior and therefore do not need behavior-preserving
preconditions while refactorings may use both types.

2.2. Different user needs

During software development, the need for both refactoring and transformation becomes
apparent. We will illustrate this with the Add Method refactoring/transformation.

There is also a need for different usage scenarios: interactive and scripting (batch).

Refactorings vs. transformations Consider the example of a tool to assist in adding a
method:

• As a refactoring, Add Method checks that the user is not overriding a locally defined
method or an existing method in the superclass.

• As a transformation, it should be able to create a new method only checking that the
name is valid and that the class exists.

With only the refactoring, users wouldn’t be able to override existing methods since that
override might be a non-behavior-preserving change. On the other hand, with only the trans-
formation, users would always be able to override methods from the superclass which could
introduce bugs.

This example points to the concrete need for both refactoring and transformation, where
users can choose the right behavior in their working context. Section 3.2 proposes another
similar example with Replace Message Send refactoring/transformation.

Interaction vs. Scripting. Most refactorings require additional information to be gathered
(“parameters”) for their execution. For example, for renaming a method, the refactoring needs
the class holding the method to rename, the existing method and, the new name.

Refactorings are often applied interactively during development sessions and the needed
information is naturally gathered through interactions with the user: RenameMethod prompts
the user to give a new name or whether arguments should be permutated. With that information,
it checks that the provided name is valid and continues its execution. A good interaction,
however, is often more than just a single prompt. It should also give adequate feedback and
adapt to different scenarios: As another example, removing a class should propose different
interaction scenarios such as (1) browsing the references to the class, (2) folding the class state
and methods in its subclasses, (3) simply removing the class, (4) removing the class and browse
its users,. . .

Literature has highlighted the need for developers to trust a refactoring engine. For this,
they need to have a complete understanding of what is going on at each step. Thus, the quality
of the interaction is key to the acceptance and use of refactorings. The current work stems
from perceived shortcomings in the way the legacy version was dealing with some less common
scenarios.

But refactorings can also be used in script (batch mode) without user interaction [21, 22, 24, 25].
In scripting mode, refactorings will be fully configured by the calling script. This does not
preclude them from checking if the provided information is valid before execution.

We can see that these two modes share most of the logic of the refactoring (validation and
execution), but their flows are different. In particular in interactive mode, preconditions can be
decomposed to support the user flow (e.g., prompting and validating inputs). Refactorings and
transformations should be designed in a way that enables easy reuse of the logic between these
two modes.

There is a two-level reuse need: first between transformations and refactorings and second
between the two uses (interaction and scripting).

2.3. Reuse of logic

A frequent source code modification is to change the name of an invoked method. This can
happen either by renaming the method (same behavior, new name); changing the invoked
method (different behavior, new method); or, adding or removing parameters to a method
(similar behavior, different calling conventions).

Whatever the case, the modification will need to change all invocations of the old name
to invocations of the new name. It must also check the number of parameters2 and their
order (which may have been altered). In the case of renaming a method, and adding/removing
parameters, the existing method must also be modified, and additional checks will be needed,
for example, if it is overridden in subclasses, or it overrides a super-class method.

This logic is complex, and requiring to navigate and manipulating an abstract representation
of the source code and considering all possible special cases and their implications. From a
software engineering point of view, it is important to be able to reuse some parts of the logic.
Such reuse is, however, also questioned in the presence of duplicated behavior in transformations
and stressed by the definition of new generation refactorings, such as the atomic refactorings
supporting live object programming [20].

2.4. Research questions

We want to understand whether refactorings can be implemented in terms of transformations
that would be independent operations, usable by the developers for scripting some development
actions but also usable in interactive sessions. To support the duality of refactorings and
transformations both at a conceptual and implementation level, this article wants to answer the
following questions.

• Can refactorings and transformations share their logic? Which parts can be reused? How
much can be reused between them?

• What is the architecture to support the two usage scenarios (scripting and interactive
session)?

• What is the API exposed for each scenario?
2In Pharo, parameters are not statically typed, so type verification is not required.

3. Legacy implementation

We now present the legacy version of the refactoring engine and highlight some of its short-
comings concerning the research questions exposed above. This section contains material that
is specific to Pharo and its refactoring engine, but the critical analysis in the last subsection
presents conclusions that apply outside of this restrained scope.

3.1. The legacy Refactoring Browser architecture

The work presented in this article takes its roots in the implementation of refactorings as done
by J. Brant and D. Roberts [2, 3, 4] and their evolution as available in Pharo [30]. Since multiple
developers maintained and evolved the original code, our analysis will report a situation that
is not one described in the original document. It may happen that some preconditions are
missing, or were changed, or that new refactorings are not extending existing ones. Appendix A
presents the list of original refactorings, as described in the Ph.D. of D. Roberts [5]. The
Pharo implementation contains more refactorings, as shown in Appendix B, it also contains
transformations (see Appendix C).

In the legacy engine, refactorings and transformations are defined in separate hierarchies
[28] with different APIs. A refactoring uses a program model to check preconditions (step
1, Figure 1) and produce code changes. The preconditions notify the users in case of violation
(step 2b in the figure). The output of a refactoring is a sequence of changes (2a Fig. 1) that, once
applied to the existing code, will perform the refactoring. Users can select the changes that will
be applied (step 3). It results in the modification of the actual Pharo code (step 4).

The infrastructure of the legacy engine is:

The program to be refactored (bottom row). Pharo runtime is composed of objects (classes,
compiled methods, ...) representing the program and libraries as well as their execution
[32].

The compiler model (3rd row, left) consists of a basic AST (concrete syntax tree with in-
formation about the characters placement to be able to reproduce the source code) and
companion visitors. A parse tree rewriter is available and used by the refactoring engine.

The program model (3rd row, center). It is a representation of the program entities (represented
as instances of RBMethod, RBClass classes) and their AST (for methods). The code model
is simple and traditional: A class knows its package, superclass, subclasses, instance
variables, and methods. The ASTs are reified on demand from a given method entities
[30, 33]. The engine does not directly use the reflective language API [32] to perform
preconditions and refactorings, it uses its own program model.

The change model (3rd row, right). Change objects describe the actions that will be performed
on the actual code. Change objects represent all the operations required to modify the
code or metaobjects (since Pharo is a reflective system [32]) of the program: addition/re-
moval/rename of class, method, fields, and method source code modifications.

Pharo code

AST

RBM
ethod

RBNam
espace

RBEntity

RBAbstractClass

RBPackage

RBM
etaclass

RBClass
Program Model

RBM
ethod

RBNam
espace

RBChange RBAddClass

RBRem
oveClass

Change ModelCompiler model

(1)
Checking preconditions

(2a)
Producing changes

hierarchyOf: aClass canUnderstand: aSelector
 ^ self new
 block: [aClass hierarchyDefinesMethod: aSelector]
 errorString: aClass printString , ' <1? and/or part of it''s Hierarchy already:
and/or part of it''s Hierarchy do not> understand<1?s:> ' , aSelector printString

:Changes

RBRenameMethodRefactoring

(2b)
User feedback

Refactorings

(3)
User selection

(4)
Code modifications

precondition()
request()
performChanges()

Refactoring

checkPrecondition()
execute()

Transformations

RBCondition

ParseTreeRewriter
Visitors

Preconditions

Figure 1: Overview of the legacy refactoring engine architecture on one example: First, refactorings
check their preconditions using the precondition library (RBCondition) (step 1). If a precondition fails,
the user is notified (step 2b), otherwise the refactoring produces a list of change objects (step 2a)
expressed through the Change Model. The list of changes is proposed to the developer (step 3) for
validation or selection before being applied, modifying the actual code (step 4).

The precondition library (2nd row). Using the program model, the class RBCondition defines
a large set of predicates as static methods that are used in the refactoring preconditions.
The conditions raise exceptions and sometimes request information from the user.

The refactoring definitions (top row). This component contains the refactoring and transfor-
mation definitions. Every refactoring action is performed on the program model elements.
Preconditions are expressed using condition predicates and the refactoring produces
change objects. It should be noted that, in the legacy implementation, such definitions
are entangled with user interactions (such as getting parameters, new method name
request,. . .).

Changes are not automatically applied: the developer is prompted with a list of changes
(acting as a preview of the refactoring of the code) among which developers can select the
ones to be applied. In addition, offering the developer a preview of a refactoring application in
terms of changes acts as a kind of transaction. The system is only modified when the developer

accepts the proposed changes, and developers may cancel some or all of the proposed changes.
The refactoring engine lets developers select a portion of the proposed changes. This step is
useful because, without variable static typing, it may be difficult to identify the invocation of
one method with a very common name. This selection actually means the user may turn a
refactoring into a non-behavior-preserving modification. This is not seen as an issue, because
(1) the users see what the refactoring proposes to do and understand what is happening, and (2)
this gives them additional flexibility on the source code modification.

3.2. Reuse implementation: the case of ChangeMethodName

We saw in Section 2.3 an example of reuse needs to implement a source code modification like
changing the name of an invoked method. We identified four cases where such a change might
be used: (i) renaming the method — same behavior, new name —; (ii) changing the invoked
method — different behavior, new method —; or, (iii) adding or (iv) removing parameters to a
method — similar behavior, different calling convention.

In the legacy version, these actions are implemented by four subclasses of the abstract class
RBChangeMethodNameRefactoring which we describe in the following.

RBRenameMethodRefactoring. This class implements the refactoring that changes a
method’s name in the target class and all invocations (message sends) in the senders of
the method. This is done by inheriting (and not overriding) the transform method from
RBChangeMethodNameRefactoring that (see listing 1):

• renames the implementors with the new name (line 2);

• then renames all the old references to the method (line 3);

• and finally removes the old selector (line 4).

1 RBChangeMethodNameRefactoring >> transform
2 self renameImplementors.
3 self renameMessageSends.
4 self removeRenamedImplementors

Listing 1: RBRenameMethodRefactoring behavior, inherited from RBChangeMethodName-
Refactoring.

The method transform and these three steps are all implemented in the abstract super-class
and inherited in RBRenameMethodRefactoring.

RBReplaceMethodRefactoring. The class RBReplaceMethodRefactoring3 implements an-
other related action: the transformation that replaces the invocations of a method by invocations

3The name is misleading as this is a transformation and not a refactoring: changing the method invoked cannot
guarantee behavior preservation.

to another method but does not affect the previously invoked method itself. This class also
inherits from the abstract RBChangeMethodNameRefactoring, but it overrides its transform
method (see Listing 2).

1 RBReplaceMessageSendTransformation >> transform
2 self replaceInAllClasses
3 ifTrue: [self renameMessageSends]
4 ifFalse: [self renameMessageSendsIn: {class}]

Listing 2: The transformation of the class RBReplaceMethodRefactoring.

RBAdd/RemoveParameterRefactoring. The two last subclasses are dealing with method
parameters. RBAddParameterRefactoring verifies that the new method is correct (does not
shadow an existing temporary variable, does not shadow existing methods) and it ensures
that callers of the original method are updated with a default value specified by the developer.
RBRemoveParameterRefactoring mainly checks that the new method does not override the
existing one and that there is no reference to the removed parameter.

In this implementation, reuse is based on inheritance for the refactorings and transforma-
tion. In the following section, we present another reuse mechanism used in the library of
preconditions.

3.3. Legacy precondition implementation

Preconditions are central to the expression of refactorings and in this section, we analyze the
legacy implementation.

The preconditions are expressed as:

• simple (low-level) conditions implemented in class-side methods of the RBCondition
class;

• composition of these simple conditions using two classes: RBConjunctiveCondition and
RBNegationCondition;

• methods implemented in the program model (see Figure 1).

Example 1. The following precondition method (Listing 3) checks that a class effectively
defines a variable (lines 3 and 4) before creating its accessors. It uses two methods from
RBCondition: definesClassVariable:in: and definesInstanceVariable:in:.

Example 2. Listing 4 shows another precondition example: it directly uses methods from the
program model: RBAbstractClass»hierarchyDefinesInstanceVariable: (line 3). It checks, before
pulling up an instance variable, that it exists in all the subclasses (see Listing 4).

1 RBCreateAccessorsForVariableRefactoring >> preconditions
2 ^ classVariable
3 ifTrue: [RBCondition definesClassVariable: variableName asSymbol in: class]
4 ifFalse: [RBCondition definesInstanceVariable: variableName in: class]

Listing 3: A basic case of preconditions using methods from RBCondition.

1 RBPullUpInstanceVariableRefactoring >> preconditions
2 ^RBCondition withBlock:
3 [(class hierarchyDefinesInstanceVariable: variableName)
4 ifFalse: [self refactoringFailure: ’No subclass defines ’ , variableName].
5 (class subclasses
6 anySatisfy: [:each | (each directlyDefinesInstanceVariable: variableName) not])
7 ifTrue: [self
8 refactoringWarning: ’Not all subclasses have an instance variable named.<n>
9 Do you want to pull up this variable anyway?’ , variableName , ’.’].

10 true]

Listing 4: Pull Up Instance Variable refactoring preconditions.

Example 3. The Remove Class refactoring checks behavior preservation by implementing
its own precondition methods (lines 8 to 11), that call simpler methods from RBCondition (see
Listing 5).

1 RBRemoveClassRefactoring >> preconditions
2
3 ^ classNames inject: self emptyCondition into: [:sum :each |
4 | aClassOrTrait |
5 aClassOrTrait := self model classNamed: each asSymbol.
6 aClassOrTrait ifNil: [
7 self refactoringFailure: ’No such class or trait’].
8 sum & ((self preconditionIsNotMetaclass: aClassOrTrait)
9 & (self preconditionHasNoReferences: each)

10 & (self preconditionEmptyOrHasNoSubclasses: aClassOrTrait)
11 & (self preconditionHasNoUsers: aClassOrTrait))]

Listing 5: Remove Class preconditions.

3.4. Critical analysis of the legacy implementation

The implementation described above has some interesting features, but we believe there are
also shortcomings that should be addressed. This analysis can also serve as a requirement list
for a more generic refactoring engine implementation.

Positive points

• Separated program model. The engine does not directly use the reflective language API
[32] but its own program model. This allows it to refactor code that does not need to be
executable in the current environment itself.

• Efficient precondition checking. The program model also supports fast validation of pre-
conditions and fast execution of refactorings. According to Kim et al., [26], the Java
refactoring engine is slow because it does not have a model of programs other than AST.

Negative points

• Blurry precondition families. A previous analysis [31] identified different families of precon-
ditions. We agree with this important distinction by sorting preconditions as applicability
preconditions or behavior-preserving preconditions. The legacy implementation does not
make this distinction. Yet, it is important because refactorings and transformations do
not have the same needs in terms of preconditions.

• Duplication of logic. Transformations got added on the side of refactorings [28]. While
the intention to be able to support transformations in addition to refactorings was good,
the realization was problematic since transformations could be configured to act as
refactorings leading to a duplication of behavior, preconditions, and code. It was unclear
how transformations could fully replace the refactorings.

• Bad separation of concerns is witnessed by the Remove Class refactoring. It checks
behavior preservation by implementing its own precondition methods, which call a
simpler method from RBCondition. This hampers the reuse of such behavior by other
refactorings.

• Mixing user interactions and precondition checking. The definitions of the refactorings
are entangled with user interactions (for example, see end of Listing 4) which hampers
logic reuse (reuse of preconditions, refactorings, and transformations). These user inter-
actions are based on exception signaling. This situation makes scripting and interactive
application of refactorings difficult to achieve.

• Difficulties identifying precondition violations. The legacy implementation partly reifies
preconditions with RBAbstractCondition and its three subclasses (RBCondition, RB-
ConjunctiveCondition, RBNegationCondition). Preconditions are implemented as static
methods of RBCondition.

While the definition of the precondition predicates as simple methods is working, this
reification is limited because it can only test whether the precondition holds or not.
Finding what program elements violate the predicates to report the problem to the user,
requires re-implementing a query similar to the precondition logic. It makes the definition
of the interactions with the user, full of exception handling and code duplication.

• Cumbersome user feedback. Reusing and combining preconditions currently relies on
the two classes (RBConjunctiveCondition, RBNegationCondition). Such a combination,
while based on a nice design, leads to totally unclear, cumbersome feedback to the users,

especially when the precondition is violated, which sometimes leaves the user with no
idea about the actual reason for the precondition failure.

• Lack of systematic reuse. The boundaries between program model API and refactorings/-
transformations are unclear. The program model is the lowest API on which preconditions
are expressed and on which the elementary source code modifications are performed.
Many refactorings are using this API to perform checks and code transformations. When
an elementary refactoring uses only one elementary operation it acts as a reification of
this operation and as such can be reused by other refactoring instead of forcing each
refactoring to duplicate the same precondition checks.

4. New architecture and implementation

In this section, we describe the new architecture we designed. It supports the reuse of logic as
well as the two usage scenarios: interactive and scripting modes. We discuss the relationship
between refactorings and transformations and how the formers reuse the behavior of the latter.
We also discuss the implementation of interactive versus scripting refactoring.

4.1. Overview of the new architecture

The new architecture we designed is illustrated in Figure 2. Compared to the legacy architecture
(Figure 1), the different responsibilities that were part of the old refactorings are now split into
several objects: Driver for interactions with the user (interactive mode); Transformation for
applicability preconditions and modification of the code; Refactoring for expressing behavior-
preserving preconditions and extra code changes that would be required to preserve behavior;
and Conditions for expressing the preconditions, checking them and register the possible
violations. This architecture reuses the program and change models already existing in the
legacy implementation (See Section 3.1).

• Interaction Drivers (top row, left). Interaction drivers are objects responsible for re-
questing information from the user, configuring refactorings, and finally executing them.
An interaction object can launch different refactorings depending on the choices of the
user. Subclasses of InteractionDriver encapsulates the logic for a family of refactor-
ings. For example, removing a class may lead to pushing down class state in subclasses
(refactoring Remove Class Pushing State To Subclasses) or when the class is empty
just reparenting subclasses to the superclass (refactoring Remove Class). They have
the responsibility to configure and use a configured refactoring to check step-by-step
preconditions (e.g., if a given name is correct). In particular, they use the result of reified
condition objects to report to the user situations where the refactoring cannot be executed
due to a precondition violation.

• Refactorings and Transformations (top row, right). Transformations define applica-
bility preconditions expressed as reified preconditions. Refactorings act as decorators
over transformations ensuring that the transformation does not alter the behavior. Both

breakingChangePreconditions()
Refactoring

applicabilityPreconditions()
Transformation

*1

check()
violators()

AbstractCondition
check()
violators()

MethodInHierarchy

applyChanges()
configureRefactoring()
runRefactoring()

model
choices

Interaction
Driver

AST

RBM
ethod

RBNam
espace

RBEntity

RBAbstractClass

RBPackage

RBM
etaclass

RBClass

Program Model

RBM
ethod

RBNam
espace

RBChange RBAddClass

Rem
oveClass

Change ModelCompiler model

(2)
Checking preconditions

(3a)
Producing changes

:Changes

(3b)
User feedback

Refactorings
(4)

User selection

(5)
Code modificationsPharo code

ParseTreeRewriter
Visitors

execute()
privateTransform()
generateChanges()

model

Abstract
Transformation

Preconditions

ReRenameMethodDriver

ReRenameMethodRefactoring(1)
Configure refactoring

Figure 2: Overview of the new refactoring engine architecture on one example: First, a driver creates
and configures a refactoring (1), and then the driver asks the refactoring to check its preconditions (2).
In case of violation, the driver reports to the user (3b). When preconditions hold, it asks the refactoring
to produce changes (3a). The driver then previews the changes to the user (4) who can select which
ones to apply. Finally, the changes are performed on the code (5).

produce change objects that are validated by the user. These change objects implement a
kind of transaction (in the database sense).

• Reified conditions (2nd row). Reified conditions are objects that check a condition by
searching the program model on which the refactoring or transformation is applied. In
addition to indicating whether the condition is met or not, they differ from the legacy
implementation (with precondition methods) in that they can also store information about
the objects (classes, methods, etc.) that would cause a precondition to fail. We call these
objects violators, they are important to provide developers with appropriate feedback,
either in the event of a refactoring or transformation failure or to assist developers in
reconfiguring the refactoring to ensure its success (see Section 4.4).

A new interaction flow. As shown in Figure 2, a driver creates and configures a refactoring
(Step 1). It then requests the refactoring to execute its preconditions (Step 2). If the preconditions
fail the driver reports to the user (Step 3b) as opposed to the precondition itself reporting in the
legacy implementation (see Figure 1). When the preconditions hold, the driver asks refactoring
for the changes and presents them to the developer (Step 3a). The developer can select changes
(Step 4) and finally, the driver applies them (Step 5). In this new implementation, the driver is in
charge of the execution flow, whereas it was the refactoring itself that did that in the legacy
implementation.

4.2. Polymorphic API

In the legacy implementation, refactorings and transformations weren’t designed to be used
interchangeably. They were part of different class hierarchies, and even though their execution
flows had similar steps, their implementations differed significantly. To enable the interplay of
refactorings and transformations, the need for a new API arose.

breakingChangePreconditions()
privateTransform()

ReRefactoring
applicabilityPreconditions()
privateTransform()

ReTransformation

checkPreconditions()
execute()
generateChanges()
performChanges()
preconditions()
applicabilityPreconditions()
privateTransform()

ReAbstractTransformation

Figure 3: Class diagram representing new refactoring and transformation design.

The new API was designed so that refactorings and transformations can easily be composed,
as well as used interchangeably in scripting or interactive execution. The classes ReRefactoring
and ReTransformation are part of the same hierarchy, and share the common superclass ReAb-
stractTransformation (see Figure 3). Thus, they share the same API for checking preconditions
and performing program model transformations.

The new API is structured in three layers:

• The first layer is execute method (Listing 6) that will execute complete transforma-
tion/refactoring without any user interaction. This method is used in scripting mode.

• The second layer is generateChanges (Listing 7) and performChanges (which are the
steps of execute method). This layer is used in interactive mode where the user needs to
confirm the changes before performing them on the image.

• The third layer is checkPreconditions and privateTransform (which are the steps of
generateChanges). This layer is used in interactive mode when there is a need for more
fine-grained control over execution (e.g., user confirmation is needed for continuation).

Layering the API like this enabled the reuse of the whole execution logic between interactive
and scripting modes, and additionally, it enabled the interaction driver to have more fine-grained
control over the execution flow.

We will now briefly examine methods from these layers.

1 ReAbstractTransformation >> execute
2 self generateChanges.
3 self performChanges

Listing 6: The execute methods of ReAbstractTransformation.

The execute method (Listing 6) is used during scripting mode, where no user interaction is
required. Developers configure the refactoring and invoke the execute method. The method
generates changes by invoking generateChanges (line 2) described below. Changes are objects
from the change model and performChanges (line 3) applies them to the source code. As a
result, the program is modified.

1 ReAbstractTransformation >> generateChanges
2 self checkPreconditions.
3 self privateTransform

Listing 7: The generateChanges methods of ReAbstractTransformation.

Creating changes for refactorings and transformations (Listing 7) is done in two steps:
first, check the preconditions (line 2), then generate the code change actions (line 3). Each
actual refactoring/transformation defines its own preconditions. They are retrieved by the
checkPreconditions method and executed. If a precondition is not satisfied, it raises an error by
default. The error can be “caught” in interactive mode, to give the user the possibility to correct
some parameters (see Section 4.4).

In the second step, the privateTransform method is invoked. At the level of the superclass Re-
AbstractTransformation, it is an abstract method that is therefore redefined in every refactoring
and transformation to implement their own program model transformations.

Finally, in the third layer, there is an API for retrieving preconditions:

• preconditions: to get all preconditions of refactoring or transformation;

• applicabilityPreconditions: to get applicability preconditions; and,

• breakingChangePreconditions: for behavior-preserving preconditions. This last one is
implemented only by ReRefactoring as transformations do not have behavior-preserving
preconditions.

Additionally, some individual reified preconditions (i.e., instances of an AbstractCondition
subclass) can be obtained with specific methods (e.g.,preconditionHasNoReferences).

4.3. Transformations and refactorings interplay

Anquetil et al., [31] showed that there are different types of preconditions. Those types are
described in sections 2.1 and 3.3. Using such distinctions was an insight for us as it helped
clarify the difference between refactorings and transformations.

Legacy situation. In the legacy implementation, this distinction of the preconditions did
not exist. Both transformations and refactorings had preconditions. The difference was that
transformations didn’t check their preconditions by default. They had to be explicitly config-
ured to do so by the developer. This behavior was introduced to support the composition of
transformations because the composition has an impact on whether and when all preconditions
of the composed transformations should be checked4. One may need to check all preconditions
upfront or on the contrary, the precondition of a second transformation would only be fulfilled
after applying a first transformation.

Unfortunately, this behavior leaving the choice of applying or not the preconditions to the
user could also be a source of bugs when the user calls a transformation without remembering
to check its preconditions.

New implementation of Transformations. In the new architecture, we propose that trans-
formations do not have behavior-preserving preconditions, but only applicability preconditions
(see Figure 1). Since transformations are behavior-agnostic modifications of the source code, it
doesn’t make sense for them to have behavior-preserving preconditions. To avoid execution
errors, it is, however, crucial for them to perform applicability precondition checks. Therefore,
the new default is that a transformation implements its applicability preconditions. Without
this, in scripting mode, a user could try to perform a transformation to add an accessor to a
field that doesn’t exist. These cases should never happen, since such actions would break the
program and cause errors.

New implementation of Refactorings. Refactorings on the other hand need to have both
behavior-preserving preconditions and applicability preconditions (see Figure 1). So refactorings
perform the same actions as the transformations (source code modification and applicability
preconditions checks) and have additional checks for behavior-preserving preconditions and
additional code changes to ensure behavior preservation. This corresponds to the decorator
design pattern [34]. One can view refactorings as decorators over transformations that ensure
behavior preservation while leaving the bulk of the source code modification to the transfor-
mation. This is possible because we unified the API of refactorings and transformations (see
Section 4.2).

Therefore, the new generic implementation of refactorings is to have behavior-preserving
precondition and delegate applicability precondition implementation and execution logic to an
“inner” transformation (or several ones). Additionally, refactorings can decorate some pre- or
post-execution logic to ensure behavior preservation changes in the code.

4We do not deal with the composition of transformations in this article.

4.4. Interaction drivers

In interactive mode, refactorings are executed using commands invoked either through GUI
buttons or shortcuts. A command creates a new instance of an interaction driver (for the given
refactoring) and supplies it with any information it has at hand. For example, when right-clicking
on a method to call the Remove Method refactoring, the command can provide the name and
class of the method to remove. After instantiation, the command invokes runRefactoring which
is the main method of the interaction drivers.

1 ReRemoveClassInteractionDriver >> runRefactoring
2 self configureRefactoring.
3 refactoring checkApplicabilityPreconditions.
4
5 haveNoReferences := refactoring preconditionHaveNoReferences.
6 emptyClasses := refactoring preconditionEmptyClasses.
7 noSubclasses := refactoring preconditionHaveNoSubclasses.
8
9 haveNoReferences check & emptyClasses check & noSubclasses check

10 ifTrue: [self removeClassChanges]
11 ifFalse: [self handleBreakingChanges]

Listing 8: The runRefactoring methods of ReRemoveClassInteractionDriver.

Listing 8 shows the runRefactoring method of the ReRemoveClassInteractionDriver. It first
configures the refactoring (line 2), which usually means creating an instance of the refactoring
class and possibly inquiring for additional information needed. For example in a Rename
refactoring, it would involve asking for the new name.

Next, runRefactoring delegates to its internal refactoring to check its applicability precondi-
tions (line 3). The applicability preconditions will raise an error and stop execution if one of
them fails. After that, the interaction driver checks all behavior-preserving preconditions (line 5
to 7). If one of the behavior-preserving preconditions fails, the handleBreakingChanges method
is invoked (line 11), this method is shown in Listing 9. If, on the other hand, all of preconditions
pass driver will execute the default refactoring, which is in this case ReRemoveClassRefactoring.

The method handleBreakingChanges is responsible for interacting with the users to take
possible actions based on failed behavior-preserving preconditions. It first creates a menu with
all possible actions (lines 3 to 12) before displaying it to the users (lines 13 to 20), and finally
executing the choice (line 21). When trying to remove a class, the possible actions are:

• The use of the refactoring Remove Class and Reparent Subclasses (lines 4 to 7) is the
default option that is always available. This transformation removes the class and if it
has subclasses it changes their superclass to be the superclass of the removed class. This
option is always shown because we don’t want to limit the users with what they can do.
We cannot guarantee behavior preservation, but the users might want to perform this
anyway, because they know it does preserve behavior, or they do not care.

• The next choice that is included is the refactoring Remove Class and Push State to
Subclasses (line 10). This choice is included if the class being removed is not empty (has

1 ReRemoveClassInteractionDriver >> handleBreakingChanges
2 | select items |
3 items := OrderedCollection new.
4 items add: (RBRemoveClassReparentChoice new
5 driver: self;
6 classesHaveSubclasses: noSubclasses isFalse;
7 emptyClasses: emptyClasses isTrue).
8 (noSubclasses isFalse and: [emptyClasses isFalse]) ifTrue: [
9 items add:

10 (RBRemoveClassAndPushStateToSubclassChoice new driver: self)].
11 haveNoReferences isFalse ifTrue: [
12 items add: (RBBrowseClassReferencesChoice new driver: self)].
13 select := SpSelectDialog new
14 title: ’There are potential breaking changes!’;
15 label: self labelBasedOnBreakingChanges;
16 items: items;
17 display: [:each | each description];
18 displayIcon: [:each |
19 self iconNamed: each systemIconName];
20 openModal.
21 select ifNotNil: [select action]

Listing 9: The handleBreakingChanges method of ReRemoveClassInteractionDriver.

at least one method or one instance or class side variable) and it has subclasses. In that
situation, we might be able to achieve behavior preservation if we push all the state (all
variables and methods) to the subclasses.

• The third choice is not a refactoring, but a browse operation (line 12). This choice is
shown if the class has references, then we cannot guarantee that the refactor will not
break the system, so we offer the user a closer look at the class references.

Supporting reuse via fragments of preconditions. The method handleBreakingChanges
illustrates that the preconditions of the refactorings are used by the driver in a fragmented
way (i.e., it calls preconditionHaveNoReferences, preconditionEmptyClasses, and precondition-
HaveNoSubclasses). Contrary to the script mode where the engine executes all the preconditions
at once calling the method preconditions, here we see that the driver needs a finer decomposition
to better support the interaction with the user. The driver uses individual preconditions to
show different choices to the user. Based on the noSubclasses condition and isNotEmpty condi-
tion driver shows the choice to push the state to subclasses. Based on the haveNoReferences
condition driver shows the “Browse references” choice.

This decomposition of preconditions supports the two usage scenarios as well as the reuse of
precondition logic.

Partial refactoring instantiation. In interactive mode, gathering and checking all required
information might require partially instantiating a refactoring with the information at hand
before getting and checking more information. This is part of the driver’s responsibility.

5. Evaluation

In this section, we present some details that validate the pertinence of our new implementation.
The process of migrating all the old 56 refactorings and 70 transformations is a long-term
endeavor. The bulk of the initial work consisted of defining the new architecture and validating
it on some refactorings.

5.1. Evaluation summary

In a nutshell here are the results:

• All the transformations are now only performing applicability preconditions.

• All the legacy refactorings have been migrated to clearly identify applicability or breaking
preconditions.

• We migrated two refactorings (Add Method and Remove Method) to the decorator
pattern.

• We also implemented 14 drivers of refactorings:

Deprecate Class Deprecate Method Rename Class
Rename Instance Variable Rename Shared Variable Rename Method
Push Up Method Push Down Method Remove Class
Remove Method Remove Instance Variables
Remove Shared Variables Move Methods To Class Side
Push Down Method In Some Classes

• We introduced two explicit composite refactorings ReCompositeRefactoring and Re-
UpFrontPreconditionCompositeRefactoring. The refactoring Remove Instance Vari-
ables and Remove Shared Variables take advantage of them to manage a list of elements.
More work is needed to take full advantage of them. In addition, we will revise and extend
the 18 transformations that are expressed as explicit compositions of transformations as
defined by De Santos [28].

In order to assess the level of reuse in terms of preconditions and refactorings, we analyzed
all the refactorings and produced the table reported in the Appendix D. The table shows that 49
refactorings directly define applicability preconditions, 31 directly define behavior-preserving
preconditions, 4 refactorings are indirectly reusing applicability and 9 of them are reusing
behavior-preserving preconditions via an explicit and manual composition of other refactorings.
A summary of the results is presented in the table 1. It is important to note that our future
development effort will reinforce such reuse, as we are reusing refactorings instead of duplicating
their logic. It should be noted that these numbers do not include the transformations where we
also see reuse opportunities.

In the rest of this section, we demonstrate how we achieved several of the benefits that were
our goals: the reuse of precondition logic; the reuse of transformation logic; the composition of

Table 1
Precondition reuse via explicit refactoring use.

Refactorings ...
defining applicability preconditions 49
composed of other refactorings that have applicability preconditions 4
without applicability preconditions 3
defining behavior preserving preconditions 31
composed of other refactorings that have behavior preserving preconditions 9
without behavior preserving preconditions 16

refactorings from transformations; and the use of transformations instead of program model
“primitives”. We then show how a refactoring is defined by manually composing other transfor-
mations. Finally, we present some simple composition operators that we defined and started to
use. This section concludes with a discussion of the reuse between scripting and the interactive
API for refactoring applications.

5.2. Reuse of precondition logic

The refactoring Remove Method case gives an example of how precondition logic is reused.

1 ReRemoveMethodRefactoring >> applicabilityPreconditions
2 ^ transformations applicabilityPreconditions
3
4 ReRemoveMethodRefactoring >> breakingChangePreconditions
5 ^ (RBCondition withBlock: [self checkSuperMethods])
6 & (RBCondition withBlock: [self senders isEmpty]
7 errorString: ’Cannot remove method because it has senders’)
8
9 ReRemoveMethodRefactoring >> preconditions

10 ^ self applicabilityPreconditions & self breakingChangePreconditions

Listing 10: Remove Method refactoring precondition checking logic.

Listing 10 shows the applicabilityPreconditions method of ReRemoveMethodRefactoring. It
uses the applicabilityPreconditions of its decorated transformation (line 2), and it defines its
own behavior-preserving precondition checks (line 4). We decided that it is more logical to
check applicability preconditions before behavior-preserving preconditions.

5.3. Reuse of transformation logic

Once more, the class ReRemoveMethodRefactoring is employed to illustrate the reuse of
transformation logic.

The reuse of this logic is shown in the Listing 11. Both refactoring and transformation have a
privateTransform method that is part of their unified API. This method in ReRemoveMethod-
Refactoring delegates to the ReRemoveMethodTransformation, which decorates the execution

1 ReRemoveMethodRefactoring >> privateTransform
2 transformation privateTransform
3
4 ReRemoveMethodTransformation >> privateTransform
5 self definingClass removeMethod: selector

Listing 11: Reusing transformation logic.

of privateTransform (line 2). The aforementioned method then performs the actual change by
removing the selector from its parent class (line 5).

5.4. Composition of refactorings from transformations

We now turn to the case of the Replace Message Sends and Rename Method refactorings.
In Section 3.2, we discussed their old implementation: they were part of the same hierarchy,

inheriting from the abstract ReChangeMethodNameRefactoring that implemented significant
portion of the required behavior. One downside of that implementation was that the entire
hierarchy was tightly coupled.

The new design favors composition over inheritance. The behavior that was previously
inherited is now reused through the appropriate transformations (Figure 4): ChangeMethod-
NameRefactoring uses ReplaceMessageSendTransformation to update all the method invo-
cations (Listing 12, lines 7 to 14). The latter is an independent transformation, not a sub-
class of ReChangeMethodNameRefactoring. ReChangeMethodNameRefactoring uses ReRe-
moveMethodTransformation to remove renamed implementors (Listing 13, line 7).

privateTransform()
renameImplementors()
renameMessageSends()
removeRenamedImplementors()

ReChangeMethodNameRefactoring
ReRemoveMethodTransformation

ReMethodRefactoring

ReRemoveParameterRefactoring

ReAddParameterRefactoring

ReRenameMethodRefactoring

ReReplaceMessageSend
Transformation

Figure 4: Class diagram representing new ReChangeMethodNameRefactoring implementation.

1 ReChangeMethodNameRefactoring >> privateTransform
2 self renameImplementors.
3 self renameMessageSends.
4 self removeRenamedImplementors

5
6 ReChangeMethodNameRefactoring >> renameMessageSends
7 self generateChangesFor: (ReReplaceMessageSendTransformation
8 model: self model
9 replaceMethod: oldSelector

10 in: class
11 to: newSelector
12 permutation: permutation
13 inAllClasses: true
14 newArgs: self newArgs)
15 removeRenamedImplementors

Listing 12: ReRenameMethodRefactoring reuses ReChangeMethodNameRefactoring.

5.5. Transformations instead of program model primitives

Returning to the case of the Remove Method refactoring, we now examine the transformation.
Listing 13 (line 7) shows the use of Remove Method Transformation in the removeRe-

namedImplementors method of ReChangeMethodNameRefactoring. The previous implemen-
tation directly accessed the program model, which was a duplication of the transformation
(however small). Now that transformations and refactorings can be easily composed, it is now
possible to invoke the transformation instead of using the program model directly.

1 ReChangeMethodNameRefactoring >> removeRenamedImplementors
2 oldSelector = newSelector
3 ifTrue: [^ self].
4 self implementors
5 do: [:each |
6 self generateChangesFor:
7 (ReRemoveMethodTransformation selector: oldSelector from: each)]

Listing 13: ReChangeMethodNameRefactoring invokes Remove Method transformation.

Polymorphic API enabled easier composition of refactorings and transformations, making
it possible to rely on composition instead of directly using the program model API. This
is beneficial because transformations and refactorings have applicability preconditions that
ensure nothing syntactically incorrect will be executed. When using the program model API
directly, we do not have that certainty unless preconditions are in place to check it. If there are
preconditions in place, they would be mere copies of the preconditions of existing refactorings
and transformations.

We were able to refactor 24 usages of the program model API in refactorings and 11 in trans-
formations to use ReAddMethodTransformation. Similarly, we reused the ReRemoveMethod-
Transformation in 12 places in refactorings and 6 in transformations. Likewise, the ReRe-
moveMethodRefactoring was also reused in 2 other refactorings.

5.6. Extract Method Refactoring as an example of composition

In this section, we show what we call manual refactoring/transformation composition. By this,
we mean that developers reuse refactorings or transformations to define new ones without

using predefined composition operators. We present the implementation of the extract method
refactoring. This refactoring is one of the most complex because it has to deal with the visibility
of temporary variables and return statements.

This refactoring is invoked by the user with a range of code selection. The applicability
preconditions validate if the selected code range can be extracted. These checks include:
ensuring that the selection is not part of a cascaded message, that the selected code does not
contain any temporaries or arguments that are read before being written, that the selected code
does not contain a return statement, and that there is only one assignment in the selected code.
For the sake of space, we will not describe each precondition in detail. Instead, we will focus on
the manual composition.

Listing 14 shows the buildTransformations method. This method is part of the ReCompos-
iteTransformation API and should return an ordered list of transformations that need to be
executed. The refactoring first creates a new method (an instance of RBMethodNode) that
will be added to the class. Then it searches for a method with an equivalent tree as the newly
created method in the class hierarchy. If such a method exists, the extraction is not needed
since we can reuse the existing method and a basic code rewrite is sufficient. The rewrite will
change the method’s body to use messageSend to the existing method, instead of creating a
new method out of the selected code.

When a method with an equivalent tree does not exist, we need to create a new method with
the selected code. The method buildTransformationFor: is responsible for returning a list of
transformations needed to perform the extraction. This method first creates a new message
send, a string that represents a call to the extracted method. After the computation is done, the
method returns a list of transformations that:

• Add a new method to the class,

• Replace subtree transformation replaces the selected code with a call (message send) to a
previously created method,

• Remove all temporary variables that can be removed.

1 ReExtractMethodTransformation >> buildTransformations
2 | newMethodName existingMethod checker messageSend |
3 newMethodName := self newMethodName.
4 newMethod := self generateNewMethodWith: newMethodName.
5 checker := EquivalentTreeChecker new
6 model: model;
7 on: class;
8 extractedFromSelector: selector.
9 existingMethod := checker findEquivalentTreeFor: newMethod.

10 existingMethod ifNil: [^ self buildTransformationFor: newMethodName].
11
12 messageSend := self messageSendWith: existingMethod ast.
13 ^ OrderedCollection with:
14 (RBReplaceSubtreeTransformation
15 model: self model
16 replace: sourceCode
17 to: messageSend

18 inMethod: selector
19 inClass: class)
20
21 ReExtractMethodTranfsformation >> buildTransformationFor: newMethodName
22 | messageSend |
23 messageSend := self messageSendWith: newMethodName.
24
25 ^ OrderedCollection new
26 add: (RBAddMethodTransformation
27 model: self model
28 sourceCode: newMethod newSource
29 in: class
30 withProtocol: Protocol unclassified);
31 add: (RBReplaceSubtreeTransformation
32 model: self model
33 replace: sourceCode
34 to: messageSend
35 inMethod: selector
36 inClass: class);
37 add: (ReRemoveUnusedTemporaryVariableRefactoring
38 model: self model
39 inMethod: selector
40 inClass: class name);
41 yourself

Listing 14: A manual composite: ReExtractMethodTransformation.

5.7. Towards first composite operators

We started to define a basic composite refactoring operator. The default operator is ReCompos-
iteRefactoring. Its semantics is mainly to loop over a list of refactorings.

1 ReCompositeRefactoring >> privateTransform
2 refactorings do: [:each | each generateChanges]

Listing 15: A simple composite: ReCompositeRefactoring.

The second composite operator is simple yet useful: it evaluates all the preconditions of a
sequence of refactorings before executing them all. It assumes that none of the refactorings in
the sequence modifies the context in which preconditions are verified. Such an operator is used
to create a refactoring that removes several instance variables at the same time as shown in
Listing 16.

1 ReRemoveInstanceVariableDriver >> configureRefactoring
2 refactoring := ReUpFrontPreconditionCheckingCompositeRefactoring new
3 model: model;
4 refactorings: (variables collect: [:each |
5 ReRemoveInstanceVariableRefactoring model: model remove: each from: class]);
6 yourself.
7 refactoring prepareForInteractiveMode

Listing 16: UpFrontPreconditionCheckingCompositeRefactoring usage.

1 ReUpFrontPreconditionCheckingCompositeRefactoring>>
2 applicabilityPreconditions
3 "Return the list of the all the applicabilityPreconditions of the composite"
4 ^ refactorings collect: [:each | each applicabilityPreconditions]
5
6 breakingChangePreconditions
7 "Return the list of the all the breakingChangePreconditions of the composite"
8 ^ refactorings collect: [:each | each breakingChangePreconditions]
9

10 privateTransform
11 "pay attention we are not checking preconditions of children at this level"
12 refactorings do: [:each | each privateTransform]
13
14 violators
15 ^ self breakingChangePreconditions flatCollect: [:cond | cond violators]

Listing 17: ReUpFrontPreconditionCheckingCompositeRefactoring logic.

We also defined ReCompositeContinuingRefactoring: it iterates over a list of refactorings
and does not stop at the first failing precondition.

1 ReCompositeContinuingRefactoring >> privateTransform
2 refactorings do: [:each | [each generateChanges] on: RBRefactoringError do: [:ex |]]

Listing 18: ReCompositeContinuingRefactoring logic.

This is one of our future goals to define and assess more complex operators in the same vein
as the ones defined by Li and Thompson [22].

5.8. Reuse between two modes: scripting and interactive

The polymorphic API described in Section 4.2 enables reuse between interactive and scripting
modes. Interaction drivers use the fine-grained control that the new API allows to:

• invoke custom UI to gather user input when needed

• validate user input

• display warnings for the failed behavior-preserving preconditions

• offer users different actions based on failed behavior-preserving preconditions

• preview refactoring changes before actually performing them

With this API, the driver can plug in any custom UI code it needs in between execution steps.
For example, the driver can show a dialog with all the changes that will be performed on the
image before it invokes performChanges, or it can check behavior-preserving preconditions
and, if they fail, show a warning to the user that the action it is performing might not be a
refactoring, but a transformation.

6. Discussion

6.1. On the process

The migration described in the previous sections is not trivial. It requires a substantial refactoring
of the legacy code. Here is a list of the tasks:

• Separation of applicability and behavior-preserving preconditions.

• Removal of behavior-preserving preconditions from transformations.

• Reification of individual preconditions.

• Restructuring of refactorings to be decorators of transformations.

• Design of the API for fine-grained interaction between a driver and the refactorings.

• Creation of drivers for refactorings and migrating UI logic to them.

This process is extremely time-consuming as it requires case-by-case analysis. Just the first
step of separating applicability and behavior-preserving preconditions demanded a significant
amount of time. It implied analyzing each precondition on its own, examining its influence on
the refactoring/transformations, and evaluating its potential impact on other preconditions.

Additionally, creating interaction drivers requires a thorough analysis of all the possible
paths the user might take when refactoring something. Besides the happy path (i.e., when all
preconditions are satisfied), there is a need to take into account all the actions the user can
perform if a behavior-preserving precondition fails, as well as which transformation can be
performed in that situation and any other non-transforming operation like browsing for senders,
implementors, or references.

Our intention is to document this process and our analytical insights in a refactoring catalog.
This catalog is envisioned to serve as a valuable resource aiding in the development of a
state-of-the-art refactoring engine in modern IDEs.

6.2. On code readability

Our experience working on this large effort for over a year shows that separating transformations
and refactorings enables easier semantic changes and improves readability. It helped us identify
mistakes, such as whether ReGenerateAccessors should use the ReAddMethod refactoring or
transformation.

When developers working on refactorings see that an operation is composed of transfor-
mations, they know that no breaking changes are checked. Similarly, when an operation is
composed of refactorings, they immediately know that breaking changes must be satisfied for
that operation to be executed. This is an important aid for maintaining and enhancing of the
code base.

7. Related work

Some researchers used different algorithms, such as multi-objectives [35] or hill-climbing to
identify where refactorings could be applied. This is out of the scope of the article’s focus. Other
researchers worked on model transformations [36, 37], however, the inherent constraints make
the work not applicable to our case. This is why we do not include them in this related work.

There is a limited amount of research focused on the engineering and definitions of refactor-
ings themselves, and we focus on them.

Systematic literature surveys. The authors of [38, 39, 40, 41] present some systematic
literature surveys. Little is said about the reuse of refactoring or transformation logic.

Refactoring specification. Schaffer et al., [42] propose to use dependencies and language
extensions [17] to represent refactorings. They use dependencies instead of preconditions.
The authors use this representation to specify RenameMethod in Java [43] as well as correct
refactorings for concurrent Java code [44]. They also introduce the notion of micro refactorings,
elementary refactorings that are used to compose others. However, they do not mention how the
composition works in practice and what is the set of microrefactorings. In the work presented
in this article, we describe all the transformations, refactorings, and elementary operations.

Reichenbach et al., [18] propose to use postconditions on a model of the code to check whether
refactorings are behavior-preserving. They also introduce the notion of program metamorphosis
steps as elementary non-behavior preserving units that can be composed to define refactorings.
In their goal, program metamorphosis steps look similar to transformations, however, their
implementation or design is not clearly described. We note that they do not have applicability
preconditions. They can manipulate ill-formed code, and one of them even allows pasting
arbitrary code from the clipboard, something that transformations do not allow.

Kniesel et al., [15] focus on the composition of refactorings. Their conditional transformations
are more generic than the transformations presented in this article, however, they do have
preconditions too. The authors introduce And (e.g., sequence of refactorings) and Or. Based on
this, they compute the validation of composed refactoring preconditions before their execution.
They propose a formal model for automatic, program-independent composition of conditional
program transformations. They show that conditional transformations, including refactorings,
can be composed of a limited set of basic operations. Program-independent derivation of a
precondition for the composite is based on the notion of “transformation description”, which can
be seen as a simplified, yet equally powerful, variant of Roberts’ “postconditions”. It should be
noted that while Roberts uses postconditions in his thesis, the implementation never contained
post conditions. In addition, we did not start to work on refactoring composition even if
we started to see some composition patterns during the implementation of the architecture
presented in this paper.

Ò Cinnéide et al., [45, 46] propose a methodology for developing design pattern transfor-
mations and a prototype tool that automatically performs them. The authors define custom
transformations that introduce design patterns in existing code bases. They rely on low-level
refactorings to develop design pattern transformations. This paper mostly discusses the composi-
tion of smaller refactorings and custom transformations to create design pattern transformations,

and behavior preservation in that context, while our work focuses on the lower-level details
and reuse in the underlying refactoring engine implementation.

Independent and cross languages. While the definition of language-independent or cross-
language refactorings does not focus on the reuse of transformation logic, they are the only
work besides the Ph.D. of D. Roberts formalizing refactoring implementation. Tichelaar [47, 48]
presents some language-independent refactorings on top of the FAMIX metamodel [49] while
Mayer et al., present a metamodel to support cross-language refactorings [50]. Such approaches
are interesting because they focus on the implementation of the refactorings. Nevertheless,
they do not provide an analysis of the reuse of transformation and composition of refactorings.

Horpácsi et al., [19] propose a framework to define trustworthy refactorings that can be
parametrized by languages. They propose schemes that are language refactoring idioms aka
transformation templates which are parametrized by conditional term rewrite rules. They sup-
port refactoring compositionality using basic imperative controls such as sequencing, branching,
and iteration.

Butler et al., [51] propose a concept of cascaded refactoring to be applied when refactoring
frameworks.

Refactoring engines. There is some work on refactoring engines for languages such as
Erlang with Tidier [52, 53], Wrangler [54] and RefactorErl [55].

Li et al., [56] present two approaches to developing a refactoring engine taken by two teams.
One of the teams developed the Wrangler engine by using an annotated abstract syntax tree. The
other team developed what is later known as RefactorErl by using a relational database to store
both abstract syntax trees and semantic information. The paper discusses the representation of
the program, while our work is focused on the implementation of refactorings, preconditions,
and user interaction. Note that in section 3.1 we analyzed and discussed the representation that
is the basis of our work since we extended and refactored the existing refactoring engine.

Horváth et al., [57] present RefactorErl, a refactoring tool for the Erlang programming
language. The authors describe a major redesign of the tool and provide important insights
for developing refactoring tools. RefactorErl works on a graph representation of the program,
therefore most of the insights are specific to graph-based refactoring engines and are not
translatable to non-graph-based refactoring engines.

Horpácsi et al., [58] defined a DSL that enables descriptive, higher-level definitions of refac-
torings that are also executable. The authors differentiate between prime refactorings (ones
that cannot be decomposed into smaller refactorings) and composite refactorings. This work is
focused more on describing refactorings, whereas our work is focused on the design and archi-
tecture of a complete refactoring engine. Their concepts of prime and composite refactorings
may seem similar to our transformations and refactorings. However, there is a key difference
- our refactorings preserve behavior, and transformations do not. The authors also covered
behavior preservation through the verification of refactoring. Using reachability logic, they
verified refactoring definitions. However, that proof system is not complete, and because of that
the authors presented an additional method for proving the correctness of a single application
of the refactoring.

RubyMine from JetBrains5 offers a limited amount of refactorings (Rename, MoveAndCopy,
Extract Method, Extract Field, Extract superclass, Extract Parameter Inline, Pull members up
and down, Safe Delete). To the best of our knowledge, there is, however, no explanation or
information about the actual implementation of the refactoring engine. This engine is driven
by the user interface. Refactorings are simply explained from a user perspective.

Kim et al., [26] proposed a new architecture for a refactoring engine called R3 for Java. They
wanted to address the limits of the Java refactoring engine (slow refactoring performance).
Their proposed architecture is similar to that of the Refactoring browser in Pharo, which we
studied in this paper. It is similar in the sense that R3 uses an in-memory model of the program
and is not exclusively manipulating ASTs. The R3 model is a kind of direct database schema
with foreign keys. In addition, it contains information about the program entities encoded as
boolean.

Borba et al., [59] discuss refactorings in the context of aspect-oriented programming. They do
make a distinction between refactorings and code transformations, where refactorings preserve
behavior without adding new features. However, nothing is said about code reuse between
these two.

There is also a large body of research on C refactorings where one of the important challenges
is handling the preprocessor [60, 61, 62]. Garrido et al., defined one of the first C refactoring
engines that correctly deals with preprocessor commands [63]. CScout [64] is a refactoring
engine for C that correctly handles the preprocessor for a large number of independent program
families. It can detect dead objects to remove and automatically perform four refactorings that
it supports: rename identifier, add parameter, remove parameter, and change parameter order.

Code to code transformation. Some work such as in [15, 65] focuses on the derivation of a
composite refactoring precondition from its constituents. The idea is to execute the composite
preconditions before performing the actual code transformation.

Li and Thomson [22, 66] present a domain-specific language (DSL) that extends the existing
refactoring engine, Wrangler. The DSL can be used to define new refactorings in Erlang
for Erlang. This is one of the rare articles discussing the notion of atomic and non-atomic
(composite) refactorings. During composition, and as a design choice, Wrangler does not do
anything to derive a composite refactoring precondition. Instead, each primitive refactoring is
executed individually. With Wrangler, a primitive refactoring is extended with a refactoring
command generator. Then they introduced a DSL that enables users to have fine control over the
generation of refactoring commands and the interaction between the user and the refactoring
engine [22]. One can draw a parallel between this DSL and the drivers presented in this paper.
The difference is that DSL scripts represent the functional style of programming where they
contain all the information of a custom or composite refactoring (user interaction, conditions
for application, and how to perform refactorings), whereas with the driver we leverage OOP and
delegate refactoring precondition checking and implementation to the refactorings themselves,
while the driver takes care of user interaction and invoking appropriate refactorings.

Hills et al. [24] show how the authors integrate Eclipse and Rascal to perform a transformation
from a visitor to an interpreter design pattern. They use Rascal as a meta-programming

5https://www.jetbrains.com/help/ruby/refactoring-source-code.html

environment.
Clang offers a kind of minimalistic source code manipulation engine6. It can be used to define

source change transformations using an AST matcher. It offers two kinds of actions: source
changes and symbol occurrences. The rule SourceChangeRefactoringRule produces source
replacements that are applied to the source files. Usually, the changes are located in a single
’translation’ unit. FindSymbolOccurrencesRefactoringRule produces a set of occurrences that
refer to a particular symbol. The documentation mentions that FindSymbolOccurrencesRefac-
toringRule can be ’used to implement an interactive renaming action that allows users to specify
which occurrences should be renamed during the refactoring’. However, it is unclear how symbols
are mapped to a model of the program. This is probably left to the user to manage all the
modeling logic to distinguish between classes, fields, and methods as well as representing
hierarchies. It is unclear if there is support for preconditions. To the best of our knowledge, this
is left to the user and this engine is a source code transformation API more than a refactoring
one.

User and usability. Boshernotan et al. [67, 29] propose a program manipulation paradigm
that enables programmers to change source code with interactively-constructed visual pro-
gram transformations. Similarly, Rizun et al. [68] propose direct manipulation of AST nodes
to generate corresponding code transformations using Refactoring Parse Tree Rewriter [4].
Vakilian et al., [10] propose a new paradigm for refactorings based on the composition of small
refactorings. They argue that a compositional paradigm where users perform small automated
refactorings that they invoke manually, instead of one big automated refactoring leads to better
user feedback and overall more use of refactorings.

Semantics-driven. Kesseli, in his PhD [69], explores semantics-driven refactorings in oppo-
sition to syntactic refactorings (the ones considered in this paper). He presents and implements
a program synthesis algorithm based on the CEGIS paradigm and demonstrates that it can be
applied to a diverse set of applications. It does not discuss, however, the reuse of refactoring
logic.

Refactoring detection and mining. Some publications focus on identifying the application
of refactoring (Extract method application [70]), general refactorings [12]) with tools such as
RefactoringMiner2.0. Other publications mine missed opportunities to refactor code (move
method [13], missed polymorphism [14].) The work presented in this article is concerned
with the implementation and in particular the reuse of logic between transformations and
refactorings — not the applications of refactorings on an existing code base.

Bibiano et al., [71] mine composite refactorings in software repositories: they mine the
application of a sequence of refactorings touching the same source code element. They focused
on smell removal. Brito et al., [72] extend this work.

Such studies do not analyze the refactoring semantics nor the reuse of refactorings or trans-
formation logic to define larger ones, but they study empirically how developers use multiple

6https://clang.llvm.org/docs/RefactoringEngine.html

refactorings on the same source element. The term "composite" in their work is different from
the actual composition of refactorings by the refactoring engine as discussed in [31].

Abdullah AlOmar [73] researched how developers document refactoring activities. The author
presents a model that detects inconsistencies between commit messages and developer-related
refactoring events, as well as a procedure for documenting refactorings.

Bavota et al., [74] mined three Java systems and investigated when refactorings introduce
faults.

Refactoring opportunities automatic identification. Foster et al., [75] created a system
called WitchDoctor that detects when a user is performing a refactoring by hand and then offers
to complete it. Similarly, Ge et al., [11] created BeneFactor, a tool to recognize when a developer
is doing manual refactoring and offers to automatically complete it.

Ò Cinnéide et al., [76] propose a tool that automatically performs refactorings on a code base,
and they evaluated it through a survey to check whether it reduced the difficulty of writing
tests.

Kataoka et al., [77] propose Daikon, a program invariant detector. When a certain invariant
holds a specific refactoring is applicable.

8. Conclusion

The extensive analysis of an existing large library of refactorings and transformations done by
Anquetil et al., [31] was a call for a better refactoring architecture. This article presents a new
architecture for the refactoring engine, inherited from the implementation of D. Roberts and J.
Brant [2, 3, 4].

This new architecture supports two important scenarios: interactive use and scripting, (i.e.,
batch use). It does this by introducing Drivers, which are objects that provide guidance to
developers during the application of refactorings. In interactive mode, this new architecture
reduces logic duplication by introducing partial initialization of refactorings. Additionally, it
defines a clear API that unifies refactorings and transformations, and expresses refactorings as
decorators over transformations. It also formalizes the use of different kinds of preconditions,
thus providing better user feedback.

Current results show that elementary transformations such as the transformation Add
Method are reused in 24 refactorings (including the refactoring Add Method) and 11 other
transformations. The transformation Remove Method is reused in 11 refactorings (including
the refactoring Remove Method) and 7 other transformations.

Our future work is to migrate all the existing refactorings and transformations to the new
architecture. Then, we will focus on supporting application developers in defining their own,
often domain-specific, transformations/refactorings by proposing a library of composition
operators.

Acknowledgments. This work was partially supported by COST Action CA19135 CERCIRAS:
Connecting Education and Research Communities for an Innovative Resource Aware Society
funded by the European Union through the COST Association. We want to thank the anonymous

reviewers of the early version of the article as well as the constant support from the Pharo
industrial consortium http://consortium.pharo.org. This research has been supported by the
Ministry of Science, Technological Development and Innovation (Contract No. 451-03-65/2024-
03/200156) and the Faculty of Technical Sciences, University of Novi Sad through project
“Scientific and Artistic Research Work of Researchers in Teaching and Associate Positions at
the Faculty of Technical Sciences, University of Novi Sad” (No. 01-3394/1).

References

[1] W. F. Opdyke, Refactoring object-oriented frameworks, Ph.D. thesis, University of Illinois
(1992).

[2] D. Roberts, J. Brant, R. E. Johnson, B. Opdyke, An automated refactoring tool, in: Proceed-
ings of ICAST ’96, 1996.

[3] D. Roberts, J. Brant, R. E. Johnson, A refactoring tool for Smalltalk, Theory and Practice of
Object Systems (TAPOS) 3 (4) (1997) 253–263.

[4] J. Brant, D. Roberts, “Good Enough” Analysis for Refactoring, in: Object-Oriented Tech-
nology Ecoop ’98 Workshop Reader, LNCS, Springer-Verlag, 1998, pp. 81–82.

[5] D. B. Roberts, Practical analysis for refactoring, Ph.D. thesis, University of Illinois (1999).
[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring: Improving the Design of

Existing Code, Addison Wesley, 1999.
[7] E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how we know it, IEEE

Transactions on Software Engineering 38 (1) (2011) 5–18.
[8] S. Negara, N. Chen, M. Vakilian, R. E. Johnson, D. Dig, A comparative study of manual and

automated refactorings, in: 27th European Conference on Object-Oriented Programming,
2013, pp. 552–576.

[9] M. Vakilian, N. Chen, S. Negara, B. A. Rajkumar, B. P. Bailey, R. E. Johnson, Use, disuse, and
misuse of automated refactorings, in: Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, IEEE Press, Piscataway, NJ, USA, 2012, pp. 233–243.
URL http://dl.acm.org/citation.cfm?id=2337223.2337251

[10] M. Vakilian, N. Chen, R. Z. Moghaddam, S. Negara, R. E. Johnson, A compositional paradigm
of automating refactorings, in: European Conference on Object-Oriented Programming,
2013, pp. 527–551.

[11] X. Ge, Q. L. DuBose, E. Murphy-Hill, Reconciling manual and automatic refactoring, in:
Proceedings of the 34th International Conference on Software Engineering, ICSE ’12, IEEE
Press, Piscataway, NJ, USA, 2012, pp. 211–221.
URL http://dl.acm.org/citation.cfm?id=2337223.2337249

[12] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig, Accurate and efficient
refactoring detection in commit history, in: Proceedings of the 40th International Confer-
ence on Software Engineering (ICSE ’18), ACM, New York, NY, USA, 2018, pp. 483–494.
doi:10.1145/3180155.3180206.

[13] N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring opportunities,
IEEE Transactions on Software Engineering 35 (3) (2009) 347–367.

http://consortium.pharo.org
http://dl.acm.org/citation.cfm?id=2337223.2337251
http://dl.acm.org/citation.cfm?id=2337223.2337251
http://dl.acm.org/citation.cfm?id=2337223.2337251
http://dl.acm.org/citation.cfm?id=2337223.2337249
http://dl.acm.org/citation.cfm?id=2337223.2337249
https://doi.org/10.1145/3180155.3180206

[14] N. Tsantalis, A. Chatzigeorgiou, Identification of refactoring opportunities introducing
polymorphism, Journal of Systems and Software 83 (3) (2010) 391–404.

[15] G. Kniesel-Wünsche, H. Koch, Static composition of refactorings, Science of Computer
Programming 52 (2004) 9–51. doi:10.1016/j.scico.2004.03.002.

[16] T. Schäfer, J. Jonas, M. Mezini, Mining framework usage changes from instantiation code,
in: International Conference on Software Engineering (ICSE), ACM, New York, NY, USA,
2008, pp. 471–480. doi:10.1145/1368088.1368153.

[17] M. Schäfer, M. Verbaere, T. Ekman, O. de Moor, Stepping stones over the refactoring rubicon
– lightweight language extensions to easily realise refactorings, in: S. Drossopoulou (Ed.),
European Conference on Object-Oriented Programming (ECOOP), Springer-Verlag, 2009,
pp. 369–393.

[18] C. Reichenbach, D. Coughlin, A. Diwan, Program metamorphosis, in: S. Drossopoulou
(Ed.), European conference on Object-Oriented Programming, Springer Berlin Heidelberg,
2009, pp. 394–418.

[19] D. Horpácsi, J. Köszegi, D. J. Németh, Towards a generic framework for trustworthy
program refactoring, Acta Cybernetica 25 (4) (2021) 753–779. doi:10.14232/actacyb.
284349.
URL https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4121

[20] P. Tesone, G. Polito, L. Fabresse, N. Bouraqadi, S. Ducasse, Dynamic software update
from development to production, Journal of Object Technology 17 (2018) 1–36. doi:
10.5381/jot.2018.17.1.a2.

[21] M. Verbaere, R. Ettinger, O. de Moor, Jungl: a scripting language for refactoring, in:
Proceedings of International Conference on Software Engineering, 2006.

[22] H. Li, S. Thompson, A domain-specific language for scripting refactorings in erlang, in:
FASE, 2012.

[23] F. Steimann, J. von Pilgrim, Constraint-based refactoring with foresight, in: ECOOP, 2012.
[24] M. Hills, P. Klint, J. J. Vinju, Scripting a refactoring with rascal and eclipse, in: 5th Workshop

on Refactoring Tools, 2012, pp. 40–49.
[25] J. Kim, D. Batory, D. Dig, Scripting parametric refactorings in java to retrofit design

patterns, in: ICSME, 2015.
[26] J. Kim, D. Batory, D. Dig, M. Azanza, Improving refactoring speed by 10x, in: Proceedings

of the 38th International Conference on Software Engineering, 2016, pp. 1145 – 1156.
doi:10.1145/2884781.2884802.

[27] G. Florijn, M. Meijers, P. van Winsen, Tool support for object-oriented patterns, in: M. Aksit,
S. Matsuoka (Eds.), Proceedings ECOOP ’97, Vol. 1241 of LNCS, Springer-Verlag, Jyvaskyla,
Finland, 1997, pp. 472–495.

[28] G. Santos, N. Anquetil, A. Etien, S. Ducasse, M. T. Valente, System specific, source code
transformations, in: 31st IEEE International Conference on Software Maintenance and
Evolution, 2015, pp. 221–230.

[29] M. Boshernitsan, L. S. Graham, A. M. Hearst, Aligning development tools with the way
programmers think about code changes, in: Conference on Human Factors in Computing
Systems (CHI ’07), 2007. doi:10.1145/1240624.1240715.

[30] A. P. Black, S. Ducasse, O. Nierstrasz, D. Pollet, D. Cassou, M. Denker, Pharo by Example,
Square Bracket Associates, Kehrsatz, Switzerland, 2009.

https://doi.org/10.1016/j.scico.2004.03.002
https://doi.org/10.1145/1368088.1368153
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4121
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4121
https://doi.org/10.14232/actacyb.284349
https://doi.org/10.14232/actacyb.284349
https://cyber.bibl.u-szeged.hu/index.php/actcybern/article/view/4121
https://doi.org/10.5381/jot.2018.17.1.a2
https://doi.org/10.5381/jot.2018.17.1.a2
https://doi.org/10.1145/2884781.2884802
https://doi.org/10.1145/1240624.1240715
http://books.pharo.org

URL http://books.pharo.org
[31] N. Anquetil, M. Campero, S. Ducasse, J.-P. Sandoval, P. Tesone, Transformation-based

refactorings: a first analysis, in: International Workshop of Smalltalk Technologies, 2022.
[32] I. Thomas, S. Ducasse, P. Tesone, G. Polito, Pharo: a reflective language - A first systematic

analysis of reflective APIs, in: IWST 23 - International Workshop on Smalltalk Technologies,
Lyon, France, 2023.
URL https://inria.hal.science/hal-04217271

[33] V. Uquillas Gómez, S. Ducasse, T. D’Hondt, Ring: a unifying meta-model and infrastructure
for Smalltalk source code analysis tools, Journal of Computer Languages, Systems and
Structures 38 (1) (2012) 44–60.

[34] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 1995.

[35] A. Ouni, M. Kessentini, M. Ò Cinnéide, H. Sahraoui, K. Deb, K. Inoue, More: A multi-
objective refactoring recommendation approach to introducing design patterns and fixing
code smells, Journal of Software: Evolution and Process 29 (Mar. 2017). doi:10.1002/
smr.1843.

[36] A. Etien, A. Muller, T. Legrand, X. Blanc, Combining independent model transformations,
in: Proceedings of the 2010 ACM Symposium on Applied Computing, 2010, pp. 2237–2243.

[37] A. Etien, A. Muller, T. Legrand, R. F. Paige, Localized model transformations for building
large-scale transformations, Software & Systems Modeling 14 (3) (2015) 1189–1213. doi:
10.1007/s10270-013-0379-8.

[38] T. Mens, S. Demeyer, B. Du Bois, H. Stenten, P. Van Gorp, Refactoring: Current research
and future trends, in: LDTA@ETAPS, 2003.
URL https://api.semanticscholar.org/CorpusID:9433418

[39] T. Mens, T. Tourwé, A survey of software refactoring, IEEE Transaction on Software
Engineering 30 (2) (2004) 126–139. doi:10.1109/TSE.2004.1265817.

[40] S. Akhtar, M. Nazir, A. Ali, A. Khan, M. Atif, A systematic literature review on software
- refactoring techniques, challenges, and practices (Mar. 2022). doi:10.21203/rs.3.
rs-1472519/v1.

[41] A. A. B. Baqais, M. Alshayeb, Automatic software refactoring: a systematic literature review,
Software Quality Journal 28 (2) (2020) 459–502. doi:10.1007/s11219-019-09477-y.

[42] M. Schäfer, O. de Moor, Specifying and implementing refactorings, in: Conference on
Object-Oriented Programing, Systems, Languages, and Applications (OOPSLA’10), 2010.

[43] M. Schäfer, T. Ekman, O. de Moor, Sound and extensible renaming for java, in: G. Kiczales
(Ed.), Object-Oriented Programming, Systems and Languages (OOPSLA), ACM Press, 2008,
pp. 227–294.

[44] M. Schäfer, J. Dolby, M. Sridharan, F. Tip, E. Torlak, Correct refactoring of concurrent
java code, in: T. D’Hondt (Ed.), European Conference on Object-Oriented Programming
(ECOOP), Springer-Verlag, 2010.

[45] M. Ò Cinnéide, P. Nixon, A methodology for the automated introduction of design patterns,
in: Proceedings of the IEEE International Conference on Software Maintenance, ICSM ’99,
IEEE Computer Society, USA, 1999, p. 463.

[46] M. Ò Cinnéide, Composite refactorings for java programs, in: Proceedings of the Work-
shop on Formal Techniques for Java Programs, European Conference on Object-Oriented

http://books.pharo.org
https://inria.hal.science/hal-04217271
https://inria.hal.science/hal-04217271
https://inria.hal.science/hal-04217271
https://doi.org/10.1002/smr.1843
https://doi.org/10.1002/smr.1843
https://doi.org/10.1007/s10270-013-0379-8
https://doi.org/10.1007/s10270-013-0379-8
https://api.semanticscholar.org/CorpusID:9433418
https://api.semanticscholar.org/CorpusID:9433418
https://api.semanticscholar.org/CorpusID:9433418
https://doi.org/10.1109/TSE.2004.1265817
https://doi.org/10.21203/rs.3.rs-1472519/v1
https://doi.org/10.21203/rs.3.rs-1472519/v1
https://doi.org/10.1007/s11219-019-09477-y

Programming, 2000.
[47] S. Tichelaar, S. Ducasse, S. Demeyer, O. Nierstrasz, A meta-model for language-independent

refactoring, in: Proceedings of International Symposium on Principles of Software Evolu-
tion, ISPSE’00, IEEE Computer Society Press, 2000, pp. 157–167. doi:10.1109/ISPSE.
2000.913233.

[48] S. Tichelaar, Modeling object-oriented software for reverse engineering and refactoring,
Ph.D. thesis, University of Bern (Dec. 2001).
URL http://scg.unibe.ch/archive/phd/tichelaar-phd.pdf

[49] S. Ducasse, N. Anquetil, U. Bhatti, A. Cavalcante Hora, J. Laval, T. Girba, MSE and FAMIX
3.0: an Interexchange Format and Source Code Model Family, Tech. rep., RMod – INRIA
Lille-Nord Europe (2011).

[50] P. Mayer, A. Schroeder, W. Löwe, Cross-language code analysis and refactoring, in: In
Proceedings of the International Workshop on Source Code Analysis and Manipulation,
2012. doi:10.1109/SCAM.2012.11.

[51] G. Butler, L. Xu, Cascaded refactoring for framework, in: ACM SIGSOFT Symposium on
Software Reusability, 2001.
URL https://api.semanticscholar.org/CorpusID:14330253

[52] K. Sagonas, T. Avgerinos, Automatic refactoring of erlang programs, in: A. Porto, F. J.
López-Fraguas (Eds.), International Conference on Principles and Practice of Declarative
Programming, ACM, 2009, pp. 13–24. doi:10.1145/1599410.1599414.
URL https://doi.org/10.1145/1599410.1599414

[53] T. Avgerinos, K. Sagonas, Cleaning up erlang code is a dirty job but somebody’s gotta do
it, in: C. B. Earle, S. J. Thompson (Eds.), 8th Workshop on Erlang, ACM, 2009, pp. 1–10.
doi:10.1145/1596600.1596602.
URL https://doi.org/10.1145/1596600.1596602

[54] H. Li, S. Thompson, G. Orosz, M. Tóth, Refactoring with wrangler, updated: Data and
process refactorings, and integration with eclipse, in: Workshop on ERLANG, Association
for Computing Machinery, New York, NY, USA, 2008, pp. 61–72. doi:10.1145/1411273.
1411283.
URL https://doi.org/10.1145/1411273.1411283

[55] I. Bozó, D. Horpácsi, Z. Horváth, R. Kitlei, J. Koszegi, M. Tejfel, M. Tóth, Refactorerl -
source code analysis and refactoring in erlang, in: Proceedings of the 12th Symposium
on Programming Languages and Software Tools, ISBN 978-9949-23-178-2, Tallin, Estonia,
2011, pp. 138–148.

[56] H. Li, S. Thompson, L. Lövei, Z. Horváth, T. Kozsik, A. Víg, T. Nagy, Refactoring erlang
programs, in: The Proceedings of 12th International Erlang/OTP User Conference, 2006.

[57] Z. Horváth, L. Lövei, T. Kozsik, R. Kitlei, A. N. Víg, T. Nagy, M. Tóth, R. Király, Building a
refactoring tool for erlang, in: Workshop on Advanced Software Development Tools and
Techniques, WASDETT, Vol. 2008, 2008.

[58] D. Horpácsi, J. Kőszegi, S. Thompson, Towards trustworthy refactoring in erlang, arXiv
preprint arXiv:1607.02228 (2016).

[59] P. Borba, S. Soares, Refactoring and code generation tools for aspectj, in: Proc. of the
Workshop on Tools for Aspect-Oriented Software Development (with OOPSLA), 2002.

[60] A. Garrido, R. Johnson, Challenges of refactoring c programs, in: Proceedings of the

https://doi.org/10.1109/ISPSE.2000.913233
https://doi.org/10.1109/ISPSE.2000.913233
http://scg.unibe.ch/archive/phd/tichelaar-phd.pdf
http://scg.unibe.ch/archive/phd/tichelaar-phd.pdf
https://doi.org/10.1109/SCAM.2012.11
https://api.semanticscholar.org/CorpusID:14330253
https://api.semanticscholar.org/CorpusID:14330253
https://doi.org/10.1145/1599410.1599414
https://doi.org/10.1145/1599410.1599414
https://doi.org/10.1145/1599410.1599414
https://doi.org/10.1145/1596600.1596602
https://doi.org/10.1145/1596600.1596602
https://doi.org/10.1145/1596600.1596602
https://doi.org/10.1145/1596600.1596602
https://doi.org/10.1145/1411273.1411283
https://doi.org/10.1145/1411273.1411283
https://doi.org/10.1145/1411273.1411283
https://doi.org/10.1145/1411273.1411283
https://doi.org/10.1145/1411273.1411283

international workshop on Principles of software evolution, ACM, 2002, pp. 6–14.
[61] D. Spinellis, Global analysis and transformations in preprocessed languages, IEEE Transac-

tions on Software Engineering 29 (11) (2003) 1019–1030.
[62] A. Garrido, R. Johnson, Analyzing multiple configurations of a c program, in: Software

Maintenance, 2005. ICSM’05. Proceedings of the 21st IEEE International Conference on,
IEEE, 2005, pp. 379–388.

[63] A. Garrido, R. Johnson, Embracing the c preprocessor during refactoring, Journal of
Software: Evolution and Process 25 (12) (2013) 1285–1304.

[64] D. Spinellis, Cscout: A refactoring browser for c, Science of Computer Programming 75 (4)
(2010) 216–231.

[65] M. Ò Cinnéide, Automated application of design patterns : a refactoring approach, Ph.D.
thesis, Trinity College - School of Computer Science and Statistics (2001).

[66] H. Li, S. Thompson, Let’s make refactoring tools user-extensible!, in: Proceedings of the
fifth workshop on refactoring tools, 2012, pp. 32–39.

[67] M. Boshernitsan, S. L. Graham, ixj: Interactive source-to-source transformations for java,
in: OOPSLA Companion, 2004.

[68] M. Rizun, J.-C. Bach, S. Ducasse, Code transformation by direct transformation of asts, in:
International Workshop on Smalltalk Technologies (IWST), 2015.

[69] P. Kesseli, Semantic refactorings, Ph.D. thesis, University of Oxford (2018).
[70] M. Fokaefs, N. Tsantalis, E. Stroulia, A. Chatzigeorgiou, Identification and application of

Extract Class refactorings in object-oriented systems, Journal of Systems and Software
85 (10) (2012) 2241–2260. doi:10.1016/j.jss.2012.04.013.
URL https://linkinghub.elsevier.com/retrieve/pii/S0164121212001057

[71] A. C. Bibiano, W. K. G. Assuncao, D. Coutinho, K. Santos, V. Soares, R. Gheyi, A. Garcia,
B. Fonseca, M. Ribeiro, D. Oliveira, C. Barbosa, J. L. Marques, A. Oliveira, Look ahead!
revealing complete composite refactorings and their smelliness effects, in: International
Conference on Software Maintenance and Evolution (ICSME), 2021, pp. 298–308. doi:
10.1109/ICSME52107.2021.00033.

[72] A. Brito, A. Hora, M. Tulio Valente, Towards a catalog of composite refactorings, Journal of
Software: Evolution and Process (2023). doi:https://doi.org/10.1002/smr.2530.

[73] E. Abdullah AlOmar, State of refactoring adoption: Better understanding developer
perception of refactoring, in: 2023 IEEE/ACM 20th International Conference on Min-
ing Software Repositories (MSR), IEEE, Melbourne, Australia, 2023, pp. 635–639. doi:
10.1109/MSR59073.2023.00090.
URL https://ieeexplore.ieee.org/document/10174163/

[74] G. Bavota, A. Qusef, R. Oliveto, A. D. Lucia, D. Binkley, An empirical analysis of the
distribution of unit test smells and their impact on software maintenance, in: International
Conference on Software Maintenance (ICSM), IEEE, 2012, pp. 56–65. doi:10.1109/
ICSM.2012.6405253.

[75] S. R. Foster, W. G. Griswold, S. Lerner, Witchdoctor: Ide support for real-time auto-
completion of refactorings, in: Proceedings of the 34th International Conference on
Software Engineering, ICSE ’12, IEEE Press, Piscataway, NJ, USA, 2012, pp. 222–232.
URL http://dl.acm.org/citation.cfm?id=2337223.2337250

[76] M. Ò Cinnéide, D. Boyle, I. H. Moghadam, Automated refactoring for testability, in: 2011

https://linkinghub.elsevier.com/retrieve/pii/S0164121212001057
https://linkinghub.elsevier.com/retrieve/pii/S0164121212001057
https://doi.org/10.1016/j.jss.2012.04.013
https://linkinghub.elsevier.com/retrieve/pii/S0164121212001057
https://doi.org/10.1109/ICSME52107.2021.00033
https://doi.org/10.1109/ICSME52107.2021.00033
https://doi.org/https://doi.org/10.1002/smr.2530
https://ieeexplore.ieee.org/document/10174163/
https://ieeexplore.ieee.org/document/10174163/
https://doi.org/10.1109/MSR59073.2023.00090
https://doi.org/10.1109/MSR59073.2023.00090
https://ieeexplore.ieee.org/document/10174163/
https://doi.org/10.1109/ICSM.2012.6405253
https://doi.org/10.1109/ICSM.2012.6405253
http://dl.acm.org/citation.cfm?id=2337223.2337250
http://dl.acm.org/citation.cfm?id=2337223.2337250
http://dl.acm.org/citation.cfm?id=2337223.2337250

IEEE Fourth International Conference on Software Testing, Verification and Validation
Workshops, 2011, pp. 437–443. doi:10.1109/ICSTW.2011.23.

[77] Y. Kataoka, M. D. Ernst, W. G. Griswold, D. Notkin, Automated support for program
refactoring using invariants, in: Proceedings of the International Conference on Software
Maintenance, (Florence, Italy), 2001, pp. 736–743.

https://doi.org/10.1109/ICSTW.2011.23

A. Original list of refactorings
Original list of refactorings as in [5] in alphabetical order:

- Abstract Class Variable
- Abstract Instance Variable
- Add Class
- Add Class Variable
- Add Instance Variable
- Add Parameter to Method
- Convert Superclass to Sibling
- Convert Temporary to Instance Variable
- Create Accessors for Class Variable
- Create Accessors for Instance Variable
- Extract Code as Method
- Extract Code as Temporary
- Inline Call
- Inline Temporary
- Move Method to Component

- Move Temporary to Inner Scope
- Protect Instance Variable
- Push Up/Down Class Variable
- Push Up/Down Instance Variable
- Push Up/Down Method
- Remove Class
- Remove Class Variable
- Remove Instance Variable
- Remove Method
- Remove Parameter from Method
- Rename Class
- Rename Class Variable
- Rename Instance Variable
- RenameMethod
- Rename Temporary

B. Refactorings added in Legacy Pharo (prior to our work,
Pharo10)

- Abstract Variables
- Accessor Class
- AddMethod
- Category Regex
- Class Regex
- Copy Class
- Copy Package
- Create Accessors With Lazy Initialization For Variable
- Create Cascade
- Deprecate Class
- Deprecate Method
- Expand Referenced Pools
- Extract Method And Occurrences
- Extract Method To Component
- Extract SetUp Method And Occurrences
- Extract SetUp Method
- Find And Replace
- Find And Replace SetUp
- Generate EqualHash
- Generate PrintString
- Inline AllSenders

- Inline Method From Component

- Inline Parameter

- Merge Instance Variable Into Another

- Move Inst Var To Class

- Move Method To Class

- Move Method To Class Side

- Move Variable Definition

- Protect Instance Variable

- Protocol Regex

- Realize Class

- Remove All Senders

- Remove Class Keeping Subclasses

- Remove HierarchyMethod

- Remove Sender

- Rename Package

- Replace Method

- Source Regex

- Split Cascade

- Split Class

- Swap Method

C. Transformations added in Legacy Pharo (prior to our work,
Pharo10)

- Abstract Variables
- Add Accessors For Class
- Add Assignment
- Add Class
- Add Class Comment
- Add Message Send
- Add Method
- Add Method Comment
- Add Parameter
- Add Pragma
- Add Protocol
- Add Return Statement
- Add Subtree
- Add Temporary Variable
- Add Variable
- Add Variable Accessor
- Add Variable Accessor With Lazy Initialization
- Change Method Name
- Deprecate Class
- Deprecate Method
- Expand Referenced Pools
- Extract Method
- Extract To Temporary
- Inline Method
- Inline Temporary
- Merge Instance Variable Into Another
- Method Protocol
- Move Class
- Move Instance Variable To Class
- Move Method
- Move Method To Class

- Move Method To Class Side
- Move Temporary Variable Definition
- Protect Variable
- Pull Up Method
- Pull Up Variable
- Push Down Method
- Push Down Variable
- Realize Class
- Remove Assignment
- Remove Class
- Remove Direct Access To Variable
- Remove Hierarchy Method
- Remove Message Send
- Remove Method
- Remove Parameter
- Remove Pragma
- Remove Protocol
- Remove Return Statement
- Remove Subtree
- Remove Temporary Variable
- Remove Variable
- Rename And Deprecate Class
- Rename Class
- Rename Method
- Rename Package
- Rename Temporary Variable
- Rename Variable
- Replace Subtree
- Split Class
- Temporary To Instance Variable

D. Analysis of refactorings and their preconditions

Refactoring name

directly
defines

applicability
precondi-

tions

has indirect
applicability

precondi-
tions

directly
defines

behavior-
preserving
precondi-

tions

has indirect
behavior-

preserving
precondi-

tions

Abstract Class Variable References ✗ ✗ ✗ ✗

Abstract Instance Variable References ✓ ✓ ✗ ✗

Abstract Variables ✗ ✗ ✓ ✓

Add Class Variable ✓ ✓ ✓ ✓

Add Instance Variable ✓ ✓ ✓ ✓

Add Method ✓ ✓ ✓ ✓

Add Parameter ✓ ✓ ✗ ✓

Children To Siblings ✓ ✓ ✗ ✓

Copy Class ✓ ✓ ✗ ✓

Copy Package ✓ ✓ ✗ ✓

Create Cascade ✓ ✓ ✓ ✓

Deprecate Class ✓ ✓ ✗ ✗

Expand Referenced Pools ✗ ✗ ✓ ✓

Extract Method And Occurrences ✗ ✓ ✓ ✓

Extract Method To Component ✗ ✓ ✗ ✓

Extract Method ✓ ✓ ✓ ✓

Extract SetUp Method And Occurrences ✗ ✓ ✓ ✓

Extract SetUp Method ✓ ✓ ✓ ✓

Extract To Temporary Variable ✓ ✓ ✗ ✗

Inline All Senders ✓ ✓ ✗ ✓

Inline Method From Component ✓ ✓ ✓ ✓

Inline Method ✓ ✓ ✓ ✓

Inline Parameter ✓ ✓ ✓ ✓

Inline Temporary ✓ ✓ ✗ ✗

Insert New Class ✓ ✓ ✗ ✗

Merge Instance Variable Into Another ✓ ✓ ✗ ✗

Move Method To Class ✓ ✓ ✗ ✗

Move Method To Class Side ✓ ✓ ✓ ✓

Move Method ✓ ✓ ✓ ✓

Move Variable Definition ✓ ✓ ✗ ✗

Protect Instance Variable ✓ ✓ ✗ ✓

Pull-Up Class Variable ✓ ✓ ✓ ✓

Pull-Up Instance Variable ✓ ✓ ✓ ✓

Pull-Up Method ✓ ✓ ✓ ✓

Push Down Class Variable ✓ ✓ ✓ ✓

Push Down Instance Variable ✓ ✓ ✓ ✓

Push Down Method ✓ ✓ ✓ ✓

Remove All Senders ✗ ✓ ✓ ✓

Remove Class And Reparent Subclasses ✓ ✓ ✓ ✓

Remove Class Pushing State To Sub-
classes

✗ ✓ ✓ ✗

Remove Methods in Hierarchy ✓ ✓ ✗ ✓

Remove Method ✓ ✓ ✓ ✓

Remove Parameter ✓ ✓ ✗ ✓

Remove Instance Variable ✓ ✓ ✓ ✓

Remove Methods ✓ ✓ ✓ ✓

Remove Shared Variable ✓ ✓ ✓ ✓

Remove Sender ✓ ✓ ✓ ✓

Rename Argument Or Temporary ✓ ✓ ✗ ✗

Rename Instance Variable ✓ ✓ ✗ ✗

Rename Class ✓ ✓ ✗ ✗

Rename Method ✓ ✓ ✓ ✓

Rename Package ✓ ✓ ✗ ✗

Rename Shared Variable ✓ ✓ ✗ ✗

Split Cascade Message ✓ ✓ ✗ ✗

Split Class ✓ ✓ ✗ ✓

Temporary To Instance Variable ✓ ✓ ✓ ✗

Table 2: Analysis of preconditions in refactorings. Column one displays the refactoring name, column two shows a
check mark if a refactoring has directly defining applicability preconditions, and column three shows a
check mark if a refactoring has indirect applicability preconditions (through composition). Columns four
and five show direct and indirect behavior-preserving preconditions respectively.

	1 Introduction
	2 The need for a more flexible and versatile refactoring engine
	2.1 Definitions
	2.2 Different user needs
	2.3 Reuse of logic
	2.4 Research questions

	3 Legacy implementation
	3.1 The legacy Refactoring Browser architecture
	3.2 Reuse implementation: the case of ChangeMethodName
	3.3 Legacy precondition implementation
	3.4 Critical analysis of the legacy implementation

	4 New architecture and implementation
	4.1 Overview of the new architecture
	4.2 Polymorphic API
	4.3 Transformations and refactorings interplay
	4.4 Interaction drivers

	5 Evaluation
	5.1 Evaluation summary
	5.2 Reuse of precondition logic
	5.3 Reuse of transformation logic
	5.4 Composition of refactorings from transformations
	5.5 Transformations instead of program model primitives
	5.6 Extract Method Refactoring as an example of composition
	5.7 Towards first composite operators
	5.8 Reuse between two modes: scripting and interactive

	6 Discussion
	6.1 On the process
	6.2 On code readability

	7 Related work
	8 Conclusion
	A Original list of refactorings
	B Refactorings added in Legacy Pharo (prior to our work, Pharo10)
	C Transformations added in Legacy Pharo (prior to our work, Pharo10)
	D Analysis of refactorings and their preconditions

