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Abstract

In pure object-oriented languages, classes are objects, instances of other classestatledsedn the same
way as classes define the properties of their instances, metaclasses define the properties of classes. Itis therefore vel
natural to wish to reuse class properties, utilizing them amongst several classes. However this intnedackeds
composition problems.e., code fragments applied to one class may break when used on another class due to the
inheritance relationship between their respective metaclasses.

Numerous approaches have tried to solve metaclass composition problems, but they always resalttocan
manner of handling conflicting properties, alienating the meta-programmer. We propageran approach that
represents class properties@sts, groups of methods that act as a unit of reuse from which classes are composed.
Like all the other classes in the system, metaclasses are composed out of traits. This solution supports the reuse o
class properties, and thaiafeandautomaticcomposition based oexplicitconflict resolution. The paper discusses
traits and our solution, shows concrete examples implemented in the Smalltalk envir@gqueakand compares
our approach with existing models for composing class properties.
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1. Reusing class properties

In class-based object-oriented programming, classes are used as instance generators and to implemel
the behavior of objects. In object-oriented languages such as CLOS, Smalltalk or Ruby, classes themselves
are first-class objects, and instances of the so-catlethclasse§l-5]. In the same way that classes
define the properties for their instances (objects), metaclasses implement the properties for their instances
(classes). Examples of class propertiesZingleton Final, Abstractness.. [6].

Treating classes as first-class objects and having metaclasses is important for two main reasons:

e Uniformity and control In a pure object-oriented language it is natural for classes to be instances
of metaclasses. The uniformity defines metaclasses as the natural pseeitiyand control object
creation and other class behavior.

e Reuse of class behavidBince a metaclass is just like any other class, class behavior is reused and
conventional reuse and decomposition techniques are applied to the metag@hddence the same
techniques that are available for base classes (inheritance and overriding of methods, for example) are
applicable at the meta level.

When a language has metaclasses, those metaclassesiogplibie or explicit With implicit meta-
classes the programmer cannot specify the metaclass for €Jaés such, implicit metaclasses suc-
cessfully address the goal of “uniformity and control”, but they fall short for achieving “reuse of class
behavior”.Explicit metaclasseavoid this limitation because the programmer can explicitly state from
which metaclass his or her classes are instaficey.

Languages without explicit metaclasses suffer from the fact that class properties cannot be reused
across classes, and that they cannot be combined. For example, every time one needs a class with th
Singleton behavior, the same code needs to be implemented over and over again. With explicit metaclasses
the singleton class property can be factored out to a Singleton metaclass, which can then be used to
instantiate classes that exhibit the Singleton behavior. However languages with explicit metaclasses
suffer from the fact that composition can besafe[2,8] or are based onon-uniformmechanisms, i.e.,
the meta-programmer cannot use the same composition mechanism used for programming at the base
level than for programming at the meta level. This is clearly a problem, since metaclasses originate from
the wish of uniformity in OOP (see Section 2).

To address these problems we propose to usgé¢heral-purposebject-oriented language feature
traits [9]. Traits are composable units of behavior that close the large conceptual gap between a sin-
gle method and a complete class. Our approach models class properties with traits, and uses trait
composition to safely combine and reuse properties in metaclasses. Consequently, metaclass com-
position (like class composition) enjoys all the conceptual benefits of the traits composition model.
In particular, composition conflicts that occur when composing two properties that do not quite fit
together are detected automatically and the conflict resolutiexpdicit and undercontrol of the
composing entity.

As we will show in the rest of the paper, our solution supports the reuse of class properties, their safe
andautomaticcomposition withexplicitconflict resolution, and the usage of the same mechanism (traits)
for both the base and metalevel. As safety is a broad term we follow the definition of safe metaclass
composition as defined [10] and that we present in the following section. Now we start by identifying
precisely.
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2. Explicit metaclass problems

Having explicit metaclasses promotes reuse but introduces several problems summarized in this section
and detailed in the rest of the paper.

Unsafe compositiarBome approaches sacrifice the compatibility between the class and the metaclass
level [2,8]. Unsafe metaclass composition means that code fragments applied to a class may break when
used on another one due to the inheritance relationship between the metaclasses of the classes involve
(See Section 3).

Ad-hoc and non-uniformityThere are some approaches that are specifically designed to avoid the
compatibility problems raised in the first point. Their solutions, however, relgddhoccomposition
mechanisms that are based on automatic code generation and dynamically changing the meta-metaclas
[10]. Not only does this make it hard to understand the resulting code, it also leads to problems in
case of conflicting properties and results in hierarchies that are fragile with respect to changes. Note
that MetaclassTalk by using mixin composition at the metalevel is the only solution that solves this
problem[11].

The solutions are not satisfactory from a conceptual point of view either, because the meta level (or
meta meta level) does not employ object-oriented techniques (such as inheritance or instantiation) but
ad-hocmechanisms only applicable for metaclass composition. This breaks the fundamental idea of
reflective programming that uses theailablefeatures of a language to define and control the behavior
of the language itse[].

Limited compositionOther approaches used in the specific context of metaobjectshase of re-
sponsibility[12] or composite metaobjecfd3] to compose metaobjects. The first approach does not
provide full control over the composition. The second approach forces the programmer to develop spe-
cific metaobjects to compose others, even when the reuse of these composite metaobjects is unclear.

The ideal metaclass composition solution would make compositiautmenatic However, as we will
discuss in Section 11 a simple solution does not exist in a context where new properties can be defined
and composed, and where their semantics can severely conflict. So the solution is a mechanism that is
both safe and uniform, i.e., one that does not require the developer to make a paradigm shift and where
the development of base-level applications and meta-level applications is the same.

3. Qualifying composition

Offering explicit metaclasses is a way to reuse class properties but it also opens the doetdor
class compatibility problem8]. This section defines criteria by which approaches that solve metaclass
composition problems can be characterized and distinguished. We start by listing two criteria that were
already identified if10] (upward downwardcompatibility andper class property and then introduce
three new ones that were not previously considepedperty compositionproperty application and
control of the compositignbut that qualify the problem in a more detailed way.

Upward compatibility The fact that classes are instances of other classes which define their behavior
introduces hidden dependencies in the inheritance relationships between the classes and their metaclasse
Careless inheritance at one level (be it the class or metaclass level), can break inter-level communication.
Bouragadi et al[10] refined the metaclass compatibility problems in two precise cases nameudd
anddownwardcompatibility.
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Fig. 1. Left: Upward compatibility—dependencies on the base level need to be addressed at the meta level. Right: Downward
compatibility—dependencies on the meta level need to be addressed at the base level.

Let B be a subclass of MetaB the metaclass of Bnd MetaA the metaclass of@pward compatibility
is ensured for MetaB and MetaA: iéfvery possible message that does not lead to an error for any instance
of A, will not lead to an error for any instance of.B

Fig. 1 left illustrates upward compatibility. When an instanceBofeceives the messagéoo, the
message-bar is sent toB. The composition ofA and B is upward compatible, iB understands the
message-bar, i.e., MetaB should implement it or somehow inherit it froltetaA.

Downward compatibilityLet MetaB be a subclass of the metaclass Meldwnward compatibility
is ensured for two classes B, instance of MetaB apidgtance of MetaA iffevery possible message that
does not lead to an error for Avill not lead to an error for B

Downward compatibility is illustrated iRig. 1right. WhenB receives the messagéoo, the message
baris sentto a newly created instancé&oT he composition ofMetaA andMetaB is downward compatible,
if that new instance oB understands the messagsr, i.e., B should implement it or somehow inherit
it from A.

Definition. Metaclass composition safewhen it supports downward and upward compatibility.

Per class propertyDifferent metaclass properties can be assigned to different classes in an inheritance
hierarchy. Some systems such as NeoClasstalk and MetaClasstalk allow one to assign a property to &
singleclass without it being inherited by its subclasgEs,11] The authors of NeoClasstalk and Meta-
Classtalk, Bouraqadi et al. defineldss property propagatioas follows: “A property assigned to a class
is automatically propagated to its subclass”. We name this criperi@lass propertyFor example, it is
possible to define that a class is abstract and its subclasses are not abstract and this without having tc
redefine the property at the subclasses level.

Property compositionrOne of the main motivations for having explicit metaclasseséinbine class
properties as shown irFig. 2, so that one class can, for example, be both a Singleton and Final. Hence a
mechanism is needed that supports such property composition. This can be a general-purpose languag
mechanism such as multiple inheritarj8e4], mixin composition[11], chain of responsibility12], or
anad-hocmechanism such as generation of new classes and mdtt@jds

Property application Property application is the mechanism by which the composed properties are
applied to classes. As shown ig. 2 we distinguish thecompositionof properties from thapplica-
tion of a property to a specific class because some approaches employ different techniques for these
two purposes. As an example, SOM uses ordinary multiple inheritance to compose class properties
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Fig. 2. Property Composition and Property Application: two different stages in the process of reusing class properties.

but it employs a combination of multiple inheritance and code generation to apply a class property to
aclass.

Control. The mechanism used to apply and combine class properties denpligt or explicit We
call the mechanisnmplicit if the system automatically combines or applies the class properties and
implicitly resolves conflicts in a way that may or may not be what the programmer intends. We call
the mechanisnexplicitif the system gives the programmer explicit control over how the properties are
combined and applied. In particular, the programmer should &egpicit controlover how conflicts are
resolved. For many approaches, this is not the case because the composition of properties is based on
chain of responsibility which does not provide full control of the composition.

4. Traits in a Nutshell

Traits [9] are an extension of single inheritance with a similar purpose as mixins but avoiding their
problems. Traits are essentially groups of methods that serve as building blocks for classes and are
primitive units of code reuse. As such, they allow one to factor out common behavior and form an
intermediate level of abstraction between single methods and complete classes. A trait comsigidexd
methodghat implement its behavior, and mquired methodshat parameterize the provided behavior.
Traits cannot specify any instance variables, and the methods provided by traits never directly access
instance variables. Instead, required methods can be mapped to state when the trait is used by a class.

With traits, the behavior of a class is specified as the composition of traits andgboenaethodshat
are implemented at the level of the class. These glue methods connect the traits together and can serve a
accessors for the necessary state. The semantics of such a class is defined by the following three rules:

e Class methods take precedence over trait methbhlis allows the glue methods defined in the class
to override equally named methods provided by the traits.

e Flattening property A non-overridden method in a trait has the same semantics as the same method
implemented in the class.
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e Composition order is irrelevanill the traits have the same precedence, and hence conflicting trait
methods must be explicitly disambiguated.

Because the composition order is irrelevartoaflictarises if we combine two or more traits that provide
identically named methods that do not originate from the same trait. Traits enforce explicit resolution of
conflicts by implementing a glue method at the level of the class that overrides the conflicting methods,
or by method exclusignwhich allows one to exclude the conflicting method from all but one trait. In
addition traits allonmethod aliasingThe programmer can introduce an additional name for a method
provided by a trait to obtain access to a method that would otherwise be unreachable, for example, because
it has been overridden. Traits can be composed from subtraits. The composition semantics is the same a:
explained above with the only difference being that the composite trait plays the role of the class.

5. Using traits to reuse and compose class properties

Our approach is based on using traits to compose and reuse class properties within the traditional
parallel inheritance schema proposed by Smalltalk Ege 8 left). Therefore our approach is safe,
i.e., it supports downward and upward compatibility. But on top of that it promotes the reuse of class
properties. Composition and application of class properties are based on trait composition, which gives
the programmer explicit control in a uniform manner.

We represent class properties as traits, which are then used to compose metaclasses as shown i
Fig. 3. Since traits have been fully implemented in the open-source Squeak Smalltalk envirgbhent
we implemented all the examples shown here in Squeak. During our refactoring of Squeak code we
identified the following class propertie¥Abstract, TSingleton, TRememberlnstances, TCreator, and
TFinal which we explain below. We start with a simple example illustrating how a class is composed by
reusing a class property, then we look how the traditi@wlean hierarchy[6,10] is re-expressed with
traits and finally Section 6 shows that traits provide a good basis to engineer the meta level.

5.1. Singleton

To represent the fact that a class is a Singleton, we define th& &iagleton. This trait defines the
following methodsdefault which returns the default instaneew which raises an error, aneset which
invalidates the current singleton instance. It requikag:New which returns a newly created instarice,
and the methodsiquelnstance anduniquelnstance:. Note that these accessors methods are needed because
traits cannot contain instance variablegy. 4, left, shows the traiT Singleton.

Trait named: #TSingleton uses: {} category: ‘Traits-Example’
TSingleton >>default
self uniquelnstance isNil
ifTrue: [self uniquelnstance: self basicNew].
1 self uniquelnstance

1 Using basicNew is the traditional way to implement Singleton in Smalltalk when we want to forbid the use akthe
method[15]. basicNew allocates objects without initializing them. It is a Smalltalk idionméger override methods starting with
‘basic’ names.
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Fig. 3. Metaclasses are composed from traits representing class properties. Traits supports upward and downward compatibility.

TSingleton>>>new

self error: “You should use default’
TSingleton>>reset

self uniquelnstance: nil

As an example, suppose that we want to specify that a certain \8lels%rver is a Singleton. First

of all we define the clas8vebServer in the traditional Smalltalk way as shown Kig. 4 Then we
specify at the metaclass level, i.e., in the cld&dServer class, that the class is a Singleton by speci-
fying that the class is composed from the traflingleton. The metaclass defines an instance variable
uniquelnstance to maintain the singleton instance. It also defines two glue metigigselnstance and
uniquelnstance: as accessors methods for the instance variabifuelnstance. These two glue meth-
ods fulfill the required methods with the same name of the W&ihgleton. Note that the required
methodbasicNew is provided by the clas8ehavior, of which WebServer class, is an indirect subclass (see
Fig. 4, right).

5.2. The Boolean hierarchy

The SmalltalkBoolean hierarchy consists of the abstract cl&lean, that has two subclass@sue
and False that are singleton classes. Traits allow the boolean hierarchy to be refactored as shown in
Fig. 5. Note that the refactored solution is backwards compatible with the idioms existing in the cur-
rent Smalltalk implementation and literatujEs]. So we assume that a methbskicNew is defined
on the classBehavior that can always be invoked to allocate instances and that should not be
overridden.

Boolean The classBoolean is an abstractlass, SO we compose its cla®olean class from the trait
TAbstract.

Trait named: #TAbstract uses: {} category: ‘Traits-Example’
TAbstract>new

self error: ‘Abstract class. You cannot create instances’
TAbstract>>new: size

self error: '‘Abstract class. You cannot create instances’

False and TrueThe classeBalse andTrue are Singletons so their clasdesise class andTrue class are
composed from the traitSingleton which is then reused in the two classes.
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Object subclass: #WebServer
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: ‘Traits-Example'

WebServer class uses: {TSingleton }
instanceVariableNames: 'uniquelnstance’

WebServer class>>uniquelnstance
1 uniguelnstance

WebServer class>>uniquelnstance: anObject
uniguelnstance := anObject
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Fig. 4. Left. The traitTSingleton. Right. The clas®Behavior, the root of metaclasses in Smalltalk, is composed from the trait

TCreator and as such provides the methodicNew.

Boolean class
False class

Behavior

TCreator
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Boolean class

f True class
' 7y TAbstract
i TSingleton !
: :
Boolean
ooea Y X False class |
1
! I TSingleton
: new basicNew
default uniquelnstance
reset uniquelnstance:

Fig. 5. Left: Boolean hierarchy refactored with traits. Right: The complete picture f&dbiean hierarchy solution.

As mentioned above, the trdiSingleton requires the methodssicNew, uniquelnstance, anduniqueln-
stance:. Therefore the clag&alse class (resp.True class) has to define an instance variabléquelnstance
and the two associate accessors methodgielnstance anduniquelnstance:. Note that the methoda-
sicNew does not have to be redefined locally in s False or True class as it is inherited ultimately
from the clas®ehavior, the inheritance root of the metaclasf@s(seeFig. 5right). This example shows
that class properties are reused over different classes and that metaclasses are composed from differer

properties.

False class
uses:{TSingleton}
instanceVariableNames: ‘uniquelnstance’



S. Ducasse et al. Computer Languages, Systems & Structuddg2005) 143—-164 151

False class>>uniquelnstance
1 uniquelnstance

False class>>uniquelnstance: anObject
uniquelnstance := anObject

6. Engineering the meta level

So far we presented simple examples that show how traits are well-suited to model class properties,
which can then be combined or applied to arbitrary classes. In this section, we show that traits also allow
more fine-grained architectures of class properties. We also want to stress that the techniques used her
at the meta level are exactly the same as those used at the base level. As such, traits provide a uniform
model.

Since many of these properties are related to instance creation, and we perform our experiments in
Smalltalk, we first clarify the basic instance creation concept of Smalltalk. In Smalltalk, creation of a
new instance involves two different methods, namelyicNew and new.2 The methodbasicNew is a
low-level primitive which simply allocates a new instance of the receiver class. The methaiands
at a conceptually higher level and its purpose is to return a usable instance of the receiver class. For
most classesiew therefore calldasicNew to obtain a new instance and then initializes it with reasonable
default values.

6.1. Class properties

Fig. 6gives an overview of the class properties we identified (see Section 10 for a deeper discussion).
Note that all of these properties are traits, and that they are therefore composed using trait composition.
Allocation As indicated by its name, the tr&illocator provides the behavior to allocate new instances.
In our case, this is the standard SmalltedkicNew method, but of course we could also create another
trait with an alternative allocation strategy.
Instantiation The traitsT Instantiator andT InitInstantiator are two class properties for instance creation.
The traitTInstantiator uses the traiTAllocator and implements the methaew in the traditional Smalltalk
manner, which means that it does not initialize the newly created instance. THethdiistantiator uses
the traitTAllocator. However, as suggested by its name, it actually initializes the newly created instance
by calling the methochitialize before the instance is returned.

TlInstantiator>>new
P self basicNew
Tlnitlnstantiator>>new
Pself basicNew initialize

Note that the methoditialize is called on the new instance, which means that the requiremenitfalize
in the traitTInitInstantiatior is actually a requirement for the instance side.

Remembering instanceBhe traitTRememberinstances represents an instance creation property that
remembers all the instances created by a class. It uses thElidihstantiator and aliases the

2 Note that there are also the methadsicNew: andnew:, which are used to create objects with indexed fields (i.e., arrays).
For sake of simplicity, we do not take these methods into account here.
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Fig. 6. A fine-grained architecture of class properties based on traits.

methodnew of the traitsTInitInstantiator which is then available asonRememberingNew. This aliasing

allows one to access the originedw method of the traifTInitInstantiator while leaving the option to
override the methodew in the traitTinitInstantiator. It requires the method@memberedinstances and
rememberedInstances: t0 access a collection storing the created instances. Then, itimplements the methods
new, rememberlnstance:, instances, andreset as follows:

TRememberlnstances>>new

1 self rememberlnstance: self nonRememberingNew
TRememberlnstances>>>rememberlnstance: anObject

1 self instances add: anObject
TRememberlnstances>>instances

self rememberedInstances ifNil: [self reset].

1 self rememberedInstances
TRememberlnstances>>reset

self rememberedInstances: ldentitySet new

Note that another implementation could be to define the metlegsandrememberedinstances: as trait
requirements. This would leave the class with the option to use other implementations for keeping track
of the created instances.

Default and SingletorT he traitsT Default andTSingleton implement the class properties corresponding
to the Default Instance and Singleton design patterns. Whereas a Singleton can only have one single
instance, a class adhering to the Default Instance pattern has one default instance but can also have a
arbitrary number of other instances.

Since these two properties are very similar, we factored out the common code into thétsedtIn-
stance. To get the basic instantiation behavior, this trait uses the profi@niyinstantiator and again
applies an alias to ensure that the methadis available under the nangearedNew. Then, itimplements
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the methodseset andsharedInstance as follows:

TSharedInstance>>reset
self directSharedInstance: self sharedNew.
TSharedInstance>>>sharedInstance
self directSharedlInstance ifNil: [self reset].
1 self directSharedInstance.

The propertyT Default is then defined as an extension of the ti@baredInstance that simply introduces
the aliasdefault for the methodharedinstance. Similarly, the propertyTSingleton introduces the alias
uniquelnstance for the same method. In additiomSingleton overrides the methogew so that it cannot
be used to create a new instance:

TSingleton>>>new
self error: "Cannot create new instances of a Singleton.
Use uniquelnstance instead'.

Another useful class property popularized by Java is the class propery which ensures that a class
cannot have subclasses. In Smalltalk, this is achieved by overriding the messdge:.2 Note that

unlike all the other properties presented in this secfidtipal is not concerned with instance creation

and therefore is entirely independent of the other properties. In Section 10 we discuss the relevance of
the class properties we presented.

6.2. Advantages for the programmer

Having an architecture of class properties has many advantages for a programmer. Whenever a new
class needs to be created, a choice can be made regarding the creation of instances, and whether or nc
the class should be final. Besides having the obvious advantage of avoiding code duplication, it also
makes the design much more explicit and therefore facilitates understandability of the class. The level
of abstraction of the trait design is at the right level: the traits correspond to the class properties, and the
class properties can be combined into metaclasses.

In addition, factoring out the properties in such a fine-grained way still gives the user a lot of control
about some crucial parts of the system. Suppose for example that at first we would have decided to use
the traitTInitInstantiator as the basis for all the other instance creation properties. If later on, we would
decide to comply to the Smalltalk standard to create uninitialized instances by default, then we could
make this change without modifying any of the involved methods. We would just need to make sure that
the traitsTRememberlnstances andTSharedInstance use the traif Instantiator instead ofT InitInstantiator.

Explicit composition control poweBYy providing several different properties that are all related to
instance creation behavior, this example also shows why it is so important to have explicit control over
composition and application of class properties. In our example, there are many different properties which
essentially introduce variants of the methed, and therefore, combining these properties typically leads
to conflicts that can only be resolved is@manticallycorrect manner if the user has explicit control over
the composition. In case of traits, this is ensured by allowing partially ordered compositions, exclusions,
and aliases.

3In reality, the method to create a subclass takes more arguments but this is not relevant here.
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As an example, imagine that we want to combine the propertiasault and TRememberlnstances
to get a property that allows both a default instance and also remembers all its instances. With our
trait-based approach, we do this by creating a new WBkfaultAndRememberinstances which uses
TRememberlnstances and T Default as follows:

Trait named: TDefaultAndRememberlnstances
uses:{ TDefault @{# defaultReset — # reset}.
TRememberlnstances — {#new}
@ {# storeNew— #new.
#storeReset—# reset}}

TDefaultAndRememberlnstances>>>sharedNew
Pself storeNew

TDefaultAndRememberlnstances>>>reset
self storeReset.
self defaultReset

Since both traits provide a methedw, we exclude this method from the trailRememberlnstances

when it is composed. As a consequence the trait contains:thenethod provided by Default, which
usessharedNew to create a new instance. Since we want to make sure that each new instance is also
stored, we overridsharedNew so that it callstoreNew, which is an alias for theew method provided by
TRememberlnstances.

Because the methadset is also provided by both traits, we use aliasing to make sure that we can
access the conflicting methods. Then, we resolve the conflict by overriding the metha that it first
removes the stored instances (by callingreReset) and then creates a new default instance (by calling
defaultReset). Note that the newly created instance will be remembered as the default instance and will
also be stored in the collection with all the instances of the class.

7. A new kernel

In this section we present briefly the key implementation aspects of the new Smalltalk kernel that is
bootstrapped with trait§.ig. 7shows the new class hierarchy that we obtain. As the new kernel with traits
is an extension of the traditional Smalltalk kernel, we get the traditional cla&gesior, ClassDescription,
Metaclass, andClass which now deal with the fact that a class may be composed of traits.

To model traits we then follow the previous design of the kernel and mimic the cl&skegor,
ClassDescription andClass. Three classeS$raitBehavior, TraitDescription, andTrait are introducedTrait
represents atrait and is applied to both the class and instance side. In addition tBehaléss root of the
instantiation graph, uses two important traif&istantiator andTInitInstantiator as presented in previous
section. The clasBehavior in Smalltalk also defines information about the state and behavior related to
superclass and instance variables (format). As this is not needed for traits, we introduce a new abstract
superclas®ureBehavior, which factors out the common code betwézhavior andTraitBehavior.

Some traitsThe traits we identified and used in this new kernel are not really remarkable in the sense
of new MOP entries. In fact we mainly use traits to reuse code between the clasisesscription and
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|TraitBehavior| | Behavior |
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| Trait || ClassTrait | | Class || Metaclass‘

Fig. 7. Hierarchy of the new Smalltalk kernel supporting traits.

ClassDescription for the following reasons.

e The new kernel is based on the traditional Smalltalk kernel, which uses inheritance as the primary reuse
mechanism. A lot of polymorphic methods are used among the cl&ss&gor andClassDescription,
and the classeSlass andMetaclass. As a consequence, there is not much need for introducing traits to
share this functionality.

¢ In the traditional Smalltalk kernel, the claBshavior only defines the minimal state and behavior to
support classes as run-time entities. For exanialeyvior does not define the notion of named instance
variables but just knows the format of the instances the class will create in terms of the number and kind
of instance variable[F]. Support for named instance variables is (amongst other things) implemented
by ClassDescription, a subclass of the claghavior. Because of this inheritance structure, some code
that is implemented ilassDescription (and uses state defined@hssDescription) cannot and should
not be reused by pushing it up BureBehavior. Instead, we use traits to share behavior between
ClassDescription and TraitDescription.

The classPureBehavior uses the following traits:

TBasicCompile supports the compilation and decompilation of methods in a class.
TTestingSelector supports the testing of selectors of methods (eagl)nderstand:, ...).
TCompiledMethodAccess supports the access into the method dictionary and source code access.
TMethodlterating supports the iteration over compiled methods.

The classBehavior uses the following traits:

e Tlnstantiator and TlnitInstantiator implement the creation of objects as described in the previous
section.

e TFamilyAccess supports the access and enumeration of superclasses and subclasses.

e TlnstanceEnumerator supports the enumeration of instances of the class.

e TMethodTesting supports the querying of methods.

The traits resulting from the decomposition of the clagaesBehavior andBehavior are not currently
used by any other classes. In contrast, the following traits are used to share behavior between the two
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Table 1
Comparison of the models from Section 8 on how they handle the composition problems described in Section 2

Up Down Perclass Application Composition Control
Smalltalk Yes Yes No No No No
CLOS Yes Yes No Multiple inheritance Multiple inheritance  Explieitinearization
SOM Yes No No Multiple inheritance-  Multiple inheritance  Implicit
code generation
NeoClasstalk Yes Yes Yes Inheritanee Inheritance+ Implicit
generation code generation
MetaClassTalk  Yes Yes Yes Inheritance Mixin composition Mixin linearization
Traits Yes Yes No Trait composition Trait composition Explicit

classedraitDescription andClassDescription.

TClassComment supports the management of comments.

TMethodDictionaryManagement supports the management of methods categories.
TOrganization supports how methods are sorted into method categories.

TCodeReformatting supports reformatting of source code.

TCodeFileOut supports filing-out (saving) of classes.

TBehaviorCopy supports the copying of methods and their organization.
TOrganizedCompilation supports the compilation of methods within the context of categories.

It should be noted that in the Smalltalk metaclass kernel, identifying traits that can be reused indepen-
dently of each others is difficult because the behavior of the kernel is based on inheritance and the code
was tightly coupled.

8. Related work

This section shows how the main approaches that support explicit metaclasses address the problem:
described in Section 2. We also discuss the solution offered by Smalltalk (although it has implicit meta-
classes) since it forms the basis for the NeoClasstalk solution and our own solatid& 1summarizes
the comparison of these approaches. Note that the table shows the influence of the CLOS approach base
on multiple inheritance to support metaclass composition in SOM.

8.1. Metaclass composition

8.1.1. Smalltalk

In Smalltalk (and more recently in Ruby), metaclassesimmicit and createcutomaticallywhen
a class is createfl’]. Each class is the sole instance of its associated metaclass. This way the two
hierarchies are parallel (sé&. 8left). Hence the architecture is safe as it addresses compatibility issues
but completely prevents class property reuse between several hierarchies.
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Fig. 8. Left: Smalltalk addresses compatibility issues by preventing reuse using implicit metaclasses and parallel hierarchies.
Right: By default CLOS addresses compatibility issues by preventing subclasses to have different metaclasses than their super-
classes.

8.1.2. CLOS

CLOS'’s approach could be summarized as “do it yourself’. Indeed by default in CLOS, a class and
its subclasses must be instances of the same metaclass, prohibiting classes in the same hierarchy fror
having different class properties. For examplekig. 8right, classB has by default the same metaclass
as its superclass, and this cannot be changed. So classways has the same class properties as class
A. Note that since CLOS has explicit metaclasses, multiple inheritance can be used for composing class
properties. For example, in the context described-lyy 2 it is possible to use multiple inheritance
to explicitly combine the two propertigsnal andSingleton expressed as metaclasses into a new class
SingletonFinal. Note that such an implementation suffers from the same problems as multiple inheritance
based on linearization occurring at the base |1€1/8].

The general CLOS rule that a class and its subclasses must be instances of the same metaclass can |
circumvented using CLOS’s metaobject protocol (MOP). Indeed, the generic fungliite-superclass
[3] offers a meta-programmer the possibility to specify that a class and its subclasses can be instances
of different classes. However, this comes at a very high price because the CLOS MOP does not provide
predefined strategies for avoiding compatibility problems or for dealing with possible conflicts. Hence
the semantics of the composition has to be implemented manually, a far from trivial undertaking.

This means that by default CLOS is upward and downward compatible but it prevents usage of different
metaclasses within an inheritance hierarchy and reuse of class properties. Both the composition of class
properties and the application of properties are done with multiple inheritance. The control of the com-
position is explicit, because the user has to use multiple inheritance to create a new metaclass. However,
since multiple inheritance in CLOS uses implicit linearization, the well-known problems associated with
this form of conflict resolution also apply to the meta |leMdd].

8.1.3. SOM

The solution proposed by SOM (System Object Modg])is based on the automatic generation of
derived metaclassethat inherit multiply from the metaclasses to compose class properties. When at
compile time a class is specified to be an instance of a certain metaclass, SOM automatically determines
whether upward compatibility is ensured and if necessary creates a derived metadass9 laft, the
classB (originally an instance oMetaB), inheriting from classA (instance ofMetaA) finally becomes
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Fig. 9. Left: SOM supports upward compatibility by automatically deriving hew metaclasses and changing the class of the
inheriting classB. Right: SOM downward compatibility failure example.

an instance of a derived metaclass inheriting fidistaA and MetaB. Note that SOM ensures that the
existing metaclasisletaB takes precedence ovigietaA in case of multiple inheritance ambiguities (since
B is a subclass of).

While SOM supports upward compatibility as shownFig. 9 left, it does not support downward
compatibility [10] as shown inFig. 9 right. When the clas8 receives the-foo message, a run-time
error will occur because its instances do not understanddiranessage. However, in SOM, contrary to
CLOS, two distinct classes need not have the same metaclass. But as in CLOS, the composition of class
properties is based on multiple inheritance. The application of a class property is done by a combination of
multiple inheritance and automatic class generation. This happens at compile time, and the programmer
has no explicit control over how possible conflicts are resolved.

8.1.4. NeoClasstalk

NeoClasstalk’s approach is interesting since it supports both downward and upward compatibility and
enables class property reuse between different hierargttieks7,18] NeoClasstalk uses two techniques
to accomplish thisdynamic changef classes and the composition of metaclassesdole generation
It generalizes the parallel inheritance solution of Smalltalk by enabling class properties reuse, but it also
introduces some problems of its own that we discuss in detail after explaining the basic principles.

NeoClasstalk allows properties to be assigned to claBfgpsl0shows what happens when assigning a
property toMeta B. B inherits from clas# and is an instance of the clageta B before the new property
is assigned tdleta B. When assigning the property, the system automatically creates a new metaclass
Property m + Meta B (called aproperty metaclags which inherits from the metacladdeta B and
defines the property code. It thenanges the clas# B to be that newly created metaclass. NeoClasstalk
supports also per class property, i.e., a property added to a class does not get automatically propagated t«
its subclasses.

To be able to reuse the property classes, NeoClasstalk stores the class properties in strings on methods c
the so-calledneta-metaclasse¥$he actual metaclasses are then generated from these strings, as shown
for our example inFig. 10 For example, thé@roperty m represented by a meta—metaclass is used to
generate a new metaclass nameeberty m + Meta B from the metaclaskleta B and theProperty m.
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Fig. 10. Assigning the property to classMeta B and property: to the clas$/eta A in NeoClasstalk. The light grey area denotes
the metaclass area. The dark grey area is the realm of the class properties.

Besides the intrinsic complexity of NeoClasstalk’s approach, it has the following drawbacks:

8.1.5. Dynamic class creation and dynamic change of class

The approach relies on the dynamic creation of classes and the dynamic changing of classes. It induces
a complex management of meta-metaclass changes that should be propagated to the generated instance
Moreover as programming at the meta metalevel is based on manipulating the strings that represent bodies
of methods of metaclasses, itis not the same as programming at the metaclass or the base level. Basically
despite the name, the property metaclasses are not really at the meta-metaclass level, but merely storag
holders for strings. The relation between the meta-metaclass level and the metaclass level is therefore no
instantiation, as one would expect, but code generation. This breaks the uniformity of the model.

8.1.6. Ad-hoc and implicit composition

Property metaclasses are composed by code generation and applied implicitly by defining them in an
inheritance chain. The composition is based on the assumption that a metaclass is designed to be plugget
in this inheritance chain and that other composed behavior can be reached via super invocations. The
composite metaclass has only limited control over the composed behavior as it can only invoke overridden
behavior but does not have the full composition control.

As a summary, NeoClasstalk provides both downward and upward compatibility, and it allows one to
assign class properties on a per-class basis. The composition of class properties is implicit and based or
code generation and chain of responsibility. The application of class properties is based on dynamic class
changes and code generation.

8.1.7. MetaclassTalk
MetaclassTalk follows the architecture of NeoClasstalk by offering compatibility and property meta-
classes. MetaclassTalk uses mixin composition to compose metaclass prdpéitigéhis experiment
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makes MetaclassTalk the closest model to our own approach as it supports both downward and upward
compatibility while allowing the reuse of class properties. However in MetaclassTalk, property compo-
sition is based on mixin linearization. As such it has the same problems as the ones we prgent in

the composite entities do not have the full control of the composition, and the glue code is spread over
multiple classes. These problems are solved by traits.

8.2. Metaobjects

Other approaches such as CodA], Moostrapg12], Iguana/J20] support the composition and reuse
of metaobjects. Such a composition is often based on chain of responditiffjtyi.e., a metaobject is
designed to be composed in a chain of metaobjects by invoking the overridden functionality. The problem
with chain of responsibility is that it forces all the metaobjects to follow a certain architecture. It more
importantly gives the composing metaobject only a very limited control over the composition: it can
invoke the rest or do nothing. In contrast, traits composition is automatic when there is no conflict, and
when conflicts arise, the composing metaclass has complete control over all the composed class properties

The authors of Guararja3] and Refle21], introducecomposite metaobjegtise., a metaobject that
define the composition semantics of several metobjects. This approach works well for coarse—grained
composition, such as for making changes to the message passing semantics (broadcast, concurrent dis
patch, or remote invocations). However, it is too heavyweight to compose class properties, since it would
force the developer to define an explicitmposite metaclagsr all simple conflicts whose reuse is even
questionable.

CodA[19] structures the meta-level architecture around several metaobjects responsible for the differ-
ent actions. However it raises the issue of compatibility between all the metaobjects associated to a given
object. The solution is to manually define a semantically coherent configuration of metaobjects imple-
menting the desired semantid®]. This solution shows again that there is no magic and that composing
operations with conflicting semantics cannot be achieved in an automatic fashion.

9. Advantages and disadvantages

AdvantagesTraits support the decomposition of class properties as reusable units of behavior. Since
metaclasses are composed of traits and the model is based on the parallel hierarchy of Smalltalk, it is
upward and downward compatible and supports the reuse of class properties across different hierarchies

In addition the proposed model is uniform with respect to the concepts used at the base level and
the meta level (like CLOS). Both levels use the same concepts (traits and inheritance). Furthermore, the
model is simple, and there is no need for on-the-fly code generation (as in SOM or NeoClasstalk) or for
dynamic changes to classes (as in NeoClasstalk).

Class properties can be composed of traits that represent those properties. The application of the
properties to an actual metaclass is accomplished by using the appropriate composite trait in the metaclass
definition. The composing metaclass ltasnpletecontrol of the compaosition, and possible conflicts are
resolvedexplicitly when the property is applied to a metaclass.

Having explicit control over the composition is especially important because it allows a programmer to
freely adapt the behavior of the composite metaclass and to compose class properties that may not quite
fit together. This means that our approach lets system designers ship their class hierarchies together witt
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a set ofprefabricatedclass properties in the form of traits, which can then be used and combined by the
programmers. In case some class properties built by different vendors do not quite fit together, the traits
model not only indicates the resulting conflicts, but also provides the programmer with the necessary
means to resolve the conflicts to achieve the expected semantics.

DisadvantagesGlue methods and state have to be redefined in the metaclass where a property is
applied. For example, the instance variabéquelnstance and the two accessors methods have to be
defined in all classes that implement a Singleton. We consider this to be a limit of the traits model and
the price to pay to have the minimal mechanism supporting traits composition. Introducing state into
traits would solve this but would introduce other problems, such as the well-kd@ammond problenof
multiple inheritancg22], where state gets inherited through different paths.

It may happen that instance variables defined in a superclass are not necessary in the subclasses. Fc
example, if the superclass implements a Singleton and the subclasses do not, then the instance variabls
that holds the Singleton instance as well as the methods to access it will be inherited by the subclasses.
However, this problem is not due to traits by itself but is a result of using the inheritance mechanism in
generalTable 1compares the approaches.

10. Class properties

Traits let us decide if a given functionality is defined as a trait or as a class. When defining functionality
as a trait we automatically offer the possibility for future classes to use the identified behavior. One might
wonder why we have so few class properties. First of all we chose to reengineer the currentimplementation
of Squeak and not to design a new MOP. In this article we present the aleais propertiegshat we
identified during our implementation, and we did not invent new ones. Secondly, we deliberately took
heavily conflicting class properties, so that we could clearly show the conflict resolution advantage of
traits. Composing non-conflicting properties is trivial. Thirdly, other important efforts to build metaclass
libraries, such as SONb], present nearly the same set of class properties.

Another point to consider is the role of the classes in the context of a [8DRe believe that a lot of
class properties identified j] are due to the fact that the classes were the single entry pointin their MOP,
while certain responsibilities are definitely the responsibilities of other meta-entities such as methods. It
is also out the scope of this paper to present a new MOP based on traits, even if this is definitely future
work.

Class property propagatioOur approach does not support per class property because we did not want
to change the class creation protocol of Smalltalk-80. However, there is nothing in our approach that
prevents us to support per class property in a similar way than the compatibility mod¢ladeld Fig.

11 shows that the intermediate metaclas3eslean class + Abstract, False class 4+ Singleton, and True
class + Singleton are composed of traits and that properties such abstractnessadsthBoolean, are
not propagated to its subclasses. Note that metaclasses sBebleas class could also be composed of
traits if the property have to be propagated to the subclasses.

11. Automatic composition

An important difference between traits and most other approaches lies in the fact that traits have
automatic conflictletectionbut expectexplicit conflict resolution controlled by the programmer. Most
approaches aim for a completely automatic resolution of conflicts, where possible conflicts are resolved
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Fig. 11. Controlling class property propagation and trait composition.

according to some automatic scheme. If such schemes would work in all possible situations and in such
a way that the programmer can easily foresee the result of a composition, developing software would be
much easier. However, fully automatic resolution of conflicts is no panacea. It is only trivial when the
composed semantics are orthogonal, so that conflicts can simply not occur. But it becomes extremely
complex or even impossible when the semantics overlaps, which is the case for class properties. Looking
in other areas such as multiple inheritance conflicts resolution we see that techniques based on automatic
linearization techniques are not always satisfyitg] and often lead to unpredictable method invocations.

The same applies here.

Nowadays the problems of composition of services or overlapping aspects is difficult and nearly
impossible without the use of metadata. For example, Kienzle and Guerraoui demonstrates that trying
to automatically compose transactions with other simpler aspects such as notification is doomed to
failure [23]. In a similar vein authentication and encryption composition can only be a success when the
encryption is invoked first, but authentication should take precedence over persistency and transactions.

Note that in the context of metaclass composition, the set of metaclass behavior is not predefined
and fixed, as such it is possible to load a package in which another meta-programmer has developed
new class properties with sensible composition exigence. Therefore any clever composition engine based
on meta-information would have to deal with the openness of the set of class properties. Our solution,
based on traits, differs from the other approaches since trait composition is automatic as long as there are
no conflicts. Conflicts are detected automatically. When there is a conflict, then the traits model offers
mechanisms to solve the conflict. This contrasts with the approaches that use an automatic scheme tc
handle conflicts.

12. Conclusion and future work

The need to reuse class properties led to meta-level architectures based on explicit mefa¢kdsses
While offering reuse of class properties, such models introduced metaclass composition pf8hlems
Different approaches exist that try to solve metaclass compositions problems, based on multiple inher-
itance, code generation or automatically changing metaclg4se®11] However, the definition, the
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composition and the application of the class property were not controllable by the developer or meta
programmer.

Our solution models class properties withits (first class groups of methods), and uses trait compo-
sition to safely combine and reuse them. Using traits to compose class properties first of all solves the
metaclass composition problems (upward and downward compatibility is ensured) while supporting the
reuse of class properties. In addition, composition and conflict resoluti@xplieitand undecontrol of
the composing entity. Thirdly, traits is a general-purpose composition mechanism for object-oriented lan-
guages that we have already applied successfully at the base level (for example, to refactor the Smalltalk
collection hierarchy24]).

We implemented all the examples shown in this article using the Squeak implementation of traits and
we started to refactor the kernel of Squeak using traits. Our next step is to use traits to define a new
metaobject protocol for Smalltalk.
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