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Abstract

In pure object-oriented languages, classes are objects, instances of other classes calledmetaclasses. In the same
way as classes define the properties of their instances,metaclasses define the properties of classes. It is therefore very
natural to wish to reuse class properties, utilizing them amongst several classes. However this introducedmetaclass
composition problems, i.e., code fragments applied to one class may break when used on another class due to the
inheritance relationship between their respective metaclasses.
Numerous approaches have tried to solve metaclass composition problems, but they always resort to anad-hoc

manner of handling conflicting properties, alienating the meta-programmer. We propose auniformapproach that
represents class properties astraits, groups of methods that act as a unit of reuse from which classes are composed.
Like all the other classes in the system, metaclasses are composed out of traits. This solution supports the reuse of
class properties, and theirsafeandautomaticcomposition based onexplicitconflict resolution. The paper discusses
traits and our solution, shows concrete examples implemented in the Smalltalk environmentSqueak, and compares
our approach with existing models for composing class properties.
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1. Reusing class properties

In class-based object-oriented programming, classes are used as instance generators and to implement
the behavior of objects. In object-oriented languages suchasCLOS,Smalltalk orRuby, classes themselves
are first-class objects, and instances of the so-calledmetaclasses[1–5]. In the same way that classes
define the properties for their instances (objects), metaclasses implement the properties for their instances
(classes). Examples of class properties areSingleton, Final, Abstractness... [6].
Treating classes as first-class objects and having metaclasses is important for two main reasons:

• Uniformity and control. In a pure object-oriented language it is natural for classes to be instances
of metaclasses. The uniformity defines metaclasses as the natural place tospecifyandcontrol object
creation and other class behavior.

• Reuse of class behavior. Since a metaclass is just like any other class, class behavior is reused and
conventional reuse and decomposition techniques are applied to the metaclasses[6]. Hence the same
techniques that are available for base classes (inheritance and overriding of methods, for example) are
applicable at the meta level.

When a language has metaclasses, those metaclasses can beimplicit or explicit. With implicit meta-
classes the programmer cannot specify the metaclass for a class[7]. As such, implicit metaclasses suc-
cessfully address the goal of “uniformity and control”, but they fall short for achieving “reuse of class
behavior”.Explicit metaclassesavoid this limitation because the programmer can explicitly state from
which metaclass his or her classes are instances[1–4].
Languages without explicit metaclasses suffer from the fact that class properties cannot be reused

across classes, and that they cannot be combined. For example, every time one needs a class with the
Singleton behavior, the same code needs to be implemented over and over again.With explicit metaclasses
the singleton class property can be factored out to a Singleton metaclass, which can then be used to
instantiate classes that exhibit the Singleton behavior. However languages with explicit metaclasses
suffer from the fact that composition can beunsafe[2,8] or are based onnon-uniformmechanisms, i.e.,
the meta-programmer cannot use the same composition mechanism used for programming at the base
level than for programming at the meta level. This is clearly a problem, since metaclasses originate from
the wish of uniformity in OOP (see Section 2).
To address these problems we propose to use thegeneral-purposeobject-oriented language feature

traits [9]. Traits are composable units of behavior that close the large conceptual gap between a sin-
gle method and a complete class. Our approach models class properties with traits, and uses trait
composition to safely combine and reuse properties in metaclasses. Consequently, metaclass com-
position (like class composition) enjoys all the conceptual benefits of the traits composition model.
In particular, composition conflicts that occur when composing two properties that do not quite fit
together are detected automatically and the conflict resolution isexplicit and undercontrol of the
composing entity.
As we will show in the rest of the paper, our solution supports the reuse of class properties, their safe

andautomaticcomposition withexplicitconflict resolution, and the usage of the samemechanism (traits)
for both the base and metalevel. As safety is a broad term we follow the definition of safe metaclass
composition as defined in[10] and that we present in the following section. Now we start by identifying
precisely.
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2. Explicit metaclass problems

Having explicit metaclasses promotes reuse but introduces several problems summarized in this section
and detailed in the rest of the paper.
Unsafe composition. Some approaches sacrifice the compatibility between the class and the metaclass

level [2,8]. Unsafe metaclass composition means that code fragments applied to a class may break when
used on another one due to the inheritance relationship between the metaclasses of the classes involved
(See Section 3).
Ad-hoc and non-uniformity. There are some approaches that are specifically designed to avoid the

compatibility problems raised in the first point. Their solutions, however, rely onad-hoccomposition
mechanisms that are based on automatic code generation and dynamically changing the meta-metaclass
[10]. Not only does this make it hard to understand the resulting code, it also leads to problems in
case of conflicting properties and results in hierarchies that are fragile with respect to changes. Note
that MetaclassTalk by using mixin composition at the metalevel is the only solution that solves this
problem[11].
The solutions are not satisfactory from a conceptual point of view either, because the meta level (or

meta meta level) does not employ object-oriented techniques (such as inheritance or instantiation) but
ad-hocmechanisms only applicable for metaclass composition. This breaks the fundamental idea of
reflective programming that uses theavailablefeatures of a language to define and control the behavior
of the language itself[3].
Limited composition. Other approaches used in the specific context of metaobjects usechain of re-

sponsibility[12] or composite metaobjects[13] to compose metaobjects. The first approach does not
provide full control over the composition. The second approach forces the programmer to develop spe-
cific metaobjects to compose others, even when the reuse of these composite metaobjects is unclear.
The ideal metaclass composition solution would make composition beautomatic. However, as we will

discuss in Section 11 a simple solution does not exist in a context where new properties can be defined
and composed, and where their semantics can severely conflict. So the solution is a mechanism that is
both safe and uniform, i.e., one that does not require the developer to make a paradigm shift and where
the development of base-level applications and meta-level applications is the same.

3. Qualifying composition

Offering explicit metaclasses is a way to reuse class properties but it also opens the door formeta-
class compatibility problems[8]. This section defines criteria by which approaches that solve metaclass
composition problems can be characterized and distinguished. We start by listing two criteria that were
already identified in[10] (upward, downwardcompatibility andper class property), and then introduce
three new ones that were not previously considered (property composition, property application, and
control of the composition), but that qualify the problem in a more detailed way.
Upward compatibility. The fact that classes are instances of other classes which define their behavior

introduces hidden dependencies in the inheritance relationships between the classes and theirmetaclasses.
Careless inheritance at one level (be it the class or metaclass level), can break inter-level communication.
Bouraqadi et al.[10] refined the metaclass compatibility problems in two precise cases namedupward
anddownwardcompatibility.
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Fig. 1. Left: Upward compatibility—dependencies on the base level need to be addressed at the meta level. Right: Downward
compatibility—dependencies on the meta level need to be addressed at the base level.

Let B be a subclass ofA,MetaB themetaclass of B,andMetaA themetaclass ofA.Upward compatibility
is ensured for MetaB andMetaA iff: every possiblemessage that does not lead to an error for any instance
of A, will not lead to an error for any instance of B.
Fig. 1 left illustrates upward compatibility. When an instance ofB receives the messagei-foo, the

messagec-bar is sent toB. The composition ofA andB is upward compatible, ifB understands the
messagec-bar, i.e.,MetaB should implement it or somehow inherit it fromMetaA.
Downward compatibility. Let MetaB be a subclass of the metaclass MetaA. Downward compatibility

is ensured for two classes B, instance of MetaB and A, instance of MetaA iff: every possible message that
does not lead to an error for A, will not lead to an error for B.
Downward compatibility is illustrated inFig. 1right.WhenB receives themessagec-foo, themessagei-

bar is sent to anewly created instanceofB.Thecomposition ofMetaAandMetaB is downward compatible,
if that new instance ofB understands the messagei-bar, i.e.,B should implement it or somehow inherit
it from A.

Definition. Metaclass composition issafewhen it supports downward and upward compatibility.

Per class property. Different metaclass properties can be assigned to different classes in an inheritance
hierarchy. Some systems such as NeoClasstalk and MetaClasstalk allow one to assign a property to a
singleclass without it being inherited by its subclasses[10,11]. The authors of NeoClasstalk and Meta-
Classtalk, Bouraqadi et al. definedclass property propagationas follows: “A property assigned to a class
is automatically propagated to its subclass”. We name this criteriaper class property. For example, it is
possible to define that a class is abstract and its subclasses are not abstract and this without having to
redefine the property at the subclasses level.
Property composition. One of the main motivations for having explicit metaclasses is tocombine class

properties, as shown inFig. 2, so that one class can, for example, be both a Singleton and Final. Hence a
mechanism is needed that supports such property composition. This can be a general-purpose language
mechanism such as multiple inheritance[3,4], mixin composition[11], chain of responsibility[12], or
anad-hocmechanism such as generation of new classes and methods[10].
Property application. Property application is the mechanism by which the composed properties are

applied to classes. As shown inFig. 2 we distinguish thecompositionof properties from theapplica-
tion of a property to a specific class because some approaches employ different techniques for these
two purposes. As an example, SOM uses ordinary multiple inheritance to compose class properties
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Fig. 2. Property Composition and Property Application: two different stages in the process of reusing class properties.

but it employs a combination of multiple inheritance and code generation to apply a class property to
a class.
Control. The mechanism used to apply and combine class properties can beimplicit or explicit. We

call the mechanismimplicit if the system automatically combines or applies the class properties and
implicitly resolves conflicts in a way that may or may not be what the programmer intends. We call
the mechanismexplicit if the system gives the programmer explicit control over how the properties are
combined and applied. In particular, the programmer should haveexplicit controlover how conflicts are
resolved. For many approaches, this is not the case because the composition of properties is based on a
chain of responsibility which does not provide full control of the composition.

4. Traits in a Nutshell

Traits [9] are an extension of single inheritance with a similar purpose as mixins but avoiding their
problems. Traits are essentially groups of methods that serve as building blocks for classes and are
primitive units of code reuse. As such, they allow one to factor out common behavior and form an
intermediate level of abstraction between singlemethods and complete classes.A trait consists ofprovided
methodsthat implement its behavior, and ofrequired methodsthat parameterize the provided behavior.
Traits cannot specify any instance variables, and the methods provided by traits never directly access
instance variables. Instead, required methods can be mapped to state when the trait is used by a class.
With traits, the behavior of a class is specified as the composition of traits and someglue methodsthat

are implemented at the level of the class. These glue methods connect the traits together and can serve as
accessors for the necessary state. The semantics of such a class is defined by the following three rules:

• Class methods take precedence over trait methods. This allows the glue methods defined in the class
to override equally named methods provided by the traits.

• Flattening property. A non-overridden method in a trait has the same semantics as the same method
implemented in the class.
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• Composition order is irrelevant. All the traits have the same precedence, and hence conflicting trait
methods must be explicitly disambiguated.

Because the composition order is irrelevant, aconflictarises if we combine two or more traits that provide
identically named methods that do not originate from the same trait. Traits enforce explicit resolution of
conflicts by implementing a glue method at the level of the class that overrides the conflicting methods,
or bymethod exclusion, which allows one to exclude the conflicting method from all but one trait. In
addition traits allowmethod aliasing. The programmer can introduce an additional name for a method
provided by a trait to obtain access to amethod that would otherwise be unreachable, for example, because
it has been overridden. Traits can be composed from subtraits. The composition semantics is the same as
explained above with the only difference being that the composite trait plays the role of the class.

5. Using traits to reuse and compose class properties

Our approach is based on using traits to compose and reuse class properties within the traditional
parallel inheritance schema proposed by Smalltalk (seeFig. 8 left). Therefore our approach is safe,
i.e., it supports downward and upward compatibility. But on top of that it promotes the reuse of class
properties. Composition and application of class properties are based on trait composition, which gives
the programmer explicit control in a uniform manner.
We represent class properties as traits, which are then used to compose metaclasses as shown in

Fig. 3. Since traits have been fully implemented in the open-source Squeak Smalltalk environment[14],
we implemented all the examples shown here in Squeak. During our refactoring of Squeak code we
identified the following class properties:TAbstract, TSingleton, TRememberInstances, TCreator, and
TFinal which we explain below. We start with a simple example illustrating how a class is composed by
reusing a class property, then we look how the traditionalBoolean hierarchy[6,10] is re-expressed with
traits and finally Section 6 shows that traits provide a good basis to engineer the meta level.

5.1. Singleton

To represent the fact that a class is a Singleton, we define the traitTSingleton. This trait defines the
following methods:default which returns the default instance,new which raises an error, andreset which
invalidates the current singleton instance. It requiresbasicNew which returns a newly created instance,1

and themethodsuniqueInstanceanduniqueInstance:.Note that theseaccessorsmethodsareneededbecause
traits cannot contain instance variables.Fig. 4, left, shows the traitTSingleton.

Trait named: #TSingleton uses: {} category: ‘Traits-Example’
TSingleton �default

self uniqueInstance isNil
ifTrue: [self uniqueInstance: self basicNew].

↑ self uniqueInstance

1Using basicNew is the traditional way to implement Singleton in Smalltalk when we want to forbid the use of thenew
method[15]. basicNew allocates objects without initializing them. It is a Smalltalk idiom tonever override methods starting with
‘basic’ names.
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Fig. 3. Metaclasses are composed from traits representing class properties. Traits supports upward and downward compatibility.

TSingleton�new
self error: ‘You should use default’

TSingleton�reset
self uniqueInstance: nil

As an example, suppose that we want to specify that a certain classWebServer is a Singleton. First
of all we define the classWebServer in the traditional Smalltalk way as shown inFig. 4. Then we
specify at the metaclass level, i.e., in the classWebServer class, that the class is a Singleton by speci-
fying that the class is composed from the traitTSingleton. The metaclass defines an instance variable
uniqueInstance to maintain the singleton instance. It also defines two glue methodsuniqueInstance and
uniqueInstance: as accessors methods for the instance variableuniqueInstance. These two glue meth-
ods fulfill the required methods with the same name of the traitTSingleton. Note that the required
methodbasicNew is provided by the classBehavior, of whichWebServer class, is an indirect subclass (see
Fig. 4, right).

5.2. The Boolean hierarchy

The SmalltalkBoolean hierarchy consists of the abstract classBoolean, that has two subclassesTrue
andFalse that are singleton classes. Traits allow the boolean hierarchy to be refactored as shown in
Fig. 5. Note that the refactored solution is backwards compatible with the idioms existing in the cur-
rent Smalltalk implementation and literature[15]. So we assume that a methodbasicNew is defined
on the classBehavior that can always be invoked to allocate instances and that should not be
overridden.
Boolean. The classBoolean is an abstractclass, so we compose its classBoolean class from the trait

TAbstract.

Trait named: #TAbstract uses: {} category: ‘Traits-Example’
TAbstract�new

self error: ‘Abstract class. You cannot create instances’
TAbstract�new: size

self error: ‘Abstract class. You cannot create instances’

False and True. The classesFalse andTrue are Singletons so their classesFalse class andTrue class are
composed from the traitTSingleton which is then reused in the two classes.
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Object subclass: #WebServer    
   instanceVariableNames: " 
   classVariableNames: " 
   poolDictionaries: " 
   category: 'Traits-Example' 

WebServer class uses: {TSingleton } 
     instanceVariableNames: 'uniqueInstance' 

WebServer class>>uniqueInstance 
↑  uniqueInstance

 WebServer class>>uniqueInstance: anObject
      uniqueInstance := anObject 

Fig. 4. Left. The traitTSingleton. Right. The classBehavior, the root of metaclasses in Smalltalk, is composed from the trait
TCreator and as such provides the methodbasicNew.

Boolean

False

True

False class

True class

TSingleton

Boolean class

TAbstract

TSingleton

Behavior

TCreator
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Boolean class

TAbstract
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False class

TSingleton
new
default
reset

basicNew
uniqueInstance
uniqueInstance:

Fig. 5. Left: Boolean hierarchy refactored with traits. Right: The complete picture for theBoolean hierarchy solution.

As mentioned above, the traitTSingleton requires the methodsbasicNew, uniqueInstance, anduniqueIn-
stance:. Therefore the classFalse class (resp.True class) has to define an instance variableuniqueInstance
and the two associate accessors methodsuniqueInstance anduniqueInstance:. Note that the methodba-
sicNew does not have to be redefined locally in theclass False or True class as it is inherited ultimately
from the classBehavior, the inheritance root of the metaclasses[7] (seeFig. 5right). This example shows
that class properties are reused over different classes and that metaclasses are composed from different
properties.

False class
uses:{TSingleton}
instanceVariableNames: ‘uniqueInstance’
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False class�uniquelnstance
↑ uniqueInstance

False class�uniquelnstance: anObject
uniqueInstance := anObject

6. Engineering the meta level

So far we presented simple examples that show how traits are well-suited to model class properties,
which can then be combined or applied to arbitrary classes. In this section, we show that traits also allow
more fine-grained architectures of class properties. We also want to stress that the techniques used here
at the meta level are exactly the same as those used at the base level. As such, traits provide a uniform
model.
Since many of these properties are related to instance creation, and we perform our experiments in

Smalltalk, we first clarify the basic instance creation concept of Smalltalk. In Smalltalk, creation of a
new instance involves two different methods, namelybasicNew andnew.2 The methodbasicNew is a
low-level primitive which simply allocates a new instance of the receiver class. The methodnew stands
at a conceptually higher level and its purpose is to return a usable instance of the receiver class. For
most classes,new therefore callsbasicNew to obtain a new instance and then initializes it with reasonable
default values.

6.1. Class properties

Fig. 6gives an overview of the class properties we identified (see Section 10 for a deeper discussion).
Note that all of these properties are traits, and that they are therefore composed using trait composition.
Allocation.As indicated by its name, the traitTAllocatorprovides the behavior to allocate new instances.

In our case, this is the standard SmalltalkbasicNew method, but of course we could also create another
trait with an alternative allocation strategy.
Instantiation. The traitsTInstantiatorandTInitInstantiatorare two class properties for instance creation.

The traitTInstantiator uses the traitTAllocator and implements themethodnew in the traditional Smalltalk
manner, which means that it does not initialize the newly created instance. The traitTInitInstantiator uses
the traitTAllocator. However, as suggested by its name, it actually initializes the newly created instance
by calling the methodinitialize before the instance is returned.

Tlnstantiator�new
↑self basicNew

Tlnitlnstantiator�new
↑self basicNew initialize

Note that themethodinitialize is called on the new instance, whichmeans that the requirement forinitialize
in the traitTInitInstantiatior is actually a requirement for the instance side.
Remembering instances. The traitTRememberInstances represents an instance creation property that

remembers all the instances created by a class. It uses the traitTInitInstantiator and aliases the

2Note that there are also the methodsbasicNew: andnew:, which are used to create objects with indexed fields (i.e., arrays).
For sake of simplicity, we do not take these methods into account here.
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Fig. 6. A fine-grained architecture of class properties based on traits.

methodnew of the traitsTInitInstantiator which is then available asnonRememberingNew. This aliasing
allows one to access the originalnew method of the traitTInitInstantiator while leaving the option to
override the methodnew in the traitTInitInstantiator. It requires the methodsrememberedInstances and
rememberedInstances: to access a collection storing the created instances.Then, it implements themethods
new, rememberInstance:, instances, andreset as follows:

TRememberlnstances�new
↑ self rememberInstance: self nonRememberingNew

TRememberlnstances�rememberlnstance: anObject
↑ self instances add: anObject

TRememberlnstances�instances
self rememberedInstances ifNil: [self reset].
↑ self rememberedInstances

TRememberlnstances�reset
self rememberedInstances: IdentitySet new

Note that another implementation could be to define the methodsreset andrememberedInstances: as trait
requirements. This would leave the class with the option to use other implementations for keeping track
of the created instances.
Default andSingleton. The traitsTDefaultandTSingleton implement the class properties corresponding

to the Default Instance and Singleton design patterns. Whereas a Singleton can only have one single
instance, a class adhering to the Default Instance pattern has one default instance but can also have an
arbitrary number of other instances.
Since these two properties are very similar, we factored out the common code into the traitTSharedIn-

stance. To get the basic instantiation behavior, this trait uses the propertyTInitInstantiator and again
applies an alias to ensure that themethodnew is available under the namesharedNew.Then, it implements
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the methodsreset andsharedInstance as follows:

TSharedInstance�reset
self directSharedInstance: self sharedNew.

TSharedlnstance�sharedlnstance
self directSharedInstance ifNil: [self reset].
↑ self directSharedInstance.

The propertyTDefault is then defined as an extension of the traitTSharedInstance that simply introduces
the aliasdefault for the methodsharedInstance. Similarly, the propertyTSingleton introduces the alias
uniqueInstance for the same method. In addition,TSingleton overrides the methodnew so that it cannot
be used to create a new instance:

TSingleton�new
self error: ’Cannot create new instances of a Singleton.

Use uniqueInstance instead’.

Another useful class property popularized by Java is the class propertyTFinal which ensures that a class
cannot have subclasses. In Smalltalk, this is achieved by overriding the messagesubclass:.3 Note that
unlike all the other properties presented in this section,TFinal is not concerned with instance creation
and therefore is entirely independent of the other properties. In Section 10 we discuss the relevance of
the class properties we presented.

6.2. Advantages for the programmer

Having an architecture of class properties has many advantages for a programmer. Whenever a new
class needs to be created, a choice can be made regarding the creation of instances, and whether or not
the class should be final. Besides having the obvious advantage of avoiding code duplication, it also
makes the design much more explicit and therefore facilitates understandability of the class. The level
of abstraction of the trait design is at the right level: the traits correspond to the class properties, and the
class properties can be combined into metaclasses.
In addition, factoring out the properties in such a fine-grained way still gives the user a lot of control

about some crucial parts of the system. Suppose for example that at first we would have decided to use
the traitTInitInstantiator as the basis for all the other instance creation properties. If later on, we would
decide to comply to the Smalltalk standard to create uninitialized instances by default, then we could
make this change without modifying any of the involved methods. We would just need to make sure that
the traitsTRememberInstances andTSharedInstance use the traitTInstantiator instead ofTInitInstantiator.
Explicit composition control power. By providing several different properties that are all related to

instance creation behavior, this example also shows why it is so important to have explicit control over
composition and application of class properties. In our example, there aremany different properties which
essentially introduce variants of themethodnew, and therefore, combining these properties typically leads
to conflicts that can only be resolved in asemanticallycorrect manner if the user has explicit control over
the composition. In case of traits, this is ensured by allowing partially ordered compositions, exclusions,
and aliases.

3 In reality, the method to create a subclass takes more arguments but this is not relevant here.
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As an example, imagine that we want to combine the propertiesTDefault andTRememberInstances
to get a property that allows both a default instance and also remembers all its instances. With our
trait-based approach, we do this by creating a new traitTDefaultAndRememberInstances which uses
TRememberInstances andTDefault as follows:

Trait named: TDefaultAndRememberInstances
uses:{TDefault @{# defaultReset → # reset}.

TRememberInstances – {#new}
@ {# storeNew→#new.

#storeReset→# reset}}

TDefaultAndRememberlnstances�sharedNew
↑self storeNew

TDefaultAndRememberlnstances�reset
self storeReset.
self defaultReset

Since both traits provide a methodnew, we exclude this method from the traitTRememberInstances
when it is composed. As a consequence the trait contains thenew method provided byTDefault, which
usessharedNew to create a new instance. Since we want to make sure that each new instance is also
stored, we overridesharedNew so that it callsstoreNew, which is an alias for thenew method provided by
TRememberInstances.
Because the methodreset is also provided by both traits, we use aliasing to make sure that we can

access the conflicting methods. Then, we resolve the conflict by overriding the methodreset so that it first
removes the stored instances (by callingstoreReset) and then creates a new default instance (by calling
defaultReset). Note that the newly created instance will be remembered as the default instance and will
also be stored in the collection with all the instances of the class.

7. A new kernel

In this section we present briefly the key implementation aspects of the new Smalltalk kernel that is
bootstrapped with traits.Fig. 7shows the new class hierarchy that we obtain.As the new kernel with traits
is anextensionof the traditionalSmalltalk kernel,weget the traditional classes:Behavior, ClassDescription,
Metaclass, andClass which now deal with the fact that a class may be composed of traits.
To model traits we then follow the previous design of the kernel and mimic the classesBehavior,

ClassDescription andClass. Three classesTraitBehavior, TraitDescription, andTrait are introduced.Trait
represents a trait and is applied to both the class and instance side. In addition the classBehavior, root of the
instantiation graph, uses two important traits:TInstantiator andTInitInstantiator as presented in previous
section. The classBehavior in Smalltalk also defines information about the state and behavior related to
superclass and instance variables (format). As this is not needed for traits, we introduce a new abstract
superclassPureBehavior, which factors out the common code betweenBehavior andTraitBehavior.
Some traits. The traits we identified and used in this new kernel are not really remarkable in the sense

of new MOP entries. In fact we mainly use traits to reuse code between the classesTraitDescription and
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Fig. 7. Hierarchy of the new Smalltalk kernel supporting traits.

ClassDescription for the following reasons.

• The new kernel is based on the traditional Smalltalk kernel, which uses inheritance as the primary reuse
mechanism. A lot of polymorphic methods are used among the classesBehavior andClassDescription,
and the classesClass andMetaclass.As a consequence, there is not much need for introducing traits to
share this functionality.

• In the traditional Smalltalk kernel, the classBehavior only defines the minimal state and behavior to
support classes as run-time entities. For example,Behavior does not define the notion of named instance
variables but just knows the format of the instances the class will create in terms of the number and kind
of instance variables[7]. Support for named instance variables is (amongst other things) implemented
by ClassDescription, a subclass of the classBehavior. Because of this inheritance structure, some code
that is implemented inClassDescription (and uses state defined inClassDescription) cannot and should
not be reused by pushing it up toPureBehavior. Instead, we use traits to share behavior between
ClassDescription andTraitDescription.

The classPureBehavior uses the following traits:

• TBasicCompile supports the compilation and decompilation of methods in a class.
• TTestingSelector supports the testing of selectors of methods (e.g.,canUnderstand:, ...).
• TCompiledMethodAccess supports the access into the method dictionary and source code access.
• TMethodIterating supports the iteration over compiled methods.

The classBehavior uses the following traits:

• TInstantiator and TInitInstantiator implement the creation of objects as described in the previous
section.

• TFamilyAccess supports the access and enumeration of superclasses and subclasses.
• TInstanceEnumerator supports the enumeration of instances of the class.
• TMethodTesting supports the querying of methods.

The traits resulting from the decomposition of the classesPureBehavior andBehavior are not currently
used by any other classes. In contrast, the following traits are used to share behavior between the two
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Table 1
Comparison of the models from Section 8 on how they handle the composition problems described in Section 2

Up Down Per class Application Composition Control

Smalltalk Yes Yes No No No No
CLOS Yes Yes No Multiple inheritance Multiple inheritance Explicit+ linearization
SOM Yes No No Multiple inheritance+ Multiple inheritance Implicit

code generation
NeoClasstalk Yes Yes Yes Inheritance+ Inheritance+ Implicit

generation code generation
MetaClassTalk Yes Yes Yes Inheritance Mixin composition Mixin linearization
Traits Yes Yes No Trait composition Trait composition Explicit

classesTraitDescription andClassDescription.

• TClassComment supports the management of comments.
• TMethodDictionaryManagement supports the management of methods categories.
• TOrganization supports how methods are sorted into method categories.
• TCodeReformatting supports reformatting of source code.
• TCodeFileOut supports filing-out (saving) of classes.
• TBehaviorCopy supports the copying of methods and their organization.
• TOrganizedCompilation supports the compilation of methods within the context of categories.

It should be noted that in the Smalltalk metaclass kernel, identifying traits that can be reused indepen-
dently of each others is difficult because the behavior of the kernel is based on inheritance and the code
was tightly coupled.

8. Related work

This section shows how the main approaches that support explicit metaclasses address the problems
described in Section 2. We also discuss the solution offered by Smalltalk (although it has implicit meta-
classes) since it forms the basis for the NeoClasstalk solution and our own solution.Table 1summarizes
the comparison of these approaches. Note that the table shows the influence of the CLOS approach based
on multiple inheritance to support metaclass composition in SOM.

8.1. Metaclass composition

8.1.1. Smalltalk
In Smalltalk (and more recently in Ruby), metaclasses areimplicit and createdautomaticallywhen

a class is created[7]. Each class is the sole instance of its associated metaclass. This way the two
hierarchies are parallel (seeFig. 8left). Hence the architecture is safe as it addresses compatibility issues
but completely prevents class property reuse between several hierarchies.
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Fig. 8. Left: Smalltalk addresses compatibility issues by preventing reuse using implicit metaclasses and parallel hierarchies.
Right: By default CLOS addresses compatibility issues by preventing subclasses to have different metaclasses than their super-
classes.

8.1.2. CLOS
CLOS’s approach could be summarized as “do it yourself”. Indeed by default in CLOS, a class and

its subclasses must be instances of the same metaclass, prohibiting classes in the same hierarchy from
having different class properties. For example, inFig. 8right, classB has by default the same metaclass
as its superclassA, and this cannot be changed. So classB always has the same class properties as class
A. Note that since CLOS has explicit metaclasses, multiple inheritance can be used for composing class
properties. For example, in the context described byFig. 2 it is possible to use multiple inheritance
to explicitly combine the two propertiesFinal andSingleton expressed as metaclasses into a new class
SingletonFinal. Note that such an implementation suffers from the same problems as multiple inheritance
based on linearization occurring at the base level[16].
The general CLOS rule that a class and its subclasses must be instances of the same metaclass can be

circumvented using CLOS’s metaobject protocol (MOP). Indeed, the generic functionvalidate-superclass
[3] offers a meta-programmer the possibility to specify that a class and its subclasses can be instances
of different classes. However, this comes at a very high price because the CLOS MOP does not provide
predefined strategies for avoiding compatibility problems or for dealing with possible conflicts. Hence
the semantics of the composition has to be implemented manually, a far from trivial undertaking.
Thismeans that by default CLOS is upward and downward compatible but it prevents usage of different

metaclasses within an inheritance hierarchy and reuse of class properties. Both the composition of class
properties and the application of properties are done with multiple inheritance. The control of the com-
position is explicit, because the user has to use multiple inheritance to create a new metaclass. However,
since multiple inheritance in CLOS uses implicit linearization, the well-known problems associated with
this form of conflict resolution also apply to the meta level[16].

8.1.3. SOM
The solution proposed by SOM (System Object Model)[5] is based on the automatic generation of

derived metaclasses, that inherit multiply from the metaclasses to compose class properties. When at
compile time a class is specified to be an instance of a certain metaclass, SOM automatically determines
whether upward compatibility is ensured and if necessary creates a derived metaclass. InFig. 9 left, the
classB (originally an instance ofMetaB), inheriting from classA (instance ofMetaA) finally becomes
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Fig. 9. Left: SOM supports upward compatibility by automatically deriving new metaclasses and changing the class of the
inheriting classB. Right: SOM downward compatibility failure example.

an instance of a derived metaclass inheriting fromMetaA andMetaB. Note that SOM ensures that the
existing metaclassMetaB takes precedence overMetaA in case of multiple inheritance ambiguities (since
B is a subclass ofA).
While SOM supports upward compatibility as shown inFig. 9 left, it does not support downward

compatibility [10] as shown inFig. 9 right. When the classB receives thec-foo message, a run-time
error will occur because its instances do not understand thei-bar message. However, in SOM, contrary to
CLOS, two distinct classes need not have the same metaclass. But as in CLOS, the composition of class
properties is based onmultiple inheritance. The application of a class property is done by a combination of
multiple inheritance and automatic class generation. This happens at compile time, and the programmer
has no explicit control over how possible conflicts are resolved.

8.1.4. NeoClasstalk
NeoClasstalk’s approach is interesting since it supports both downward and upward compatibility and

enables class property reuse between different hierarchies[10,17,18]. NeoClasstalk uses two techniques
to accomplish this:dynamic changeof classes and the composition of metaclasses bycode generation.
It generalizes the parallel inheritance solution of Smalltalk by enabling class properties reuse, but it also
introduces some problems of its own that we discuss in detail after explaining the basic principles.
NeoClasstalk allows properties to be assigned to classes.Fig. 10shows what happens when assigning a

property toMeta B. B inherits from classA and is an instance of the classMeta B before the new property
is assigned toMeta B. When assigning the property, the system automatically creates a new metaclass
Property m + Meta B (called aproperty metaclass), which inherits from the metaclassMeta B and
defines the property code. It thenchanges the classof B to be that newly created metaclass. NeoClasstalk
supports also per class property, i.e., a property added to a class does not get automatically propagated to
its subclasses.
To beable to reuse the property classes,NeoClasstalk stores the class properties in strings onmethods of

the so-calledmeta-metaclasses. The actual metaclasses are then generated from these strings, as shown
for our example inFig. 10. For example, theProperty m represented by a meta–metaclass is used to
generate a new metaclass namedProperty m + Meta B from the metaclassMeta B and theProperty m.
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Fig. 10.Assigning the propertym to classMeta B and propertyn to the classMeta A in NeoClasstalk. The light grey area denotes
the metaclass area. The dark grey area is the realm of the class properties.

Besides the intrinsic complexity of NeoClasstalk’s approach, it has the following drawbacks:

8.1.5. Dynamic class creation and dynamic change of class
The approach relies on the dynamic creation of classes and the dynamic changing of classes. It induces

a complex management of meta-metaclass changes that should be propagated to the generated instances.
Moreover as programming at themetameta level is based onmanipulating the strings that represent bodies
of methods of metaclasses, it is not the same as programming at the metaclass or the base level. Basically,
despite the name, the property metaclasses are not really at the meta-metaclass level, but merely storage
holders for strings. The relation between the meta-metaclass level and the metaclass level is therefore not
instantiation, as one would expect, but code generation. This breaks the uniformity of the model.

8.1.6. Ad-hoc and implicit composition
Property metaclasses are composed by code generation and applied implicitly by defining them in an

inheritance chain. The composition is based on the assumption that a metaclass is designed to be plugged
in this inheritance chain and that other composed behavior can be reached via super invocations. The
compositemetaclass has only limited control over the composed behavior as it can only invoke overridden
behavior but does not have the full composition control.
As a summary, NeoClasstalk provides both downward and upward compatibility, and it allows one to

assign class properties on a per-class basis. The composition of class properties is implicit and based on
code generation and chain of responsibility. The application of class properties is based on dynamic class
changes and code generation.

8.1.7. MetaclassTalk
MetaclassTalk follows the architecture of NeoClasstalk by offering compatibility and property meta-

classes. MetaclassTalk uses mixin composition to compose metaclass properties[11]. This experiment
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makes MetaclassTalk the closest model to our own approach as it supports both downward and upward
compatibility while allowing the reuse of class properties. However in MetaclassTalk, property compo-
sition is based on mixin linearization. As such it has the same problems as the ones we present in[9]:
the composite entities do not have the full control of the composition, and the glue code is spread over
multiple classes. These problems are solved by traits.

8.2. Metaobjects

Other approaches such as CodA[19], Moostrap[12], Iguana/J[20] support the composition and reuse
of metaobjects. Such a composition is often based on chain of responsibility[12], i.e., a metaobject is
designed to be composed in a chain of metaobjects by invoking the overridden functionality. The problem
with chain of responsibility is that it forces all the metaobjects to follow a certain architecture. It more
importantly gives the composing metaobject only a very limited control over the composition: it can
invoke the rest or do nothing. In contrast, traits composition is automatic when there is no conflict, and
whenconflicts arise, the composingmetaclass has complete control over all the composed class properties.
The authors of Guarana[13] and Reflex[21], introducecomposite metaobjects, i.e., a metaobject that

define the composition semantics of several metobjects. This approach works well for coarse–grained
composition, such as for making changes to the message passing semantics (broadcast, concurrent dis-
patch, or remote invocations). However, it is too heavyweight to compose class properties, since it would
force the developer to define an explicitcomposite metaclassfor all simple conflicts whose reuse is even
questionable.
CodA[19] structures the meta-level architecture around several metaobjects responsible for the differ-

ent actions. However it raises the issue of compatibility between all the metaobjects associated to a given
object. The solution is to manually define a semantically coherent configuration of metaobjects imple-
menting the desired semantics[19]. This solution shows again that there is no magic and that composing
operations with conflicting semantics cannot be achieved in an automatic fashion.

9. Advantages and disadvantages

Advantages. Traits support the decomposition of class properties as reusable units of behavior. Since
metaclasses are composed of traits and the model is based on the parallel hierarchy of Smalltalk, it is
upward and downward compatible and supports the reuse of class properties across different hierarchies.
In addition the proposed model is uniform with respect to the concepts used at the base level and

the meta level (like CLOS). Both levels use the same concepts (traits and inheritance). Furthermore, the
model is simple, and there is no need for on-the-fly code generation (as in SOM or NeoClasstalk) or for
dynamic changes to classes (as in NeoClasstalk).
Class properties can be composed of traits that represent those properties. The application of the

properties to an actual metaclass is accomplished by using the appropriate composite trait in themetaclass
definition. The composing metaclass hascompletecontrol of the composition, and possible conflicts are
resolvedexplicitlywhen the property is applied to a metaclass.
Having explicit control over the composition is especially important because it allows a programmer to

freely adapt the behavior of the composite metaclass and to compose class properties that may not quite
fit together. This means that our approach lets system designers ship their class hierarchies together with
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a set ofprefabricatedclass properties in the form of traits, which can then be used and combined by the
programmers. In case some class properties built by different vendors do not quite fit together, the traits
model not only indicates the resulting conflicts, but also provides the programmer with the necessary
means to resolve the conflicts to achieve the expected semantics.
Disadvantages. Glue methods and state have to be redefined in the metaclass where a property is

applied. For example, the instance variableuniqueInstance and the two accessors methods have to be
defined in all classes that implement a Singleton. We consider this to be a limit of the traits model and
the price to pay to have the minimal mechanism supporting traits composition. Introducing state into
traits would solve this but would introduce other problems, such as the well-knowndiamond problemof
multiple inheritance[22], where state gets inherited through different paths.
It may happen that instance variables defined in a superclass are not necessary in the subclasses. For

example, if the superclass implements a Singleton and the subclasses do not, then the instance variable
that holds the Singleton instance as well as the methods to access it will be inherited by the subclasses.
However, this problem is not due to traits by itself but is a result of using the inheritance mechanism in
general.Table 1compares the approaches.

10. Class properties

Traits let us decide if a given functionality is defined as a trait or as a class.When defining functionality
as a trait we automatically offer the possibility for future classes to use the identified behavior. Onemight
wonderwhywehave so fewclass properties. First of all we chose to reengineer the current implementation
of Squeak and not to design a new MOP. In this article we present the mainclass propertiesthat we
identified during our implementation, and we did not invent new ones. Secondly, we deliberately took
heavily conflicting class properties, so that we could clearly show the conflict resolution advantage of
traits. Composing non-conflicting properties is trivial. Thirdly, other important efforts to build metaclass
libraries, such as SOM[5], present nearly the same set of class properties.
Another point to consider is the role of the classes in the context of a MOP[3]; we believe that a lot of

class properties identified in[6] are due to the fact that the classeswere the single entry point in their MOP,
while certain responsibilities are definitely the responsibilities of other meta-entities such as methods. It
is also out the scope of this paper to present a new MOP based on traits, even if this is definitely future
work.
Class property propagation. Our approach does not support per class property because we did not want

to change the class creation protocol of Smalltalk-80. However, there is nothing in our approach that
prevents us to support per class property in a similar way than the compatibility model does[10,11]. Fig.
11 shows that the intermediate metaclassesBoolean class + Abstract, False class + Singleton, andTrue
class + Singleton are composed of traits and that properties such abstractness of theclass Boolean, are
not propagated to its subclasses. Note that metaclasses such asBoolean class could also be composed of
traits if the property have to be propagated to the subclasses.

11. Automatic composition

An important difference between traits and most other approaches lies in the fact that traits have
automatic conflictdetectionbut expectexplicit conflict resolution controlled by the programmer. Most
approaches aim for a completely automatic resolution of conflicts, where possible conflicts are resolved
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Fig. 11. Controlling class property propagation and trait composition.

according to some automatic scheme. If such schemes would work in all possible situations and in such
a way that the programmer can easily foresee the result of a composition, developing software would be
much easier. However, fully automatic resolution of conflicts is no panacea. It is only trivial when the
composed semantics are orthogonal, so that conflicts can simply not occur. But it becomes extremely
complex or even impossible when the semantics overlaps, which is the case for class properties. Looking
in other areas such as multiple inheritance conflicts resolution we see that techniques based on automatic
linearization techniques are not always satisfying[16] and often lead to unpredictablemethod invocations.
The same applies here.

Nowadays the problems of composition of services or overlapping aspects is difficult and nearly
impossible without the use of metadata. For example, Kienzle and Guerraoui demonstrates that trying
to automatically compose transactions with other simpler aspects such as notification is doomed to
failure [23]. In a similar vein authentication and encryption composition can only be a success when the
encryption is invoked first, but authentication should take precedence over persistency and transactions.
Note that in the context of metaclass composition, the set of metaclass behavior is not predefined

and fixed, as such it is possible to load a package in which another meta-programmer has developed
new class properties with sensible composition exigence. Therefore any clever composition engine based
on meta-information would have to deal with the openness of the set of class properties. Our solution,
based on traits, differs from the other approaches since trait composition is automatic as long as there are
no conflicts. Conflicts are detected automatically. When there is a conflict, then the traits model offers
mechanisms to solve the conflict. This contrasts with the approaches that use an automatic scheme to
handle conflicts.

12. Conclusion and future work

The need to reuse class properties led to meta-level architectures based on explicit metaclasses[1,2].
While offering reuse of class properties, such models introduced metaclass composition problems[8].
Different approaches exist that try to solve metaclass compositions problems, based on multiple inher-
itance, code generation or automatically changing metaclasses[4,10,11]. However, the definition, the
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composition and the application of the class property were not controllable by the developer or meta
programmer.
Our solution models class properties withtraits (first class groups of methods), and uses trait compo-

sition to safely combine and reuse them. Using traits to compose class properties first of all solves the
metaclass composition problems (upward and downward compatibility is ensured) while supporting the
reuse of class properties. In addition, composition and conflict resolution areexplicitand undercontrolof
the composing entity. Thirdly, traits is a general-purpose composition mechanism for object-oriented lan-
guages that we have already applied successfully at the base level (for example, to refactor the Smalltalk
collection hierarchy[24]).
We implemented all the examples shown in this article using the Squeak implementation of traits and

we started to refactor the kernel of Squeak using traits. Our next step is to use traits to define a new
metaobject protocol for Smalltalk.
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