
Ecole Nationale Supérieure des

Ingénieurs des Etudes et Techniques

d’Armement (ENSIETA)

Final year project

Enhanced Dependency Structure
Matrix

Institut National de Recherche en

Informatique et Automatique (INRIA)

Author:
Romain Peirs

Supervisor:
Dr. Stéphane Ducasse

September 26, 2009

Abstract

Dependency Structure Matrix (DSM) is an approach taken from process op-
timization and it exists a variety of algorithms to help organizing the matrix
in a form that reflects the architecture and highlights patterns and problem-
atic dependencies. However, the existing DSM implementations have a lack
of information in their visualization. That is why, we enhanced DSM by
adding written and colored information in the visualization to improve the
architecture understanding of a software system and the support of its re-
modularization. This visualization has been implemented on top of Moose
which is a collaborative research platform for Software Analysis and Infor-
mation Visualization.

This report presents my internship done at the research centre INRIA
Lille - Nord Europe with the RMoD Team led by S. Ducasse.

Contents

1 Introduction 2
1.1 Context . 2
1.2 Software Evolution . 2
1.3 Understanding Software Structure 3
1.4 Contributions . 4

2 Dependency Structure Matrix 5
2.1 Presentation . 5
2.2 Partitioning Algorithms . 7

2.2.1 Identifying Cycles by Powers of the Adjacency Matrix 8
2.2.2 Identifying Cycles by Path Searching 10
2.2.3 DSM Partitioning Using Reachability Matrix Method 10

3 DSM Limitations 13
3.1 Blurry Cycles with the Power of Adjacency Matrix Method . 13
3.2 Lack of Fine-grained Information 14

3.2.1 Lack of Causes . 15
3.2.2 Lack of Impacts . 15

3.3 Cycles Not Focused on an Entity 16
3.4 No Support for Class Extensions 17

4 Enhanced DSMs 19
4.1 Enriched Contextual Cell Information 19

4.1.1 Some Examples . 20
4.1.2 At the Tool Support Level 21

4.2 Enhanced Cycle Detection . 23
4.2.1 Cycle Distinctions . 23
4.2.2 Cycle Nesting . 23
4.2.3 Cycle Fixing Hints . 24
4.2.4 An Example . 25

4.3 Entity-focused Cycle Centric View 25
4.3.1 Cycle Level . 26

5 Conclusion 28

1

Chapter 1

Introduction

1.1 Context

It is well-known that 50% to 75% of the overall cost of a software system
is devoted to its maintenance [LS80]. During maintenance, software pro-
fessionals spend at least half their time reading and analyzing software in
order to understand it. The maintenance of object-oriented applications is
harder than the ones written in procedural languages because the presence
of inheritance and late-binding greatly increases the number of potential de-
pendencies within a program. Use correctly, visualization provides a faster
way to analyze software. The main purpose for using visualization is to help
understanding and refactoring the application.

1.2 Software Evolution

To cope with the complexity of large software systems, applications are
structured in subsystems or packages [DPS+07]. It is now frequent to have
large object-oriented applications structured over large number of packages.
Ideally a package should contain classes highly cohesive be as less as couple
with the rest of the application. This help the maintenance, as far as the
coupling between deployment unit is less important you can easily remove
it from the system and deploy it for other people, but as systems inevitably
become more complex, their modular structure must be maintained. It is
thus useful to understand the concrete organization of packages and their re-
lationships. Packages are important but complex structural entities that can
be difficult to understand since they play different development roles (i.e.,
class containers, code ownership basic structure, architectural elements...).
Packages provide or require services. They may play core role or contain ac-
cessory code features. Maintainers of large applications face the problem of
understanding how packages are structured in general and how packages are
in relation with each others in their provider/consumer roles. This problem

2

was experienced first-hand while preparing the 3.9 release of Squeak, a large
open-source Smalltalk [DD07]. In addition, approaches that support appli-
cation remodularization succeed in producing alternative views for system
refactorings, but proposed changes remain difficult to understand and as-
sess. There is a good support for the algorithmic parts but little support to
understand their results. Hence it is difficult to assess the multiple solutions.

1.3 Understanding Software Structure

Several previous works provide information on packages and their relation-
ships, by visualizing software artefacts, metrics, their structure or their evo-
lution. Metric can be somehow difficult to understand. They are project
dependent and subject to change. In a visualization like Distribution Map
[DGK06], we saw the package properties but we don’t learn about the struc-
ture of the package. Lanza et al. [DL05] propose a way to recover archi-
tecture by visualizing relationship but do not provide a fine-grained view.
However, while these approaches are valuable, they fall short of providing
a fine-grained view of packages that would help understanding the package
shapes (the number of classes it defines, the inheritance relationships of the
internal classes, how the internal class inherit from external ones,...) and
help identifying their roles within an application.

It exists a visualization called Package Surface Blueprint which already
reveals package structure and relationships. A package blueprint is struc-
tured around the concept of surface, which represents the relationships be-
tween the observed package and its provider packages. The Package Surface
Blueprint reveals the overall size and internal complexity of a package, as
well as its relation with other packages, by showing the distribution of ref-
erences to classes within and outside the observed package. However, this
visualization has limitations. Firstly, for the analysis of a large project the
visualization is not easy to use because of the number of packages. More-
over, with a package blueprint visualization, we need 3 views to know what
are the dependencies which exist between the packages (1 for inheritance,
1 for outgoing dependencies and 1 for incoming dependencies). Finally, we
do not know the number of dependencies which exist. For all these reasons,
we need another visualization which synthesize the different views of Pack-
age Surface Blueprint and specify the dependencies: their number and their
kind (access, invocation, inheritance).

DSM visualization already exists. Indeed, it exists a promising approach
taken from process optimization that propose Dependency Structure Matrix
(DSM) [Ste81]. In addition, a variety of algorithms are available to help
organize the matrix in a form that reflects the architecture and highlights
patterns and problematic dependencies. The potential significance of the
DSM for software was noted by Sullivan et al [SGCH01], in the context of

3

evaluating design trade-offs, and has been applied by Lopes et al [LB05] in
the study of aspect-oriented modularization. MacCormack et al [MRB06]
have applied the DSM to analyze the value of modularity in the architectures
of Mozilla and Linux.

1.4 Contributions

While DSMs have proven solution to reveal software structure, DSMs have
weaknesses too. They lack providing certain information and their visual-
ization, notably concerning the dependencies cycles it often unprecise. The
DSM current implementations produce blurry cycles with the power of adja-
cency matrix method, (2) they lack of fine grained-overview, detected cycles
are not focused on an entity and lack of support for class extension.

Our contribution is to address such weaknesses. We added 2 kinds of
information to DSM cells: first, a written information in cells which provides
detailed information about the kinds of references and the number of con-
cerned classes and methods by these references; second, a color information
which provides a visual help to the user. We enrich cell information with
contextual information, we isolate independent cycles and coloring informa-
tion. We provide entity focused oriented view and level cycle coloring.

Outline. Chapter 2 is a presentation of a dependency structure matrix
(DSM). Chapter 3 describes the limitations of the current DSM. Chapter 4
shows the solutions to some of the problems outlined above and describes
the new functionality offered by our DSM. Finally, we are concluding in
chapter 5.

4

Chapter 2

Dependency Structure
Matrix

In this chapter, we show in Section 2.1 what is a Dependency Structure Ma-
trix (DSM) and in what is it useful. Section 2.2 describes several algorithms
which can be used to partition a DSM, reordering so properly the matrix.

2.1 Presentation

The dependency structure matrix (DSM) was invented for optimizing prod-
uct development processes. Since its invention, the concept has been ex-
tended to many other fields, including software engineering and reengineer-
ing. I will describe a DSM in its original context to reduce its purpose to
its original intention [SJSJ05].

Earlier works [War73] [Ste81] started with the use of graphs for system
modeling. For example, consider a system that is composed of two elements
(or sub-systems): element ”A” and element ”B”. [The two elements are
assumed to completely describe the system and characterize its behavior].
A graph may be developed to represent this system pictorially. The system
graph is constructed by allowing a vertex/node on the graph to represent
a system element and an edge joining two nodes to represent the relation-
ship between two system elements. The directionality of influence from one
element to another is captured by an arrow instead of a simple link. The
resultant graph is called a directed graph or simply a digraph.

The matrix representation of a digraph is a binary square matrix with
m rows and columns, and n non-zero elements, where m is the number of
nodes and n is the number of edges in the digraph. The matrix layout is as
follows: the system elements names are placed down the side of the matrix
as row headings and across the top as column headings in the same order.
If there exists an edge from node i to node j, then the value of element ij
(column i, row j) is unity (or marked with an X). Otherwise, the value of

5

the element is zero (or left empty). In the binary matrix representation of a
system, the diagonal elements of the matrix do not have any interpretation
in describing the system, so they are usually either left empty or blacked
out. A major advantage of the matrix representation over the digraph is in
its compactness and ability to provide a systematic mapping among system
elements that is clear and easy to read regardless of size.

If the system is a project represented by a set of tasks to be performed,
then off-diagonal marks in a single row of the DSM represent all of the
tasks whose output is required to perform the task corresponding to that
row. Similarly, reading down a specific column reveals which task receives
information from the task corresponding to that column. Marks below the
diagonal represent forward information transfer to later (i.e. downstream)
tasks. This kind of mark is called forward mark or forward information link.
Marks above the diagonal depict information fed back to earlier listed tasks
(i.e. feedback mark) and indicate that an upstream task is dependent on a
downstream task.

There are three basic building blocks for describing the relationship
amongst system elements: parallel, sequential and coupled (Figure 2.1).

Figure 2.1: DSM Presentation

In the parallel configuration, the system elements do not interact with
each other. Understanding the behavior of the individual elements allow
us to completely understand the behavior of the system. If the system
is a project, then elements would be project tasks to be performed. As
such, activity B is said to be independent of activity A and no information
exchange is required between the two activities.

In the sequential configuration, one element influences the behavior or
decision of another element is a unidirectional fashion. That is, the design
parameters of system element B are selected based on the system element
A design parameters. Again, in terms of project tasks, task A has to be
performed first before task B can start.

Finally, in the coupled system, the flow of influence or information is
intertwined: element A influences B and element B influences A. This would

6

occur if parameter A could not be determined (with certainty) without first
knowing parameter B and B could not be determined without knowing A.
This is called a cyclic dependency.

2.2 Partitioning Algorithms

Partitioning is the process of manipulating (i.e. reordering) the DSM rows
and columns such that the new DSM arrangement does not contain any
feedback marks. Thus, transforming the DSM into a lower triangular form.
For complex engineering systems, it is highly unlikely that simple row and
column manipulation will result in a lower triangular form. Therefore, the
analyst’s objective changes from eliminating the feedback marks to moving
them as close as possible to the diagonal (this form of the matrix is known
as block triangular). In doing so, fewer system elements will be involved in
the iteration cycle resulting in a faster development process[htt].

Several algorithms exists to partition a DSM [GEC91] [War73]. How-
ever, some of these algorithms are similar during the first steps [GEC91].
The difference is made during the identification of the cycles. In Section
2.2.1 and Section 2.2.2, I will present several algorithms which perform the
identification of the cycles. But now, I am explaining how the partitioning
algorithms proceed during the first steps:

1. Identify elements in the DSM which are used by none of the other
elements in the matrix. These elements are easily identified because
they have an empty row in the DSM (Figure 2.2(a)). Move all these
empty rows to the top of the matrix and the corresponding columns
to the left of the matrix (Figure 2.2(b)) and omit those elements for
further consideration. Repeat this step on the remaining elements
until there are no empty rows in the matrix (Figure 2.2(c)).

A B C D E F G H I J K
A X
B X X
C X X X
D
E X
F X X X
G X X X
H X X X X
I X
J X X X
K X

(a) DSM

D A B C E F G H I J K
D
A X
B X X
C X X X
E X
F X X X
G X X X
H X X X X
I X
J X X X
K X

(b) First sort

D E A B C F G H I J K
D
E X
A X
B X X
C X X X
F X X X
G X X X
H X X X X
I X
J X X X
K X

(c) Second sort

Figure 2.2: First step of partitioning algorithm

2. Identify elements in the DSM which use none of the other elements in
the matrix. These elements are easily identified because they have an

7

empty column in the DSM. Move all those empty columns to the left
of the matrix and the corresponding rows to the bottom of the matrix
and omit those elements for further consideration. Repeat this step
on the remaining elements until there are no empty columns in the
matrix (Figure 2.3).

D E A B F G H I K C J
D
E X
A X
B X X
F X X X
G X X X
H X X X X
I X
K X
C X X X
J X X X

Figure 2.3: Second step of partitioning algorithm

These two steps are called the topological sorting.

3. If after the topological sorting there are no remaining elements in the
DSM, then the matrix is completely partitioned; otherwise, the re-
maining elements contain cycles (at least one). This is at this moment
that the identification of cycles is performed.

2.2.1 Identifying Cycles by Powers of the Adjacency Matrix

The adjacency matrix is a binary DSM where an empty cell is replaced
with a 0 and a non-empty cell is replaced by 1 (Figure 2.4(a) and Figure
2.4(b)). Raising the DSM to the n-th power shows which element can be
reached from itself in n steps. That is why when non-zero values are part of
the diagonal of the matrix, it implies that the corresponding elements are
involved in a cycle. In Figure 2.4(c) the DSM shows that elements G, H and
I are involved in a two-step cycle and in Figure 2.4(d) elements A, B, F, H,
I and K are involved in a three-step cycle.

A B F G H I K
A X
B X
F X X X
G X X
H X X X X
I X
K X

(a) DSM

A B F G H I K
A 0 0 0 0 0 0 1
B 1 0 0 0 0 0 0
F 1 0 0 0 0 1 1
G 1 0 0 0 1 0 0
H 0 0 1 1 1 1
I 0 0 0 0 1 0 0
K 0 1 0 0 0 0 0

0

(b) Binary DSM

A B F G H I K
A 0 1 0 0 0 0 0
B 0 0 0 0 0 0 1
F 0 1 0 0 1 0 1
G 0 0 1 1 0 1 2
H 2 1 0 0 1 1
I 0 0 1 1 0 1 1
K 1 0 0 0 0 0 0

2

(c) Power 2

A B F G H I K
A 1 0 0 0 0 0 0
B 0 1 0 0 0 0 0
F 1 1 1 1 0 1 1
G 2 2 0 0 2 1 1
H 1 1 2 2 2 4
I 2 1 0 0 2 1 1
K 0 0 0 0 0 0 1

1

(d) Power 3

Figure 2.4: Powers of the adjacency matrix

8

Thus, the procedure to identify all the cycles and so to partition the
DSM is the following:

1. Convert the DSM matrix into a binary matrix (Figure 2.5(a)).

2. Raise the power of the adjacency matrix until you identify elements
with a non-zero value along the diagonal (Figure 2.5(b)).

3. Merge all those elements together. The merged matrix forms the new
active matrix (Figure 2.5(c)).

4. Repeat the topological sorting on the new active matrix. If it still re-
mains elements, repeat the identification of the cycles (Figures 2.5(d)
to 2.5(j)). If not, the merged elements represent blocks and the resul-
tant matrix is the partitioned DSM (Figure 2.5(k)).

A B F G H I K
A 0 0 0 0 0 0 1
B 1 0 0 0 0 0 0
F 1 0 0 0 0 1 1
G 1 0 0 0 1 0 0
H 0 0 1 1 1 1
I 0 0 0 0 1 0 0
K 0 1 0 0 0 0 0

0

(a)

A B F G H I K
A 0 1 0 0 0 0 0
B 0 0 0 0 0 0 1
F 0 1 0 0 1 0 1
G 0 0 1 1 0 1 2
H 2 1 0 0 1 1
I 0 0 1 1 0 1 1
K 1 0 0 0 0 0 0

2

(b)

A B F GHI K
A X
B X
F X X X
GHI X X X
K X

(c)

A B F GHI K
A 0 0 0 0 1
B 1 0 0 0 0
F 1 0 0 1 1
GHI 1 0 1 0 1
K 0 1 0 0 0

(d)

A B F GHI K
A 0 1 0 0 0
B 0 0 0 0 1
F 1 1 1 0 2
GHI 1 1 0 1 2
K 1 0 0 0 0

(e)

A B FGHI K
A X
B X

FGHI X X
K X

(f)

A B FGHI K
A 0 0 0 1
B 1 0 0 0

FGHI 1 0 0 1
K 0 1 0 0

(g)

A B FGHI K
A 0 1 0 0
B 0 0 0 1

FGHI 0 1 0 1
K 1 0 0 0

(h)

A B FGHI K
A 1 0 0 0
B 0 1 0 0

FGHI 1 1 0 0
K 0 0 0 1

(i)

ABK FGHI
ABK
FGHI X

(j)

X

F

XXF X

D E A B K G H I C J
D
E X
A X
B X X
K X

G X X X
H X X X
I X
C X X X
J X X X

(k)

Figure 2.5: Formation of partitioned DSM with powers of the adjacency
matrix method

9

2.2.2 Identifying Cycles by Path Searching

In path searching, information flow is traced either backwards or forwards
until an element is encountered twice [SW64]. All elements between the first
and second occurrence of the task constitute a cycle of information flow.
When all cycles have been identified, and all elements have been scheduled,
the sequencing is complete and the matrix is in a block triangular form.

We know that in the active matrix, all elements are involved in at least
one cycle. So, a cycle can be traced starting with any of the elements. That
is why the following algorithm is used to detect all cycles:

1. Choose arbitrary an element and trace its dependencies until this ele-
ment is encountered a second time (Figure 2.6(a))

2. Merge together all elements encountered to form a unique element
(Figure 2.6(b))

3. Repeat the topological sorting on the new active matrix (Figure 2.6(c)

4. Repeat those 3 steps until there are no elements in the active matrix.
The merged elements represent blocks and the resultant matrix is the
partitioned DSM (Figure 2.6(d))

F A B C D G E
F
A X X
B X
C X X X X
D X
G X X
E X X

(a)

D CA B D G E
F
CA X X X X
B X
D X
G X X
E X X

(b)

E XX

EF B D G CA
F
B X
D X
G X X
CA X X X X

(c)

F A B C D G E
F
A X X
B X
C X X X X
D X
G X X
E X X

(d)

Figure 2.6: Formation of partitioned DSM with path searching method

2.2.3 DSM Partitioning Using Reachability Matrix Method

The reachability matrix is a binary DSM with the diagonal elements equal
to 1 (Figure 2.7(a)) [War73]. This diagonal of 1 does not add information
to the matrix but is required to this algorithm.

The method calls for finding a multi-level hierarchical decomposition for
the matrix. The top level in this hierarchy is composed of all elements that
require no input or are independent from all other elements in the matrix.
Any two elements at the same level of the hierarchy are either not connected
to each other or are part of the same circuit at that level. Once the top level

10

set of elements is identified, the elements in the top level set and their
corresponding from/to connections are removed from the matrix leaving us
with a sub-matrix that has its own top level set. The top level set of this
sub-matrix will be the second level set of the original matrix. Proceeding in
this manner, all the levels of the matrix can be identified.

The steps of this method are:

1. Construct a table with 4 columns (Figure 2.7(b)):

(a) In the first column, list all the elements in the matrix.

(b) In the second column, list the set of all the input elements for each
row in your table. This set can easily be identified by observing
an entry of 1 in the corresponding row in the DSM.

(c) In the third column, list the set of all output elements for each
row in your table. This set can easily be identified by observing
an entry of 1 in the corresponding column in the DSM.

(d) In the fourth column, list the intersection of the input and output
sets for each element in your table.

2. Identify top level elements and remove them from the table. An ele-
ment is in the top level hierarchy of the matrix if its input set is equal
to the intersection set.

3. Repeat the two first steps until the DSM is fully partitioned (Figure
2.7(c)).

Conclusion
We saw in this chapter that it exists several algorithms which can bring to
light the architecture of an application and its defects. But, there is still a
lack of information which could be brought to a reenginner. That is what
we show in the next chapter.

11

(a) Reachability matrix (b) Reachability table

(c) Partitioned reachability matrix

Figure 2.7: Formation of partitioned DSM with reachability method

12

Chapter 3

DSM Limitations

DSM are powerful and have been used to analyze the overall structure of
large systems, however they have some limits that we present now: merging
independent cycles (Section 3.1), lack of fine grained-overview (Section 3.2),
cycles not focused on an entity (Section 3.3:) and lack of support for class
extension (Section 3.4).

3.1 Blurry Cycles with the Power of Adjacency
Matrix Method

A way to compute cycle in DSM is to use the technique based on powering
the adjacency matrix. The principle of this approach is to raise a binary
DSM to its n-th power to indicate which elements can be traced back to
themselves in n steps; thus constituting a cycle [YFC99]. However, the
indicated elements do not automatically belong to the same cycle. Indeed,
it can exist several cycles with the same number of steps and the power of
the adjacency matrix method cannot differentiate these different cycles, so
we have blurry cycles.

A B C D
A X
B X
C X X
D X

Figure 3.1: A DSM

On Figure 3.1, we see that the elements A and B constitute a direct
cycle and the elements C and D constitute another one. But if we raise

13

the binary DSM (Figure 3.2(a)) to the square by following the adjacency
matrix technique, a non-zero value appears in the diagonal for every element
(Figure 3.2(b)). These non-zero values mean that any of the elements A, B,
C and D are involved in at least one direct cycle but these non-zero values
do not inform what these direct cycles are made of. Moreover, with the
partitioning algorithm based on this method, we merge these 4 elements
together (Figure 3.2(c)) which means that in the partitioned matrix these
elements will appear as one cycle (Figure 3.2(d)). So, the partitioned matrix
provides wrong information by indicating a unique cycle (the grey area in
Figure 3.2(d)) whereas the matrix should show two direct cycles as shown
in Figure 3.2(e).

A B C D
A 0 1 0 0
B 1 0 0 0
C 1 0 0 1
D 0 0 1 0

(a) Binary matrix

A B C D
A 1 0 0 0
B 0 1 0 0
C 1 0 1 0
D 1 0 0 1

(b) Binary matrix to
square

ABCD
ABCD

(c) Merged DSM

A B C D
A X
B X
C X X
D X

(d) Partitioned DSM
with adjacency ma-
trix method

A B C D
A X
B X
C X X
D X

(e) Ideal partitioned
DSM

Figure 3.2: Limitation of the power of adjacency matrix method

So, the power of adjacency matrix method does not allow us to determine
precisely the different cycles. However, if we combine this method with a
path searching method we can identify all the different cycles.

Notice that the DSM software Lattix does not use this partitioning al-
gorithm but is using reachability matrix method.

3.2 Lack of Fine-grained Information

A traditional DSM offers a general overview but lacks from providing pre-
cise information about the situation it describes. We identify two kinds of
weaknesses: lack of dependency causes and lack of dependency impacts.

14

3.2.1 Lack of Causes

Dependencies can be due to several sources: class direct accesses, class ex-
tensions (see Section 3.3), inheritance relationships and method invocation.
Fixing cycles may be different based on the source of linking e.g., changing
a direct reference to a class is often simpler than changing an inheritance
relationship. That is why, it is not enough to just indicate the dependen-
cies in a DSM by a mark (Figure 3.3(a)) or even by a number representing
the number of dependencies that exist (Figure 3.3(b)). Indeed, indicating
at least a number for each kind of dependency (Figure 3.3(c) would give a
more fine-grained information and so permit a better analysis.

A B C D
A X
B X
C X
D

(a) DSM with
marks

A B C D
A 5
B 3
C 1
D

(b) DSM with
numbers

A B C D

A 5
1 | 3 | 1 | 0

B 3
1 | 0 |1 | 1

C 1
0 | 1 | 0 | 0

D

Number of
inheritances

Number of
accesses

Number of
invocations

Number of
extended class

(c) DSM with kind of dependencies

Figure 3.3: Examples of references in a DSM

3.2.2 Lack of Impacts

In addition, the information provided is often too summarized and does not
give an idea of potential problems. For example, knowing that a package
has 99 references to another one is a valuable information. Such references
could be done by 20 or 3 classes and these 99 references could refer to a
small subset or a large number of classes. The same remark can be done for
methods instead of classes.

But knowing that these references originate only from 3 classes and 15
methods and that only 4 classes and 6 methods are referenced by these 99
dependencies makes a large difference. In addition, having access to this
information without having to look at every class in the concerned packages
give more impact to the analysis.

For example, if we have a package A which has 123 references to the
package B (Figure 3.4(a)), it has definitely not the same impact if a reengi-
neer knows that these references are due to 3 classes and 25 methods in the

15

package A which are referencing only 1 class and 3 methods in the package
B (Figure 3.4(b)).

A B

A 123

B

(a) Summarized
information

A B

A 123
3 (25) | 1 (3)

B

Number of
referencing classes

Number of
referenced methods

(b) Full information

Figure 3.4: The importance of providing adequate information

3.3 Cycles Not Focused on an Entity

Cycles are shown in the context of complete system and the ordering within
a level is the result of the partitioning algorithm. It makes it hard to un-
derstand the cycle (and not the level) in which a given package is involved.
In particular when cycles inside the same level are merged, we obtain not
precise information.

For example, if we have a package A involved in a direct cycle with the
package B and this package B involved in a direct cycle with the package
C (Figure 3.5(a)), package A is also involved in a cycle with package C but
the length of this cycle is not the same that the length of the cycle between
package A and package B. This is why it is a valuable information to see the
difference between the lengths of the cycles (Figure 3.5(b)) because the used
methods to break them will not be the same. In Figure 3.5(b) direct cycles
started from the entity A are displayed: yellow shows the direct cycles, then
red the second level.

A B C
A X
B X X
C X

(a) Cycles not fo-
cused on an entity

A B C
A X
B X X
C X

(b) Cycles focused on
an entity

Figure 3.5: The importance of cycles focused on an entity

16

3.4 No Support for Class Extensions

A class extension is a method that is defined in a package, but whose class
is defined in another package [BDNW05, BDN05]. Class extensions offer a
convenient way to incrementally modify existing classes when subclassing is
inappropriate. Indeed, class extensions offer a good solution to the dilemma
that arises when one would like to modify or extend the behavior of an
existing class, and subclassing is inappropriate because that specific class is
referred to, but, one cannot modify the source code of the class in question.
A class extension can then be applied to that specific class [BDNW04].

Class extensions is offered in languages such as Objective-C, CLOS,
Smalltalk, Ruby and C#3.0 limited to static methods. However, up to
now DSMs were mainly applied to Java and C++ which do not support
class extensions. That is why DSM softwares designed for these languages
do not take into account this kind of dependency. But in the case of a DSM
software designed for multi languages, this is important to consider class
extensions. Indeed, extending a class in another package automatically cre-
ate a reference from the package where the class is extended to the package
where the class is defined because the extended class just modifies the be-
havior but do not define it; so you need the definition of the class if you
want to modify it.

Core Network

Url

asUrl

String

(a) Dependencies without class extension

Core Network

Url

String

asUrl

String

(b) Dependencies with class extension

Figure 3.6: Meanings of class extension

In addition, we have a better modularity with class extension as shown
in Figure 3.6. Indeed, we take a class String which is defined in the package
Core and a class Url which is defined in the package Network. Now, we
take a method named asUrl and defined in the class String which accesses
to the class Url. So, we have a reference from the method asUrl to the class
Url. Without a class extension, this method is packaged in the package
Core (Figure 3.6(a)) and so we have a reference from the package Core

17

to the package Network. This reference is very bad because the package
Core should not reference any package (since it is meant to be part of a low
architectural layer). But if we extend the class String in the package Network
and move the method asUrl in this extension (Figure 3.6(b)), the reference
is moved inside the package Network and another reference is created from
the package Network to the package Core. So, there is only a reference from
the package Network to the package Core, that is much more logical.

Conclusion
In this chapter, we identified the limits of existing DSMs and thus, we will
show the solutions that we bring to solve these limitations in the next chap-
ter.

18

Chapter 4

Enhanced DSMs

Our implementation has taken into account the previous described limita-
tions and adds some functionality that does not seem to be offered by DSM
software like Lattix [SJSJ05] or other:

• Enriched contextual cell information (Section 4.1),

• Isolating independent cycles and coloring information (Section 4.2),

• Entity-Focused oriented view and level cycle coloring (Section 4.3).

4.1 Enriched Contextual Cell Information

As described in the previous chapter, current DSM softwares do not provide
a fine-grained information. That is why, we address this issue in our en-
hanced DSM (Figure 4.1). The enriched contextual cell information shows
the following information:

1. Strength of the dependency.
On the first line, we show the number of references from a package
to another one. This number gives us the strength of the link which
exists between these packages but give no more information.

2. Dependency Kinds.
On the second line, we show the kinds of reference (Inheritance (H),
Access (A), Invocation (I) and class Extension (E)) and how many
references there are for each. These numbers give us a first information
about how the studied software is built.

3. Spread of the Dependency.
Finally, we show how the references are spread in the packages. Indeed,
we give the numbers of classes in every package on the fourth line. This
information gives us an idea of the size of the package. On the fifth

19

line, we indicate for every package the number of classes and methods
which are involved in the references and finally on the sixth line, we
give the percentage that the involved classes represent in every package
and the percentage that the involved methods represent in the involved
classes. These information are very important because they show us
the part of the packages which are concerned by the references. So,
we know whether it is a small part of a package or a big one which is
concerned by the dependencies and gives an approximation about the
necessary engineering effort to remove these dependencies.

Dependency Strength

Dependency Kinds

Spread

Number of
references

280

H: 3 A: 11 I: 266 E: 0

Src: 8 - Tgt: 16
Cls: 3 (M: 118) - Cls: 8 (M: 103)
37% (42%) - 50% (36%)

Kind of
references

(Inheritance, Access,
Invocation, Class Extension)

Number of classes in
the referencing package (Src)

and the referenced package (Tgt)

Number of
referencing classes (Cls)

and methods (M)

Number of
referenced classes (Cls)

and methods (M)
Percentage of concerned

classes and methods

Figure 4.1: DSM cell with enriched contextual information

This enriched contextual view supports the identification of situation by
just glancing over the matrix.

4.1.1 Some Examples

In Figure 4.2(a), we can observe a direct cycle. This cycle is due to 29
references from the package B to the package A and 23 references from the
package A to the package B. Moreover, the dependencies from B to A are
due to 10 accesses and 19 invocations. Finally, there is only 1 class and 6
methods which are referencing the package A. So we can suggest that the
best to break the cycle is to move the referencing methods from package B
to package A and thus extending the class containing these methods in the
package A.

20

In Figure 4.2(b), we can also see a direct cycle but this time it is due
to 1 reference from package B to package A and 1 reference from A to B.
Moreover, in both cases, the dependency is due to an inheritance relation-
ship. This case is a very bad scenario because if we want to break the
cycle we have to move an entire class from the package A to the package
B, for example. But if there are classes in package A which inherits from
the moved class, we have to also move these classes to the package B. But,
these changes could reveal other dependencies which are not wished. So, we
notice that even if the number of references is very little, it can be difficult
to remove these references. That is why, an enriched contextual cell is very
important.

A B

A

29
H: 0 A: 10 I: 19 E: 0

Src: 24 - Tgt: 11
Cls: 1 (M: 6) - Cls: 9 (M: 11)

4% (20%) - 81% (45%)

B

23
H: 0 A: 12 I: 11 E: 0

Src: 11 - Tgt: 24
Cls: 9 (M: 11) - Cls: 7 (M: 6)

81% (45%) - 29% (3%)

(a) Example1

A B

A

1
H: 1 A: 0 I:0 E: 0
Src: 18 - Tgt: 13

Cls: 1 (M: 0) - Cls: 1 (M: 0)
5% (0%) - 7% (0%)

B

1
H: 1 A: 0 I: 0 E: 0

Src: 13 - Tgt: 18
Cls: 1 (M: 0) - Cls: 1 (M: 0)

7% (0%) - 5% (0%)

(b) Example2

Figure 4.2: Examples of using enriched contextual cell information

4.1.2 At the Tool Support Level

In addition to the enriched contextual cell information, our tool implemen-
tation offers two features to get more information: first a large fly-by-help
pop-up window presents the enriched information with more details. Second
the cell entity can be navigated using the environment navigation facility.
Hence offering the possibility to reach the classes, methods and packages
under analysis.

1. A pop-up window that adds information to the original content in
DSM cells (Figure 4.3): names of the concerned packages, classes and
methods.

2. The possibility to inspect the entity which is represented by a DSM
cell (Figure 4.4). This inspection gives access to the more precise
information. Indeed, with this inspection, you exactly know, for ex-
ample, which class inherits from another one, or which method invokes
another one.

21

Figure 4.3: DSM cell with a pop-up window

Figure 4.4: DSM cell inspection

22

4.2 Enhanced Cycle Detection

Cycle identification is important in large entangled software. The cycles
detection is often made using path searching algorithm (see Section 2.2.2).
This algorithm allows one to detect separately every independent cycle. In-
deed, as explained in Section 3.1, it can exist a situation where, for example,
package A and B are in a direct cycle and package C and D are in another
direct cycle. In this case, these cycles are separately identified with path
searching algorithm, which cannot be achieved with an algorithm based on
the powers of adjacency matrix.

Our approach enhances the traditional matrix by three aspects: cycle
distinctions (Section 4.2.1), cycle nesting identification (Section 4.2.2), and
hints for cycling fixing (Section 4.2.3)).

4.2.1 Cycle Distinctions

Our approach distinguishes independent cycles. It is based on the path
searching algorithm [GEC91]. With the path searching method, 2 indepen-
dent cycles are separately detected and can so be isolated from each other
in the DSM (Figure 4.5).

A B C D
A X
B X
C X
D X

A B

C D

Figure 4.5: Independent cycles distinction

4.2.2 Cycle Nesting

We added color information in DSM cells to give information about cycles.
Indeed, as you can see on Figure 4.6(a), after partitioning, DSM cells in-
volved in a cycle have a yellow or red color. The yellow color means that
the 2 concerned packages (a DSM cell is the intersection of 2 packages) are
involved in an indirect cycle while the red color means they are involved in
a direct cycle.

23

4.2.3 Cycle Fixing Hints

In addition, in the case of a direct cycle, if there is a big difference between
the number of references between the 2 packages (by default, the ratio is 3),
the cell that contains the least references has a light red color (Figure 4.6(b)).
This information allows the user to focus his attention on the references
which should be solved a priori in a first time. I say a priori because as
said in Section 4.1.1, it could sometimes happen that the least numerous
references do not correspond to these that are the simplest to remove if you
want to break a cycle (for example, in the case of inheritance).

A B C
A 5 6
B 3
C 1

Direct cycle

Indirect cycle

(a) Cycles representa-
tion

C D
C 25
D 2

Direct cycle with a big difference
between the number of references

(b) Cycle fixing hints

Figure 4.6: Direct and indirect cycles coloring

G

1

F

12G
4F

E

E

A B C D
A 5
B 3
C 25
D 2

Direct cycle

Indirect cycle

Direct cycle with a big difference
between the number of references

Figure 4.7: Cell color definition

24

4.2.4 An Example

You can observe in Figure 4.8 a big independent cycle. Without any color,
this would be difficult to quickly distinguish direct and indirect cycles. In-
deed, direct and indirect cycles would not clearly appear, so the observer
could not easily separate them. But with cells color, at first glance, it is
very easy to identify direct and indirect cycles. In addition, you can focus
your attention on the light red cells because they indicate what are the cells
which should probably disappear to eliminate the direct cycles. So, adding
color information in DSMs really facilitate refactoring work.

Figure 4.8: Example of cycle detection

4.3 Entity-focused Cycle Centric View

We have seen in the previous section that our approach isolates independent
cycles and add them information by coloring cells to visualize better the di-
rect and indirect cycles. However, if it is easy to see the different cycles

25

which exist into an independent cycle when there are a few number of pack-
ages, it is much more difficult when the number of packages is much bigger.
Indeed, you do not easily know if the length of a cycle between 2 packages is
short or long. But, what it is complicated with cycles, it is that an element
can belong to several cycles which do not have the same length, so how to
show in the matrix the length of cycles to which belongs an element?

To solve this problem, we added the notion of focused element. Indeed,
the length of a cycle between an element and another one is relative to
the first one. So, we represent the length of the cycles relative to a chosen
element that we call the focused element. For example, in Figure 4.9, you
can see that relative to the element A, the elements B and D are involved
in a direct cycle with A; and the element C is in an indirect cycle with A
Figure 4.9(a). But if you focus your attention on the element D, that are
the elements A and C which are involved in a direct cycle with D and the
element B which is in an indirect cycle with D Figure 4.9(b).

A B

C

A B D C
A X X
B X X
D X X
C X XD

(a) Situation with the focused element A

A B

CD

D A C B
D X X
A X X
C X X
B X X

(b) Situation with the focused element D

Figure 4.9: Visualization of the different cycles relative to the focused ele-
ment

4.3.1 Cycle Level

So, to help the visualization of the different cycles in which your focused
element is involved, we introduce a color information for every cycle level.
Indeed, as shown in Figure 4.10, the elements involved in the first cycle
level with the focused element (i.e., the elements which are in cycle with
the focused element and which the length of the cycle is the shortest) are in
red color. This process is repeated for every element which is in cycle with
the focused element: the elements which belong to a same cycle level are

26

in a same color. Thanks to that color information, first, you can easily see
whether 2 elements are close in a cycle or not and second, you can count
the number of elements in every cycle level.

Number of packages
involved in a direct cycle

with the package
corresponding to

the first colored row

Every color corresponds to
a different cycle level

Figure 4.10: Visualization of different cycle levels

27

Chapter 5

Conclusion

During this final year project, I hence used an existing approach taken
from process optimization to help optimizing software. This approach called
Dependency Structure Matrix (DSM) allows one to collect all information
about references between packages that compose a software inside a matrix.
In addition, several algorithms already exist to reorder the matrix and so
reveal the software architecture.

However, the existing DSM implementations like Lattix do not provide
enough information about the references between the packages and about
the cycles which can exist between them. That is why, the goal of my
project was to fill this lack and so improve the DSM concept. To do that
I added several information in the matrix. First, a written information in
cells which provides detailed information about the kinds of references and
the number of concerned classes and methods by these references. Second,
a color information which provides a visual help to the user.

Thanks to these improvements, understanding and analysis of software
applications are easier and thus faster. However, in future work, it would
be very helpful to be able to see directly in the matrix the consequences of
the changes brought to the application without having to change the code
and may be from that a code generator could make itself the changes into
the code from the changes realized into the matrix.

28

Bibliography

[BDN05] Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz.
Classbox/J: Controlling the scope of change in Java. In Pro-
ceedings of 20th International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOP-
SLA’05), pages 177–189, New York, NY, USA, 2005. ACM
Press.

[BDNW04] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and
Roel Wuyts. Classboxes: Controlling visibility of class exten-
sions. Technical Report IAM-04-003, Institut für Informatik,
Universität Bern, Switzerland, June 2004.

[BDNW05] Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and
Roel Wuyts. Classboxes: Controlling visibility of class exten-
sions. Journal of Computer Languages, Systems and Structures,
31(3-4):107–126, December 2005.

[DD07] Marcus Denker and Stéphane Ducasse. Software evolution from
the field: an experience report from the Squeak maintainers.
In Proceedings of the ERCIM Working Group on Software Evo-
lution (2006), volume 166 of Electronic Notes in Theoretical
Computer Science, pages 81–91. Elsevier, January 2007.

[DGK06] Stéphane Ducasse, Tudor Gı̂rba, and Adrian Kuhn. Distribu-
tion map. In Proceedings of 22nd IEEE International Confer-
ence on Software Maintenance (ICSM ’06), pages 203–212, Los
Alamitos CA, 2006. IEEE Computer Society.

[DL05] Stéphane Ducasse and Michele Lanza. The class blueprint: Vi-
sually supporting the understanding of classes. Transactions on
Software Engineering (TSE), 31(1):75–90, January 2005.

[DPS+07] Stéphane Ducasse, Damien Pollet, Mathieu Suen, Hani Abdeen,
and Ilham Alloui. Package surface blueprints: Visually support-
ing the understanding of package relationships. In ICSM ’07:
Proceedings of the IEEE International Conference on Software
Maintenance, pages 94–103, 2007.

29

[GEC91] D.A. Gebala, S.D. Eppinger, and M. Cambridge. Methods For
Analyzing Design Procedures. Design Theory and Methodology,
DTM’91: Presented at the 1991 ASME Design Technical Con-
ferences, 3rd International Conference on Design Theory and
Methodology, September 22-25, 1991, Miami, Florida, 1991.

[htt] http://www.dsmweb.org. The Design Structure Matrix (DSM).

[LB05] Cristina Videira Lopes and Sushil Krishna Bajracharya. An
analysis of modularity in aspect oriented design. In AOSD
’05: Proceedings of the 4th international conference on Aspect-
oriented software development, pages 15–26, New York, NY,
USA, 2005. ACM.

[LS80] Bennett Lientz and Burton Swanson. Software Maintenance
Management. Addison Wesley, Boston, MA, 1980.

[MRB06] Alan MacCormack, John Rusnak, and Carliss Y. Baldwin. Ex-
ploring the structure of complex software designs: An empiri-
cal study of open source and proprietary code. Manage. Sci.,
52(7):1015–1030, 2006.

[SGCH01] Kevin J. Sullivan, William G. Griswold, Yuanfang Cai, and Ben
Hallen. The structure and value of modularity in software de-
sign. In ESEC/FSE 2001, 2001.

[SJSJ05] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson.
Using dependency models to manage complex software archi-
tecture. In Proceedings of OOPSLA’05, pages 167–176, 2005.

[Ste81] D. Steward. The design structure matrix: A method for man-
aging the design of complex systems. IEEE Transactions on
Engineering Management, 28(3):71–74, 1981.

[SW64] P.R.W.H. Sargent and AW Westerberg. ”Speed-up” in Chem-
ical Engineering Design. Chemical Engineering Research and
Design, 42(a):190–197, 1964.

[War73] J.N. Warfield. Binary Matrices in System Modeling. IEEE
Transactions on Systems, Man, and Cybernetics, 3(5):441–449,
1973.

[YFC99] A. Yassine, D. Falkenburg, and K. Chelst. Engineering design
management: an information structure approach. International
Journal of Production Research, 37(13):2957–2975, 1999.

30

	Introduction
	Context
	Software Evolution
	Understanding Software Structure
	Contributions

	Dependency Structure Matrix
	Presentation
	Partitioning Algorithms
	Identifying Cycles by Powers of the Adjacency Matrix
	Identifying Cycles by Path Searching
	DSM Partitioning Using Reachability Matrix Method

	DSM Limitations
	Blurry Cycles with the Power of Adjacency Matrix Method
	Lack of Fine-grained Information
	Lack of Causes
	Lack of Impacts

	Cycles Not Focused on an Entity
	No Support for Class Extensions

	Enhanced DSMs
	Enriched Contextual Cell Information
	Some Examples
	At the Tool Support Level

	Enhanced Cycle Detection
	Cycle Distinctions
	Cycle Nesting
	Cycle Fixing Hints
	An Example

	Entity-focused Cycle Centric View
	Cycle Level

	Conclusion

