
dynamically creating a kernel in a reflexive language
Hazelnut

Tutors:
- Stéphane Ducasse
- Yann Secq

Benjamin Van Ryseghem

17th January 2011

2

Thanks
I would like to especially thank Stéphane Ducasse and Jannik Laval who have

always been there to show me the way, and answer my questions.

I also would like to thank Jean-Baptiste Arnaud and Igor Stasenko who have
spent hours explaining to me how the VM works.

I’m thankful to Gabriel Barbuto, who work on a similar project, for sharing
his knowledge with me.

I would like to thank the whole team, it was a real pleasure to work with you.

I also would like to thank the reviewers: Stéphane Ducasse, Jannik Laval,
Jean-Baptiste Arnaud, Nicolas Anquetil, Marcus Denker and Yann Secq.

I finally would like to thank the teaching team of the IUT, which taught me
a lot during those two years.

3

Résumé
Dans le cadre de mon stage de fin d’études, j’ai eu en charge le projet Hazelnut
au sein de l’équipe RMoD au sein de l’INRIA (Institut National de Recherche en
Informatique et en Automatique) de Lille. Le projet Hazelnut consiste en la créa-
tion dynamique d’un nouveau noyau d’exécution à partir d’une implémentation
de Smalltalk, Pharo.

Ce projet doit permettre de concevoir aisement des noyaux minimaux pouv-
ant servir à des systèmes embarqués aussi bien qu’à redéfinir facilement la façon
dont le noyau (et donc le système) fonctionne.

Abstract
During my internship at INRIA (Institut National de Recherche en Inform-
atique et en Automatique) in the RMoD team, I had in charge the Hazelnut
project which consists in the dynamic creation of a new kernel from Pharo, an
implementation of Smalltalk.

This project will be used to create minimal kernel for embedded systems or
to easily redefine the way the kernel (and the whole system) works.

Contents
Abstract . 3

1 Introduction 5

2 Context 7
2.1 INRIA . 7
2.2 The RMoD Team . 8
2.3 Smalltalk Presentation in a Nutshell 8

2.3.1 What is Smalltalk ? . 8
2.3.2 Smalltalk basics . 9
2.3.3 Some basics code lines . 9
2.3.4 The SystemDictionary . 11
2.3.5 Special Object Array . 11
2.3.6 The Virtual Machine . 12

3 Bootstrapping Challenges 15
3.1 Definitions and Benefits . 15
3.2 Current Problems in Pharo . 17
3.3 Goals of the project . 17

4 Hazelnut 19
4.1 Kernel Class Identification . 19
4.2 Kernel Isolation . 23

4.2.1 References to unwanted classes 23
4.2.2 Reroute dependencies from original classes to Hazel classes 25

4.3 Image Creation . 26

5 System Preparation 29
5.1 Text Constants . 29
5.2 Kernel Fix . 30
5.3 Pharo Dependencies . 31

6 Conclusion 33
6.1 Technical Results . 33
6.2 Human Results . 34

6.2.1 Integrate a research team 34
6.2.2 Pharo, a living community 34

6.3 Conclusion . 35
Abstract . 37

Chapter 1

Introduction

Currently student at the Institut Universitaire de Technologie (IUT) at univer-
sity Lille 1 in the fourth semester of the DUT Informatique1 I had to do an
internship for graduation in a research laboratory from 1st November 2010 to
26th January 2011. I have done this internship into the RMoD team working
for the Institut National de Recherche en Informatique et en Automatique (IN-
RIA). It was for me the chance to discover the world of research, world I would
like to work in. Few weeks before the beginning of my intership, John Maloney
released one of his projects named Micro Squeak consisting in a proof of concept
of the creation of a new kernel (the core classes and methods of the system).
We have decided to port this project in Pharo. It is named the project Seed.

Context: Smalltalk is an object language that has the property to save the
entire state of the environment from one session to the other in a file called an
image. An image contains a snapshot of the Smalltalk environment’s memory.
It basically contains all the classes and objects of the system at the moment it
was saved. The Smalltalk environment is a “leaving thing”, it is never created
from scratch, but every new version is evolved from a previous image. For
example, there are very probably in all current smalltalk images, objects that
were created back in the first version of the first Smalltalk in the 70’s (e.g. the
“true” and “false” objects). After John Maloney’s project has been released,
we had a proof that the creation of a new kernel was possible, and we wanted
to have this concept in Pharo. Some other projects2 have provided the tools
to create new kernels, but with a different approach. Seed is the first project
inspired by Micro Squeak.

Problems: The problems are that Micro Squeak is based on the version 3.7
of Squeak, and even if the project has been released few months ago, it had
been developed in 2004. Due to that the project is not synchronized with the

1a computer science formation in two years
2mainly Chacharas, Spoon

6 CHAPTER 1. INTRODUCTION

system anymore. Moreover, the system I used during my internship, Pharo is
a fork of Squeak. Pharo already got a large refactoring effort but it is still a
monolithic system, with still a lot of useless or inefficient code. Because of that,
it’s quite difficult to define properly what the kernel is and to extract it without
collecting irrelevant classes.

Goals The goal of the Hazelnut project is to automatically extract a kernel
from a living Pharo image and to bootstrap this kernel into an image. The
process has to be automatic to be able to follow the Pharo evolution. Moreover,
in order to ease the kernel creation process, the Pharo structure has to be fixed.
So in a nutshell the goals of the project are:

• Identify a kernel for Pharo;

• Automatize this identification;

• Fix the Pharo structure;

• Make the two last tasks in parallel because the system (and therefore its
kernel) is currently evolving and under heavy modifications;

• Bootstrap a new image with this kernel.

Such a kernel could be used in embedded devices, due to the lightweight of the
new image, or be used to modify the kernel of the system and to restart from
this new kernel without old living objects. It’s an argument for the agility of
Pharo.

Contributions: My contributions to this project was to:

• Initiate the project;

• Write a kernel extraction script;

• Write kernel analysis tools;

• Work on Pharo kernel analysis to define the kernel;

• Work on the whole Pharo system to flag the system weaknesses such as
wrong dependencies between packages;

• Work on different ways to generate a new image;

• Fix the system, especially the Pharo kernel.

During my internship, I also worked on the integration of some tools of mine
and on their maintenance.

Chapter 2

Context

Firstly I will introduce the work environment I used to live in during my intern-
ship in three parts, the institution I was working for, the team I was working in
and the language I was working with.

2.1 INRIA

Presentation: INRIA is a French institution under the dual supervision of the
ministries of research and industry which goal is to undertake research in basic
and applied sciences and information technologies and communication (SITC).
The institute also provides a strong technology transfer in a close attention to
training through research, dissemination of scientific and technical development,
expertise and participation in international programs.

Composition: INRIA accommodates 3800 people in its eight research cen-
ters located in Rocquencourt, Rennes, Sophia Antipolis, Grenoble, Nancy, Bor-
deaux, Lille and Saclay, 2800 of them are scientists from INRIA and partner
organizations (CNRS, universities, colleges) working in over 160 project teams
of joint research. Many INRIA researchers are also professors and their students
(about 1000) are preparing their thesis within the project teams of INRIA re-
search.

The research center of Lille: The INRIA Lille - Nord Europe, led by Max
Dauchet, gathers from its inception 10 research teams located in a building of
4000m2 acquired with the help of local government and European funds. It
hosts more than 220 people, nearly half is paid by the Institute. This INRIA
center is an asset for the competitiveness of Nord - Pas de Calais in research
and innovation.

8 CHAPTER 2. CONTEXT

2.2 The RMoD Team
Presentation: The goal of the RMoD team is to help re-modularization of
object-oriented applications. This goal follows two complementary lines: re-
engineering and definition of new constructors for programming languages. To
help re-engineering, new analyses are proposed in order to understand and re-
modularize big applications (specialized metrics, adapted visualizations, etc). In
the context of programming languages, constructors for the modularity features
and new systems modules validation are performed. The team is also working
on a secured kernel for Pharo, an Integrated Development Environment (IDE)
for Smalltalk used and maintained by the team.

Applications re-modularization: The evolution of an application is lim-
ited by strong dependencies between its inner parts. That’s why it’s crucial to
answer the following questions: "How can we substitute a part by another one
with minimal impact ?", "How to identify reusable elements?" or "How to mod-
ularize an application when there is wrong links?". To answer those questions
is the goal of Moose, the team software analysis environment, provides a set of
analyses. This work is divided in tree parts :

• Tools to understand big applications (packages/modules);

• Analysis for remodularization;

• Software quality.

Semantics elements for modularity. This second line focuses on the defin-
ition of new semantics elements for languages in order to construct flexible and
reconfigurable software. The team continues its efforts on Traits and Classboxes
but also works on new areas such as security in dynamic languages. It works
on:

• The definition of a Traits-only language and;

• Reconciliation between reflexive languages and security.

2.3 Smalltalk Presentation in a Nutshell
Smalltalk is the language used in the team, therefore this is the language I used
during my internship. To understand the challenges I faced I will briefly present
Smalltalk and its main characteristics.

2.3.1 What is Smalltalk ?
Smalltalk is an object-oriented, reflective, dynamically typed programming lan-
guages. So let’s explain each word:

2.3. SMALLTALK PRESENTATION IN A NUTSHELL 9

• Object-oriented : in Smalltalk, you manipulate objects which send mes-
sages (like in Java or C++);

• Reflective : each object can inspect or modify its own structure at runtime
(like Java, but to a much greater extent);

• Dynamically typed : variables don’t have a type at compilation, but only
when a value is stored in them at runtime;

• Everything is an object: everything is an object (a class, a message, a
method, . . .)

2.3.2 Smalltalk basics
Smalltalk is based on 2 classes which constitute the conceptual core of this
system, Object and Class (see Figure 2.1). Here you can see that each element
cannot exist alone. The bootstrap is the process which leads to this state.
However, since Class and Object needs other objects such as string, characters,
stream, numbers. . . the real bootstrap is more complex.

Class

Object

instance of
inherits from
class
object

Figure 2.1: Class and Object bootstrap

The most important thing to know is that a bootstrap is a process where a
system is initializing itself via its own execution. It’s close to the Chicken or
egg dilemma where each one deeply depends on the other one (more details will
be given in the next chapter, page 17).

2.3.3 Some basics code lines
Here few examples of Smalltalk code to know how to read further examples:

10 CHAPTER 2. CONTEXT

"Variables declaration"
| variable1 variable2 |

"Instance creation"
variable1 := Point new.
"Instance setting"
variable1 x: 1.
variable1 y: 2.

variable2 := Point new.
variable2 x: 1.
variable2 y: 2.

variable1 = variable2. true
variable1 == variable2. false

Here, we can see 5 things :

• | | : it allows you to declare variables.

• := : it is the assignment.

• new : it’s a class method which creates a new instance of the receiver, e.g.
“Point new” sends the message new to the class (which is also an object)
Point.

• = : it tests if two objects represent the same object, it’s a logical equality.
It is a message, asking the receiver (before =) whether it is the same object
as the parameter (after the =).

• == : it tests if two objects point to the same reference, it’s a physical
equality. It is a message also.

Let’s see a basic method of the Integer class:

plus: integer1 andPlus: integer2

^ self + integer1 + integer2

Here we learn 3 new things:

• : : the way to specify parameters to most methods.

• self : the receiver of the method (similar to this in Java).

• ˆ : it allows you to return a value1. By default a method returns self.

A method is often referred to by the notation Class�#selector to have an unique
notation. So the method we just saw is noted Integer�#plus:andPlus:. One more
example to see the last syntax elements, a method of class Class:

1You can sometime see ↑ instead.

2.3. SMALLTALK PRESENTATION IN A NUTSHELL 11

copyMethodDictionary
"This method answer a copy of my method dictionary"

| result |
result := SortedCollection new sort: [:m1 :m2 | m1 selector < m2 selector].
self methodDictionary do: [:method |

result add: method.
Transcript show: method selector asString, ’ added.’;cr].
^ result

Here we have :

• "some text" : a comment.

• [:arg | code] : it’s a block (a λ-expression). They act like anonymous
methods where arg is an argument of the block which is used to execute
the code. In addition it captures its creation environment - it is a lexical
closure.

• rcvr m1; m2 : it’s a cascade of messages. It means that the receiver of the
second method (m2) is the same that the first method’s (m1) receiver, in
this case rcvr.

Now, you know the syntax of Smalltalk.

2.3.4 The SystemDictionary
The System Dictionary is a dictionary which contains all the global variables,
including all the classes of the system. In Pharo, the variable Smalltalk is,
normally, the sole SystemDictionary of the system. We can notice that Smalltalk
is a global variable, so it contains itself.

2.3.5 Special Object Array
The Special Objects Array is basically an array shared between an image and
the Virtual Machine (VM). It’s an interface allowing the VM to know where are
special objects it needs.

What is in the Special Objects Array ? Here I will give the first ten
elements of the Special Objects Array:

• nil2

• true

• false

• #Processor->Processor
2nil is te basic NullPattern object, like NULL in C or null in Java

12 CHAPTER 2. CONTEXT

• Bitmap

• SmallInteger

• ByteString

• Array

• Smalltalk

• Float

• . . .

We can notice that the nineth element is Smalltalk, the current SystemDic-
tionary.

2.3.6 The Virtual Machine
As some other languages (especially Java), Smalltalk’s methods are converted
then interpreted by a VM. In fact, the Smalltalk compiler analyzes the code
then createss a CompiledMethod which is a representation of the method but
including more information ready to be executed by a byteCode interpreter or
JustInTime translator:

• the byteCode : the source code converted into a language that the VM
can interpret;

• the literals : they represent low level objects such as number true, false,
strings that are referenced and read by the scanner at compilation time.
Literals especially store pointers to class referred into the source code.

Method

Let’s see an example, String�#copy :

copy

| string |
string := String new: (self size).
self doWithIndex: [:character :index |

string at: index put: character].
^ string

First, let’s explain what this method do :

• | string | : we declare a new variable named string.

• string := String new: (self size) : it creates a new instance of the class
String which the size is set a the size of the receiver and then stores it in
the variable named string.

2.3. SMALLTALK PRESENTATION IN A NUTSHELL 13

• self doWithIndex: [:character :index | : we browse the receiver and for each
element, we store the element in the variable character end the index of
the element in the variable index.

• string at: index put: character : at the index index of string, we put char-
acter.

• ˆ string : we finally return the variable string.

In a nutshell, this method basically parses the receiver (which is a String) and
fills up a new String with the same value.

CompiledMethod

Now, let’s take a look at the corresponding CompiledMethod

• the byteCode :

21 <40> pushLit: String
22 <70> self
23 <C2> send: size
24 <CD> send: new:
25 <68> popIntoTemp: 0
26 <70> self
27 <10> pushTemp: 0
28 <8F 12 00 05> closureNumCopied: 1 numArgs: 2 bytes 32 to 36
32 <12> pushTemp: 2
33 <11> pushTemp: 1
34 <10> pushTemp: 0
35 <C1> send: at:put:
36 <7D> blockReturn
37 <E1> send: doWithIndex:
38 <87> pop
39 <10> pushTemp: 0
40 <7C> returnTop

Basically, the byteCode tells the VM how to manage the execution stack.

• the literals :

– #String->String : this literal refers to the String called at the instan-
tiation of String. This association is the one present in the Pharo
SystemDictionary

– #doWithIndex: : this literal refers to a method invoked.
– #copy : this literal represent the selector of the method. It doesn’t

appear in the byteCode because it’s not needed (moreover, historic-
ally, methods used to be anonymous).

14 CHAPTER 2. CONTEXT

– #String->String : this literal refers to the class of the method.

You can notice that new and at:put: are not in the literal. It is due to the
fact that those methods are special byteCodes

It’s important to keep in mind that all methods points to the current Sys-
temDictionary through their literals, but you do not have to be able to read or
understand the byteCode because it’s a very low level tool. Moreover, byteCode
is rarely read by developers.

Chapter 3

Bootstrapping Challenges

In this chapter we first define what is a system bootstrap and give some related
definitions, then we present the current problems and the goals of our work.

3.1 Definitions and Benefits
Reflective system. Smith defines reflexivity as: « An entity’s integral ability
to represent, operate on, and otherwise deal with itself in the same way that it
represents, operates on and deals with its primary subject matter ». [?]

In the context of programming languages, this definition can be stated as:
Reflection is the ability of a program to manipulate as data something repres-
enting the state of the program during its own execution. There are two aspects
of such manipulation : introspection and intercession [...] Both aspects require
a mechanism for encoding execution state as data; providing such an encoding
is called reification. [?]

Maes has proposed in the first chapter of his thesis [?], precise definitions to
clearly characterize reflective programming. We refer here to these definitions:

• A computational system is something that reasons about and acts
upon some part of the world, called the domain of the system (p 13).

• A computational system may also be causally connected to its domain.
This means that the system and its domain are linked in such a way that
if one of the two changes, this leads to an effect upon the other (p 15).

• Ameta-system is a computational system that has as its domain another
computational system, called its object-system. [...] A meta-system has
a representation of its object-system in its data. Its program specifies
meta-computation about the object-system and is therefore called a
meta-program (p 17).

• Reflection is the process of reasoning about and/or acting upon oneself
(p 19) (see Figure 3.1).

16 CHAPTER 3. BOOTSTRAPPING CHALLENGES

Part of the world

DATA

PROGRAM

Reflective System

INTERPRETER

Figure 3.1: A Reflexive System

• A reflective system is a causally connected meta-system that has as
object-system itself. The data of a reflective system contain, besides the
representation of some part of the external world, also a causally connected
representation of itself, called self-representation of the system. [...]
When a system is reasoning or acting upon itself, we speak of reflective
computation (p 19).

• A language with a reflective architecture is a language in which all
systems have access to a causally connected representation of themselves.

• A programming environment has a meta-level architecture if it has an
architecture which supports meta-computation, without supporting re-
flective computation (p 34).

• Themeta-object of an object X represents the explicit information about
X (e.g. about its behavior and its implementation). The object X itself
groups the information about the entity of domain it represents (p 120).

Bootstrap. Bootstrapping a kernel is the process that builds the minimal
structure of a language that is reusable to define this language. The idea is to
use as early as possible the benefits of the resulting language by implementing
a minimal core whose only goal is to be able to build the full system. As
an example of a possible bootstrap: we write in C the minimal structures to
represent and execute objects, and we then write with this core the full system.
This avoids to have to write the full system (compiler for example in C). In
ObjvLisp [?], the class Class is first defined using low level API, then Object is
created, then Class is fully reimplemented using the first one.

3.2. CURRENT PROBLEMS IN PHARO 17

3.2 Current Problems in Pharo
The current structure of Pharo is a problem for creating easily a bootstrap at
different levels:

• Pharo has still monolithic structure with a lot of old code (even though
all our efforts are on that);

• There is structural hidden dependencies requiring deep analysis to be re-
vealed. For example, Stream depends on Compiler while it should be the
inverse;

• The definition of the Pharo’s kernel is fuzzy and dispatched through dif-
ferent packages which aren’t autonomous and self contained.

3.3 Goals of the project
Bootstrapping. We need process able to create an autonomous kernel and
to bootstrap it into a new image. This process have to be modular in order to
be able to create a specific kernel. This kernel have to be autonomous which
means it have to be isolated from the other classes and have to only refers to
itself.

Dealing with kernel changes. Pharo development is real active in all parts
of the system and in particularly the kernel. Therefore it is not possible to take
6 or 8 months to just bootstrap it. We need a solution that can cope with the
continuous changes and fixes in the kernel.

Therefore we will attack the problem from two angles: (1) cleaning the current
kernel to ease the bootstrap, (2) build a bootstrap process that can be applied
to the evolving kernel.

Chapter 4

Hazelnut

Hazelnut is one of the Seed project, where Seed was originally composed by
different projects whose goal is to generate new kernels, all based on the pro-
ject Micro-Squeak (Squeak is another implementation of Smalltalk) For now we
essentially distinguish two of them.

• PineKernel: it is a port of Micro Squeak in Pharo

• Hazelnut: it is the building of a kernel in Pharo starting from the Pharo
kernel.

This project is composed by three different parts, the kernel collection, the
kernel isolation and finally the image creation.

4.1 Kernel Class Identification
Goal: The goal of this part is to create an alternative SystemDictionary (a
SystemDictionary is a namespace holding all the classes of the system) starting
from the Pharo one and to collect classes which are needed to build the kernel.

Problems:

• Which classes need to be collected ?

• How do we fill up the new SystemDictionary with those classes ?

Solutions:

• A first naive approach is to collect every classes Object depends on in
order to have an autonomous system. But due to bad dependencies in the
system, the kernel collected this way contains half of the Pharo classes.
This is clearly not working. Therefore we have decided to have another
approach. The second and final approach is to provide to the builder the

20 CHAPTER 4. HAZELNUT

list of classes the user wants in the new kernel plus some classes absolutely
needed by the system1. The problem is that we had to determine which
classes are the absolutely needed ones. In order to answer this question, a
tool to analyze classes dependencies has been written and recursively used
starting from the Kernel package until we had a quite autonomous kernel
composed of around 200 classes2. This tool also flags bad dependencies,
but this part will be exposed in the next chapter (page 25).

• MicroSqueak’s solution to fill up the new SystemDictionary is to recompile
needed classes with a prefix and then to collect them. It’s quite efficient
when you have 20 classes to copy, but here we have the constraints that
we do not know by advance what we will copy and then we want to be as
fast as possible.

The solution we adopted is to create a new instance of SystemDictionary and
to directly copy classes into it without recompiling them. The classes are still
pointing to their original namespace as shown by Figure 4.1.

A

B

C

D
globals

references

Hazel

#A

#B

#C

#D

classes

B

D
globals

#B

#D

classes

Pharo

inheritsSystemDictionary creation

Figure 4.1: Step 1 - Copy the classes B and D into the new SystemDictionary

The second step is to make sure that the class and metaclass hierarchy is
maintained in both the environments and that the methodDictionary3 is also
copied. To be sure to reconstruct the hierarchy, the copy method recursively
rebuild class, metaclass and superclass hierarchy (see Figure 4.2).

1as Object, ProtoObject or MethodContext for example
2Pharo contains around 1800 classes
3a methodDictionary is a dictionary implemented in each class and containing all the

methods of the class

4.1. KERNEL CLASS IDENTIFICATION 21

A class

B class

A

B

class inherits

Figure 4.2: Class and MetaClass Hierarchy

Here is the pseudo code in Smalltalk that add a class in the Hazel System-
Dictionary and check the hierarchy:

HazelKernelBuilder>>#addAClassInDictionary: class
"Add a copy of the class in the Hazel SystemDictionary then answer the copy"

| hazel copy className |
className := class name asSymbol.

"Check if the class is already in the dictionary"
(self list includesKey: class name)

ifFalse: [^ nil].

hazel := Smalltalk at: #HazelSmalltalk.
(hazel globals includesKey: className)

ifTrue: [^hazel at: className].

"If not, add a copy in the dictionary"
copy := self copyClass: class.
self registerClass: copy.

"then check the superclass"

22 CHAPTER 4. HAZELNUT

copy superclass ifNotNilDo: [:superclass || superCopy |
"add the superclass"
superCopy := self addAClassInDictionary: superclass.
"change the superclass"
copy superclass: superCopy.
"then change the metaclass’s superclass"
copy class superclass: (superCopy class)].

"Check all literals of all methods"
self checkMethods: copy.

"Check all class var"
self checkClassVar: copy.

^ copy

The last instructions will be commented in the next section.

The only wrong inheritance which remains is that ProtoObject in the Hazel
world inherits from nil which is still in the Pharo world. But this will be fixed
when we will change nil (see paragraph 4.3 page 26).

In a nutshell: We are now able to copy wanted classes and needed classes into
a new SystemDictionary, with a good hierarchy, but Hazel classes keep references
to Pharo ones (see Figure 4.1).

4.2. KERNEL ISOLATION 23

4.2 Kernel Isolation
Now that the kernel is created, we need to isolate it by removing dependencies
to the Pharo world. There is two different types of dependencies which need to
be fixed.

4.2.1 References to unwanted classes
Goal: Here we want to remove dependencies from Hazel classes to Pharo
classes we haven’t copied.

Problems:

• How to detect unwanted references ?

• How to remove those dependencies ?

• How to be sure it will not crash the system ?

Solutions:

• There are two places where unwanted references can be found:

– In a method: in a method literal there are references to invoke classes
(see page 12). Due to that, we can found references to unwanted
classes;

– In a class variable4: we can have an instance of an unwanted class or
just an unwanted class itself.

The solution adopted is to check its methodDictionary and class variables
during class copy. If unwanted references are found, the following solution
is applied.

• This is the key point of this cleaning step.
For class variables, the solution was to set them to nil (in the minimal
kernel creation process, only one class variable had to be set this way
(HaloFont from StandardFonts).
For methods we have considered several solutions. Our first thought was
to remove the method and to recursively remove the sender of the method.
But due to class structure, we removed that way almost all methods of the
kernel. Then we have though to create a NullPattern object implementing
all the methods removed. The problem was to find which kind of answer
is expected from each method, and how to dynamically replace the sender
in the code source. Finally we chose to remove the method and to keep
the senders.

4a class variable is a variable shared by all the instances of a class

24 CHAPTER 4. HAZELNUT

• We haven’t found a solution to this question. As long as your system can
be changed, you can’t certify that your kernel is totally functional. We
are working on a better isolation of the Pharo kernel to reduce as much
as possible the number of references (see Section 5.2 page 30).

In a nutshell: We have removed the references to unwanted class (see Fig-
ure 4.3), but because of that the integrity of the kernel may be corrupted.

A

B

C

D
globals

Hazel

#A

#B

#C

#D

classes

B

D
globals

#B

#D

classes

Pharo

references inheritsSystemDictionary creation

Figure 4.3: Step 2 - Remove references to unwanted classes

4.2. KERNEL ISOLATION 25

4.2.2 Reroute dependencies from original classes to Hazel
classes

Goal: Here we want to reroute dependencies from Pharo classes to Hazel
classes to have only intern references in the Hazel kernel. Those references
are stored into methods literals.

Problems:

• How to change those references ?

Solutions:

• This part is quite simple because the field was well prepared. Only meth-
ods refering copied classes are not fixed yet. So for those classes, the
methodDictionary had just to be parsed in order to fix literals. And for
fixing literals, we just change the Pharo associations to their corresponding
Hazel one (and we are sure it exists).

In a nutshell: We now have a kernel isolated with only internal references
(see Figure 4.4).

A

B

C

D
globals

Hazel

#A

#B

#C

#D

classes

B

D
globals

#B

#D

classes

Pharo

references inheritsSystemDictionary creation

Figure 4.4: Step 3 - Reroute the remaining dependences

26 CHAPTER 4. HAZELNUT

4.3 Image Creation
Goal: The goal of this part is starting from an isolated kernel succeed to build
a new image using this kernel. An image is a snapshot of living objects binary
saved in a file. They basically contains classes and some living instances.

Problems:

• Which technique should we use to create the image ?

• Is it necessary to have a specific Virtual Machine to build image ?

• Is it necessary to have a specific Virtual Machine to read the image ?

• How to successfully replace the Special Objects Array ?

Solutions:

• Two solutions have been tested to create the image:

– The Micro Squeak solution which consists in the collection then the
serialization of all the needed objects into a new image. This tech-
nique works for Micro Squeak thanks to the limited amount of classes
and of objects. Moreover two passes are done on objects with dif-
ferent algorithms and due to that difference, we had some missing
objects. In a first time, we tried to fix or rewrite methods, but we
finally decided to consider another solution, dynamically switch the
Special Objects Array (see Figure 4.5);

– The second solution is to take a lively image and to dynamically
switch the Special Objects Array in order to make the unneeded ob-
ject garbage collected (see Garbage Collector page 37). The difficulty
of this method is that we are drastically modifying the image dur-
ing its own execution. Some objects can easily be changed (as nil or
Character) when some others freeze the Virtual Machine (as String or
Semaphore). We think it’s due to the fact that during the execution
of the switching method, we are modifying the method context, and
the Virtual Machine points to unaccessible pointers and we got an
error5 (see Figure 4.6).

• In order to avoid the previous problem, we have started to implement new
primitives in C for the Virtual Machine, which force users to use a specific
Virtual Machine for image creation.

• The new primitives are only used to switch objects (basically change point-
ers to those objects), they should not be needed to run the image. That
way, users of the new image should not have to use a specific Virtual
Machine.

5segmentation fault

4.3. IMAGE CREATION 27

Pharo
HazelPharo

Serialization
Hazel

Hazel.image

Figure 4.5: Micro Squeak - Serialization of needed objects

• To replace the Special Objects Array, the first approach was to take the
current Special Objects Array, which is a Dictionary, and to replace its
values. The problem is that some values called every time by the image
are buffered in the Virtual Machine (those values are nil,true and false)
and updated at the opening of the image. So we have decided to use the
primitives become: and becomeForward: which basically switch references
between the receiver and the argument.

In a nutshell: Due to some objects that can’t easily be switched, now we are
not able to generate a new image starting from our Hazel kernel.

28 CHAPTER 4. HAZELNUT

HazelPharo

GC

Hazel

Hazel

Ph
ar
o

GC

Figure 4.6: Hazel - Garbage Collection of unneeded objects

Chapter 5

System Preparation

To ease the kernel creation process, the system has had to be fixed or at least
bugs have had to be flagged. This way we can at least point the structural
anomalies and fix them to reduce the number of dependencies. In this optic, we
have work on 3 topics:

• Text Constants;

• Kernel fixes;

• Pharo dependencies.

5.1 Text Constants
TextConstants used to be an old pool dictionary stored as a global variable which
was used to store and share information between text related classes. Since the
old way of managing pool dictionaries was not good (using global dictionaries),
SharedPool s have been introduced. A SharedPool is a special class designed to
store constants variables and to be shared between other classes. You easily use
them by specifying the poolDictionaries field of a class.

Back in 2006 all dictionaries which only store constants were migrated except
TextConstants. The reason of the non migration was probably that it was
too deep in the system and that it involved low level fixes. In addition some
applications started to use TextConstants not only to share constants but also
to act as a bag to store temporary values, defeating the purpose of a Pool
Dictionary.

Due to that, if one browses all classes, and for each browse poolDictionaries,
you can have a SharedPool (i.e. a Class) or TextConstants (i.e. a Dictionary).
Of course those two objects don’t have the same interface. So instead of dif-
ferentiating cases, we have decided to fix the situation and to finally convert
TextConstants into a SharedPool.

30 CHAPTER 5. SYSTEM PREPARATION

Goal: Write a script which can automatically retrieve information from TextCon-
stants (as a Dictionary), create a SharedPool class named TextConstants, then
fill up this class with the retrieved information.

Problems:
• How to differentiate constant values from variable ones ?

• Where those methods can store information they used to store in TextCon-
stants ?

• How avoid to rewrite all the methods ?

Solutions:
• To identify the problems, we read all methods invoking TextConstants and

finally found a method in Text class which initialize TextConstants, even if
it is in a strange way. So we have invoked this method but on a dummy
dictionary instead of TextConstants to be able to retrieve all the variables
name and value. With those information, it was easy to dynamically
defined TextConstants and it initialize method.

• We have decided to add a class variable in TextConstants named TextShared-
Information which is a Dictionary used to store values.

• To avoid to rewrite all by hand, we built a script that automatically adds
TextConstants in the poolDictionaries of classes which need it. When
TextConstants was used has a Dictionary, the code is changed to invoke
TextSharedInformation instead. But when TextConstants is used as a value
holder, we had to change methods manually. By chance, only two methods
needed to be rewritten this way.

In a nutshell: now TextConstants is a SharedPool and the whole system has
been changed in order to use the new design of TextConstants. All variables
founded in the field poolDictionaries are classes.

5.2 Kernel Fix
In order to reduce the amount of bad dependencies during the kernel isolation
(see section 4.2.2 page 25).

Goal: Minimise Pharo kernel dependencies by fixing classes to ease the Hazel
kernel isolation.

Problems:
• How to identify bad dependencies ?

• How to fix them ?

5.3. PHARO DEPENDENCIES 31

Solutions:

• To identify bad dependencies, we have used Moose on Pharo 1.2 and have
manually flag each dependencies.

• To fix them there is no magic formula, we have spent time on it, and we
are far from having fix all bad dependencies. But a bug entry was opened
on the developers platform for each bad dependence.

In a nutshell: 20 dependencies have already been fixed, but 40 bug entries
are still open waiting for a fix.

5.3 Pharo Dependencies
Here the topic is the same that the previous one. We want to flag dependencies
in order to isolate modules, but here it’s for the whole system.

Goal: Analyze (and fix) all Pharo bad dependencies in order to have isolated
modules easily pluggable and un-pluggable.

Problems:

• Which tool to use to analyze a whole system ?

• How to automatize the creation of a new bug entry ?

Solutions:

• Moose have been used here too to build a tool that flag Pharo packages
dependencies (about 1300 dependencies);

• We haven’t found how to use the Google interface to automatize the cre-
ation of bug entries, so we have to add each bad dependence one by hand.

In a nutshell: Now that all the bad dependencies are flagged, it’s easier to
focus on important things to fix.

Chapter 6

Conclusion

6.1 Technical Results
I have technically learned a lot during my internship at many levels. Here is a
non-exhaustive list of things I have learned or deepened.

Smalltalk. I already knew Smalltalk before the beginning of the internship.
But I have improved my knowledge about the Smalltalk language especially
because I used to borrow a lot of books from the lab, in particular the ones
about dynamic languages. Thanks to Smalltalk, and the fact that you can
browse living objects, I understand how an object-oriented language works more
deeply.

Pharo. By analyzing the Pharo kernel then the whole system, I have read a
lot of code and this way learned a lot about the Pharo internal structure. It
allows me to think at the precise definition of a kernel, which classes are needed
to run a system. Thanks to these analyses, I now have a better comprehension
of modular packages.

The Virtual Machine. I have learned bases of how the VM works and how
to create a new version of the current VM using VMMaker. I have also learned
how to add new primitives in the system. I really would like to know more
about the VM, because it used to looks like a black box even if the system can’t
work without the VM.

English. The team being multi-cultural with people from several countries,
the english is used all the time for the internal communications. Moreover, all
the mails shared in the Pharo mailing list are in english too. I started to learn
how to write a research paper in english.

34 CHAPTER 6. CONCLUSION

SVN. The team is using SVN for storing internal information, so I had to
learn how it works.

6.2 Human Results

6.2.1 Integrate a research team
Even while I learned a lot technically, humanly I discovered a new working
environment inside the RMoD team, where communication and autonomy are
really important.

• The communication is the backbone of the research work whether written
or oral Another member of the team was working on a similar project
(PineKernel) and each day we sent an email to the whole team with a
sum up of our daily work. This way we were aware of each other work,
and we shared a lot of knowledge. Moreover, I have often take a seat and
ask a question to another team member, and spent hours sharing ideas
and quickly test them. A large part of ideas used in Hazel were born this
way, and it was really pleasant to work this way.

• The autonomy in work was import too because I had to make my own
schedule and to learn how to manage my time. Moreover, I was alone
working on the Hazel project, so I had to set a rhythm by myself. In the
other hand, I forced myself not to work at home, to keep a regular rhythm
which is big change compared to the IUT.

I also had multiple points of view on the work of a researcher, which is the
job I would like to do. Moreover, the team being multi-cultural, I’ve learned
some cultural parts from Argentinian culture (like Alfajoles), or Ukrainian one.
It was really cool to practice my english with people from all over the world.

6.2.2 Pharo, a living community
Beside working for the INRIA, I worked as a member of the active Pharo com-
munity. I had developed some projects before being a member of the team.
Those projects have been improved and integrate into the current version of
Pharo. These improvements have been done with the help of other members
of the community especially during Sprints (coding session). This community
is really reactive and any question, from the dumbest one to the more specific
one, can be asked on the mailing list you will always have an answer.

In a nutshell: It was really a good experience that I hope I could reproduce.
I really like to manage a project by myself, and to schedule my work alone.
Moreover I really like to work on a research theme.

6.3. CONCLUSION 35

6.3 Conclusion
Context: After the John Maloney’s MicroSqueak, project has been released,
we had a proof that the creation of a new kernel was possible, and we wanted
to have this concept in Pharo. Some other projects1 have provided the tools
to create new kernel, but with a different approach and not working anymore.
Seed is the first project inpsired by Micro Squeak.

Goal: The goal of the project was to implement a process able to dynamically
create a new kernel starting from a living image and a collection of classes the
new kernel must provide. In parallel, I had to fix the Pharo structure in order
to ease the previous process.

Problems: The most important problems encountered were:

• What is Pharo kernel ?

• How to collect needed classes ?

• How to create another kernel in a living image ?

• How to isolate the kernel ?

• Does the Pharo structure allow you to easily separate modules ?

• How to bootstrap the kernel ?

• How to create a new image with this kernel ?

Solution: After structural analysis, I have implemented a script which takes
a list of classes as an argument, and build an autonomous kernel with all the
classes needed and wanted. I have also provided another script in order to switch
the Special Objects Array and reduce this image. For the moment this script
doesn’t work properly because it creates a non executable image.

Next Steps: The next steps could be to implement primitives in order to swap
the Special Objects Array. I think that primitives which collect then serialize
objects could also be used to generate a new image. We could also fix the whole
structure to ease the kernel isolation, and this way having a real isolated kernel
in Pharo.

1mainly Chacharas, Spoon

36 CHAPTER 6. CONCLUSION

Conclusion: As a conclusion, Hazel provides tools to create a new isolated
kernel, but it is not able to generate a new image with this kernel for now.
Working on the definition of a kernel, especially in Pharo allowed us to define
which classes are composing the current kernel and which one should compose
the kernel.

Working on the system structure had also revealed some problems in the
packages architecture and dependencies.

Résumé
Dans le cadre de mon stage de fin d’études, j’ai eu en charge le projet Hazelnut
au sein de l’équipe RMoD au sein de l’INRIA (Institut National de Recherche en
Informatique et en Automatique) de Lille. Le projet Hazelnut consiste en la créa-
tion dynamique d’un nouveau noyau d’exécution à partir d’une implémentation
de Smalltalk, Pharo.

Ce projet doit permettre de concevoir aisement des noyaux minimaux pouv-
ant servir à des systèmes embarqués aussi bien qu’à redéfinir facilement la façon
dont le noyau (et donc le système) fonctionne.

Abstract
During my internship at INRIA (Institut National de Recherche en Inform-
atique et en Automatique) in the RMoD team, I had in charge the Hazelnut
project which consists in the dynamic creation of a new kernel from Pharo, an
implementation of Smalltalk.

This project will be used to create minimal kernel for embedded systems or
to easily redefine the way the kernel (and the whole system) works.

	Abstract
	Introduction
	Context
	INRIA
	The RMoD Team
	Smalltalk Presentation in a Nutshell
	What is Smalltalk ?
	Smalltalk basics
	Some basics code lines
	The SystemDictionary
	Special Object Array
	The Virtual Machine

	Bootstrapping Challenges
	Definitions and Benefits
	Current Problems in Pharo
	Goals of the project

	Hazelnut
	Kernel Class Identification
	Kernel Isolation
	References to unwanted classes
	Reroute dependencies from original classes to Hazel classes

	Image Creation

	System Preparation
	Text Constants
	Kernel Fix
	Pharo Dependencies

	Conclusion
	Technical Results
	Human Results
	Integrate a research team
	Pharo, a living community

	Conclusion
	Abstract

