
Dynamic Initialization
of Collections
Jean Privat - for RMod - 2022-09-22

1

Jean Privat
● Professor at Université du Québec à Montréal (UQAM) since 2007

Ph.D. at LIRMM (Montpellier, France) 2006
● Work on OO languages and compilers

Like other things: VM, OS, free software, cybersecurity…
● Little practical knowledge about Pharo or Smalltalk.

→ Here to learn
→ And observe what you are doing and how you are doing it

And, possibly, try to make myself useful while having fun.

2

Exprim
Instances of
Collections
with Items
Inside

3

Literal Collections (AST level)
#(1 2 3) #[1 2 3] ‘abc’ #abc

● Fast 👍
● Immutable (read-only) 👍 or 👎 (it depends)
● Literal elements only 👎

#(1/2) or #(1@2) can be misunderstood
● Few selected classes only 👎

Array ByteArray String Symbol

4

Do It Yourself (basic programmative level)
(Array new: 3) at:1 put:10; at: 2 put: 20; at: 3 put:30; yourself

(OrderedCollection new: 3) add: 10; add: 20; add: 30; yourself

(Set new: 3) add: 10; add: 20; add: 30; yourself

(Dictionary new: 3) at: 1 put: 10; at:2 put: 20; at: 3 put: 30; yourself

● 2 basic schemes
add:

at:put:

● Use yourself (not beginner-friendly) 👎
● Very verbose. 👎

Painful to read and to write 5

Dynamic Array to the Rescue
{1. 2. 3}

● Accept any sequences of expressions 👍
{1@2. 1/2. Random new. self doSomething. thisContext}

● Not in Smalltalk80 (who proposed it first?)
● Only for Array 👎

○ Not other collections
○ This is unfair

6

DIY With the Help of Dynamic Arrays
(Array new: 3) at:1 put:10; at: 2 put: 20; at: 3 put:30; yourself

(OrderedCollection new: 3) add: 10; add: 20; add: 30; yourself

(Set new: 3) add: 10; add: 20; add: 30; yourself

(Dictionary new: 3) at: 1 put: 10; at:2 put: 20; at: 3 put: 30; yourself

Can equally become

{10. 20. 30}

{10. 20. 30} asOrderedCollection

{10. 20. 30} asSet

{1->10. 2->20. 3->30} asDictionary

But one seems more equal than the others (hint, it is Array)

7

This is Unfair (and Outrageous)
Can we extend the dynamic {} syntax to other collections

Important: this it not a proposal about performance

We are discussing language specification

8

A modest
proposal…

9

Syntax?
Prefix (or suffix) the syntactic construction with the name of the class?

● {:Set 1. 2. 3}
● {Set: 1. 2. 3}
● {Set| 1. 2. 3}
● {1. 2. 3}:Set
● Other ideas?

Follow-up questions: accept user-defined classes? Expressions?

● {:ColorArray Color blue. Color white. Color red}
● {:(self species) 1. 2. 3}

10

Semantic?
The following constructions should be equivalent

(Set new: 3) add: 10; add: 20; add: 30; yourself
Set withAll: {10. 20. 30}
{10. 20. 30} asSet
{:Set 10. 20. 30}

Could the proposal (last one) just be some syntactic sugar of the first form?

Could the bytecode compiler (Opal) do it transparently?

1st issue how to distinguish add: vs at:put: ?
Explicit list of known classes? (bad)
Ask the class at compile time? (the class should be known at compile time).
Something else?

11

{:Set 1. 2. 3}

{1. 2. 3} asSet

12

Pros and Cons of asSet
Pros 👍
● Short. Basically only the items and a class information
● A non-magic message send
● I can debug it
● Redefine it
● Inspect senders
● Etc.

Cons 👎
● ?

13

But, you allocate and initialize a
useless temporary array

Is the proposal about
performance?

14

Let’s talk about
performance.

15

What is the speed of current code?
● dynArray: {1. 2. 3. 4. 5. 6. 7. 8. 9. 10}.
● cloneArray: #(1 2 3 4 5 6 7 8 9 10) clone.
● newArray: (Array new: 10) at:1put:1; at:2put:2; at:3put:3;

at:4put:4; at:5put:5; at:6put:6; at:7put:7; at:8put:8;
at:9put:9; at:10put:10; yourself.

● newOC: (OrderedCollection new: 10) add:1; add:2; add:3;
add:4; add:5; add:6; add:7; add:8; add:9; add:10; yourself.

● asOC: {1. 2. 3. 4. 5. 6. 7. 8. 9. 10} asOrderedCollection.
● newSet: (Set new: 10) add:1; add:2; add:3; add:4; add:5;

add:6; add:7; add:8; add:9; add:10; yourself.
● asSet: {1. 2. 3. 4. 5. 6. 7. 8. 9. 10} asSet.

Old noisy laptop. Debian testing. x86_64. Pharo11. PharoVM9.
5 executions of 5 seconds each, using BlockClosure>>benchFor:

16

Numbers!
Dynamic arrays are insanely fast!
→ x3 faster than manual at:put:
→ Even faster than clone!
How is that possible?
→ Special byte code instruction
to pop all elements and push an
allocated and filled array

asX cause an overhead
→ 50% overhead for OC
→ 20% overhead of Set
Can we improve?

Higher is better

17

Optimize all the
things!!!

18

Current Code for asSet
Collection>>asSet

^Set withAll: self

Set>>asSet
^self

Collection class>>withAll: aCollection
^(self new: aCollection size) addAll: aCollection; yourself

This Is Very Elegant!

19

Improving asSet with double dispatch

Array>>asSet
^Set newFromArray: self

Collection class>>newFromArray: anArray
| newCollection size |
size := anArray size.
newCollection := self new: size.
1 to: size do: [:i| newCollection add: (anArray at: i)].
^newCollection

20

Numbers

newSet: 912k/s (base)

asSet (old): 728k/s (-21%)

asSet (fast): 829k/s (-10%)

Not that bad!

21

Current code for asOrderedColletion
Collection>>asOrderedCollection

^ self as: OrderedCollection

OrderedCollection>>asOrderedCollection
self species == OrderedCollection ifTrue: [^self].
^super asOrderedCollection

Object>>as: aSimilarClass
aSimilarClass == self class ifTrue: [^self].
^aSimilarClass newFrom: self

OrderedCollection class>>newFrom: aCollection
| newCollection |
newCollection := self new: aCollection size.
newCollection addAll: aCollection.
^newCollection

22

Improving asOrderedCollection by hijacking
Array>>asOrderedCollection

^ OrderedCollection newFromArray: self

OrderedCollection class>>newFromArray: anArray

^ self basicNew setContents: anArray clone

setContents: (private) already exists.

It uses the given array as internal storage.

23

Numbers!
newOC 3.8M/s (base)

asOC (old) 1.9M/s (x0.5)

asOC (fast): 12.3M/s (x3.25)

Nice!

24

Questions?

25

