
DepMiner: Automatic Recommendation of
Transformation Rules for Method Deprecation

Oleksandr Zaitsev∗†, Stéphane Ducasse†, Nicolas Anquetil†, and Arnaud Thiefaine∗
∗Arolla, Paris, France

†Inria, Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL, Lille, France
Email: {oleksandr.zaitsev, arnaud.thiefaine}@arolla.fr, {stephane.ducasse, nicolas.anquetil}@inria.fr

Abstract—Software applications often depend on external
libraries and must be updated when one of those libraries
releases a new version. Deprecation is a common practice for
informing client developers about the breaking changes that
will be introduced into the API of a library in future releases.
However, knowing that certain functionality is deprecated is not
enough. Developers of the client applications must be informed
about what are the correct replacements that would fix their code.
Library developers can transfer such in the form of deprecation
messages, comments, documentation, or even the transformation
rules that can be applied to client code. However, in practice,
it is often the case that (1) functionality is removed without
being deprecated; (2) deprecations are added before the release
at which point even library developers find it hard to identify
the correct replacements. We propose to help library developers
by automatically generating deprecations and transformation
rules based on the analysis of the two versions of library’s
API and mining the commit history. The generated deprecations
can be inserted into the source code of a library before the
release thus making it easier for the client developers to update
their dependencies to the new version. We implemented our
approach in a tool called DepMiner that recommends methods
to deprecate and generates transformation rules for them. We
have applied our tool to five open-source projects and proposed
the generated deprecations to project developers. They marked
138 recommended deprecations as acceptable. 63 generated
deprecations were integrated into the Pharo project.

Index Terms—software evolution, software migration, library
update, deprecations, data mining

I. INTRODUCTION

Most modern software depends on multiple external li-
braries [1]. Each one of those libraries is a separate project
that is managed by its own team of developers. Like any
other software, libraries evolve from one version to another,
parts of their Application Programming Interfaces (API) are
changed: e.g., classes, methods, or fields get renamed, deleted,
or moved around, new functionalities are introduced, etc. [2].
As a result, developers depending on those libraries must either
update their code or continue having outdated and no longer
maintained dependencies.

Deprecation is a common practice for supporting the library
evolution by notifying client systems about the changed or
removed features and helping them adapt to the new API.
Instead of removing a feature in release n, it is marked as
deprecated (“to be removed”) and only actually removed in
a following release n+1 or sometimes even later, in release

This work was financed by the Arolla software company

n+k. The client systems that call a deprecated feature receive
a deprecation warning which gives developers time to update
their code.

It is a good practice for library developers to supply
deprecations with messages that suggest a correct replacement
for an obsolete item. Modern programming languages and
IDEs provide various tools that make deprecations more infor-
mative and powerful. For example, in Java, the @Deprecated
annotation as well as the @deprecated Javadoc tag can mark
a method or class as deprecated while the @link or @see tags
can reference the correct replacement in the source code [3].
The JetBrains MPS (MetaProgrammingSystem) platform adds
an extension to IDE that allows programmers to find all usages
of deprecated methods or classes in their code [4]. While
the above approaches only inform client developers about
the correct replacement, deprecations in Pharo1 programming
language can be supplied with transformation rules that will
automatically fix client code. When deprecated method is in-
voked, the call-site is dynamically identified and automatically
fixed at runtime without interrupting the execution [5]–[7].

However, developers of real projects do not always follow
the good deprecation practices. They tend to introduce break-
ing changes to the APIs by renaming or removing certain
classes, methods, or fields without deprecating them first [8]–
[10]. Also, several large-scale studies of popular software
projects have revealed that the proportion of deprecations that
contain a helpful replacement message (in a form of comment,
string, annotation, etc.) is only 66.7% for Java, 77.8% for
C# [11], and 67% for JavaScript [12]. Brito et al., have also
demonstrated that large systems (both in terms of source code
and community sizes) have smaller percentage of deprecations
with replacement messages, arguably because small systems
are easier to maintain.

We propose to target this problem by helping library de-
velopers introduce well-documented deprecations into their
systems before every release. To that end, we designed an
approach that recommends (1) methods2 should be deprecated;
(2) correct replacements for deprecated methods expressed
in the form of transformation rules that can be used to
automatically fix client code. Our approach is based on the

1Pharo is a dynamically-typed object oriented programming language and
IDE: https://pharo.org/

2In our study, we focus only on method deprecations. However, similar
approach can be developed for classes and fields

https://pharo.org/

idea that when a method of a library is renamed, replaced by
one or more other methods, or removed without replacement,
other locations in the code of the library that used this method
(unit tests for example) must often be updated accordingly.
We propose to mine the commit history of the library to
learn how it has reacted to the changes in its own API, and
then use this information to generate transformation rules for
method deprecations. By mining small repetitive changes from
library’s commit history and combining this information with
a list of methods that were added/removed between the two
versions of the library, we can recommend methods that should
be deprecated and generate transformation rules for those
deprecations. We may also retroactively mine past changes to
propose transformation rules for methods that were manually
deprecated but were not supplied with a transformation rule
or a replacement message.

We implemented this approach in a tool called DepMiner
and used it to recommend deprecations for 5 open source
projects. The tool generated 138 recommendations that were
accepted by the developers of those projects, including 134
new deprecations and 4 transformation rules for existing
deprecations. We have submitted the deprecations that were
generated for Pharo project as pull requests. 61 new depre-
cations were integrated into the project and 2 transformation
rules were added to existing deprecations.

Mining the change history to generate code transformation
rules is not a new idea. Schaffer et al. [13], Teyton et al. [14],
and Hora et al. [15] mined the history of commits to recom-
mend the rules for updating client system to the new version of
an external library. Pandita et al., [16] and Alrubaye et al., [17]
used a similar technique to help client developers replace
dependencies to one library with dependencies to another one.
Brito et al., [11] have designed a recommendation tool that
suggests replacement messages for deprecations by learning
from client systems that have already identified the correct
replacements and updated their code.

We propose to take a different approach and recommend
transformation rules for method deprecations by mining the
commit history of the library instead of the client systems
that were already updated. The main benefit of our approach
is that it does not rely on client systems can be used by
library developers before they release the new version. We
also generate the transformation rules in a matching language
supported by Pharo. Those rules can automatically fix client
code at runtime without raising deprecation warnings or forc-
ing client developers to search for the correct replacement.
Finally, because Pharo is a dynamically-typed language, our
approach does not rely on the information about the type of
receiver or arguments of a method call. It can be extended
to work with other increasingly popular dynamically-typed
languages such as JavaScript, Python, Ruby, etc.

The contributions of the paper are (1) the automatic rec-
ommendation of methods that should be deprecated based on
the API analysis and the commit history; (2) the generation of
their accompanying transformation rules based on the frequent
method call changes; (3) a first validation with developers.

The rest of this paper is structured as follows. In Section II,
we start with a motivating example and discuss the challenges
of mining method call changes from the commit history. In
Section III, we describe our proposed approach and explain the
underlying data mining algorithm. In Section IV, we evaluate
our approach by comparing the generated transformation rules
to the ones that are already present in the source code and by
performing a developer study. Finally, in Section V, we explain
the limitations of our approach and discuss the future work.

II. MOTIVATING EXAMPLE AND CHALLENGES

A. Motivating Example

The latest stable version of Pharo (v8.0.0) contained a
method RGInstanceVariableSlot.isSpecial(). In the next version
of Pharo, this method is renamed to needsFullDefinition(). As a
result, client developers will have to find the correct replace-
ment for isSpecial(), which will not be an easy task, especially
considering that the new method name is very different from
the old one. The good solution for the developers of Pharo
would be to annotate the method isSpecial() as deprecated,
add a descriptive message to it, and a transformation rule
that will automatically fix client code. However this was not
immediately done and remembering all deprecations that were
introduced during the last year would now be a difficult task.

On the other hand, when isSpecial() was renamed, 8 other
methods that invoked it had to be updated. This means
that 8 times throughout the commit history, a method call
to isSpecial() was replaced with needsFullDefinition(). Also,
whenever isSpecial() was removed, it was always replaced
with needsFullDefinition() and never with another method call.
Mining this kind of patterns from the commit history would
allow to identify the correct replacement rule and reintroduce
isSpecial() into Pharo 9 with a transforming deprecation to
ensure backward compatibility.

B. Transforming Deprecation

Modern programming languages and IDEs like Pharo allow
developers to enrich deprecations with code transformation
rules. If a client system invokes the deprecated method, its
source code is automatically fixed at run time to call the
replacement:

1 isSpecial
2 s e l f
3 deprecated : 'Renamed to # n e e d s F u l l D e f i n i t i o n '
4 transformWith : ' `@rec i s S p ec i a l '
5 −> ' `@rec n e e d s F u l l D e f i n i t i o n ' .
6

7 ↑ s e l f needsFullDefinition

Lines 2-5 of the code above demonstrate the syntax of
transforming deprecations in Pharo: method isSpecial (name
in the first line) is deprecated with a message for the user
’Renamed to #needsFullDefinition’ and a transformation rule that
can replace method calls to isSpectial with calls to needs-
FullDefinition. The transformation rule consists of two parts: the
antecedent, matches the method call that should be replaced ;
the consequent, defines the replacement. ‘@rec and ‘@arg are

2

rewriting variables matching respectively the receiver of the
invocation and its argument.

Transforming deprecations are a powerful technique that
can save time for client developers. Because now, instead
of reading the source code of a library and looking for the
correct replacement, they only need to run the unit tests of their
project to have their code fixed automatically. However, as we
analysed 470 valid deprecations in Pharo 8, we discovered that
190 of them (40%) do not contain transformation rules. Out of
those 190 non-transforming deprecations, 41 (22%) can have
a simple transformation rule that can be written by a developer
with no project expertise or even generated automatically. 85
(45%) deprecations require developers with project expertise
to provide extra information (additional argument, default
value, etc.) and write a rule manually. The other 64 (34%)
deprecations are complex and can not be expressed using the
language for transformation rules that is used in Pharo.

This indicates that developers don’t always write transfor-
mation rules for their deprecations. We performed a survey
including 46 developers out of which 13 people answered a
question about the difficulty of writing transformation rules: 3
developers found it easy or very easy; 9 developers found it
of medium difficulty; and 1 developer marked it as difficult.

Similar trends can be observed in other programming lan-
guages. For example, according to the large-scale studies of
software systems, deprecations that contain a helpful replace-
ment message (in a form of comment, string, annotation, etc.)
constitute only only 66.7% of all deprecations in Java projects,
77.8% in C# [11], and 67% in JavaScript projects [12].

C. Challenges

Before discussing the proposed approach, it is important to
understand several challenges that arise when we mine method
call changes from the commit history of a dynamically-typed
programming language:

a) Not all changes are related to deprecations: Often
programmers simply change the code to introduce the new
behaviour, simplify or optimise the implementation, etc. For
example, many frequent method call replacements describe
good coding practices such as {ifTrue:, not} → {ifFalse:}.
Even though this is a valid rule that can be mined from the
commit history, it does not mean that ifTrue: or not should be
deprecated.

b) Absence of method visibility: Deprecations are usually
reserved for public methods only. Private methods can not
be used outside of the class that defined them. Hence, those
methods can be removed without being deprecated because
there are no external users who should be informed about
the removal of a private method. Recommending to deprecate
a private method can be considered a false positive. So
before making the recommendations, we need to know which
methods of the project are public (part of the API) and
which ones are private (intended only for the internal usage).
Languages like Java and C++ have a public keyword that can
help identify methods that are part of API. However, in lan-
guages like Python or Pharo all methods are public. Sometimes

Python developers use underscores at the beginning of method
names to mark them as "private" but it is more of a "good
practice" than a strict requirement and this practice is not
always followed. The absence of method visibility in modern
programming languages adds a layer of complexity to our task.

c) Dynamically-typed languages: Many modern pro-
gramming languages such as Python, Ruby, Javascript, or
Pharo [18], [19] are dynamically-typed. Those languages do
not have a static type information which complicates the task
of identifying correct method mappings between the old and
the new version.

Consider the following example. The log: method can be
implemented by two different classes: Logger and Number. In
the first case, log: is a method that writes a log message onto
the stream. In second case, log: represents the mathematical
logarithm. When in the commit history of a dynamically-typed
programming language we see that the method call to log: was
deleted, we do not know what was the class of its receiver and
therefore which of the two methods was being called.

Additionally, inheritance and polymorphism across different
hierarchies produce code where a single user ends up using
multiple implementations at run-time. For instance, in Pharo 8
the method name() is called 3109 times and implemented in
346 classes, isEmpty() has 1595 callers and 103 implementors.

When working with dynamic languages, we do not know
the types of arguments. This has an important implication
that we can get a combinatorial explosion when wanting
to use sequence of messages in the analysis. Megamorphic
calls can be removed from the analysis but still highly poly-
morphic methods render the analysis unusable. The research
community did propose in the past to use type inference for
dynamically-typed languages [18], [20]–[24] or use Dynamic
Type information collected by the Virtual Machine to get
concrete types [25], [26]. But such type inferencers often do
not cover the full language [18] or are not applicable to large
code bases [22]. In this project, however, we do not perform
type inference and consider that the type information is simply
missing.

III. APPROACH

We propose to assist library developers in the task of
finding proper replacements for the deprecated methods by
mining frequent method call replacements from the commit
history [13]–[15], [17]. The idea is the following: when certain
method signature from the external library gets modified (e.g.,
method is renamed, split into multiple methods, argument is
removed, etc.), the library’s usage of that method has to be
updated. This means that all calls to the old method in the
source code of the library will be replaced with the calls to
the one or many new methods. This can affect other methods
of the library that use the method that has changed, unit tests
that cover the changed method, or examples that demonstrate
how it can be used (in Pharo, it is a common practice to add
specially annotated example methods to the class side).

Our approach consists of four steps:

3

1) Identifying the methods that belong to the old API and
the new API of the project.

2) Collecting the database of method call replacements
from the commit history.

3) Mining frequent method call replacements using the A-
Priori algorithm for frequent itemsets mining [27]–[29].

4) Use frequent method call replacements to recommend
transformation rules. Combine this information with the
list of deleted methods to propose new deprecations.

In the following sections, we will discuss each step in
details.

A. Identifying Methods of the Old and the New API

First we need to define two sets of methods: the ones that
were part of the old API and those that belong to the new API.
Every rule that we will generate must replace a method from
the old API with one or more methods from the new API.

As we have discussed in Section II, many programming
languages do not have method visibility which means that we
do not know for sure which methods are public and which
ones are private. For those languages, in case the project API
is not explicitly defined by developers, we define that the API
consists of all methods except the test methods or example
methods. We will denote two sets that contain methods of the
old and new API as APIold and APInew respectively.

For dynamically-typed languages such as Pharo, where we
can not know which implementation of a method will be
invoked by a method call, the sets APIold and APInew only
need to contain the method names3.

We will also define two other sets, API∗old and API∗new,
with an asterisk, equivalent to the first ones but excluding
explicitly deprecated methods. Explicitly deprecated meth-
ods can be considered part of the API (sets APIold and
APInew) because they can be accessed by clients of the
library. However, for this study, we remove them from the API
because we are only interested in methods that are “supposed
to be used” in a given version of the project. To generate
transformation rules for method deprecations, we will need to
find the mapping from APIold into API∗new.

B. Collecting Method Call Changes

Given the history of commits between the old version and
the new version of the project, we extract method changes
from every commit. A method change describes how one
specific method was changed by a given commit. We define
method change as a combination of five values: commit SHA,
class name, method name, old source code, and new source
code.

For each method change, we parse its source code (old and
new one) and extract method calls from it4. By comparing
the method calls that appeared in the source code of a given

3Method names in Pharo incorporate the information about the number of
arguments. For example, a method assert:equals: has two argument placehold-
ers. It can be called as self assert: 1+2 equals: 3

4In our study, we used the Iceberg tool for this purpose: https://github.com/
pharo-vcs/iceberg

method before and after the commit, we get the sets of
deleted and added method calls for every method change.
From every set of deleted method calls, we remove all methods
that are not included in APIold. Similarly, we remove added
method calls that are not part of API∗new. Notice that the
first set may contain methods that were deprecated in the old
version because those deprecations may still remain in the
new version of the library. However, the second set can not
contain deprecated methods because we do not want to replace
anything with a method that will be removed. As a result, we
get a collection of method changes where each method change
(m, c) describes how method m was changed by commit c
using two sets: (1) a set of calls to the methods from the old
API that were removed from the source code of method m by
commit c and (2) a set of calls to non-deprecated methods from
the new API that were added to the source code of method m
by commit c.

We remove all method changes for which either of those
sets is empty. Method changes that contain too many deleted
or added method calls are probably the ones that were changed
to introduce a new feature and not to update the usage of a
deleted or renamed method. Those method changes are not
useful and only create noise in our dataset, so to filter them
out we choose a threshold K and remove all method changes
that have more than K added or more than K deleted method
calls (by experimenting with different values of K, for this
project we selected K = 3).

C. Using A-Priori to Find Repetitive Changes

After collecting the dataset of method call replacements
from the commit history, we apply a data mining algorithm to
find all frequent subsets of those replacements. To understand
what are frequent method call replacements and how they
can be extracted from method changes, consider the following
example. We have a collection of two method changes with
the following sets of added and deleted method calls:

Method Change 1:
de le ted : { isEmpty , not , add : }
added : { new , isNotEmpty } .

Method Change 2:
de le ted : { remove : , isEmpty , not }
added : { isNotEmpty , s o r t } .

In both method changes, the calls to isEmpty() and not() were
deleted and a call to isNotEmpty() was added. This repetitive
change allows us to infer the rule

{isEmpty, not} → {isNotEmpty}

We say that the support of this rule is 2 because in the
database of method changes it appeared twice.

The problem of finding such repetitive replacements can be
expressed in terms of frequent itemset mining (market basket
problem). It goes like this: given the set of transactions, find
all sets of items that often appear in transactions together.
For example, six customers have bought products in the
supermarket on a given day. This gives us six transactions:

4

https://github.com/pharo-vcs/iceberg
https://github.com/pharo-vcs/iceberg

T1 : { eggs , mi lk , b u t t e r }
T2 : { mi lk , ce rea l }
T3 : { eggs , bacon }
T4 : { bread , b u t t e r }
T5 : { bread , bacon , eggs }
T6 : { bread , avocado , bu t te r , bananas }

Using an algorithm for frequent itemset mining, such as
A-Priori, we find that the following two subsets of items
frequently appear in transactions together with support5 equal
to 2:

{ eggs , bacon }
{ bread , b u t t e r }

To represent method changes as transactions that can be
used for frequent itemset mining, we join the sets of deleted
and added method calls into a single set. This way, two method
changes from the example above become two transactions:

T1 : { de le ted (isEmpty) , de le ted (not) ,
de le ted (add) , added (new) ,
added (isNotEmpty }

T2 : { de le ted (remove) , de le ted (isEmpty) ,
de le ted (not) , added (isNotEmpty) ,
added (s o r t) }

To find frequent itemsets using A-Priori, we need to specify
the minimum support threshold N . In other words, we consider
a set of items frequent if they appear together in at least N
transactions. So in the example above, if we run A-Priori with
minimum support N = 2, we will get the following itemsets:

{ de le ted (isEmpty) , de le ted (not) }
{ de le ted (isEmpty) , added (isNotEmpty) }
{ de le ted (not) , added (isNotEmpty) }
{ de le ted (isEmpty) , de le ted (not) ,
added (isNotEmpty) }

Now we construct association rules by putting all deleted
method calls into the left hand side (antecedent) and all added
method calls into the right hand side (consequent). We remove
the rules with empty antecedent or empty consequent. This
gives us the following association rules:

{isEmpty} → {isNotEmpty}
{not} → {isNotEmpty}

{isEmpty, not} → {isNotEmpty}

Note that those association rules are different from the ones
that are generated by the A-Priori algorithm when it is used for
association rules mining. A-Priori generates association rules
by going through all possible partitions of the elements taken
from itemset into the antecedent and consequent sets. But we
already know which method calls were deleted and which ones
were added and therefore, in our case, one itemset is directly
mapped into one association rule.

5We use the word “support” to identify the absolute frequency — number
of transactions that include a given itemset. However, in the terminology
of market basket analysis, “support” can sometimes refer to the relative
frequency — the number of transactions that include a given itemset divided
by the total number of transactions.

To reduce the number of association rules, we calculate
their confidence and use it to filter out the rules for which
the confidence value is low. To calculate the confidence of a
rule I → J , we divide the number of method changes that
deleted a set of method calls I and added the set of method
calls J by the number of all method changes that deleted the
set of method calls I:

confidence(I → J) =
support(I ∪ J)

support(I)

Confidence can be treated as a probability that a set of
method calls I is replaced with method calls J and not with
something else. In our little example, all three association rules
will have the confidence value 1. However, in a larger dataset
of method changes, associations {isEmpty} → {isNotEmpty}
and {not} → {isNotEmpty} will have relatively small con-
fidence because not every time that the method call not()
is deleted is it replaced with the method call isNotEmpty().
Similarly, the calls to isEmpty() are not always replaced
with isNotEmpty(). However, the last rule {isEmpty, not} →
{isNotEmpty} will have a higher confidence because when
both method calls isEmpty() and not() are removed, they are
often replaced with isNotEmpty(). By choosing a high enough
confidence value, we will filter out the first two rules and keep
only the last one.

D. Generating Recommendations

The data mining process described above, parametrised
with minimum support and minimum confidence values, takes
the collection of method changes as input and returns the
collection of association rules. Each rule represents a method
call replacement that frequently appeared in the collection
of method changes. Now we can use those association rules
to propose method deprecations or generate transformation
rules for the existing deprecations. For this task, we are only
interested in one-to-one or one-to-many rules — the ones that
define the replacement of one method call (the method from
the old API that is being deprecated) with one or more method
calls. Therefore, we remove all many-to-one and many-to-
many rules from the collection of association rules. We will
denote this filtered collection as Assoc.

Based on two sets of methods, APIold and APInew that
were discussed in Section III-A, and the collection of associ-
ation rules Assoc, mined from the method changes, we can
now provide recommendations to library developers:

1) Proposed deprecations — we find all methods of
the old API that were deleted without being depre-
cated (every method m such that m ∈ APIold and
m /∈ APInew). If we can find at least one association
rule in Assoc that defines the replacement for a given
method m, then we recommend to reintroduce m into
the new version of a project with deprecation and a
transformation rule if it can be generated.

2) Transformation rules for existing deprecations —
first we identify all deprecated methods from APInew
that do not contain a transformation rule. For every

5

such method m, if we can find at least one association
rule a ∈ Assoc that defines the replacement for m,
we recommend to insert a transformation rule into
the deprecation of m either automatically (in case the
transformation rule can be inferred from a, as we will
discuss below) or semi-automatically (in case we can
only show the association rule a to developers and ask
them to write a transformation rule manually).

Transformation rules in the form ‘@rec selector1: ‘@arg →
‘@rec selector2: ‘@arg can be generated automatically from the
association rule such as {selector1:} → {selector2:} only if:

• association rule is one-to-one (one deleted method call
replaced with one added method call)

• deleted and added method calls have the same number of
arguments

• deleted and added method calls are defined in the same
class of the new version of the project (and therefore can
have the same receiver)

If at least one of those conditions is not satisfied, then the
transformation rule can not be generated and must be written
manually by a developer who has some additional knowledge
about the code base (e.g., if there are two added method
calls, which one should be called first? if the added method
call has more arguments than the deleted one, what should
be the values of those extra arguments?). In those cases, we
only show developers the association rule together with the
examples of method changes in which those rules appeared
and ask them to write a transformation rule manually.

E. Implementation

We have implemented our approach for Pharo IDE in a
tool called DepMiner. Our tool provides a user interface for
browsing two versions of a given project, mining frequent
method call replacements from the commit history between
those two versions, and generating deprecations with trans-
formation rules that can be automatically inserted into the
source code of the project. In Figure 1, you can see DepMiner
proposing library developer to reintroduce method isSelf with
a generated deprecation and a transformation rule ‘@rec isSelf
→ ‘@rec isSelfVariable.

IV. EVALUATION

We have applied DepMiner to several open source projects
and used two strategies to evaluate the generated recommen-
dations:

1) Comparing the generated transformation rules to the
ones that are already present in the project.

2) Asking project developers to use DepMiner and analysing
the recommendations which they accepted.

A. Evaluation Setup

a) Selected projects: For this study, we have selected five
open source projects:

• Pharo6 — a large and mature system with more than 20
active and regular contributors, containing the language
core, the IDE, and various libraries.

• Moose Core7 — Moose is a large platform for data
and source code analysis. It consists of many different
repositories but because our tool works on the level of
single repository, we focus only on the core repository of
Moose.

• Famix8 — generic library that provides an abstract
representation of source code in multiple programming
languages. Famix is part of the Moose project.

• Pillar9 — a markup syntax and tool-suite to generate
documentation, books, websites and slides.

• DataFrame10 — a specialized collection for data analysis
that implements a rich API for querying and transforming
datasets.

We selected such projects because: (1) we were able to
interview and ask maintainers to validate the proposed dep-
recations, (2) the projects evolved or are still under active
development, (3) we wanted to compare the performance
of DepMiner on the projects with different maturity and
complexity levels.

In Table I we describe each project with the following
metrics: type of project, number of packages, number of
methods, number of deprecated methods, total number of con-
tributors on GitHub, number of commits per day (calculated
as the total number of commits between March 25, 2020 and
March 25, 2021, divided by 356), and number of stars on
GitHub. For this study, we define three types of projects:

• Tool — a project that is designed for the end users. For
example, a text editor, a website, or a smartphone app.
In many cases, APIs of those projects do not change that
much (e.g. poorly named method that is not called by
external projects might not be renamed) and when they
do change, deprecations are rarely introduced.

• Library — a project that is supposed to be used as depen-
dency by other projects. For example, a data structure, a
networking library, or a library for numeric computations.
Projects of this type must have a stable API and good ver-
sioning. They are most likely to introduce deprecations.

• IDE — a special type of project that describes Pharo.
It is a combination of multiple different projects. Pharo
has many users and even small changes to API can break
various software that is built with Pharo. This means that
deprecations are very important for this type of projects.

b) Two versions of each project: To mine the repetitive
changes and propose deprecations, we must first select two
versions of each project: the new version for which we will
propose the deprecations and the old version to which we
will compare the new version of the project. All patterns will

6https://github.com/pharo-project/pharo
7https://github.com/moosetechnology/Moose
8https://github.com/moosetechnology/Famix
9https://github.com/pillar-markup/pillar
10https://github.com/PolyMathOrg/DataFrame

6

https://github.com/pharo-project/pharo
https://github.com/moosetechnology/Moose
https://github.com/moosetechnology/Famix
https://github.com/pillar-markup/pillar
https://github.com/PolyMathOrg/DataFrame

Fig. 1. DepMiner tool in Pharo 9 showing the proposed deprecation of isSelf to the developer

TABLE I
SOFTWARE PROJECTS THAT WE HAVE SELECTED FOR OUR STUDY

Project Type Packages Methods Depr. Methods Contributors Commits per day Stars
Pharo IDE 736 116,212 515 (0.4%) 130 11.1 610
Moose Core Tool 16 1,670 2 (0.1%) 19 1.3 88
Famix Library 56 6,538 113 (1.7%) 19 2.2 2
Pillar Tool 57 5,848 2 (0.03%) 19 1.5 40
DataFrame Library 8 661 0 6 0.05 52

then be mined from the slice of the commit history between
those two versions. In Table II, we list the two versions of
each project that we have loaded as well as the number of
commits between those two versions, the total number of
method changes extracted from those commits, and the number
of method changes that are relevant for our analysis (see
Section III-B).

c) Mining frequent method call replacements: We used
DepMiner to mine frequent method call replacements from
the histories of those projects and recommend deprecations
with transformation rules. In Table III, we report the minimum
support and minimum confidence thresholds that were used
to initialize the A-Priori algorithm. The minimum support
threshold for each project was selected experimentally. We
started with a large number of support = 15 (meaning that
we are only interested in replacements that happened at least
15 times) and decreased it until the number of generated
recommendation seemed sufficiently large. The confidence
threshold was selected based on the number of relevant method
changes and the number of rules that DepMiner generated for
a selected support value. For Pharo and Famix we can expect
rules with confidence of at least 0.4. For other projects, we
limit confidence by 0.1.

In Table IV, we present the number of association rules (fre-
quent method call replacements) that were found by DepMiner
given the settings discussed above, as well as the number of
relevant association rules that can be used to propose depre-
cations (one-to-one or one-to-many rules), and the number of
rules that can automatically generate the transformation rules
in the form ’@rec deletedSelector: ’@arg → ’@rec addedSe-
lector: ’@arg (only one-to-one rules where deleted and added
selectors have the same number of arguments).

B. Comparing Generated Deprecations to the Existing Ones

Before comparing transformation rules that were generated
by DepMiner to the ones that were already present in the
projects, it is important to understand the different nature of
those two sets. First set contains the rules that were mined
from the commit history based on the analysis of how the
library was using its own API. This set can not contain
transformation rules for methods that are not called by other
methods of the same library or not covered by multiple tests.
The other set contains the transformation rules that were
manually written by developers. This set does not share the
same restriction.

7

TABLE II
COMMIT HISTORIES BETWEEN THE OLD AND THE NEW VERSIONS OF SELECTED PROJECTS

Project Old version New version Commits Method changes Relevant
Pharo v8.0.0 af41f85 3,465 23,937 4,488 (19%)
Moose Core v7.0.0 v8.0.0 1,519 22,587 466 (2.1%)
Famix a5c90ff v1.0.1 948 9,391 1,295 (14%)
Pillar v8.0.0 v8.0.12 508 2,294 132 (6%)
DataFrame v1.0 v2.0 225 649 206 (32%)

TABLE III
VALUES OF THE MINIMUM SUPPORT AND MINIMUM CONFIDENCE

THRESHOLDS THAT WERE USED TO MINE FREQUENT METHOD CALL
REPLACEMENTS

Project Min support Min confidence
Pharo 5 0.4
Moose Core 2 0.1
Famix 4 0.4
Pillar 2 0.1
DataFrame 5 0.1

TABLE IV
ASSOCIATION RULES (FREQUENT METHOD CALL REPLACEMENTS) MINED

FROM COMMIT HISTORY

Project Assoc. rules Relevant Transforming
Pharo 670 377 152
Moose Core 183 88 40
Famix 233 149 60
Pillar 62 49 16
DataFrame 39 22 7

Although two sets are different in nature, it is still interesting
to see how they intersect. In Table V, we report the numbers
of unique transformation rules that were already present in
each project, the number of transformation rules generated by
DepMiner, and the number of rules that belong to both sets.
For Pharo project, DepMiner managed to reproduce 24 out
of 264 existing rules based on the commit history (9%). For
Famix, it reproduced 15 out of 74 existing rules (20%). Other
three projects do not have enough transformation rules.

TABLE V
NUMBER OF EXISTING UNIQUE TRANSFORMATION RULES, GENERATED

TRANSFORMATION RULES, AND THE INTERSECTION OF THOSE TWO SETS

Project Existing Generated Intersection
Pharo 264 152 24
Moose Core 0 40 0
Famix 74 60 15
Pillar 2 16 0
DataFrame 0 7 0

C. Evaluation by Project Developers

We have performed a first developer study of our tool
involving the core developers from each project listed in
Section IV-A. We asked 4 developers with different areas
of expertise to validate the recommendations generated for
Pharo and 1 developer for each of the other 4 projects (two

developers had expertise in two projects each so in total, our
study involved 6 developers).

To each developer, we showed the pretrained DepMiner tool
with recommended methods to deprecate and recommended
transformation rules to insert into the existing deprecations.
The developers had to accept the changes which, in their
opinion, should be merged into the project. Then they sent
us the list of accepted changes. DepMiner allows its users
to browse multiple version of the project as well as the
commits history. Each recommendation is supported by the
list of commits in which a given method call replacement
has appeared. This allowed developers who participated in
our study to make an informed decision. Some developers
approached this task very diligently and spent several hours
discussing the recommended deprecations. For Pharo project
we considered the recommendation accepted if it was accepted
by at least one developer. Then we have submitted the accepted
recommendations as pull requests, 63 of which were merged
into the project.

a) Proposed deprecations: In Table VI, we report the
numbers of deprecations that were recommended to developers
for each project, the number of those recommendations that
were accepted, and the number of accepted recommendations
that contain an automatically generated transformation rule.
Each recommended deprecation, in this case, is a method that
was deleted from the project without being deprecated first
and which we propose to re-introduce with the recommended
replacement.

TABLE VI
NUMBER OF RECOMMENDED DEPRECATIONS ACCEPTED BY DEVELOPERS

Project Recommended Accepted Transforming
Pharo 113 61 56
Moose Core 33 1 1
Famix 87 68 28
Pillar 1 0 0
DataFrame 11 4 4

One can see that DepMiner was very effective in gener-
ating recommendations for Pharo (113 recommendations, 61
accepted), Famix (87 recommendations, 68 accepted), and
DataFrame library (11 recommendations, 4 accepted) but
rather ineffective on Moose Core (33 recommendations, 1
accepted) and Pillar (1 recommendation, 0 accepted).

The different performance on those projects can not be
explained by their size. For example, the DataFrame project
is the smallest one in our list, but out of 11 deprecations

8

generated by DepMiner, 4 deprecations were accepted. On
the other hand, for the Pillar project, which is 10 times larger
in terms of the number of methods, only 1 deprecation was
generated and it was not accepted. Further study is required
to explain the differences between DataFrame and Pillar, but
we can speculate that bad performance on Pillar is caused by
the low variability of API. Methods of DataFrame were often
renamed, removed, or reorganised, which was reflected in test
cases and picked up by DepMiner. On the other hand, the API
of Pillar remained stable even though new functionality was
added to it and many bugs were fixed.

In Table VII, we provide several examples of deprecations
that were proposed by DepMiner for Pharo project. First
column contains the source code of a method that existed in
Pharo 8 but was removed in Pharo 9. By analysing the history
of commits between Pharo 8 and 9 (see Table II), out tool
has inferred the association rules that define replacements for
deleted methods. Those rules are presented in the second col-
umn of Table VII together with support (number of times the
replacement took place in the commit history) and confidence
(probability that deleted method was replaced with the one
that is being suggested and not with something else). Using
the mined association rules, DepMiner generated deprecations
with transformation rules that are presented in the third column
of the table. Those recommendations were validated by four
developers from Pharo project and submitted as pull requests
(PR). The results are presented in the last column.

First example in Table VII presents recommendation that
was accepted by all four developers and integrated into Pharo
as pull request. It is an interesting case of renaming because
the old method name isSpecial is very different from the
new one needsFullDefinition and therefore hard to identify by
developers who are reading the source code. Second example
presents the case when the calls to atName: must be replaced
with at:. This recommendation was validated only by one out
of four developers (perhaps, because at: is a very generic
method in Pharo). However, after further discussion, it was
accepted as PR into Pharo 9. The final example presents the
recommendation that was rejected by project developers. In the
commit history of Pharo 8 → 9, the method call to assoc: was
replaced with variable:. Also, as indicated by confidence, 75%
of times when the call to assoc: was removed, a call to variable:
was added. However, a closer inspection of method changes
from the commit history shows that those two methods are
called with different types of arguments. In the code listing
below, we present one of those method changes.

1 " In Pharo 8 "
2 OCClassScope >> lookupVar : name
3 ↑ (class innerBindingOf : name)
4 ifNotNil : [: assoc | OCLiteralVariable new
5 assoc : assoc ;
6 scope : s e l f ;
7 yourself]
8 ifNil : [outerScope lookupVar : name]

1 " In Pharo 9 "
2 OCClassScope >> lookupVar : name

3 ↑ (class innerBindingOf : name)
4 ifNotNil : [: var | OCLiteralVariable new
5 variable : var ;
6 scope : s e l f ;
7 yourself]
8 ifNil : [outerScope lookupVar : name]

In the old implementation, the method innerBindingOf: re-
turned an association which was then passed to the assoc:
method. However, in the new implementation, innerBindingOf:
returns a variable and then it is passed to the variable: method.
In a dynamically-typed programming language such as Pharo,
it is not easy to know the type of arguments or the type of value
returned by a method before runtime. That is why DepMiner
fails to understand that despite high values of support and
confidence, variable: is not a new name for assoc: but a
different method.

b) Missing rules: The other type of recommendations
that we showed to developers were transformation rules for
existing non-transforming deprecations. In Table VIII, we re-
port the number of existing deprecations in the project that are
missing a transformation rule, the number of recommendations
that DepMiner managed to generate for those deprecations, and
finally the number of recommendations that were accepted by
developers.

Deprecations that are missing the transformation rule (the
non-transforming deprecations) represent either complicated
cases for which the transformation rule can not be provided
(e.g. method was deleted without replacement) or simple cases
for which developers forgot to write a rule. As we mentioned
in Section II-B, for 22% of non-transforming deprecations the
transformation rule can be generated automatically (given that
we know the correct replacement), the other 78% of non-
transforming deprecations require a complex rule that must
be written manually.

DepMiner proposed 6 transformation rules for existing
non-transforming deprecations in Pharo (2 of which were
accepted) as well as 2 transformation rules for Famix (both
were accepted). We present the accepted rules in Table IX.

V. DISCUSSION AND FUTURE WORK

A. Limitations

a) Unused/untested methods: Our approach is based on
library’s usage of its own API. This means that we can not
infer anything for methods that are not used by the library itself
but only intended for clients. Test cases play the role of clients
of the library’s API, so for the methods that are well tested,
we can have enough input to identify the correct replacement
for them. But if a method is not used by the library and
not covered by test, then its deletion or renaming will not be
reflected anywhere else in the source code. Consider a GUI
application that has a method open which opens an application
in a new window. No other method of the library is calling
the open method and because it is hard to test user interfaces,
this method is also not tested. When later the method open
is renamed to openInWindow, there are no method calls in the

9

TABLE VII
EXAMPLES OF PROPOSED DEPRECATIONS

Deleted method Rule Generated Deprecation Accepted

RGInstanceVariableSlot >> isSpecial
↑ f a l s e

{isSpecial}
→ {needsFullDefi-
nition}

Support: 8
Confidence: 1

RGInstanceVariableSlot >> isSpecial
s e l f

deprecated :
' Use # n e e d s F u l l D e f i n i t i o n ins tead '

transformWith : ' `@rec i s S pe c i a l '
−> ' `@rec n e e d s F u l l D e f i n i t i o n ' .

↑ s e l f needsFullDefinition

Yes

Validated
by all four
developers;
accepted
as PR

ClapCommand >> atName : specName
↑ s e l f subcommandNamed : specName ifNone :

[s e l f flagNamed : specName ifNone :
[super atName : specName]]

{atName:}→ {at:}

Support: 24
Confidence: 0.45

ClapCommand >> atName : specName
s e l f

deprecated : ' Use #at : ins tead '
transformWith : ' `@rec atName : `@arg '

−> ' `@rec at : `@arg ' .
↑ s e l f at : specName

Yes

Validated
by one out
of four
developers;
accepted
as PR

OCLiteralVariable >> assoc : anAssociation
assoc := anAssociation

{assoc:}
→ {variable:}

Support: 15
Confidence: 0.75

OCLiteralVariable >> assoc : anAssociation
s e l f

deprecated : ' Use #va r i ab le : ins tead '
transformWith : ' `@rec assoc : `@arg '

−> ' `@rec v a r i a b l e : `@arg ' .
↑ s e l f variable : anAssociation

No

Rejected
by all four
developers

TABLE VIII
NUMBER OF MISSING RULES ACCEPTED BY DEVELOPERS

Project Missing Recommended Accepted
Pharo 189 6 2
Moose Core 2 0 0
Famix 27 2 2
Pillar 0 0 0
DataFrame 0 0 0

source code of the library that are affected. And therefore, our
approach will not be able to mine the rule for this replacement.

b) Reflective operations: Modern programming lan-
guages offer reflective operations [30], [31]. They allow devel-
opers to invoke methods programmatically and create generic
and powerful tools. However, since some methods can be
invoked reflectively for example passing the name of the
method to be invoked in a variable, when a different argument
is passed to a reflective call, our tool cannot identify such
change. Most static analysers ignore such case [32].

c) Unordered set of method calls: Our tool is based
on mining method call replacement by comparing the set of
method calls that were deleted from the source code of a
modified method to the set of method calls that were added to
it. We do not take into account the order of method calls, the
distance between them or the way how they are composed:
a().b() or a(b()). This is a limitation of out approach because:
(1) sometimes deleted and added method calls are located far
away in source code and not related to each other; (2) if one
method call is being replaced with two or more method calls,
we do not know in which order they should be called or how

they should be composed.

d) The importance of domain knowledge: The study of
recommendations for Pharo project involved 4 developers with
different areas of expertise. Out of 63 recommendations that
were accepted as pull requests, only 6 were marked as "good"
by all 4 developers, 7 recommendations were accepted by 3 out
of 4 developers, 24 recommendations — by 2 developers, and
26 recommendations — by only 1 out of 4 developers. After
further discussion, developers agreed that all 63 recommen-
dations should be accepted. This shows that even though our
approach simplifies the work of library developers and helps
them generate deprecations long after the breaking changes
were introduced, certain amount of domain knowledge is still
required to validate the recommended changes.

e) Extra work done by A-Priori: Before applying the A-
Priori algorithm to find the frequent method call replacements,
we have to join deleted and added method calls into a single
set. A-Priori will make no distinction between deleted and
added method calls and among the itemsets that the algorithm
will generate, there will also be the “invalid” ones that contain
only deleted or only added method calls. Later, we filter them
out and then split each set of frequent items proposed by A-
Priori into the left (deleted calls) and right hand sides (added
calls) of the rule. This means that by not understanding the
nature of items in the itemsets, the A-Priori algorithm is doing
some extra work by going through the “invalid” combinations
of items. It could be more efficient to propose a modified
version of the algorithm that keeps track of the left and right
hand side items.

10

TABLE IX
MISSING TRANSFORMATION RULES THAT WERE ACCEPTED BY DEVELOPERS

Project Class Method Rule
Pharo Context namedTempAt: ‘@rec namedTempAt: ‘@arg → ‘@rec tempNamed: ‘@arg
Pharo Context namedTempAt:put: ‘@rec namedTempAt: ‘@arg1 put: ‘@arg2 →

‘@rec tempNamed: (‘@rec tempNames at: ‘@arg1) put: ‘@arg2
Famix FamixTAttribute hasClassScope: ‘@rec hasClassScope: ‘@arg → ‘@rec isClassSide: ‘@arg
Famix FamixTMethod hasClassScope: ‘@rec hasClassScope: ‘@arg → ‘@rec isClassSide: ‘@arg

B. Future Work

a) Good practices: The approach that we propose for
mining deprecation rules can also be used to identify good
coding practices and show them as suggestions to developers.
For example, if assert: and = are commonly replaced with
assert:equals: or if ifTrue: and not are commonly replaced
with ifFalse:, then we can mine those rules as “good coding
practices” and show them as code critiques in the IDE:

{assert:, =} → {assert:equals:}
{isTrue, not} → {isFalse}

b) Dealing with long methods: As we have mentioned
before, one of the limitations of our tool is that it does not
consider the distance between method calls. For example,
(isEmpty not) and (isEmpty ... 100 lines of code... not) will be
the same. Projects in Pharo have relatively short methods (the
median is 3 lines of code [33]), but in other languages where
methods are longer it might be more appropriate to compare
the line diffs instead of the whole methods. This would provide
more granularity by extracting the sets of method calls that
appear on the same or neighbouring lines and not in the same
method.

c) More information about method calls: In this work,
we mine method call replacements based only on method
names. However, it may be more effective to supply method
calls with some information about the receiver and arguments
(it is hard in dynamic languages because we do not know the
type and using the value is too restrictive), position in source
code, or part of the AST related to the method call.

VI. RELATED WORK

A. Expert-guided library update

The first studies of how to support client developers in
updating their systems to the new versions of evolving libraries
were based on collecting the expertise of library developers
in the form of transformation rules and applying them to
client code in a semi-automatic manner. Chow and Notkin
[34] proposed library developers to annotate changed functions
with transformation rules that can be applied to client code.
They designed a language for expressing code transformations
and implemented a semi-automatic tool that applies trans-
formations to AST and generates the modified source code.
Henkel et al. [35] decided to reduce the added cost for library
developers. They proposed to support the API evolution by

recording the refactorings as they are performed on the library
and “replaying” the recorded changes on the client codebase.

Deprecation messages are among the most common ways
for library developers to recommend replacements for the re-
moved functionality. Modern programming languages provide
powerful support for annotating deprecated elements of API
with references to the possible replacements. In their large-
scale empirical study of deprecation messages in Java and
C# projects, Brito et al. [11] reported that 66.7% of Java
deprecations and 77.8% C# deprecations contain replacement
messages.

B. Automatic library update and migration

In recent years, many approaches have been proposed that
do not require the direct involvement of library developers.
Those approaches extract all necessary information from the
source code, commit history, or code documentation. Kim
et al., [36] proposed to find matches between the two ver-
sions of API by calculating textual similarities of method
signatures collected from the source code of the two ver-
sions of the library. They defined a set of low-level API
transformations (e.g., package replacement, argument deletion,
etc.) and performed a rule-based matching to find a mapping
between the two versions of library API. Xing et al. [37]
proposed a Diff-CatchUp tool that compares two versions of
the library’s source code, detects changes to the API, and
proposes transformation rules together with working usage
examples. Unlike Kim et al., they calculated the structural
similarity of source code and not only the textual similarity
of method signatures. Unlike previous automatic approaches
to library update, which compared two versions of library’s
source code, the novel SemDiff tool proposed by Dagenais
and Robillard [38] extracted the necessary information on a
more granular level from the commit history of a library. It
recommended changes to client systems based on how the
library reacted to its own evolution. SemDiff could recognise
changes that were more complex than simple refactorings, for
example, method additions and deletions, and recommended
multiple replacements for methods that no longer existed in
API, supplying each one with a confidence score.

Schäfer et al., [13] were the first authors who proposed min-
ing library update rules from already updated client systems.
They used the library’s unit tests as an additional source of
information. Unit tests describe the use cases of the library’s
API and therefore, can be treated as one of the clients that
must react to API changes. Schäfer et al. generated rules for
the library changes that were caused not only by refactorings

11

but also by conceptual changes (changed or replaced concepts,
altering the responsibilities of the building blocks, removing
certain behaviour, etc.). They used the A-Priori algorithm to
mine the transformation rules from two versions of client code;
however, their approach was only suitable for generating one-
to-one rules. Wu et al. [39] proposed a hybrid approach called
AURA (AUtomatic change Rule Assistant) that combined call
dependency and text similarity analyses. Nguyen et al. [40]
proposed a tool for library update (LibSync) that first uses
the textual and structural similarities to find the mapping of
the library functions and then extracts the usage graphs from
already updated client systems and mines the transformations
that need to be made to the client code. Meng et al. [41]
proposed a history-based matching approach HiMa which
compares consecutive revisions of a library obtained from its
commit history and supplies this information with the analysis
of commit messages to generate transformation rules for client
systems.

Teyton et al., [14] turned to the problem of library migration
— replacing client dependency on a third-party library in
favour of a competing library. They adopted and improved
the approach of Schäfer et al. [13], but extracted method call
changes from a commit history of clients that were already
migrated. Independently, Hora et al., [15] proposed a similar
approach to find method mappings between different releases
of the same library. They analysed the commit history of a
library to detect frequent method call replacements. This way,
they mined the transformation rules by learning from how the
library adapts to the changes of its own API. Those techniques
are similar to the one that we present in this paper, however,
our approach is designed for deprecations and meant to be used
by library developers before the release, not client developers
after release.

The most recent research has focused on the problem of
library migration. Pandita et al., [16] calculated the textual
similarity of documentation of the API entities from different
external libraries and recommended the entities that were most
similar to one another as possible replacements. They built a
tool called TMAP (Text Mining based approach to discover
likely API mappings) and used it to discover mappings from
Java to C# API and from Java ME to Android API. Alrubaye et
al. [17] mined the commit history of client systems that were
already migrated from one third-party library to a different
one and generated mappings for method replacements. They
improved their results by calculating the textual similarity
of method descriptions taken from library documentation.
In their next study, Alrubaye et al. [42] proposed a novel
machine learning approach RAPIM for the task of library
migration. They extracted features such as the similarity of
method signatures and documentation, represented them as
numerical vectors, and trained a machine learning classifier
to label method mappings as “valid” or “invalid”.

VII. CONCLUSION

Method deprecations are a powerful technique for support-
ing the evolution of software libraries and informing client

developers about the upcoming breaking changes to the API.
Using the deprecation messages or code transformation rules
that are supported by some modern IDEs, library developers
can specify correct replacements for the deprecated func-
tionality. However, in practice breaking changes are often
introduced without deprecation and finding the correct replace-
ments post-factum can be hard even for the same developers
who introduced them. In this work, we propose to mine the
frequent method call replacements from the commit history
of a library and use them to recommend method deprecations
and transformation rules. We implemented our approach for
Pharo IDE in a tool called DepMiner. We applied our tool
to five open source projects and asked 6 core developers from
those projects to accept or reject the recommended changes. In
total, 134 proposed deprecations were accepted by developers
as well as 4 transformation rules for the existing deprecations.
61 new deprecations and 2 transformations rules for existing
deprecations were integrated into the Pharo project.

VIII. ACKNOWLEDGEMENTS

We would like to thank Guilermo Polito, Pablo Tesone,
Marcus Denker, and Benoît Verhaeghe for evaluating the
deprecations that were generated for the open-source projects.
We are also grateful to the Arolla software company for
financing this research.

REFERENCES

[1] M. T. Baldassarre, A. Bianchi, D. Caivano, and G. Visaggio, “An
industrial case study on reuse oriented development,” in 21st IEEE
International Conference on Software Maintenance (ICSM’05). IEEE,
2005, pp. 283–292.

[2] D. Dig and R. Johnson, “How do APIs evolve? a story of refactoring,”
Journal of Software Maintenance and Evolution: Research and Practice
(JSME), vol. 18, no. 2, pp. 83–107, Apr. 2006.

[3] “Oracle. how and when to deprecate apis. java se documentation,”
accessed: 2021-04-19. [Online]. Available: https://docs.oracle.com/
javase/7/docs/technotes/guides/javadoc/deprecation/deprecation.html

[4] V. Pech, “Handle deprecated code in your project. the mps blog,”
accessed: 2021-04-19. [Online]. Available: https://blog.jetbrains.com/
mps/2019/04/handle-deprecated-code-in-your-project/

[5] D. Roberts, J. Brant, R. E. Johnson, and B. Opdyke, “An automated
refactoring tool,” in Proceedings of ICAST ’96, Chicago, IL, Apr. 1996.

[6] D. Roberts, J. Brant, and R. E. Johnson, “A refactoring tool for
Smalltalk,” Theory and Practice of Object Systems (TAPOS), vol. 3,
no. 4, pp. 253–263, 1997.

[7] L. Renggli, T. Gîrba, and O. Nierstrasz, “Embedding languages without
breaking tools,” in Proceedings of the 24th European Conference on
Object-Oriented Programming (ECOOP’10), ser. LNCS, T. D’Hondt,
Ed., vol. 6183. Springer-Verlag, 2010, pp. 380–404. [Online]. Available:
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

[8] L. Xavier, A. Brito, A. Hora, and M. T. Valente, “Historical and impact
analysis of api breaking changes: A large-scale study,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER). IEEE, 2017, pp. 138–147.

[9] L. Xavier, A. Hora, and M. T. Valente, “Why do we break apis? first
answers from developers,” in 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2017, pp. 392–396.

[10] A. Brito, M. T. Valente, L. Xavier, and A. Hora, “You broke my code:
understanding the motivations for breaking changes in apis,” Empirical
Software Engineering, vol. 25, no. 2, pp. 1458–1492, 2020.

[11] G. Brito, A. Hora, M. T. Valente, and R. Robbes, “On the use of
replacement messages in api deprecation: An empirical study,” Journal
of Systems and Software, vol. 137, pp. 306–321, 2018.

12

https://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/deprecation/deprecation.html
https://docs.oracle.com/javase/7/docs/technotes/guides/javadoc/deprecation/deprecation.html
https://blog.jetbrains.com/mps/2019/04/handle-deprecated-code-in-your-project/
https://blog.jetbrains.com/mps/2019/04/handle-deprecated-code-in-your-project/
http://scg.unibe.ch/archive/papers/Reng10aEmbeddingLanguages.pdf

[12] R. Nascimento, A. Brito, A. Hora, and E. Figueiredo, “Javascript api
deprecation in the wild: A first assessment,” in 2020 IEEE 27th Inter-
national Conference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2020, pp. 567–571.

[13] T. Schäfer, J. Jonas, and M. Mezini, “Mining framework usage changes
from instantiation code,” in Proceedings of the 30th international
conference on Software engineering, ser. ICSE ’08. New York, NY,
USA: ACM, 2008, pp. 471–480.

[14] C. Teyton, J.-R. Falleri, and X. Blanc, “Automatic discovery of function
mappings between similar libraries,” in 2013 20th Working Conference
on Reverse Engineering (WCRE). IEEE, 2013, pp. 192–201.

[15] A. Hora, A. Etien, N. Anquetil, S. Ducasse, and M. T. Valente, “Apievo-
lutionminer: Keeping api evolution under control,” in Proceedings of the
Software Evolution Week (CSMR-WCRE’14), 2014.

[16] R. Pandita, R. P. Jetley, S. D. Sudarsan, and L. Williams, “Discovering
likely mappings between apis using text mining,” in 2015 IEEE 15th
International Working Conference on Source Code Analysis and Manip-
ulation (SCAM). IEEE, 2015, pp. 231–240.

[17] H. Alrubaye, M. W. Mkaouer, and A. Ouni, “On the use of information
retrieval to automate the detection of third-party java library migration
at the method level,” in ICPC’19, 2019.

[18] N. Suzuki, “Inferring types in smalltalk,” in POPL ’81: Proceedings
of the 8th ACM SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages. New York, NY, USA: ACM Press, 1981, pp.
187–199.

[19] R. Milner, “A theory of type polymorphism in programming,” Journal
of Computer and System Sciences, vol. 17, pp. 348–375, 1978.

[20] M. Furr, J. hoon (David) An, J. S. Foster, and M. Hicks, “Static type
inference for ruby,” in Symposium on Applied Computing (SAC ’09),
2009.

[21] B. M. Ren and J. S. Foster, “Just-in-time static type checking for
dynamic languages,” in Conference on Programming Language Design
and Implementation (PLDI), 2016.

[22] S. A. Spoon and O. Shivers, “Demand-driven type inference with
subgoal pruning: Trading precision for scalability,” in Proceedings of
ECOOP’04, 2004, pp. 51–74.

[23] F. Pluquet, A. Marot, and R. Wuyts, “Fast type reconstruction for
dynamically typed programming languages,” in DLS ’09: Proceedings
of the 5th symposium on Dynamic languages. New York, NY, USA:
ACM, 2009, pp. 69–78.

[24] N. Passerini, P. Tesone, and S. Ducasse, “An extensible constraint-
based type inference algorithm for object-oriented dynamic languages
supporting blocks and generic types,” in International Workshop on
Smalltalk Technologies (IWST 14), Aug. 2014.

[25] N. Milojković, C. Béra, M. Ghafari, and O. Nierstrasz, “Inferring Types
by Mining Class Usage Frequency from Inline Caches,” in International
Workshop on Smalltalk Technologies IWST’16, Prague, Czech Republic,
Aug. 2016.

[26] H. Wilkinson, “Livetyping in action - automatic
type annotation for dynamically typed languages
- demo,” 2019. [Online]. Available: https://2019.
programming-conference.org/details/programming-2019-Demos/5/
LiveTyping-in-Action-Automatic-Type-Annotation-for-Dynamically-Typed-Languages

[27] R. Agrawal, R. Srikant et al., “Fast algorithms for mining association
rules,” in Proc. 20th int. conf. very large data bases, VLDB, vol. 1215,
1994, pp. 487–499.

[28] C. Borgelt, “Frequent item set mining,” Wiley interdisciplinary reviews:
data mining and knowledge discovery, vol. 2, no. 6, pp. 437–456, 2012.

[29] J. Han, J. Pei, and M. Kamber, Data mining: concepts and techniques,
3rd ed. Elsevier, 2011.

[30] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men
do: A large-scale study of the use of eval in javascript applications,” in
Proceedings of Ecoop 2011, 2011.

[31] O. Callau, R. Robbes, D. Rothlisberger, and E. Tanter, “How developers
use the dynamic features of programming languages: the case of
smalltalk,” in Mining Software Repositories International Conference
(MSR’11), 2011.

[32] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini, “Taming
reflection: Aiding static analysis in the presence of reflection and custom
class loaders,” in Proceedings of the 33rd International Conference on
Software Engineering, ser. ICSE ’11. New York, NY, USA: ACM,
2011, pp. 241–250.

[33] O. Zaitsev, S. Ducasse, and N. Anquetil, “Characterizing pharo code:
A technical report,” Inria Lille Nord Europe - Laboratoire CRIStAL

- Université de Lille ; Arolla, Technical Report, jan 2020. [Online].
Available: https://hal.inria.fr/hal-02440055

[34] K. Chow and D. Notkin, “Semi-automatic update of applications in
response to library changes.” in icsm, vol. 96, 1996, p. 359.

[35] J. Henkel and A. Diwan, “CatchUp!: capturing and replaying refactor-
ings to support API evolution,” in Proceedings International Conference
on Software Engineering (ICSE 2005), 2005, pp. 274–283.

[36] M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural
changes for matching across program versions,” in 29th International
Conference on Software Engineering (ICSE’07). IEEE, 2007, pp. 333–
343.

[37] Z. Xing and E. Stroulia, “Api-evolution support with diff-catchup,” IEEE
Transactions on Software Engineering, vol. 33, pp. 818 – 836, 2007.

[38] B. Dagenais and M. P. Robillard, “Recommending adaptive changes for
framework evolution,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 20, no. 4, pp. 1–35, 2011.

[39] W. Wu, Y.-G. Guéhéneuc, G. Antoniol, and M. Kim, “Aura: a hybrid
approach to identify framework evolution,” in 2010 ACM/IEEE 32nd
International Conference on Software Engineering, vol. 1. IEEE, 2010,
pp. 325–334.

[40] H. A. Nguyen, T. T. Nguyen, G. Wilson, A. T. Nguyen, M. Kim, and
T. N. Nguyen, “A graph- based approach to api usage adaptation,” ACM
Sigplan Notices, vol. 45, pp. 302 – 321, 2010.

[41] S. Meng, X. Wang, L. Zhang, and H. Mei, “A history-based matching
approach to identification of framework evolution,” in 2012 34th Inter-
national Conference on Software Engineering (ICSE). IEEE, 2012, pp.
353–363.

[42] H. Alrubaye, M. W. Mkaouer, I. Khokhlov, L. Reznik, A. Ouni,
and J. Mcgoff, “Learning to recommend third-party library migration
opportunities at the api level,” Applied Soft Computing, p. 106140, 2020.

13

https://2019.programming-conference.org/details/programming-2019-Demos/5/LiveTyping-in-Action-Automatic-Type-Annotation-for-Dynamically-Typed-Languages
https://2019.programming-conference.org/details/programming-2019-Demos/5/LiveTyping-in-Action-Automatic-Type-Annotation-for-Dynamically-Typed-Languages
https://2019.programming-conference.org/details/programming-2019-Demos/5/LiveTyping-in-Action-Automatic-Type-Annotation-for-Dynamically-Typed-Languages
https://hal.inria.fr/hal-02440055

	Introduction
	Motivating Example and Challenges
	Motivating Example
	Transforming Deprecation
	Challenges

	Approach
	Identifying Methods of the Old and the New API
	Collecting Method Call Changes
	Using A-Priori to Find Repetitive Changes
	Generating Recommendations
	Implementation

	Evaluation
	Evaluation Setup
	Comparing Generated Deprecations to the Existing Ones
	Evaluation by Project Developers

	Discussion and Future Work
	Limitations
	Future Work

	Related Work
	Expert-guided library update
	Automatic library update and migration

	Conclusion
	Acknowledgements
	References

