
S. Ducasse G. Polito [RMOD/Evref - Inria] P. Tesone [Pharo consortium]
G. Thomas [Telecom SudParis]
L. Lagadec [ENSTA]

High-Performance Language
Virtual Machines:
an analysis and challenges

EvreffervEMarch 2022

Language VMs are Ubiquitous

• They are everywhere: browsers, mobile phones, drones, robots…

• Banks, servers, aircrafts

• Portability, self-optimisation and adaptation, high-level services (GC)

• Java, Javascript, Pharo, PHP, Python, Ruby, C#…

• Derivates: Typescript, Scala, web assembly

Language Virtual Machines
Modern Language Implementations

Runtime Binary Translation

Hardware/System Interaction

Managed Execution

Managed Memory

Key Players

• Javascript: Safari (Apple), V8 (Google), SpiderMonkey (Mozilla)

• Java: Truffle, GraalVM (Oracle)

• .NET, C#, VB: (Microsoft)

VMs as Competitive Advantage

Large companies developed their OWN

• Hack: Facebook’s PHP

• Ruby: Shopify

• GemTalk Systems

• Netflix

• Many python, ruby are popping up

Virtual Machines
Typical Architecture Overview

cold code
hot spot

detection hot code

Interpreted

Execution

Machine

Execution

Managed Memory
VMs: auto-adaptive

systems

Compiler Pipeline Example
source code - to - bytecode interpreter. 
Example: arithmetics

a + b
push a

push b

send +

send_+(op1, op2){

if (isInteger(op1) && isInteger(op2)) {

r = op1 + op2;

if (!overflow){

return push(r);

}

}

send_message(+)

}

source code bytecode interpreter code

Interpreter and Compiler Semantics

https://webkit.org/blog/10308/speculation-in-javascriptcore/

A concrete example: Javascript core
Multiple levels
Different representations
Engineering cost!

Quid Complexity and Cost of VMs?
Apple’s	Safari	JavascriptCore[2021]

Google’s	v8	TurboFan

https://webkit.org/blog/10308/speculation-in-javascriptcore/ 
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8

https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8

Managed Execution
Remarkable Challenges

• Challenge 1: What are optimal organisations of multi-tier engines?

• Combining interpreters with many levels of optimising compilers

• Challenge 2: What is a better/minimal runtime support for developer
tooling?

• Better debugging support

• Runtime (speed, energy…) profiling

• Benchmark automatic generation

Runtime Binary Translation
Remarkable Challenges

• Challenge 3: How can runtime-compilers better speculate on application
behaviour?

• Speculate on more than types

• Speculate for more than speed

• Challenge 4: How can we improve the efficiency of cold code?

• Better interpreter optimisations

• Low overhead binary translators

VMs are auto-adaptive systems

Managed Memory
Remarkable Challenges

Challenge 5: How can managed memory adapt to memory consumption
patterns?

• Scalability to multi-TB heaps

• Automatically memory re-organisation

• Reduce pauses

• Support for modern hardware (e.g., disaggregated memory, non-volatile memories)

• encrypted memory (arm trustzone/intel sgx), compressed memory

• OS and System VM Interations

Hardware/System Interaction
Remarkable Challenges

Challenge 6: How can modern VMs exploit hardware-software co-
design?

• Automatic deport computation to dedicated hardware

• GPU

• FPGA

• Extensible ISAs (e.g., RISC-V)

Cross-Cutting Challenges
(And Contradictory Challenges!)

Energy Consumption

Execution Speed

Correctness

Modularity

Security

• Security threats of multi-tier execution engines

• Speculative runtime compilation for frugal systems

• Profile-guided detection of application parallelisation opportunities

• Securing VMs through dedicated hardware

• Minimising energy impact of garbage collection algorithms

Cross-Cutting Challenges
Selected Challenges

• Automatic detection of performance regressions

• Automatic validation of multi-tier execution engines

• Controling the construction COST of efficient JIT compilers

Selected Software Engineering Challenges

AlaMVic: a generative approach

- implementation native
- autogenerée

Slang -> C Compiler

Virtual Machine + Simulateur

Production Virtual Machine

Interprète Bytecode

- autogenerated

Garbage Collector +
Representation Objet

- autogenerated

Compilateur JIT

- autogenerated

- État: non-existent

JIT compiler compilerInterpreter compiler

AlaMVic: Virtual Machine Distiller

Garbage Collector
Composer

Language
Specification

Hints / Heuristics

energy space speed

Benchmark /
Evaluation
Platform

energy space speed
energy

space speed

• Compiler generation

• Exchangeable 
components

• Optimization 
heuristics

• Open exploratory 
platform

• JIT for Apple M1, Windows, Raspberry ARM 64bits in production

• Helping ENSTA Bretagne to develop a RISC-V JIT

• Streamlining transpilation/compilation chain

• Taking advantage of VM tests [MPLR, MoreVM paper]

• Some productivity enhancer tools (Unicorn simulator, assembly
browser, interactive CFG navigation,…)

Early RMOD achievements
Dev side of things

• RQ: static code reordering: is it worth ? (alternative to Pettis-
Hansen BB reordering)

• Reducing manual code (~100 bytecodes, ~300 primitives)

• RQ: Are interpreted and compiled code equivalent? Concolic +
differential testing

• RQ: Can we generate JIT compilers? Abstract interpreter for
compiled code generation (underway)

Early RMOD achievements
Research side

Benagil
Research side

• J-NVM: Efficient integration of a persistent memory in a Java Virtual Machine

• PrivaDSL: Use of Intel SGX in a Java virtual machine

• Study of a Java virtual machine for disaggregated memory

• A shell language and runtime for serverless applications

• RISC-V JIT for a production level VM - Pharo consortium

• RISC-V board

Early ENSTA achievements
Dev side of things

Research side

• Study language VM level attacks

• Starting to propose protections against language VM-level attacks

• Controlling the execution engine, controls the world

• French research should not miss the opportunity

• Independence from the will of big companies is crucial for research

• Rare french teams on the topic should be supported!

Language VMs are strategical assets

EvreffervE

