
A New Generation of Class Blueprint

Nour J. Agouf*, Stéphane Ducasse, Anne Etien, Michele Lanza.
*Arolla, Inria, Univ. Lille, CNRS, Centrale Lille,

UMR 9189 - CRIStAL-France
nour-jihene.agouf@arolla.fr

1

mailto:nour-jihene.agouf@arolla.fr
mailto:nour-jihene.agouf@arolla.fr

.fr

AROLLA IS A CONSULTING COMPANY SPECIALIZED IN
THE ADVANCED TECHNIQUES OF SOFTWARE
DEVELOPMENT: CLEAN CODE, TDD, BDD, LEGACY
REMEDIATION, etc.

2
2

3

The time spent on reading
and understand source
code is over 70% of the
maintenance task

4

The Class Blueprint

Is a representation of static data of classes in object-
oriented programming. It gives an overview of a taste of

the class, focusing on methods classification and
displaying their call-flow.

5

Class Blueprint V1

6

7

Initialization Externals Internals Accessors Attributes

V1: Methods/attributes classification

8

Initialization Externals Internals Accessors Attributes

V1: Methods/attributes nodes

9

Initialization Externals Internals Accessors Attributes

Number of
LOC

Number of Invocations

V1: Method node metrics

10

Initialization Externals Internals Accessors Attributes

Number of
LOC

Number of Invocations
Number
of
external
accesses

Number
of
internal
accesses

V1: Attribute node metrics

11

Initialization Externals Internals Accessors Attributes

Black line: Connection
between methods

Cyan line: Connection from
accessors to attributes

V1: Simple line connection

12

RMODPublicationsBblForReportDocBuilder class

Initialization Externals Internals Accessors Attributes

Abstract

Overriding

Delegating

Extending

Setter

Getter

Attribute

Internal Implementation

Other

Constant

V1: Node type = a Color

- Obsolete classification of methods

- Missing information about attribute accesses

- The interplay between instance side and class side is not well supported

- Does not heed dead code

- Unclear direction of links

- Does not show the occurrences of method names

- A method cyclomatic complexity is not revealed

- Does not show if a method is tested or not

V1: Limitations

Class Blueprint V2

14

V2: Merging attributes & accessors layers

Dead

Initialize Externals Internals Attributes

15

16

Dead

Superclasses
Attributes

Instance Side
Attributes

V2: Superclass attributes

Initialize Externals Internals Attributes

V2: Static vs Instance

Static
Attributes

Dead Methods Dead
Accessors
&
Attributes

1717

Superclasses
Attributes

Instance Side
Attributes

Static Methods

Initialize Externals Internals

V2: Used vs Unused code

18

Dead Methods Dead
Attributes

Static
Attributes

Superclasses
Attributes

Instance Side
Attributes

Static Methods

Initialize Externals Internals

Static

Instance

Dead

V2: Segment connection

19

V2: Border width = Occurrences

20

Monomorphic: One method by
that name in the whole project.

Polymorphic: Commonly named
method

Megamorphic: Frequently
named methods

21

V2: Border color = Cyclomatic complexity

22

Green: Accesses in the class and
in the subsystem

Blue: Accesses in the class

V2: Sub-hierarchy attribute access

23

Setter

Getter

Lazy Initializer

Top

Bottom

Bottom

Position ColorAccessor

Lazy Initializer

Setter

Attribute

V2: Attribute protectors

24

Tested method

V2: Test annotation

25

Abstract & Reimplemented

V2: Abstract reimplementation

26

• Merging attributes & accessors layers

• Superclass attributes

• Static vs Instance side

• Used vs Unused code

• Segment connection

• Method names occurrences

• Cyclomatic complexity

• Sub-hierarchy attribute access

• Detection of lazy initializers

• Detection of tested/untested methods

• Reimplemented abstract methods

ClassBlueprintV2

ClassBlueprint V1

V2: Recap

Qualitative
Leon Zernitsky

……

Quantitative

Evaluation.

27

https://pixels.com/profiles/leon-zernitsky
https://pixels.com/profiles/leon-zernitsky

Invited people from the community
(26 participants)

Individual/ Group meetings

The meeting took from 10 to 25 minutes

28

Evaluation: Protocol

✓ Select a project they wish to analyze

✓ Use the visualization on the selected project

✓ Screen record the experiment

✓ Write a report summarizing their findings

✓ Fill the post-experiment survey

29

Evaluation: What we asked for?

The projects chosen by the participants englobe several domains (19 projects)

Project #Packages #Classes Median of methods Domain

Avatar 2 18 6 Proxy
Sindarin 3 18 14 Debugging
MoTion 2 35 5 Pattern Machine

Clap 5 47 8 Parsing
Slang 2 73 29 Virtual machine

Polyphemus 3 79 9 Virtual machine
AST-Core 3 101 21 Domain-Specific-Language

Reflectivity 5 114 13 Domain-Specific-Language
Druid 1 170 12 Virtual Machine
Seeker 2 236 9 Debugging

MooseIDE 16 250 8 Analysis
Polymath 60 309 11 Computing

Refactoring 12 378 6 Refactorings
AIPharo 85 424 6 Artificial Intelligence
Roassal 39 445 12 Visualizations
Iceberg 11 488 10 Version Control
Fylgja 73 941 15 Migration

Microdown 29 268 11 Parsing

30

Evaluation: About the projects

Participants level of knowledge about the
project.

31

The participants have diverse profiles:

• Interns

• Developers

• PhD students

• Researchers

Evaluation: About the participants

Experts

Debutants

Intermediary

Advanced

45 %

10 %

35 %

10 %

The participants have diverse profiles:

• Interns

• Developers

• PhD students

• Researchers

Experts

Debutants

Intermediary

Advanced

45 %

10 %

35 %

10 %

Participants level of knowledge about the project.

32

Evaluation: About the participants

Analyse data about the human-visualization interaction

33

Evaluation: Qualitative

Screen records Findings reports
(over 600 hours)

34

Qualitative evaluation: What did we find?

✓ Empty Classes

✓ Big Classes

✓ Complex Classes

✓ Dying Classes

✓ Tested/Untested Classes

35

Qualitative evaluation: Flight over

36

✓ Duplicated Code

✓ Complex Methods

✓ Dead Code

✓ Long Method Comments

✓ Tested/Untested Methods

Qualitative evaluation: Plunge in

Quantitative37

Evaluation: Quantitative
1. The visualization helps in understanding the:

2. Does the visualization help in detecting:

3. The visualization is:

Dead code

Complex methods

Tested/Untested methods

26%

46%

34%

46% 11% 3% 11%

38% 11% 3%

34% 19% 7% 3%

Easy to use

3%

15%

42%

76%

30% 15%

7%

7%Scalable

Code/State of a class is reused

Reused code from the superclass

Class/instance side communication

Design of the class

Strongly agree Agree Undecided Disagree Strongly Disagree

15% 46%

3%

19%

7%

23%

53%

38%

15%

53%

19%

30%

23%

19%

7%

23%

Mono/poly/megamorphic methods 26% 46% 26%

“
In the MicHTMLDoc class we could exclusively
see the tested and untested methods.

”- From the Microdown project

38

Anecdotal evidence

“
Dead methods correspond mostly to
unused code that I forgot to remove.

”- From the Seeker project

39

Anecdotal evidence

“
I found obsolete prototype code by
taking a look at these long methods

”- From the Seeker project

40

Anecdotal evidence

The visualization also helped me quickly identify dead code and eliminate it. As
this is a new project (early stage of development) I didn’t remove all dead
methods or classes, but in other kinds of projects I would do it.

”- From the Druid project

“

41

Anecdotal evidence

I couldn't used it in the large classes, those
are the most interesting to analyze.

”- From the Iceberg project

“

42

Anecdotal evidence

• An enhancement of the Class Blueprint
visualization based on new requirements

• Qualitative & quantitative evaluations on 26
participants and 19 projects

• Participants reported some interesting
findings about anomalies in their software

Conclusion

