
Improving Pharo
Snapshots

P. Tesone - G. Polito - N. Palumbo - ESUG’22 
@tesonep 
@guillep
@noTwitter

����

guillermo.polito@univ-lille.fr
pablo.tesone@inria.fr

nahuel.palumbo@inria.fr

mailto:guillermo.polito@univ-lille.fr
mailto:pablo.tesone@inria.fr
mailto:nahuel.palumbo@inria.fr

2022 VM+ Team

2

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Everything is an Object

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Everything is an Object

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Everything is an Object

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Everything is an Object

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Everything is an Object

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Lots of Objects

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Lots of Objects
Lots of Stress

• GC Stress

• Autocompletion Stress

• Search Stress

• Spotter Stress

• Startup Stress

Lots of Objects
Lots of Stress

Large Image Support

• https://github.com/pharo-project/largeImages

• MIT Licenced

https://github.com/pharo-project/largeImages

Large Image Support: Highlights

• Generator based searches

• Spotter

• Code Completion

• GC Fine Tuning API

generator
^ generator ifNil: [

generator := Generator on: [:g |
self entriesDo: [:entry |

(self acceptsEntry: entry)
ifTrue: [g yield: entry]]]]

GC Fine Tuning

• Configure

• Eden Size

• Full GC Ratio

• Growth Headroom

• Shrink Threshold

 GCConfiguration readFromVM
 fullGCRatio: 1.0;
 activeDuring: [“something"].

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Lots of Objects

• Numbers

• Characters

• Strings

• Arrays

• Closures

• Classes

• Methods

• …

Images = Heap Snapshots

.image

save

load

Heap

Snapshot Current Design Points

• Bootstrap once, then mutate

• Portable

• Object References are pointers

• Load code

• Create Objects

• Run your app

• Maybe GC!

• Repeat

.image .image

Heap

But it could be better…

• VM startup is bound by disk!

• Large heaps take long to load/save

• 3-4GB heaps = seconds to GC

• pauses

• long pauses
• Load code

• Create Objects

• Run your app

• Maybe GC!

• Repeat

.image .image

Heap

Snapshots vs Runtime Memory Mismatch

App and System Objects Threads State
as Objects

JIT
Machine Code

Thread
Stacks New Objects Old Objects

.image

Current Loading Snapshot to Memory

JIT
Machine Code

Thread
Stacks New Objects Old Objects

Direct Mapping

RebuildEmpty Empty

.image App and System Objects Threads State
as Objects

Start with a cold VM,
startup is slow

Reference Swizzling

• Traverse the heap to remap old references by delta

• Slow for large heaps (2/4GB)

Hot Methods
Machine CodeProcess 1 Thread

Stacks New Objects Old Objects

Hot Methods
Machine CodeProcess 2 Thread

Stacks New Objects Old Objects

Remapped

delta

Current Snapshot to Disk

JIT
Machine Code

Thread
Stacks New Objects Old Objects

App and System Objects Threads State
as Objects.image

Current Snapshot to Disk

JIT
Machine Code

Thread
Stacks New Objects Old Objects

1.Discard

App and System Objects Threads State
as Objects.image

JIT
Machine Code

Thread
Stacks New Objects Old Objects

1.Discard 2. Save as
objects

App and System Objects Threads State
as Objects.image

Current Snapshot to Disk

JIT
Machine Code

Thread
Stacks New Objects Old Objects

1.Discard 2. Save as
objects

3. Promote
to old

App and System Objects Threads State
as Objects.image

Current Snapshot to Disk

JIT
Machine Code

Thread
Stacks New Objects Old Objects

1.Discard 2. Save as
objects

3. Promote
to old

4. Save to
Disk

App and System Objects Threads State
as Objects.image

Current Snapshot to Disk

JIT
Machine Code

Thread
Stacks New Objects Old Objects

1.Discard 2. Save as
objects

3. Promote
to old

4. Save to
Disk

Discards all optimisations:
slow shutdown => slow

startup

App and System Objects Threads State
as Objects.image

Current Snapshot to Disk

Goals

• Faster loading

• Faster snapshot

• Faster Multi-GB Heaps

• Load code

• Create Objects

• Run your app

• Maybe GC!

• Repeat

.image .image

Heap

Towards a Multi-file Snapshot Format

JIT
Machine Code

Thread
Stacks New Objects Old Objects

JIT
Machine Code

Thread
Stacks New Objects Old Objects

Direct Mapping
.image

• System memory mapping

• Minimize Swizzling

• Lazy loading of memory segments

Multiple Memory Segments

JIT
Machine Code

Thread
Stacks New Objects Old Objects

JIT
Machine Code

Thread
Stacks New Objects Old Objects

Direct Mapping
.image

• Independently and lazy loadable

• Independently storable

Old Objects’

Old Objects’

New Memory Segments

JIT
Machine Code

Thread
Stacks New Objects Old Objects

JIT
Machine Code

Thread
Stacks New Objects Old Objects

Direct Mapping
.image

• Reduced garbage collection pressure

• Great for opaque objects, and rarely changing objects
(code, literals…)

Perm Objects

Perm Objects

Semi-permanent Heap Segments

7UDFN�ORW�RI�REMHFWV��
FROOHFW�RQO\�IHZ�

�

Heap

Separating Permanent Objects

• Permanent objects are roots

• But not all of them are roots

• We don’t want to iterate all permanent objects!

2OG 3HUPDQHQW

Maintaining a Remembered Set

• Get the real roots in a remembered set

• Updated with a write barrier and cleaned at GC

2OG 3HUPDQHQW

Semi-permanent Object Selection

5HPHPEHUHG

2OG 3HUPDQHQW2OG 3HUPDQHQW

Bad Semi-permanent Object Selection

5HPHPEHUHG

2OG 3HUPDQHQW

Worst case: all permanent
are remembered (!!)

What objects should be permanent?

5HPHPEHUHG

2OG 3HUPDQHQW2OG 3HUPDQHQW

��
+RZ�WR�FXW�WKH�VSDFH"

What objects should be permanent?

5HPHPEHUHG

2OG 3HUPDQHQW2OG 3HUPDQHQW

��
+RZ�WR�FXW�WKH�VSDFH"

How to
minimise

remembered

objects?

Pitfalls of Semi-permanent Object Selection

• The remembered set can explode easily. E.g.,

• Objects that reference nil, true, false are always remembered

• If you make a class permanent

• => you probably want to make its method dictionary too

• => and its methods, and literals

• => and …

Potential: GC cut by half

• For production Apps!

• Some Heuristics:

• Code (+related) is semi-permanent

• Collections go with their inner array

• Association values are not (!!)

+LJKHU�LV�EHWWHU

Relative Speedups

Automatic Object Selection via Simulations

• Estimate

• permanent segment size

• remembered set size

• Understand the leaking reasons

• And extract better heuristics for production code 
(e.g., better move all classes with all method dictionaries…)

6LPXODWLQJ�6HOHFWLRQV�

Future Perspectives

• Sharing permanent immutable objects, copy on write

• Scaling multi-process applications

• Application-specific permanent object selection

JIT
Machine Code

Thread
Stacks New Objects Old Objects Perm Objects

JIT
Machine Code

Thread
Stacks New Objects Old Objects

JIT
Machine Code

Thread
Stacks New Objects Old Objects

We are hiring!

• We have

• Engineer Positions

• Phd Positions

• Keywords: Compilers, Interpreters, Memory Management, Security

• Come talk to us!

42

Conclusion

• Multi-file snapshot format

• Permanent Objects and Selection

• 2x GC improvements

• Load code

• Create Objects

• Run your app

• Maybe GC!

• Repeat

.image .image

JIT
Machine Code

Thread
Stacks New Objects Old Objects Perm Objects

6LPXODWLQJ�6HOHFWLRQV�

+LJKHU�LV�EHWWHU

Relative Speedups

����

