
Improving Pharo 
Snapshots

P. Tesone - G. Polito - N. Palumbo - ESUG’22 
@tesonep 
@guillep 
@noTwitter

����

guillermo.polito@univ-lille.fr
pablo.tesone@inria.fr

nahuel.palumbo@inria.fr

mailto:guillermo.polito@univ-lille.fr
mailto:pablo.tesone@inria.fr
mailto:nahuel.palumbo@inria.fr


2022 VM+ Team

2



• Numbers


• Characters


• Strings


• Arrays


• Closures


• Classes


• Methods


• …

Everything is an Object



• Numbers


• Characters


• Strings


• Arrays


• Closures


• Classes


• Methods


• …

Everything is an Object



• Numbers


• Characters


• Strings


• Arrays


• Closures


• Classes


• Methods


• …

Everything is an Object



• Numbers


• Characters


• Strings


• Arrays


• Closures


• Classes


• Methods


• …

Everything is an Object



• Numbers


• Characters


• Strings


• Arrays


• Closures


• Classes


• Methods


• …

Everything is an Object



• Numbers


• Characters


• Strings


• Arrays


• Closures


• Classes


• Methods


• …

Lots of Objects



• Numbers


• Characters


• Strings


• Arrays


• Closures


• Classes


• Methods


• …

Lots of Objects
Lots of Stress



• GC Stress


• Autocompletion Stress


• Search Stress


• Spotter Stress


• Startup Stress

Lots of Objects
Lots of Stress



Large Image Support

• https://github.com/pharo-project/largeImages


• MIT Licenced

https://github.com/pharo-project/largeImages


Large Image Support: Highlights

• Generator based searches


• Spotter


• Code Completion


• GC Fine Tuning API

generator
^ generator ifNil: [ 

generator := Generator on: [ :g | 
self entriesDo: [ :entry | 

(self acceptsEntry: entry)
ifTrue: [ g yield: entry ] ] ] ]



GC Fine Tuning

• Configure


• Eden Size


• Full GC Ratio


• Growth Headroom


• Shrink Threshold

  GCConfiguration readFromVM
        fullGCRatio: 1.0;
        activeDuring: [ “something" ].
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Snapshot Current Design Points

• Bootstrap once, then mutate


• Portable


• Object References are pointers

• Load code


• Create Objects


• Run your app


• Maybe GC!


• Repeat

.image .image

Heap



But it could be better…

• VM startup is bound by disk!


• Large heaps take long to load/save


• 3-4GB heaps = seconds to GC


• pauses


• long pauses
• Load code


• Create Objects


• Run your app


• Maybe GC!


• Repeat
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Snapshots vs Runtime Memory Mismatch

App and System Objects Threads State 
as Objects

JIT 
Machine Code

Thread 
Stacks New Objects Old Objects
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Current Loading Snapshot to Memory

JIT 
Machine Code

Thread 
Stacks New Objects Old Objects

Direct Mapping

RebuildEmpty Empty

.image App and System Objects Threads State 
as Objects

Start with a cold VM, 
startup is slow



Reference Swizzling

• Traverse the heap to remap old references by delta


• Slow for large heaps (2/4GB)

Hot Methods 
Machine CodeProcess 1 Thread 

Stacks New Objects Old Objects

Hot Methods 
Machine CodeProcess 2 Thread 

Stacks New Objects Old Objects

Remapped

delta



Current Snapshot to Disk
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JIT 
Machine Code

Thread 
Stacks New Objects Old Objects

1.Discard 2. Save as 
objects

3. Promote 
to old

4. Save to 
Disk

Discards all optimisations: 
slow shutdown => slow 

startup

App and System Objects Threads State 
as Objects.image

Current Snapshot to Disk



Goals

• Faster loading 

• Faster snapshot


• Faster Multi-GB Heaps

• Load code


• Create Objects


• Run your app


• Maybe GC!


• Repeat
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Towards a Multi-file Snapshot Format

JIT 
Machine Code

Thread 
Stacks New Objects Old Objects

JIT 
Machine Code

Thread 
Stacks New Objects Old Objects

Direct Mapping
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• System memory mapping


• Minimize Swizzling


• Lazy loading of memory segments



Multiple Memory Segments

JIT 
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• Independently and lazy loadable


• Independently storable

Old Objects’

Old Objects’



New Memory Segments
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• Reduced garbage collection pressure


• Great for opaque objects, and rarely changing objects 
(code, literals…)

Perm Objects

Perm Objects



Semi-permanent Heap Segments
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Separating Permanent Objects

• Permanent objects are roots 

• But not all of them are roots 

• We don’t want to iterate all permanent objects!

2OG 3HUPDQHQW



Maintaining a Remembered Set

• Get the real roots in a remembered set 

• Updated with a write barrier and cleaned at GC

2OG 3HUPDQHQW



Semi-permanent Object Selection

5HPHPEHUHG
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Bad Semi-permanent Object Selection

5HPHPEHUHG

2OG 3HUPDQHQW

Worst case: all permanent 
are remembered (!!)



What objects should be permanent?
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What objects should be permanent?

5HPHPEHUHG
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How to 
minimise 

remembered 

objects?



Pitfalls of Semi-permanent Object Selection

• The remembered set can explode easily. E.g.,


• Objects that reference nil, true, false are always remembered 

• If you make a class permanent


• => you probably want to make its method dictionary too


• => and its methods, and literals


• => and …



Potential: GC cut by half

• For production Apps!


• Some Heuristics:


• Code (+related) is semi-permanent


• Collections go with their inner array


• Association values are not (!!)

+LJKHU�LV�EHWWHU

Relative Speedups



Automatic Object Selection via Simulations

• Estimate


• permanent segment size


• remembered set size


• Understand the leaking reasons


• And extract better heuristics for production code 
(e.g., better move all classes with all method dictionaries…)
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Future Perspectives 

• Sharing permanent immutable objects, copy on write


• Scaling multi-process applications


• Application-specific permanent object selection

JIT 
Machine Code

Thread 
Stacks New Objects Old Objects Perm Objects
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We are hiring!

• We have


• Engineer Positions


• Phd Positions


• Keywords: Compilers, Interpreters, Memory Management, Security


• Come talk to us!
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Conclusion

• Multi-file snapshot format


• Permanent Objects and Selection


• 2x GC improvements

• Load code


• Create Objects


• Run your app


• Maybe GC!


• Repeat
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