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Virtual Machine Execution Engine
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How can we automatically test VMs?
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Challenges of VM Test Generation
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?
• Do they cover different code regions/branches/paths?


•  
 
How do we determine what is the expected output 
of a generated test?

Challenge 1: 
Test Diversity

Challenge 2: 
Test Oracles



Black Box Testing + Fuzzing
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Interpreter are Executable Semantics
Pharo VM Example
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If both operands are integers

If their sum does not overflow

Else, slow path => message send
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Interpreter VS Compiled Code
Pharo VM Example
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Concolic Meta-Interpretation Model

• Models VM behaviour during 
concolic execution


• Frame


• Objects + types


• Classes


• Then flattened into SAT solver 
equations
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id
class_object
type
value (if small integer)
slots

AbstractObject
receiver
method
argument_size
arguments
operand_stack_size
operand_stack

AbstractVMFrame

format
class_id

AbstractClass

* class_object



Experimental Context: The Pharo VM
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• Interpreted-compiled mixed execution


• Some numbers:


• 255 stack based bytecodes


• ~340 primitives/native methods


• 146 different IR instructions


• x86, x86-64, ARMv7, ARMv8, RISC-V


• Industrial consortium: 


• 28 International companies, 26 academic partners



Previous Manual Testing Effort

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64

Cross-ISA Testing of the Pharo VM. Lessons learned while porting to ARMv8 64bits. Polito et al. MPLR’21

* Numbers by 05/2021
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Evaluation

• 3 bytecode compilers + 1 native method compiler


• 4928 tests generated


• 478 differences
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Analysis of Differences through Manual Inspection

• 91 causes, 6 different categories


• Errors both in the interpreter AND the compilers


• 14 causes of segmentation faults!
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Characterising Concolic Execution
Paths per instruction
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Paths per 
Type of Instruction

• Native methods present in average 
more paths than bytecode 
instructions 
 
=> longer time to explore 
 
=> potentially more bugs
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• Test generation ~5 minutes


• Total run time of ~10 seconds


• Avg 30ms per instruction

Practical and Cheap
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More in the article!

• Discovered Bugs


• Concolic Model


• Testing Infrastructure
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Conclusion

• 478 differences found, 91 causes, 6 categories 


• Practical:


• 4928 tests generated in ~8 minutes


• 4928 tests run in ~40 seconds

32

cold hot hot 

Interpr Compiled

Execution

Managed 

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr 
@guillep

����

mailto:guillermo.polito@univ-lille.fr


Extras
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Concolic Testing through Meta-interpretation

• Idea: Guide test generation by looking at the implementation

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Different cases 
if x > 100 or <= 100!!

Different cases 
if x = 1023 or != 1023

Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 
Set et al. CUTE: a concolic unit testing engine for C. FSE’0534



Concolic Testing by Example

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

x y constraints next?

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0535



x y constraints next?

0 0 x <= 100

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0536

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0537

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0538

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 1023

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0539

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 1023 x > 100, y == 1023

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0540

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 1023 x > 100, y == 1023

101 1023

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0541

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 1023 x > 100, y == 1023

101 1023 x > 100, y != 1023 finished!

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0542

Concolic Testing by Example



Example
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Simulation + Testing Environment

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing 

infrastructure
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Unit Testing Infrastructure Comparison
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Real Hardware 
Execution

Full-System 
Simulation Unit-Testing

Feedback-cycle 
speed Very low Low High

Availability Low High High

Reproducibility Low Low High

Precision High Low Low

Debuggability Low High High
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concolic execution

Path negation

Concolic Execution #1 Concolic Execution #2 Concolic Execution #3 Concolic Execution #4 Concolic Execution #5

Exit: invalid frame Exit: success Exit: failure Exit: failure Exit: failure
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