
Interpreter-Guided 
JIT Compiler Test Generation
Validating the Pharo JIT compiler through

concolic execution and differential testing

Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr  
@guillep

����

PLDI’22 — San Diego

mailto:guillermo.polito@univ-lille.fr


Virtual Machine Execution Engine

2

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory
3

I C



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory
4

I C



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory
5

I C



Virtual Machine Execution Engine

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory
6

I C



How can we automatically test VMs?

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory
7

I C



Challenges of VM Test Generation

8

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

I C

?
• Do they cover different code regions/branches/paths?


•  
 
How do we determine what is the expected output 
of a generated test?

Challenge 1: 
Test Diversity

Challenge 2: 
Test Oracles



Black Box Testing + Fuzzing

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory
9

I C



Black Box Testing + Fuzzing

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory
10

I C

 Slow 
 Coarse Grained 
 Non Determinism 
 Require Multiple Reference Implementations



11

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT Compiler 
Unit Testing



12

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT Compiler 
Unit Testing



13

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test

Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT Compiler 
Unit Testing



14

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test

Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT Compiler 
Unit Testing



15

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT Compiler 
Unit Testing
Insight 1: Interpreters 

are Executable 
Semantics
=> Concolic Meta-

Interpretation



Interpreter are Executable Semantics
Pharo VM Example

16

If both operands are integers

If their sum does not overflow

Else, slow path => message send



17

cold code
hot spot

detection hot code

Interpreted

Execution

Compiled

Execution

Managed Memory

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Interpreter-Guided Automatic JIT 
Compiler Unit Testing
Insight 1: Interpreters 

are Executable 
Semantics
=> Concolic Meta-

Interpretation

Insight 2: Interpreters 
and Compiler Share 

Semantics

=> Differential Testing



Interpreter VS Compiled Code
Pharo VM Example

18



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

19



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

20



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

21



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

22



Implementation View
Interpreter
Instruction

Path
input contraints

output constraints
Path

input contraints
output constraints

Path
input contraints

output constraints
Path

input contraints
output constraints

Concrete Input 
VM Frame

Compiled 
Instruction

Concrete 
Output VM 

Frame
Differential 

Results

1. concolic
exploration

2. compilation

3. concrete JIT
test execution

4. validate

23



Concolic Meta-Interpretation Model

• Models VM behaviour during 
concolic execution


• Frame


• Objects + types


• Classes


• Then flattened into SAT solver 
equations

24

id
class_object
type
value (if small integer)
slots

AbstractObject
receiver
method
argument_size
arguments
operand_stack_size
operand_stack

AbstractVMFrame

format
class_id

AbstractClass

* class_object



Experimental Context: The Pharo VM

25

• Interpreted-compiled mixed execution


• Some numbers:


• 255 stack based bytecodes


• ~340 primitives/native methods


• 146 different IR instructions


• x86, x86-64, ARMv7, ARMv8, RISC-V


• Industrial consortium: 


• 28 International companies, 26 academic partners



Previous Manual Testing Effort

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64

Cross-ISA Testing of the Pharo VM. Lessons learned while porting to ARMv8 64bits. Polito et al. MPLR’21

* Numbers by 05/2021

26



Evaluation

• 3 bytecode compilers + 1 native method compiler


• 4928 tests generated


• 478 differences

27



Analysis of Differences through Manual Inspection

• 91 causes, 6 different categories


• Errors both in the interpreter AND the compilers


• 14 causes of segmentation faults!

28



Characterising Concolic Execution
Paths per instruction

1

10

100

Bytecode Native Method
Paths per Instruction

Ti
m

e 
(m

s)
 −

 lo
g 

sc
al

e
29

Paths per 
Type of Instruction

• Native methods present in average 
more paths than bytecode 
instructions 
 
=> longer time to explore 
 
=> potentially more bugs

Pa
th

s



• Test generation ~5 minutes


• Total run time of ~10 seconds


• Avg 30ms per instruction

Practical and Cheap

10

100

1000

Native Method Stack−to−Register Simple Linear−Allocator
Compiler

Ti
m

e 
(m

s)
 −

 lo
g 

sc
al

e
30



More in the article!

• Discovered Bugs


• Concolic Model


• Testing Infrastructure

31



Conclusion

• 478 differences found, 91 causes, 6 categories 


• Practical:


• 4928 tests generated in ~8 minutes


• 4928 tests run in ~40 seconds

32

cold hot hot 

Interpr Compiled

Execution

Managed 

Test 
Scenarios

1. Test 
Generation

2. Execution 2. Execution

3. Differential Testing

I C

Guille Polito - Pablo Tesone - Stéphane Ducasse

guillermo.polito@univ-lille.fr 
@guillep

����

mailto:guillermo.polito@univ-lille.fr


Extras

33



Concolic Testing through Meta-interpretation

• Idea: Guide test generation by looking at the implementation

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}

Different cases 
if x > 100 or <= 100!!

Different cases 
if x = 1023 or != 1023

Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 
Set et al. CUTE: a concolic unit testing engine for C. FSE’0534



Concolic Testing by Example

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

x y constraints next?

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0535



x y constraints next?

0 0 x <= 100

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0536

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0537

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0538

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 1023

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0539

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 1023 x > 100, y == 1023

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0540

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 1023 x > 100, y == 1023

101 1023

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0541

Concolic Testing by Example



x y constraints next?

0 0 x <= 100 x > 100

101 0 x > 100, y != 1023 x > 100, y == 1023

101 1023 x > 100, y != 1023 finished!

• Concrete + Symbolic execution


• Goal: automatically discover all 
execution paths

int	f(int	x,	int	y){	
if	(x	>	100){	
if	(y	==	1023){	
segfault(!!)	

}	}	}
Godefroid et al. DART: Directed Automated Random Testing. PLDI’ 05 

Set et al. CUTE: a concolic unit testing engine for C. FSE’0542

Concolic Testing by Example



Example

43



Simulation + Testing Environment

Production VM (C)

Simulation Environment (Pharo)

Heap

Native Code Cache

Unicorn LLVM 
Disassembler

VM

Interpreter GC JIT Compiler

Transpiled to
Testing 

infrastructure

44



Unit Testing Infrastructure Comparison

45

Real Hardware 
Execution

Full-System 
Simulation Unit-Testing

Feedback-cycle 
speed Very low Low High

Availability Low High High

Reproducibility Low Low High

Precision High Low Low

Debuggability Low High High



s1 = max small int
s2 = small int 1

s1 = max small int
s2 = small int 1

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

s3 > max small int

operand_stack_size > 1
AND

s1 is small int
AND

s2 not small int

receiver = ?
method = ?
operand stack operand stack

operand stack operand stack

Abstract
Input

Frame

Abstract
Output
Frame

+
Recorded

Path
Constraints

Negated
Path

Constraints

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size <= 1

operand_stack_size > 1

operand stack

operand stack

(empty)

(empty) s1 = small int
s2 = small int

s3 = s1 + s2

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

(s3 < max small int
AND

s3 > min small int)

operand_stack_size > 1
AND

s1 is small int
AND

s2 is small int
AND

! (s3 < max small int
AND

s3 > min small int)

operand stack

operand stack

s1 = small int
s2 = obj

s1 = small int
s2 = obj

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 is small int
AND

s2 not small int

operand_stack_size > 1
AND

s1 not small int

s1 = obj
s2 = small int

s1 = obj
s2 = small int

receiver = ?
method = ?

receiver = ?
method = ?

operand_stack_size > 1
AND

s1 not small int

(empty)

operand stack

operand stack

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e 
co

ns
tru

ct
io

n>
>

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e 
co

ns
tru

ct
io

n>
>

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e 
co

ns
tru

ct
io

n>
>

<<
co

ns
tra

in
t s

ol
vi

ng
 +

 a
bs

tra
ct

 fr
am

e 
co

ns
tru

ct
io

n>
>

concolic execution

Path negation

Concolic Execution #1 Concolic Execution #2 Concolic Execution #3 Concolic Execution #4 Concolic Execution #5

Exit: invalid frame Exit: success Exit: failure Exit: failure Exit: failure

46


