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What is Pharo
A Programming Language + IDE

• Dynamically-typed: no type annotations, no static type checks


• General purpose!


• Object-oriented + Classes


• Open Source - MIT License


• Used for teaching, research and in the industry
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Pharo VM 
Components
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Pharo VM 
Components

Different Components 
That interact

Interactions are not as 
clear to the user…
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Performance Tuning of an Application

• Different Parameters to Tune Up (e.g., Memory Size, Code Cache Size, etc)


• Parameters depends on the application (e.g., method working set, object 
creation rate)


• Parameters are related with each other (e.g., modifying one may affect 
negative other)
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Performance Tuning of an Application

• Different Parameters to Tune Up (e.g., Memory Size, Code Cache Size, etc)


• Parameters depends on the application (e.g., method working set, object 
creation rate)


• Parameters are related with each other (e.g., modifying one may affect 
negative other)

We need correct 
information to set 

them up
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Current VM Performance Indicators

• Pharo VM exposes some basic statistics about runtime, e.g. :


• Number of GC (Scavenger / Full GC)


• Time in GC (Scavenger / Full GC)


• Total Execution Time


• …
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Current VM Performance Indicators

• Pharo VM exposes some basic statistics about runtime, e.g. :


• Number of GC (Scavenger / Full GC)


• Time in GC (Scavenger / Full GC)


• Total Execution Time


• … It is not enough to identify 
performance issues in an 

application

They present basic total 
information and don’t 
identify steady state
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Perfomance Indicators

• Precise Information: We collect all events occurring.


• App Execution Identification: we need to identify when the app starts. 

• Time Correlated: Events should have timestamps.


• Events Expressing VM Behaviour: counters and indicators should expose 
the behaviour of VM components.


• Scalable: it should handle long time running applications.


• Usable: presenting information relevant / accessible to the user.

Requirements
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Perfomance Indicators
Requirements

We want to relate and analyse 
events from different one or 
many different executions

• Precise Information: We collect all events occurring.


• App Execution Identification: we need to identify when the app starts. 

• Time Correlated: Events should have timestamps.


• Events Expressing VM Behaviour: counters and indicators should expose 
the behaviour of VM components.


• Scalable: it should handle long time running applications.


• Usable: presenting information relevant / accessible to the user.
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Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…
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Vicoca
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Vicoca
A tool for collecting and Analysing Events for the Pharo VM
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VM extended with a event-
based profiler. Capturing all 
events with time information
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Vicoca
A tool for collecting and Analysing Events for the Pharo VM
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Inspector

Vicoca

VM extended with a event-
based profiler. Capturing all 
events with time information

Each event stores raw data.  
All events are recorded to later 

analysis.
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Vicoca
A tool for collecting and Analysing Events for the Pharo VM
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After execution. Events are 
loaded in Vicoca to analyse 

them.
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Vicoca
A tool for collecting and Analysing Events for the Pharo VM
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After execution. Events are 
loaded in Vicoca to analyse 

them.

Each event is converted into a 
rich object model, that is used 
by the tool. Also, relations are 
rebuilt and totals calculated
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Vicoca
A tool for collecting and Analysing Events for the Pharo VM
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Model is used to generate 
output useful for the user.
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Vicoca
A tool for collecting and Analysing Events for the Pharo VM
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Predefined plots, support for 
plot scripting using Pharo 
plotting library (Roassal)
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Vicoca
A tool for collecting and Analysing Events for the Pharo VM
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The object model is navigable 
using custom extensible 

inspectors



A Case Study
Analysing the installation of Moose

• Pharo is an image based language, all code and objects is stored in a binary 
format.


• Pharo Code is installed from the source, it is compiled to be loaded in the 
image.


• Moose (https://modularmoose.org/) is a software analysis tool developed on 
Pharo. 


• Loading Moose compiles 1,662 classes and 51,053 methods. 


• It takes 15 minutes without any performance tuning.
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https://modularmoose.org/


A Case Study
Analysing the installation of Moose

• Two initial suspects:


• Code Cache Trashing


• Excessive number of full GC executions
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A Generational Garbage Collector

• Object space divided by generations


• Old and Permanent objects are kept in the old space


• New objects are kept in the young space.
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  Young generations Older generations



A Generational Garbage Collector

• Younger Generations use Copy Collector Scavenger


• Older Generations use Mark and Compact.
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  Young generations Older generations
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Baseline JIT Compiler

• Methods are compiled to machine code in their second 
execution in a row


• Stored in a Native Code Cache


• Then, machine code version is used



24

Baseline JIT Compiler

• Code Cache has a fixed size


• When it is full, space has to be freed


• Methods have to be selected, and the space compacted
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First Suspect: Analysing Code Cache

Analysing Events 
We see trashing in the 

code cache

Code Cache occupation rate when the application is in steady-state. In blue, the occupation rate of the code cache. In red, the compaction events. (1.44 MB) 


We need to increase 
the size of the code 

cache
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First Suspect: Improving Code Cache

Code Cache occupation rate when the application is in steady-state. In blue, the occupation rate of the code cache. In red, the compaction events. (10 MB) 


App Working Set fits in 
the code Cache.
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Second Suspect: Reducing Full GC time
• For default Young Space size (1MB)


• We have 26 Full GC executions


• Execution Time is around 15 minutes.


• For 100MB of young space


• We have 6 Full GC executions


• Total Execution Time is around 5 minutes
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Second Suspect: Reducing Full GC time
• For default Young Space size (1MB)


• We have 26 Full GC executions


• Execution Time is around 15 minutes.


• For 100MB of young space


• We have 6 Full GC executions


• Total Execution Time is around 5 minutes

We have improved the 
issue… let’s apply both
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Applying Both… Unexpected results

Execution time for different Young Space size (1MB, 10MB, 100MB) and Cache Sizes (1.44MB, 2.8MB, 5MB, 10MB) 




• Native methods have inlined object references


• native code is a root of the old space, it has to be traversed on Full GC


• when objects move, native code is scanned, decompiled and patched
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Native Code Cache

Code Zone Size / GC Time Relationship

  Young 
generations Older generations



• Native methods have inlined object references


• native code is a root of the old space, it has to be traversed on Full GC


• when objects move, native code is scanned, decompiled and patched
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Native Code Cache

Code Zone Size / GC Time Relationship

  Young 
generations Older generations Bigger Code 

Cache… puts 
pressure on the 

GC



Towards getting gold from the data

• Automatic Detection of Bottlenecks


• Application Behaviour Identification 


• Automatic Performance Hinting / Proposals


• Improved visualisations and tooling
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Future Work

…
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• Vicoca a tool for:


• Capturing and analysing Events from the VM


• Correlating events and behaviour


• VM components oriented events


• Presenting Events in a Usable way
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