o® ¥

o’
Profiling Code Cache Behaviour via

Events
Work In Progress Paper - MPLR 2021

RMod @

Pablo Tesone, Guillermo Polito, Stéephane Ducasse
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL

Pharo Consortium
Université [@RIStAL
de Lille et

N

What is Pharo 2

A Programming Language + IDE

 Dynamically-typed: no type annotations, no static type checks
* General purpose!

* Object-oriented + Classes

 Open Source - MIT License

» Used for teaching, research and in the industry

Pharo VM
Components

Pharo VM
Components

Different Components
That interact
Interactions are not as
clear to the user...

~

Performance Tuning of an Application

* Different Parameters to Tune Up (e.g., Memory Size, Code Cache Size, etc)

 Parameters depends on the application (e.g., method working set, object
creation rate)

 Parameters are related with each other (e.g., modifying one may affect
negative other)

Performance Tuning of an Application

* Different Parameters to Tune Up (e.g., Memory Size, Code Cache Size, etc)

 Parameters depends on the application (e.g., method working set, object
creation rate)

 Parameters are related with each other (e.g., modifying one may affect
negative other)

We need correct

iInformation to set
them up

Current VM Performance Indicators

 Pharo VM exposes some basic statistics about runtime, e.q. :
 Number of GC (Scavenger / Full GC)
 Time in GC (Scavenger / Full GC)

e Jotal Execution Time

Current VM Performance Indicators

 Pharo VM exposes some basic statistics about runtime, e.q. :

 Number of GC (Scavenger / Full GC)

They present basic total

 Time in GC (Scavenger / Full GC) '?JZ:S]?; ';’{;:3;’ SZ?;

e Jotal Execution Time

It is not enough to identify
performance issues in an
application

Perfomance Indicators

Requirements

* Precise Information: We collect all events occurring.
 App Execution Identification: we need to identify when the app starts.
 Time Correlated: Events should have timestamps.

 Events Expressing VM Behaviour: counters and indicators should expose
the behaviour of VM components.

e Scalable: it should handle long time running applications.

'i; » Usable: presenting information relevant / accessible to the user.

~

9

Perfomance Indicators

Requirements events from different one or
many different executions

We want to relate and analyse

* Precise Information: We collect all events occurring.
 App Execution Identification: we need to identify when the app starts.
 Time Correlated: Events should have timestamps.

 Events Expressing VM Behaviour: counters and indicators should expose
the behaviour of VM components.

e Scalable: it should handle long time running applications.

;; » Usable: presenting information relevant / accessible to the user.

10

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

VM Events (CSV)

&

VMEventCollection

workingSet x VMEvent

workingSetSize >

timestamp
MethodCollected MethodJitted
method method
executions
Vicoca

[2 4=
Llje
(i) 4

Plots Interactive Results (CSV)
Inspector 11

Vicoca

A tool for collecting and Analysing Events for the Pharo VM

1 VMEvents(Csv) 3

VM extended with a event-

based profiler. Capturing all
VMEventCollction events with time information
o S
|
MethodCollected N MethodJitted
method method
Vicoca xecutions

size
Plots Interactive Results (CSV)
Inspector 19

Vicoca

A tool for collecting and Analysing Events for the Pharo VM

VM extended with a event-
based profiler. Capturing all

events with time information
MethodCollected N MethodJitted
hod hod Each event stores raw data.
Vicoca All events are recorded to later

L L L analysis.
W g

Plots Interactive Results (CSV)
Inspector 13

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

VM Events (CSV)

Cesha RS :.l.- SRS TEU L C At S Sok e e S S EOT St
= r’. < = Dy ._' D < - ~y - > - b -~ ’

D IR D £ o . gRE s LT G LT ST m i il T X S G £) AR ST D Y T e,
\/ - Y
"

After execution. Events are

3 loaded In Vicoca to analyse
VMEventCollection t h e m.

workingSet VMEvent
workingSetSize >

timestamp

f

MethodCollected MethodJitted

method method

executions size

% | Vicoca

""‘ 2 4" Iy, & P D.“l' 3 AL SN UL R RRN M = Y Iy O AR TR
L Sm® L e I A . SRR A

~q .- . - . -
K

AR

Plots Interactive Results (CSV)
Inspector 14

Vicoca

A tool for collecting and Analysing Events for the Pharo VM

gt 3 2. Bae A« €2 ,_~ & == R OTPT - o7, A S Sl <ok = = R g g £ B gr e
=) R S o P - = _ Al S - o < 0
- O < DT Vg IR 3]

’, IR D o . gRE s LT G LT T m i i T X S G £) ARG ST Y T P T T
\/ - Y
"

VM Events

(CSV)

VMEventCollection

workingSet

VMEvent

workingSetSize

timestamp

f

MethodCollected

method

executions

% | Vicoca

MethodJitted

method

size

o ." Iy, /& D <de 25, O
< - : . -,

A

A
I~

»
~

Plots

4

Inspector

C -~

‘\
R
Ry
b
R
\~;‘
\x‘
= e -oz ek e N . By ek @~ R
Ve TV @ SIS T YL NG A 5T S O, oW S e C SR ‘~ e B S S S A
"R PPN S S o oL aC N T e - . S e . 85 g

Interactive

Results (CSV)

After execution. Events are
loaded in Vicoca to analyse
them.

Each event is converted into a

rich object model, that is used

by the tool. Also, relations are
rebuilt and totals calculated

15

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

VM Events (CSV)

b Model is used to generate

. output useful for the user.
VMEventCollection
workingSet x VMEvent
workingSetSize >
timestamp
MethodCollected N MethodJitted
method method
tion
Vicoca

Interactive Results (CSV) 3
Inspector £ 16

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

VM Events (CSV)

Predefined plots, support for

v plot scripting using Pharo

plotting library (Roassal)
workingSet x VMEvent
workingSetSize >
timestamp
? 0:00:20:50
R Ll .P_ _T
MethodCollected MethodJitted 0:00:16:404 : '
method method 0:00:12:30 - E E
executions size ' ' S 3
Vicoca : : Vo aemmmmT T :
0:00:08:2204 1 : g7 .
I i

—
AN
<
o

e IMB ---- 10 MB 100 MB

l
1 1 1
RO S] [] : : : :
. ; ; : :
g b] 0:00:04:10 ; ! J i
8 G
h; 2 : 2.8MB 5.0MB 10.0MB

Interactive Results (CSV)
¢ Inspector 17

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

VM Events (CSV)

The object model is navigable

< using custom extensible

VMEventCollection i ns p ecto rs
workingSet x VMEvent
workingSetSize >
timestamp
T WorkingSet Raw Breakpoints Meta
MethodCollected MethodJitted = Method + Executions
method method ProtoObject >> class 2676530993
executions size ArrayedCollection == size 2011757467
Vicoca Smallinteger >>= 1495640219
Symbol == 1341766248
@ @ Smallinteger ==\, 1160873709
Object == enclosedElement 1145750258
N Object === 816070216
— Object == at:put: 764810930
| Object >> basicAt: 711668845
Plots | :' Interactive Results (CSV) WriteStream == nextPut: 695757809

g Inspector 18 CompiledCode >> objectAt: 685686635

A Case Study

Analysing the installation of Moose

 Pharo is an image based language, all code and objects is stored in a binary
format.

 Pharo Code is installed from the source, it is compiled to be loaded in the
image.

 Moose (https://modularmoose.orgd/) is a software analysis tool developed on
Pharo.

* | oading Moose compiles 1,662 classes and 51,053 methods.

e ° It takes 15 minutes without any performance tuning.

19

https://modularmoose.org/

A Case Study

Analysing the installation of Moose

* [wo Initial suspects:

* Code Cache Trashing

e Excessive number of full GC executions

20

A Generational Garbage Collector

* Object space divided by generations
 Old and Permanent objects are kept in the old space

 New objects are kept In the young space.

21

A Generational Garbage Collector

* Younger Generations use Copy Collector Scavenger

e Older Generations use Mark and Compact.

Older generations

22

Baseline JIT Compiler

eep = N

» Methods are compiled to machine code in their second
execution in a row

e Stored in a Native Code Cache

e Then, machine code version Is used

?
o’ , Nohw Codt €on®

Baseline JIT Compiler

o og, % e
Hewf

e Code Cache has a fixed size

 When it is full, space has to be freed

» Methods have to be selected, and the space compacted

\
/ Nohw Codit €on<

24 A ——

First Suspect: Analysing Code Cache

100 = v

mmn 1111}
Im.n (111}
mm.n 1L __11]]
mman L 111}
mman (L 1L 1]
man [l 111
1smn 14
1"

Analysing Events
We see trashing in the
code cache

90

80

70 -

We need to increase
the size of the code
cache

60

’ 50 = ; :l T : T s

/ 0:00:03:00 0:00:03:10 0:00:03:20 0:00:03:30 0:00:03:40 0:00:03:50 0:00:04:00

/ Code Cache occupation rate when the application is in steady-state. In blue, the occupation rate of the code cache. In red, the compaction events. (1.44 MB)
25

AL A 1

First Suspect: Improving Code Cache

100

90 App Working Set fits in

the code Cache.

80+

60 -

ol T T 1 1 1

J):00:03:00 0:00:03:10 0:00:03:20 0:00:03:30 0:00:03:40 0:00:03:50 0:00:04:00

Code Cache occupation rate when the application is in steady-state. In blue, the occupation rate of the code cache. In red, the compaction events. (10 MB)

26

Second Suspect: Reducing Full GC time

* For default Young Space size (1MB)
* We have 26 Full GC executions
 Execution Time Is around 15 minutes.
 For 100MB of young space
* \We have 6 Full GC executions

e Total Execution Time Is around 5 minutes

27

Second Suspect: Reducing Full GC time

* For default Young Space size (1MB)
e We have 26 Full GC executions
e Execution Time is around 15 minutes.

« For 100MB of young space We have improved the

Issue... let’s apply both

e We have 6 Full GC executions

e Total Execution Time Is around 5 minutes

28

Applying Both... Unexpected results

0:00:20:50 : .
R R e ——————_——— —L
0:00:16:40 : : : ,
0:00:12:30 . . : :
: : V- 2
[l i =T .
0:00:08:20 : . N :
u I ’——" :
i' —————— F : :
: : : .
0:00:04:10
1.4MB 2.8MB 5.0MB 10.0MB

~-= 1IMB ---- 10 MB 100 MB

Execution time for different Young Space size (1MB, 10MB, 100MB) and Cache Sizes (1.44MB, 2.8MB, 5MB, 10MB)

29

Code Zone Size / GC Time Relationship

 Native methods have inlined object references
* native code is a root of the old space, it has to be traversed on Full GC

 when objects move, native code Is scanned, decompiled and patched

- Older generations

Native Code Cache

30

Code Zone Size / GC Time Relationship

 Native methods have inlined object references
* native code is a root of the old space, it has to be traversed on Full GC

 when objects move, native code Is scanned, decompiled and patched

- Older generations Blgger Code
Cache... puts

pressure on the
GC

Native Code Cache

31

Future Work

Towards getting gold from the data

VM Events (CSV)

 Automatic Detection of Bottlenecks L

* Application Behaviour Identification pr—

» Automatic Performance Hinting / Proposals - ?

» Improved visualisations and tooling e T e

Vicoca

&
2

Plots Interactive Results (CSV)
Inspector

[, ¢
Hig

32

o® ¥

o’
Profiling Code Cache Behaviour via

Events
Work In Progress Paper - MPLR 2021

RMmod @)

* \Vicoca a tool for:
e Capturing and analysing Events from the VM

* Correlating events and behaviour

Sigmal e Asfomatiges de Lille

Université VM components oriented events

de Lille . -
ﬁ * Presenting Events in a Usable way

33

