
Profiling Code Cache Behaviour via
Events

Pablo Tesone, Guillermo Polito, Stéphane Ducasse

Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL

Pharo Consortium

Work In Progress Paper - MPLR 2021

What is Pharo
A Programming Language + IDE

• Dynamically-typed: no type annotations, no static type checks

• General purpose!

• Object-oriented + Classes

• Open Source - MIT License

• Used for teaching, research and in the industry

2

3

Pharo VM 
Components

4

Pharo VM 
Components

Different Components
That interact

Interactions are not as
clear to the user…

5

Performance Tuning of an Application

• Different Parameters to Tune Up (e.g., Memory Size, Code Cache Size, etc)

• Parameters depends on the application (e.g., method working set, object
creation rate)

• Parameters are related with each other (e.g., modifying one may affect
negative other)

6

Performance Tuning of an Application

• Different Parameters to Tune Up (e.g., Memory Size, Code Cache Size, etc)

• Parameters depends on the application (e.g., method working set, object
creation rate)

• Parameters are related with each other (e.g., modifying one may affect
negative other)

We need correct
information to set

them up

7

Current VM Performance Indicators

• Pharo VM exposes some basic statistics about runtime, e.g. :

• Number of GC (Scavenger / Full GC)

• Time in GC (Scavenger / Full GC)

• Total Execution Time

• …

8

Current VM Performance Indicators

• Pharo VM exposes some basic statistics about runtime, e.g. :

• Number of GC (Scavenger / Full GC)

• Time in GC (Scavenger / Full GC)

• Total Execution Time

• … It is not enough to identify
performance issues in an

application

They present basic total
information and don’t
identify steady state

9

Perfomance Indicators

• Precise Information: We collect all events occurring.

• App Execution Identification: we need to identify when the app starts.

• Time Correlated: Events should have timestamps.

• Events Expressing VM Behaviour: counters and indicators should expose
the behaviour of VM components.

• Scalable: it should handle long time running applications.

• Usable: presenting information relevant / accessible to the user.

Requirements

10

Perfomance Indicators
Requirements

We want to relate and analyse
events from different one or
many different executions

• Precise Information: We collect all events occurring.

• App Execution Identification: we need to identify when the app starts.

• Time Correlated: Events should have timestamps.

• Events Expressing VM Behaviour: counters and indicators should expose
the behaviour of VM components.

• Scalable: it should handle long time running applications.

• Usable: presenting information relevant / accessible to the user.

11

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

12

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

VM extended with a event-
based profiler. Capturing all
events with time information

13

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

VM extended with a event-
based profiler. Capturing all
events with time information

Each event stores raw data.
All events are recorded to later

analysis.

14

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

After execution. Events are
loaded in Vicoca to analyse

them.

15

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

After execution. Events are
loaded in Vicoca to analyse

them.

Each event is converted into a
rich object model, that is used
by the tool. Also, relations are
rebuilt and totals calculated

16

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

Model is used to generate
output useful for the user.

17

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

Predefined plots, support for
plot scripting using Pharo
plotting library (Roassal)

18

Vicoca
A tool for collecting and Analysing Events for the Pharo VM

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

The object model is navigable
using custom extensible

inspectors

A Case Study
Analysing the installation of Moose

• Pharo is an image based language, all code and objects is stored in a binary
format.

• Pharo Code is installed from the source, it is compiled to be loaded in the
image.

• Moose (https://modularmoose.org/) is a software analysis tool developed on
Pharo.

• Loading Moose compiles 1,662 classes and 51,053 methods.

• It takes 15 minutes without any performance tuning.

19

https://modularmoose.org/

A Case Study
Analysing the installation of Moose

• Two initial suspects:

• Code Cache Trashing

• Excessive number of full GC executions

20

A Generational Garbage Collector

• Object space divided by generations

• Old and Permanent objects are kept in the old space

• New objects are kept in the young space.

21

 Young generations Older generations

A Generational Garbage Collector

• Younger Generations use Copy Collector Scavenger

• Older Generations use Mark and Compact.

22

 Young generations Older generations

23

Baseline JIT Compiler

• Methods are compiled to machine code in their second
execution in a row

• Stored in a Native Code Cache

• Then, machine code version is used

24

Baseline JIT Compiler

• Code Cache has a fixed size

• When it is full, space has to be freed

• Methods have to be selected, and the space compacted

25

First Suspect: Analysing Code Cache

Analysing Events
We see trashing in the

code cache

Code Cache occupation rate when the application is in steady-state. In blue, the occupation rate of the code cache. In red, the compaction events. (1.44 MB)

We need to increase
the size of the code

cache

26

First Suspect: Improving Code Cache

Code Cache occupation rate when the application is in steady-state. In blue, the occupation rate of the code cache. In red, the compaction events. (10 MB)

App Working Set fits in
the code Cache.

27

Second Suspect: Reducing Full GC time
• For default Young Space size (1MB)

• We have 26 Full GC executions

• Execution Time is around 15 minutes.

• For 100MB of young space

• We have 6 Full GC executions

• Total Execution Time is around 5 minutes

28

Second Suspect: Reducing Full GC time
• For default Young Space size (1MB)

• We have 26 Full GC executions

• Execution Time is around 15 minutes.

• For 100MB of young space

• We have 6 Full GC executions

• Total Execution Time is around 5 minutes

We have improved the
issue… let’s apply both

29

Applying Both… Unexpected results

Execution time for different Young Space size (1MB, 10MB, 100MB) and Cache Sizes (1.44MB, 2.8MB, 5MB, 10MB)

• Native methods have inlined object references

• native code is a root of the old space, it has to be traversed on Full GC

• when objects move, native code is scanned, decompiled and patched

30

Native Code Cache

Code Zone Size / GC Time Relationship

 Young
generations Older generations

• Native methods have inlined object references

• native code is a root of the old space, it has to be traversed on Full GC

• when objects move, native code is scanned, decompiled and patched

31

Native Code Cache

Code Zone Size / GC Time Relationship

 Young
generations Older generations Bigger Code

Cache… puts
pressure on the

GC

Towards getting gold from the data

• Automatic Detection of Bottlenecks

• Application Behaviour Identification

• Automatic Performance Hinting / Proposals

• Improved visualisations and tooling

32

Future Work

…

*
timestamp

VMEvent

method
executions

MethodCollected

method
size

MethodJitted

workingSet
workingSetSize
…

VMEventCollection

VM Events (CSV)

Results (CSV)Plots Interactive
Inspector

Vicoca

Profiling Code Cache Behaviour via
Events

Work In Progress Paper - MPLR 2021

• Vicoca a tool for:

• Capturing and analysing Events from the VM

• Correlating events and behaviour

• VM components oriented events

• Presenting Events in a Usable way
33

