
INQUISITOR
 BLENDING DEBUGGER AND PROFILER

Thomas Dupriez – Stéphane Ducasse
Rmod – Inria Lille Nord Europe

2

IDEA

● Debugger
– Interactive
– Run execution step-by-step
– Inspect specific execution points in detail

● Profiler
– Uninteractive
– Run entire execution
– Global view Inquisitor

3

USAGE

● 1) Select an execution
– Test method or custom code

● 2) Ask a question
– Example: “Method, what do you return?”

● 3) Inquisitor runs the execution
● 4) Inspect the data

– Example: All the values returned by the method

● 5) Open a debugger on any data point
● 6) Combine/compare data from multiple questions

4

DEMO: FACTORIAL

● 1) Open Inquisitor Workbench UI

5

WORKBENCH UI

Manage Inquisitors in the image Quick view of asked questions

Inspect data of selected question

6

DEMO: FACTORIAL

● 2) Create an Inquisitor

Via the UI (custom code)

Right-click a test method

OR

7

DEMO: FACTORIAL

● 3) Set as main Inquisitor

The main inquisitor will receive all the questions

8

DEMO: FACTORIAL

● 4) Ask the question

Right-click the method

9

DEMO: FACTORIAL

● 5) Inspect the data

10

DEMO: FACTORIAL

● 6) Open a data point in a debugger (1/2)

11

DEMO: FACTORIAL

● 6) Open a data point in a debugger (2/2)

12

QUESTIONS

● Hit Check
– AST node, when are you hit?

● Value Check
– AST node, what’s the value of <expression> when you’re hit?

● Method Return
– Method, what values do you return?

● Variable History
– Variable, what values do you take?

● Class Instanciation
– Class, when are you instanciated?

13

DEFINITIONS

14

IMPLEMENTATION

● Asking a question:
– Install breakpoints at the right places
– Run execution
– Capture Break exceptions

● Retrieve values from the signaler context
● Create a Capture Point
● Store in it the list of breakpoints the execution encountered

until then

– Remove breakpoints

15

IMPLEMENTATION

● Opening a Capture Point
– Install stored breakpoints
– Run execution
– Skip every exception until all the stored breakpoints

have been hit
– Let the last exception go through → Debugger opens
– Remove breakpoints

16

IMPLEMENTATION

● Special case: Asking the Class Instanciation question
– Object creation is done via primitives
– Primitives cannot be breapointed (image freeze)

17

IMPLEMENTATION

● Special case: Asking the Class Instanciation question
– Object creation is done via primitives
– Primitives cannot be breapointed (image freeze)

18

IMPLEMENTATION

● Special case: Asking the Class Instanciation question
– Solution: proxy methods for primitives
– Instrumentation code extracts the information required to

create capture points
– Breakpoints are created (not installed) on methods calling

the instrumentation code (MyClass class>>#new)

Before With proxy method

19

IMPLEMENTATION

● Special case: Asking the Class Instanciation question
– Solution: proxy methods for primitives
– Results:

● Answering the question: YES
● Opening a debugger on a capture point: NO, image freeze

– Probably because it usually means placing a breakpoint in
Behavior>>#new

– Adding conditions to these breakpoint (so that they only trigger if the
class about to be instanciated is the target class) does not solve the
image freeze

20

META OPERATIONS ON CAPTURE
TRACES (NOT IMPLEMENTED)

● Combine two capture traces (from the same
execution code)
– Each trace has an order on its capture points
– Even though it’s the same code, the executions were

not the same, so the context objects aren’t ==

● Compare two capture traces (same question, on
different execution code)

21

IDEA TO MERGE CAPTURE TRACES

● Synopsis:
– Ask question 1 → capture trace 1
– Ask question 2 → capture trace 2
– Objective: merge capture trace 1 and 2

● Requires: time-ordering capture points from 2 traces
● Idea: upon creation, capture points store a view of the

current stack (method name + pc for each context)

22

CONCLUSION

● Ask questions to your execution
● Open interesting points in a debugger
● Available on github

● Hit Check: AST node, when are you hit?
● Value Check: AST node, what’s the value of <expression>

when you’re hit?
● Method Return: Method, what values do you return?
● Variable History: Variable, what values do you take?
● Class Instanciation: Class, when are you instanciated?

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22

