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IDEA

● Debugger
– Interactive
– Run execution step-by-step
– Inspect specific execution points in detail

● Profiler
– Uninteractive
– Run entire execution
– Global view Inquisitor
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USAGE

● 1) Select an execution
– Test method or custom code

● 2) Ask a question
– Example: “Method, what do you return?”

● 3) Inquisitor runs the execution
● 4) Inspect the data

– Example: All the values returned by the method

● 5) Open a debugger on any data point
● 6) Combine/compare data from multiple questions
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DEMO: FACTORIAL

● 1) Open Inquisitor Workbench UI
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WORKBENCH UI

Manage Inquisitors in the image Quick view of asked questions

Inspect data of selected question
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DEMO: FACTORIAL

● 2) Create an Inquisitor

Via the UI (custom code)

Right-click a test method

OR
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DEMO: FACTORIAL

● 3) Set as main Inquisitor

The main inquisitor will receive all the questions
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DEMO: FACTORIAL

● 4) Ask the question

Right-click the method
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DEMO: FACTORIAL

● 5) Inspect the data



10

DEMO: FACTORIAL

● 6) Open a data point in a debugger (1/2)
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DEMO: FACTORIAL

● 6) Open a data point in a debugger (2/2)
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QUESTIONS

● Hit Check
– AST node, when are you hit?

● Value Check
– AST node, what’s the value of <expression> when you’re hit?

● Method Return
– Method, what values do you return?

● Variable History
– Variable, what values do you take?

● Class Instanciation
– Class, when are you instanciated?
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DEFINITIONS



14

IMPLEMENTATION

● Asking a question:
– Install breakpoints at the right places
– Run execution
– Capture Break exceptions

● Retrieve values from the signaler context
● Create a Capture Point
● Store in it the list of breakpoints the execution encountered 

until then

– Remove breakpoints
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IMPLEMENTATION

● Opening a Capture Point
– Install stored breakpoints
– Run execution
– Skip every exception until all the stored breakpoints 

have been hit
– Let the last exception go through → Debugger opens
– Remove breakpoints
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IMPLEMENTATION

● Special case: Asking the Class Instanciation question
– Object creation is done via primitives
– Primitives cannot be breapointed (image freeze)
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IMPLEMENTATION
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IMPLEMENTATION

● Special case: Asking the Class Instanciation question
– Solution: proxy methods for primitives
– Instrumentation code extracts the information required to 

create capture points
– Breakpoints are created (not installed) on methods calling 

the instrumentation code (MyClass class>>#new)

Before With proxy method
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IMPLEMENTATION

● Special case: Asking the Class Instanciation question
– Solution: proxy methods for primitives
– Results:

● Answering the question: YES
● Opening a debugger on a capture point: NO, image freeze

– Probably because it usually means placing a breakpoint in 
Behavior>>#new

– Adding conditions to these breakpoint (so that they only trigger if the 
class about to be instanciated is the target class) does not solve the 
image freeze
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META OPERATIONS ON CAPTURE 
TRACES (NOT IMPLEMENTED)

● Combine two capture traces (from the same 
execution code)
– Each trace has an order on its capture points
– Even though it’s the same code, the executions were 

not the same, so the context objects aren’t ==

● Compare two capture traces (same question, on 
different execution code)
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IDEA TO MERGE CAPTURE TRACES

● Synopsis:
– Ask question 1 → capture trace 1
– Ask question 2 → capture trace 2
– Objective: merge capture trace 1 and 2

● Requires: time-ordering capture points from 2 traces
● Idea: upon creation, capture points store a view of the 

current stack (method name + pc for each context)
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CONCLUSION

● Ask questions to your execution
● Open interesting points in a debugger
● Available on github

● Hit Check: AST node, when are you hit?
● Value Check:  AST node, what’s the value of <expression> 

when you’re hit?
● Method Return: Method, what values do you return?
● Variable History: Variable, what values do you take?
● Class Instanciation: Class, when are you instanciated?
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