
A journey to “software
evolution” land

1

S. Ducasse
http://stephane.ducasse.free.fr

����

http://stephane.ducasse.free.fr

In a Nutshell

Head of RMOD team (7 permanents, 20 people)
4 years scientific deputee of Inria Lille (300 people)

Wrote several open-source books / ~ 300 articles
~ 15 K citations / H-index~59
One of the leaders of the Pharo community

- http://www.pharo.org
Past core devs of Moose data and code analysis platform

- http://moosetechnology.org
Co-founder of http://www.synectique.eu

http://www.pharo.org
http://moosetechnology.org
http://www.synectique.eu

3

RMOD: 3 axes in synergy

Production Virtual
Machine

New generation tools for daily tasksEvolution of ever-running systems

A Generative Approach to Modular and Versatile Virtual Machines

Benchmark / Evaluation
Platform

energy space speed

VM Distiller

C transpiler

NG Debuggers

Multi-focused Profillers

Reverse Engineering R2
Migration

UpdateTesting
AI

Tools

Non Functional
Requirements

Business
Rules

Maps

Evolution

Green
Security

Pharo
AOT Comp

Moose

IoT
Berger-Levrault

Pharo C
onsortium Alamvic

Roadmap

Legacy is not just Cobol
Software Maps
Green tests can be rotten
Research agenda for
Virtual Machines
Current effort

-

Software is

Complex

Two software evolution laws

Continuing change
• A program that is used in a real-world environment must
change, or become progressively less useful in that
environment.

Increasing complexity
• As a program evolves, it becomes more complex, and
extra resources are needed to preserve and simplify its
structure.

Software is a living entity...

• Early decisions were certainly good at that time
• But the context changes
• Customers change
• Technology changes
• People change

We only maintain
useful successful
software

Maintenance is continuous
Development

Between 70% and 90% of global
effort is spent on “maintenance” !

18% Corrective
(fixing reported errors)

18% Adaptive
(new platforms or OS)

60% Perfective
(new functionality)

4% Other

“Maintenance”

50% of development time
is lost trying to understand code !

We lose a lot of time with inappropriate and
ineffective practices

Between 50% and 80% of the
overall cost is spent in the

evolution

-

Legacy systems
exist in ***any***
language

Introducti
on

Berger-Levrault by example

Depuis GWT vers
Angular

500 pages web

36 ans/homme	
de migration

1 MLOCS	

21 433 classes	

95 164 méthodes

12

https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/
https://www.berger-levrault.com/fr/

Bottom up team: interested in problems
code analysis, metamodeling, software metrics, program
understanding, program visualization, reverse engineering,
evolution analysis, refactorings, quality,
changes analysis, commit,
dependencies, merging support
rule and bug assessment
semi-automatic migration
example-based transformations
test selection, rearchitecturing
blockchains, ui-migration
Collaborations
 IMT Douai, Soft (VUB), ENSTA (Bretagne)
 Berger-Levrault, Siemens, Thales, CIM, Arolla, Lifeware, WordLine/ATOS

Representation Transformations

Reverse

Engineering

Analyses

Evolution

Roadmap

Legacy is not just Cobol
Software Maps
Green tests can be rotten
Research agenda for
Virtual Machines
Current effort

-

Some selected software
maps
— to build **yourselves**
at home

First glance at large systems:
Polymetric views [PhD Lanza]

Color
metric

Width metric

Height metric

Position metrics

Understanding systems [PhD M.
Lanza]

How a property spread on a
system?

Example : Who is behind package
X ?

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Step 1 - Model Creation/Import

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Definition of a model to represent entities
Data Extraction (CVS...)

Step 2 - Analyses

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Who wrote how many lines of code?

Step : 3 - Creating the Map

JBoss at a glance

	 Interactive tool
 Data in perspective

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Currently: How to support
understand classnames? [PhD N.-
J. Agouf]

• How class are named?
• is inheritance conveyed through names

• Is naming consistent?

One color = one hierarchy
One middle box = one suffix

Suffix: Y

LEGEND:
Root
class C1Y

Class named *Y from
C hierarchy. suffix is : Y

Package: P1

suffix boxclass box

DY D1Y C1Y

C2Y D2Y

Suffix: X

C1X

C2X C3X

CX

Suffix: F

BF AZ

Suffix: Z

F3Z F4Z

F2Z

C3Y C4Y

Suffix: P

E2P

E3PE1P

EP

package box

F1Y

suffix box

P1

CX

C3XC1X C2X D2Y

C1Y

F4ZF3ZF2Z

C2Y

P2

FZ F1Z

DY

Object

D1Y

AZ EP

C3Y

BF

E3PE1P E2P

C4Y

F1Y

One color = one hierarchy
One middle box = one suffix

-

What about security
(dreams so far)?

 What are the maps we
 want to see?

- constructs maps
- “dangerous” expressions?
- inputs
- sequence of expressions

Roadmap

Legacy is not just Cobol
Software Maps
Green tests can be rotten
Research agenda for
Virtual Machines
Current effort

J. Delplanque, S. Ducasse, G. Polito, A. P. Black and A. Etien
Univ. Lille, CNRS, Centrale Lille, Inria, UMR 9189 - CRIStAL

Dept of Computer Science, Portland State University, Oregon, USA

WHAT IS A ROTTEN GREEN
TEST?

30

(ICSE’19)

ANATOMY OF A TEST

31

class SetTest {
 method testSetAdd {

 def s = Set.new()

 s.add(1)

 s.add(1)

 self.assertEquals(s.size(),1)

 self.assert(s.includes(1))
 }

}

NOT TALKING ABOUT A SMOKE TEST!

SetTest » testSetAddSmokeTest

 | s |

 s := Set new.

 s add: 1.

 s add: 1

➤ No assertion

➤ Not a rotten green test

32

A ROTTEN GREEN TEST IS
➤ A test passing (green)
➤ A test that contains at least one assertion
➤ One or more assertions is not executed when test runs

33

A LITTLE SKETCH OF A ROTTEN GREEN TEST

class RottenTest {
 method testABC {
 if (false) then {self.assert(x)}
 }

}

A REAL ONE

TPrintOnSequencedTest » testPrintOnDelimiter

 | aStream result allElementsAsString |

 result := ''.

 aStream := ReadWriteStream on: result.

 self nonEmpty printOn: aStream delimiter: ', '.

 allElementsAsString := result findBetweenSubstrings: ', ‘.

 allElementsAsString withIndexDo: [:el :i |

self assert: el equals: ((self nonEmpty at:i) asString)]

A REAL ONE

TPrintOnSequencedTest » testPrintOnDelimiter

 | aStream result allElementsAsString |

 result := ''.

 aStream := ReadWriteStream on: result.

 self nonEmpty printOn: aStream delimiter: ', '.

 allElementsAsString := result findBetweenSubstrings: ', ‘.

 allElementsAsString withIndexDo: [:el :i |

self assert: el equals: ((self nonEmpty at:i) asString)]

Not executed!

TPrintOnSequencedTest » testPrintOnDelimiter

| aStream result allElementsAsString |

result := ''.

aStream := ReadWriteStream on: result.

self nonEmpty printOn: aStream delimiter: ', '.

allElementsAsString := result findBetweenSubstrings: ', '.

allElementsAsString withIndexDo: [:el :i |

 self assert: el equals: ((self nonEmpty at:i) asString)]

The programmer believed that the object on which the

stream is working is “magically” mutated on stream growth

‘’result

stream.collection

‘a’

38

Iterator does not run

result stays empty

ROTTEN GREEN TEST WRITERS

➤ Rotten green tests are NOT intentional
➤ We say: this is not the programmer’s fault
➤ Instead: it is the fault of testing tools that do not

report them

39

WHY ARE ROTTEN GREEN TESTS BAD?

➤ Give a false sense of security
➤ Can easily pass unnoticed
➤ Not reported by testing frameworks prior to DrTest

40

MAINLY CAUSED BY
➤ Conditional code not executing a branch

➤ Iterating over an empty collection

41

HOW TO IDENTIFY THEM?

42

HANDLING HELPERS

class RottenTest {
 method testABC {
 if (false) then {self.helper()}
 }

 method helper {
 self.secondHelper()
 }

 method secondHelper {
 self.assert(x)
 }

}

43

HANDLING HELPERS

class RottenTest {
 method testABC {
 if (false) then {self.helper()}
 }

 method helper {
 self.secondHelper()
 }

 method secondHelper {
 self.assert(x)
 }

}

44

Not executed!

Not executed!

ABOUT THE NEED FOR CALL SITE ANALYSIS

45

class RottenTest {
 method testDEF {
 self.badHelper()
 self.assert(true)
 }

 method badHelper {
 if (false) then {
 self.secondHelper()
 }
 }

 method secondHelper {
 self.assert(x)
 }

}

ABOUT THE NEED FOR CALL SITE ANALYSIS

46

class RottenTest {
 method testDEF {
 self.badHelper()
 self.assert(true)
 }

 method badHelper {
 if (false) then {
 self.secondHelper()
 }
 }

 method secondHelper {
 self.assert(x)
 }

}

Executed!

Not executed!

Not executed!

IDENTIFYING ROTTEN GREEN TESTS

➤ We use both
➤ Static analysis, to identify helpers and

inherited methods
➤ Dynamic analysis, to identify call sites that are

not executed

47

BEFORE TEST EXECUTION: FIRST IDENTIFYING THE HELPERS

48

class RottenTest {
 method testDEF {
 self.badHelper()
 self.assert(true)
 }

 method badHelper {
 if (false) then {
 self.secondHelper()
 }
 }

 method secondHelper {
 self.assert(x)
 }

}

BEFORE TEST EXECUTION: FIRST IDENTIFYING THE HELPERS

49

class RottenTest {
 method testDEF {
 self.badHelper()
 self.assert(true)
 }

 method badHelper {
 if (false) then {
 self.secondHelper()
 }
 }

 method secondHelper {
 self.assert(x)
 }

}

is an helper

is an helper

BEFORE TEST EXECUTION: INSTALLING CALL SITE SPIES

50

class RottenTest {
 method testDEF {
 self.badHelper()
 self.assert(true)
 }

 method badHelper {
 if (false) then {
 self.secondHelper()
 }
 }

 method secondHelper {
 self.assert(x)
 }

}

spy

spy

DURING EXECUTION

51

class RottenTest {
 method testDEF {
 self.badHelper()
 self.assert(true)
 }

 method badHelper {
 if (false) then {
 self.secondHelper()
 }
 }

 method secondHelper {
 self.assert(x)
 }

}

spy

spy

spy

spy

CASE STUDIES (CHECK THE PAPER AND THE FOLLOWING ONE)
➤ 19,905 tests analysed on mature projects

➤ 294 rotten (25 fully rotten)

➤ Found rotten green tests in Java and Python projects

52

53

Software
Evolution

rmod research

external world

Companies Research
groups

Teachers

Running
Systems

}

{

}

{

}

{
}

{

}

{

McCabe = 21
LOC = 75

3,0
00

classes select: #isGod ...

Pharo 90
~740 packages
- 9 000 classes
- 120 000 methods

250 forks sur Github
up to 100 contributors
30 regulars
- 8 sub projets

- graphics
- vcs
- tools

Consortium
~ 28 companies
~ 25 academic

Roadmap

Legacy is not just Cobol
Software Maps
Green tests can be rotten
Research agenda for
Virtual Machines
Current effort

Virtual Machines
Modern Language Implementations

Runtime Binary Translation

Hardware/System Interaction

Managed Execution

Managed Memory

Virtual Machines
Typical Architecture Overview

cold code
hot spot

detection hot code

Interpreted

Execution

Machine

Execution

Managed Memory
VMs: auto-adaptive

systems

https://webkit.org/blog/10308/speculation-in-javascriptcore/

Complexity and Cost of VMs Multiple levels
Different representations
Engineering cost

Complexity and Cost of VMs (II)
Apple’s	Safari	
JavascriptCore[2021]

Google’s	v8	TurboFan

https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8

https://webkit.org/blog/10308/speculation-in-javascriptcore/
https://ponyfoo.com/articles/an-introduction-to-speculative-optimization-in-v8

Managed Execution
Remarkable Challenges

• What are optimal organisations of multi-tier engines?

• Combining interpreters with many levels of optimising compilers

• What is a better/minimal runtime support for developer tooling?

• Better debugging support

• Runtime (speed, energy…) profiling

• Benchmark automatic generation

Runtime Binary Translation
Remarkable Challenges

• How can runtime-compilers better speculate on application behaviour?

• Speculate on more than types

• Speculate for more than speed

• How can we improve the efficiency of cold code?

• Better interpreter optimisations

• Low overhead binary translators

VMs are auto-adaptive systems

Managed Memory
Remarkable Challenges

• How can managed memory adapt to memory consumption
patterns?

• Scalability to multi-TB heaps

• Automatically memory re-organisation

• Reduce pauses

• Support for modern hardware (e.g., non-volatile memories)

Hardware/System Interaction
Remarkable Challenges

• How can modern VMs exploit hardware-software co-
design?

• Automatic deport computation to dedicated hardware

• GPU

• FPGA

• Extensible ISAs (e.g., RISC-V)

Cross-Cutting Challenges
(And Contradictory Challenges!)

Energy Consumption

Execution Speed

Correctness

Modularity

Security

• Security threats of multi-tier execution engines

• Speculative runtime compilation for frugal systems

• Profile-guided detection of application parallelisation opportunities

• Securing VMs through dedicated hardware

• Minimising energy impact of garbage collection algorithms

Cross-Cutting Challenges
Selected Challenges

• Automatic detection of performance regressions

• Automatic validation of multi-tier execution engines

• Minimising the construction cost of efficient JIT compilers

Selected Software Engineering Challenges

����

AlaMVic: a generative approach
- implementation native
- autogenerée

Slang -> C Compiler

Virtual Machine + Simulateur

Production Virtual Machine

Interprète Bytecode

- autogenerated

Garbage Collector +
Representation Objet

- autogenerated

Compilateur JIT

- autogenerated

- État: non-existent

JIT compiler compilerInterpreter compiler

AlaMVic: Virtual Machine Distiller

Garbage Collector
Composer

Language
Specification

Hints / Heuristics

energy space speed

Benchmark /
Evaluation
Platform

energy space speed
energy

space speed

• Compiler generation

• Exchangeable 
components

• Optimization 
heuristics

• Open exploratory 
platform

• JIT for Apple M1, Windows, Raspberry ARM 64bits in
production

• Helping ENSTA Bretagne to develop a Risc-V JIT

• Streamlining transpilation/compilation chain

• Taking advantage of VM tests [MPLR paper]

• Some productivity enhancer tools (Unicorn simulator,
assembly browser, interactive CFG navigation,…)

Early RMOD achievements
Dev side of things

• RQ: static code fall through reorganisation is it worth ? (alternative to
Pettis-Hansen BB reordering)

• Reducing the load of manual code (~100 bytecodes, ~300 primitives)

• RQ1: Are interpreted and compiled code equivalent? Concolic +
differential testing

• RQ2: Can we remove manual compiled code? Abstract
interpreter for compiled code generation (underway)

Early RMOD achievements
Research side

71

Production Virtual
Machine

New generation tools for daily tasksEvolution of ever-running systems

A Generative Approach to Modular and Versatile Virtual Machines

Benchmark / Evaluation
Platform

energy space speed

VM Distiller

C transpiler

NG Debuggers

Multi-focused Profillers

Reverse Engineering R2
Migration

UpdateTesting
AI

Tools

Non Functional
Requirements

Business
Rules

Maps

Evolution

Green
Security

Pharo
AOT Comp

Moose

IoT
Berger-Levrault

Pharo C
onsortium Alamvic

Software
Evolution

rmod research

external world

Companies Research
groups

Teachers

Running
Systems

 Pharo Consortium

[]
Pharo Consortium

����

