
Julien Delplanque

julien.delplanque@inria.fr

Centre de Recherche en Informatique,
 Signal et Automatique de Lille

Managing 
structural and behavioral

evolution in relational database:
Application of Software Engineering techniques

Ph.D defense

Roadmap
• Context & State of the Art

• Motivation

• A Behavior-Aware Meta-Model for Relational Databases

• Identifying Quality Issues in Relational Databases

• Recommendations for Evolving Relational Databases

• Conclusion

!2

Roadmap
‣Context & State of the Art

• Motivation

• A Behavior-Aware Meta-Model for Relational Databases

• Identifying Quality Issues in Relational Databases

• Recommendations for Evolving Relational Databases

• Conclusion

!3

Structure and behavior in
relational databases

• Columns

• Tables

• Primary Keys

• Foreign Keys

• …

• Views

• Stored procedures

• Triggers

• …

Structural entities describe 
how data are structured

Behavioral entities describe 
computation

!4

Software Evolution

E-type software: “Programs that mechanize a human
or societal activity.” [Lehman 1980]

!5

Software Re-engineering

Legacy software

system

High-level

architectural model

Improved

restructured model

New software system

Analyze

Understand,

Extract,

Abstract

Improve,

Restructure,

Extend

Generate,

Refine
1

2

3

The horseshoe process [Kazman 1998]

!6

Software Re-engineering

Legacy software

system

High-level

architectural model

Improved

restructured model

New software system

Analyze

Understand,

Extract,

Abstract

Improve,

Restructure,

Extend

Generate,

Refine
1

2

3

The horseshoe process [Kazman 1998]

!7

Reverse Engineering

Approaches to Reverse-
Engineer Relational Databases

!8

Review of the literature based on 3 criteria

Approaches to Reverse-
Engineer Relational Databases

!9

Crit. 1. For which kind of entities does the approach gather
information to build a model of the database?

Approaches to Reverse-
Engineer Relational Databases

!10

Crit. 1. For which kind of entities does the approach gather
information to build a model of the database?

Approaches to Reverse-
Engineer Relational Databases

!11

Crit. 1. For which kind of entities does the approach gather
information to build a model of the database?

Approaches to Reverse-
Engineer Relational Databases

!12

Crit. 2. What formalism is used to model the database and 
programs using it?

Approaches to Reverse-
Engineer Relational Databases

!13

Crit. 3. Is there a human intervention during the model
importation or is the approach automatic?

Software Re-engineering

Legacy software

system

High-level

architectural model

Improved

restructured model

New software system

Analyze

Understand,

Extract,

Abstract

Improve,

Restructure,

Extend

Generate,

Refine
1

2

3

The horseshoe process [Kazman 1998]

!14

Change Impact Analysis

Software Change Impact
Analysis

!15

“[...] the activity of identifying what to modify to
accomplish a change, or of identifying the potential

consequences of a change” [Arnold 1996]

Approaches for Relational Database
Impact Analysis Approaches

!16

Review of the literature based on 5 criteria

Approaches for Relational Database
Impact Analysis Approaches

!17

Crit. 1. On which kind of entities can the approach 
specify an initial change?

Approaches for Relational Database
Impact Analysis Approaches

!18

Crit. 2. On which kind of entities can the approach 
compute the impact of a change?

Approaches for Relational Database
Impact Analysis Approaches

!19

Crit. 3. Does the approach propose changes to accommodate 
impacted entities with the initial change?

Software Re-engineering

Legacy software

system

High-level

architectural model

Improved

restructured model

New software system

Analyze

Understand,

Extract,

Abstract

Improve,

Restructure,

Extend

Generate,

Refine
1

2

3

The horseshoe process [Kazman 1998]

!20

Migration script 
generation

Approaches for Relational Database
Impact Analysis Approaches

!21

Crit. 4. Can the approach generate a script to 
evolve impacted entities?

Approaches for Relational Database
Impact Analysis Approaches

!22

Crit. 5. If a script is generated, does it handle 
database schema consistency?

Our approach: Software Engineering
for Relational Databases

!23

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Position compared to the
literature

!24

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-modelModel both structural 

and behavioral entities

Relationship between 
entities as first-class 

entities to ease 
impact analysis

Generate patch 
to migrate the 

database

Handle schema 
consistency constraint

Roadmap
• Context & State of the Art

‣Motivation

• A Behavior-Aware Meta-Model for Relational Databases

• Identifying Quality Issues in Relational Databases

• Recommendations for Evolving Relational Databases

• Conclusion

!25

Motivation

!26

Relational Database Schema Evolution: An Industrial Case Study. ICSME’18

AppSI database overview

• Members, teams, funding
support, etc. management in
laboratories of our university;

• Used by software systems
written in different
programming languages;

• Used in multiple laboratories at
the university.

 27

An evolution of AppSI

Before the modification,

• It has a primary key (id column)

• It stores the LDAP identifiers in the uid column

person
id : serial (PK)
uid : varchar
email : varchar

...

person
id : serial (PK)
login : varchar
email : varchar

...

account_alias
id : serial (PK)
id_person : integer REFERENCES person.id
login_alias : varchar

Evolution

New LDAP schema

‣ Users may have multiple identifiers

‣ uid attribute has been renamed into login

Consequently, uid column of person needs to be renamed into login to
enforce consistency between LDAP and AppSI schemas.

!28

An evolution of AppSI

person
id : serial (PK)
uid : varchar
email : varchar

...

person
id : serial (PK)
login : varchar
email : varchar

...

account_alias
id : serial (PK)
id_person : integer REFERENCES person.id
login_alias : varchar

Evolution

After the modification,

• Allow users to have multiple identifiers ➡ account_alias table is created

• Gather all the secondary identifiers of a person ➡ login_alias column
!29

Experimental setup

Video # Total time
1 1:55:30
2 1:19:17
3 0:52:41

Total 04:07:28

‣ The architect of AppSI recorded his screen during 3 development sessions.

‣ A roadmap is used to keep track of the progress during the evolution.

!30

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

Decomposing the 
evolution

• Videos were transcribed as entries (312 extracted) 

‣ ’00:07:24,00:07:39,Go back on the trigger and remove it without error.’

• Entries are generalised as actions (18 identified)
‣ ‘Observe patch’

‣ ‘Execute DDL query from IDE’

‣ ‘Inactivity’

‣ ‘Other’

• Actions are grouped into activities (7 identified)
‣ ‘Implement changes into queries’

‣ ‘Execute queries in a transaction and commit’

!31

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

Time stamps Description

Decomposing the 
evolution

!32

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

• Videos were transcribed as entries (312 extracted) 

‣ ’00:07:24,00:07:39,Go back on the trigger and remove it without error.’

• Entries are generalised as actions (18 identified)
‣ ‘Observe patch’

‣ ‘Execute DDL query from IDE’

‣ ‘Inactivity’

‣ ‘Other’

• Actions are grouped into activities (7 identified)
‣ ‘Implement changes into queries’

‣ ‘Execute queries in a transaction and commit’

Time stamps Description

Decomposing the 
evolution

!33

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

• Videos were transcribed as entries (312 extracted) 

‣ ’00:07:24,00:07:39,Go back on the trigger and remove it without error.’

• Entries are generalised as actions (18 identified)
‣ ‘Observe patch’

‣ ‘Execute DDL query from IDE’

‣ ‘Inactivity’

‣ ‘Other’

• Actions are grouped into activities (7 identified)
‣ ‘Implement changes into queries’

‣ ‘Execute queries in a transaction and commit’

Time stamps Description

Process identified

!34

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit

Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

sub-loop A

sub-loop Bmain loop

• main loop: complete implementation of a feature (might include multiple iterations on
sub-loop A and/or sub-loop B).

• sub-loop A: resolution of syntax errors and execution errors (e.g. reference to
nonexistent entities).

• sub-loop B: resolution of semantic errors.

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

!35

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit

Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

sub-loop A

sub-loop Bmain loop

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

• main loop: complete implementation of a feature (might include multiple iterations on
sub-loop A and/or sub-loop B).

• sub-loop A: resolution of syntax errors and execution errors (e.g. reference to
nonexistent entities).

• sub-loop B: resolution of semantic errors.

Process identified

!36

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit

Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

sub-loop A

sub-loop Bmain loop

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

• main loop: complete implementation of a feature (might include multiple iterations on
sub-loop A and/or sub-loop B).

• sub-loop A: resolution of syntax errors and execution errors (e.g. reference to
nonexistent entities).

• sub-loop B: resolution of semantic errors.

Allows one to simulate the change 
without consequences if a query 

fails

Process identified

!37

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit

Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

sub-loop A

sub-loop Bmain loop

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

• main loop: complete implementation of a feature (might include multiple iterations on
sub-loop A and/or sub-loop B).

• sub-loop A: resolution of syntax errors and execution errors (e.g. reference to
nonexistent entities).

• sub-loop B: resolution of semantic errors.

Helps to discover dependencies 
between entities concerned by the change

Process identified

!38

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit

Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

sub-loop A

sub-loop Bmain loop

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

• main loop: complete implementation of a feature (might include multiple iterations on
sub-loop A and/or sub-loop B).

• sub-loop A: resolution of syntax errors and execution errors (e.g. reference to
nonexistent entities).

• sub-loop B: resolution of semantic errors.

Helps to handle the fact that 
RDBMS ensure consistency 

of the schema at any moment

Process identified

!39

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit

Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

sub-loop A

sub-loop Bmain loop

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

• main loop: complete implementation of a feature (might include multiple iterations on
sub-loop A and/or sub-loop B).

• sub-loop A: resolution of syntax errors and execution errors (e.g. reference to
nonexistent entities).

• sub-loop B: resolution of semantic errors.

Process identified

!40

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit

Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

sub-loop A

sub-loop Bmain loop

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

• main loop: complete implementation of a feature (might include multiple iterations on
sub-loop A and/or sub-loop B).

• sub-loop A: resolution of syntax errors and execution errors (e.g. reference to
nonexistent entities).

• sub-loop B: resolution of semantic errors.

Mostly not-automated

Process identified

!41

Read step in
migration plan

Implement changes
into queries

Execute queries in a
transaction and

rollback

Modify not working
queries

Execute queries in a
transaction and

commit

Test changes
implemented

No error Error

A test fails

No test
fail

Update migration
plan

i ii iii

ivvvivii

sub-loop A

sub-loop Bmain loop

• main loop: complete implementation of a feature (might include multiple iterations on
sub-loop A and/or sub-loop B).

• sub-loop A: resolution of syntax errors and execution errors (e.g. reference to
nonexistent entities).

• sub-loop B: resolution of semantic errors.

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

Process identified

Quantitative Analysis

!42

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

* IDE for relational databases

*

Quantitative Analysis

!43

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

The text editor 
is used more 
time than 
the IDE

* IDE for relational databases

*

Quantitative Analysis

!44

Qualitative
analysis

(Section 2.4)

EntriesScreen records

Quantitative
analysis

(Section 2.5)

Reverse engineering 
is performed on 
a dump of the
database

* IDE for relational databases

*
Textual search is 
used to perform 
change impact 
analysis

Problems identified

!45

Problems
1. Relational databases are hard to understand.

• RDBMS meta-data are complex to query.

• Some meta-data are missing.

2. Relational databases are hard to evolve.

• Dependencies between a database and a program using it
are usually implicit.

• The database schema can not be in an inconsistent state
at any moment.

!46

Problems
1. Relational databases are hard to understand.

• RDBMS meta-data are complex to query.

• Some meta-data are missing.

2. Relational databases are hard to evolve.

• Dependencies between a database and a program using it
are usually implicit.

• The database schema can not be in an inconsistent state
at any moment.

!47

Our approach: Software Engineering
for Relational Databases

!48

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-modelProblem 1: 

Relational databases are 
hard to understand.

Our approach: Software Engineering
for Relational Databases

!49

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Problem 2: 
Relational databases 

are hard to evolve.

Problem 1: 
Relational databases are 

hard to understand.

Roadmap
• Context & State of the Art

• Motivation

‣A Behavior-Aware Meta-Model for Relational
Databases

• Identifying Quality Issues in Relational Databases

• Recommendations for Evolving Relational Databases

• Conclusion

!50

A Behavior-Aware
Meta-Model for

Relational Databases

!51

Recommendations for Evolving Relational Databases. CAISE’20

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Meta-model: 
Structural entities

!52

StructuralEntity

Table ColumnConstraint

ColumnsContainer
1

0..*

Type0..*

PrimaryKey ForeignKey Unique Check NotNull

+columns

+container

+constraints

BehavioralEntity

+referencedColumns
1..*

Default

TableConstraint
1

+referencedColumn
0..*

1
+column

+references

+table

+tableConstraint +columnConstraint

TypeReference

+referencedType 1

+column

0..*
+references

+type 1

0..*

1

1

1

ColumnReference ColumnConstraint

TableReference

+r
ef
er
en
ce
dT
ab
le 1

+tableConstraint
1

+t
ab
le

1

+r
ef
er
en
ce
s

0..*

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

BehavioralEntity

View

SelectQuery

DerivedTable

InsertQuery UpdateQuery DeleteQuery

1

0..*

1

1

1

1+d
efi
ni
tio
nQ

ue
ry

+v
ie
w
D
efi
ne
d

+derivedTableD
efined

+triggers

+storedProcedure

11

0..*

0..*

+storedProcedure

+parameters

+localVariables

1

0..*

+definitionQuery

+container

+queries

1

1
1

+typeReference

+typeReturnedReference

+typeReference

1

0..*

+localVariable

+parameters

1
+r
et
ur
ne
dB

y

1 +trigger

1
+derivedTable

Parameter

DerivedTableReference

1

1

ColumnsContainer

TriggerStoredProcedure

StoredProcedure

+tableReferenced

TableReference

TypeReference

Trigger

LocalVariable

CRUDQuery

Reference

1
+storedProcedure

+localVariableReferences
0..*

Clause
1

query

clauses
1..*

+reference 0..*
1 +clause

StoredProcedureCall

*

1

+source

+t
ar
ge
t

1
callers

callees

LocalVariableReference

1

+l
oc
al
Va
ria
bl
e

+references

Meta-model: 
Behavioral entities

!53

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Instantiating the Meta-
Model

!54

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!54

Evaluation of 3 approaches
according to 3 criteria:

1. Completeness

2. Sensibility to RDBMS
evolution

3. Complexity to migrate to
another RDBMS

Meta-Data Analysis

!55

Query meta-data
tables/views

Model of the
database

Database

(1)

Read tables resulting
from queries

(2)

oid 1 name 2 ... 3
oid 1 name 2 ... 3

oid 1 name 2 ... 3

Resulting tables

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Dump Analysis

!56

SQL file
(dump of the database)

Static
analysis

AST of the dump

Parse SQL
code

Model of the
database

(i) (ii)

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Hybrid Approach

!57

Partial model
of the database

Query meta-data
tables/views

Database

Query meta-data
tables for source

code of behavioral
entities

Source code of
behavioral entities ASTs of behavioral

entities

Parse
source code

Static analysis of ASTs
to complete the model

(a)

(c)
(e)

(d)

Read tables resulting
from queries

(b)

oid 1 name 2 ... 3
oid 1 name 2 ... 3

oid 1 name 2 ... 3

Resulting tables Model of the
database

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Tradeoff

}
Tradeoff

}

Meta-model Evaluation

Goal: illustrate that the problem « Relational databases
are hard to understand » is addressed by the meta-
model.

• Case study 1: Queries to support (re)modularization

• Case study 2: Retrieving Features Implemented by a
Database

!58

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Case study 1: Queries to
support (re)modularization

!59

Laboratory 2 infrastructure

AppSI schema

AppSI
instance

1

AppSI
instance

2

instance of instance of

Laboratory 1 infrastructure

Web app 1
Web app 3

Web app 2

uses "web_"
views

Context:

• Laboratory 1 & 2 are
running 2 different
instances of AppSI schema

• Multiple applications can
use an instance.

• « web views » are only used
by Web app 2

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!60

Laboratory 2 infrastructure

AppSI schema

AppSI
instance

1

AppSI
instance

2

instance of instance of

Laboratory 1 infrastructure

Web app 1
Web app 3

Web app 2

uses "web_"
views

Problem:

• Web views should only be
deployed on instances of
AppSI that needs them.

• The current DBA of AppSI
is not the person who
created these views.

Case study 1: Queries to
support (re)modularization

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!61

Methods:

1. Extract dependency relationships between web views and
the rest of the database.

2. Analyze dependencies to take a decision on how to move
web views to a separated namespace.

Case study 1: Queries to
support (re)modularization

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!62

Results:

• No entity of the database
depends on a web view.

• Entities of AppSI web views
depend on are revealed.

• Web views were moved to
a separated namespace
without problem.

Circle = viewGreen = web view

Red = entity of the rest 
of the databaseSquare = table

Case study 1: Queries to
support (re)modularization

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Case study 2: Retrieving Features
Implemented by a Database

!63

Context:

• AppSI evolves to fulfil new requirements of the laboratory.

• These requirements evolve with time depending on
administrative processes.

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!64

Problem:

• Features implemented by AppSI emerged from successive
evolutions of the database.

• Not clearly defined nor documented.

• Getting an overview of the database by reading the source code
of its schema becomes harder and harder with time.

Case study 2: Retrieving Features
Implemented by a Database

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!65

Methods (in a nutshell):

Ap
pS

I a
rc

hi
te

ct
R

es
ea

rc
he

rs

Identify features from
names of tables in

the database

Validate features
identified

Infer features
implemented by

behavioral entities via
its dependencies

Validate
categorisation of

behavioral entities

Categorise behavioral
entities that could not

be automatically
 categorized

Analyse categorisation
accuracy and generate
documentation for the

database
Start End

1.

2.

3.

4.1 4.2

Case study 2: Retrieving Features
Implemented by a Database

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!66

Results:

• Identified 11 feature groups
validated by the architect.

• 97% of behavioral entities are
correctly assigned to their
feature group based on their
dependencies.

• Valuable documentation for
future maintainers of AppSI.

Case study 2: Retrieving Features
Implemented by a Database

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Summary
• Meta-Model representing both

structural and behavioral
entities.

• Evaluation of approaches to
instantiate the meta-model and
proposition of an hybrid
approach.

• Case studies illustrating that our
meta-model addresses the
problem « Relational databases
are hard to understand ».

!67

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Roadmap
• Context & State of the Art

• Motivation

• A Behavior-Aware Meta-Model for Relational Databases

‣ Identifying Quality Issues in Relational Databases

• Recommendations for Evolving Relational Databases

• Conclusion

!68

Identifying Quality Issues
in Relational Databases

!69

CodeCritics Applied to Database Schema: Challenges and First Results. SANER’17

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

DBCritics

!70

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Model of the
database

DBCritics

Rules

Report

Apply traditional Software Quality Analysis methods to

database schemas

Evaluation
• WikiMedia: 25 versions analysed

!71

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

• AppSI: 12 versions analysed
Proprietary databaseOpen-source database

Violation count per version

!72

Rule violations can be found in open source as well as in
proprietary DB schemas.

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Time-to-fix of a rule
violation

• WikiMedia: 21/87

• AppSI: 3/85

!73

Corrected violations:

On both DBs some violations are fixed but
not all of them.

Time (in days) needed to correct violations

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Summary
• Rule violations can be

found in open source as
well as in proprietary
database schemas.

• The number of violations
increase with time.

• With time, on both
databases, some
violations are fixed but
not all of them.

!74

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Roadmap
• Context & State of the Art

• Motivation

• A Behavior-Aware Meta-Model for Relational Databases

• Identifying Quality Issues in Relational Databases

‣Recommendations for Evolving Relational Databases

• Conclusion

!75

Recommendations for
Evolving Relational

Databases

!76

Recommendations for Evolving Relational Databases. CAISE’20

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

id designation

1 Lupulus

2 Duvel

3 Troll

beer

id name favorite_beer
1 Julien 3
2 Benoit 1
3 Guillaume 2
4 Cyril 2

person

Example: remove 
beer.id

!77

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

id designation

1 Lupulus

2 Duvel

3 Troll

beer

id name favorite_beer
1 Julien 3
2 Benoit 1
3 Guillaume 2
4 Cyril 2

person

Example: remove 
beer.id

Forbidden by the RDBMS!

!77

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

id designation

1 Lupulus

2 Duvel

3 Troll

beer

id name favorite_beer
1 Julien 3
2 Benoit 1
3 Guillaume 2
4 Cyril 2

person

Example: remove column
beer.designation referenced in view

SELECT id, name, designation 
FROM person, beer 
WHERE person.favorite_beer = beer.id;

VIEW person_to_favorite_designation

!78

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Example: remove column
beer.designation referenced in view

SELECT id, name, designation 
FROM person, beer 
WHERE person.favorite_beer = beer.id;

VIEW person_to_favorite_designation

SELECT id, name, designation 
FROM person, beer 
WHERE person.favorite_beer = beer.id;

VIEW person_to_favorite_designation

Refuse change

…

Continues in cascade
!79

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Example: remove column
beer.designation referenced in view

SELECT id, name, designation 
FROM person, beer 
WHERE person.favorite_beer = beer.id;

VIEW person_to_favorite_designation

SELECT id, name, designation 
FROM person, beer 
WHERE person.favorite_beer = beer.id;

VIEW person_to_favorite_designation

Refuse change

…

Continues in cascade
Not convenient behaviour

!79

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

id designation

1 Lupulus

2 Duvel

3 Troll

beer

id name favorite_beer
1 Julien 3
2 Benoit 1
3 Guillaume 2
4 Cyril 2

person

Example: remove
person.name

RETURN SELECT person.id 
FROM person, beer 
WHERE person.favorite_beer = beer.id 
 AND beer.designation = ‘Troll’;

STOR. PROC. id_of_troll_lovers

!80

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

id designation

1 Lupulus

2 Duvel

3 Troll

beer

id name favorite_beer
1 Julien 3
2 Benoit 1
3 Guillaume 2
4 Cyril 2

person

Example: remove
person.name

RETURN SELECT person.id 
FROM person, beer 
WHERE person.favorite_beer = beer.id 
 AND beer.designation = ‘Troll’;

STOR. PROC. id_of_troll_lovers

!80

Unseen by the RDBMS!
Database Model of the

database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Approach overview

Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

!81

and impact computation

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Model
Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

!82

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Model
Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

!82

Rename t1.c column as t1.d

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn(t1.c, t1.d)

ColumnReference

ColumnReference

ColumnReference

ChangeReferenceTarget(s, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

AliasColumnDeclaration(v1, "t1.c", "t1.d")

ColumnReference

ChangeReferenceTarget(v2, "v1.c", "v1.d")

AliasColumnDeclaration(v2, "v1.c", "v1.d")

Initial change

Impacted entity

Change selected by developer

Change rejected by developer

Impact of change Recommendation to solve impact

Impact computation 
& Recommendations

selection Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

Rename t1.c column as t1.d

!83

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn(t1.c, t1.d)

ColumnReference

ColumnReference

ColumnReference

ChangeReferenceTarget(s, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

AliasColumnDeclaration(v1, "t1.c", "t1.d")

ColumnReference

ChangeReferenceTarget(v2, "v1.c", "v1.d")

AliasColumnDeclaration(v2, "v1.c", "v1.d")

Initial change

Impacted entity

Change selected by developer

Change rejected by developer

Impact of change Recommendation to solve impact

Impact computation 
& Recommendations

selection Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

Rename t1.c column as t1.d

!83

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn(t1.c, t1.d)

ColumnReference

ColumnReference

ColumnReference

ChangeReferenceTarget(s, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

AliasColumnDeclaration(v1, "t1.c", "t1.d")

ColumnReference

ChangeReferenceTarget(v2, "v1.c", "v1.d")

AliasColumnDeclaration(v2, "v1.c", "v1.d")

Initial change

Impacted entity

Change selected by developer

Change rejected by developer

Impact of change Recommendation to solve impact

Impact computation 
& Recommendations

selection Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

Rename t1.c column as t1.d

!83

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn(t1.c, t1.d)

ColumnReference

ColumnReference

ColumnReference

ChangeReferenceTarget(s, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

AliasColumnDeclaration(v1, "t1.c", "t1.d")

ColumnReference

ChangeReferenceTarget(v2, "v1.c", "v1.d")

AliasColumnDeclaration(v2, "v1.c", "v1.d")

Initial change

Impacted entity

Change selected by developer

Change rejected by developer

Impact of change Recommendation to solve impact

Impact computation 
& Recommendations

selection Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

Rename t1.c column as t1.d

!83

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn(t1.c, t1.d)

ColumnReference

ColumnReference

ColumnReference

ChangeReferenceTarget(s, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

ChangeReferenceTarget(v1, "t1.c", "t1.d")

AliasColumnDeclaration(v1, "t1.c", "t1.d")

ColumnReference

ChangeReferenceTarget(v2, "v1.c", "v1.d")

AliasColumnDeclaration(v2, "v1.c", "v1.d")

Initial change

Impacted entity

Change selected by developer

Change rejected by developer

Impact of change Recommendation to solve impact

Impact computation 
& Recommendations

selection Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

Rename t1.c column as t1.d

!83

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn
(t1.c, t1.d)

ChangeReferenceTarget
(s, "t1.c", "t1.d")

ChangeReferenceTarget
(v1, "t1.c", "t1.d")

ChangeReferenceTarget
(v1, "t1.c", "t1.d")

AliasColumnDeclaration
(v2, "v1.c", "v1.d")

(1)

(2)

(3)

(4) (5)

(iv)

(iii)

(ii)

(i)

RenameColumn
(t1.c, t1.d)

ModifyViewQuery
(v2)

ModifyViewQuery
(v1)

ModifyStoredProcedureBody
(s)

Automatic process

Translating

as entity-oriented
operators

reference-oriented

operators

Relation between operators of each step

Architect intervention

SQL

Architect choices
compilation

Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

!84

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn
(t1.c, t1.d)

ChangeReferenceTarget
(s, "t1.c", "t1.d")

ChangeReferenceTarget
(v1, "t1.c", "t1.d")

ChangeReferenceTarget
(v1, "t1.c", "t1.d")

AliasColumnDeclaration
(v2, "v1.c", "v1.d")

(1)

(2)

(3)

(4) (5)

(iv)

(iii)

(ii)

(i)

RenameColumn
(t1.c, t1.d)

ModifyViewQuery
(v2)

ModifyViewQuery
(v1)

ModifyStoredProcedureBody
(s)

Automatic process

Translating

as entity-oriented
operators

reference-oriented

operators

Relation between operators of each step

Architect intervention

SQL

Architect choices
compilation

Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

!84

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn
(t1.c, t1.d)

ChangeReferenceTarget
(s, "t1.c", "t1.d")

ChangeReferenceTarget
(v1, "t1.c", "t1.d")

ChangeReferenceTarget
(v1, "t1.c", "t1.d")

AliasColumnDeclaration
(v2, "v1.c", "v1.d")

(1)

(2)

(3)

(4) (5)

(iv)

(iii)

(ii)

(i)

RenameColumn
(t1.c, t1.d)

ModifyViewQuery
(v2)

ModifyViewQuery
(v1)

ModifyStoredProcedureBody
(s)

Automatic process

Translating

as entity-oriented
operators

reference-oriented

operators

Relation between operators of each step

Architect intervention

SQL

Architect choices
compilation

Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

!84

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

RenameColumn
(t1.c, t1.d)

ChangeReferenceTarget
(s, "t1.c", "t1.d")

ChangeReferenceTarget
(v1, "t1.c", "t1.d")

ChangeReferenceTarget
(v1, "t1.c", "t1.d")

AliasColumnDeclaration
(v2, "v1.c", "v1.d")

(1)

(2)

(3)

(4) (5)

(iv)

(iii)

(ii)

(i)

RenameColumn
(t1.c, t1.d)

ModifyViewQuery
(v2)

ModifyViewQuery
(v1)

ModifyStoredProcedureBody
(s)

Automatic process

Translating

as entity-oriented
operators

reference-oriented

operators

Relation between operators of each step

Architect intervention

SQL

Architect choices
compilation

Change initialisation

Change

SQL

DBA decisions Patch generationOperators to SQL
translation

You are here

!84

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Experiment

• Post-mortem analysis of a SQL patch previously
applied on AppSI

• We observed trial-and-error process from DBA to find
dependencies between entities in motivation part

• 1h to achieve a script of 200 LOC / 19 statements

!85

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Experimental protocol

1. Extract initial semantic operators from roadmap and
SQL script comments

2. Take decisions using DBA’s policy when multiple
possibilities (change reference target or alias reference)

3. Execute generated SQL script on a database in the
same state as information system’s database before
the migration

!86

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Results
• 15 decisions taken concerning the choice between

changing reference target and aliasing reference.

• 270 LOC script with 27 SQL statements.

• Generated script executed without error.

• Single difference between the dump of the original
database and our clone: a comment.

• Time to implement the evolution using our tool: 15 min
(v.s. 60 min without tool).

!87

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Summary

!88

• Semi-automatic approach
to address « Relational
database are hard to
evolve » problem

• Experiment to assess the
effectiveness of our
approach

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Roadmap
• Context & State of the Art

• Motivation

• A Behavior-Aware Meta-Model for Relational Databases

• Identifying Quality Issues in Relational Databases

• Recommendations for Evolving Relational Databases

‣Conclusion

!89

We identified problems occurring
during relational database evolution…

!90

!91

We identified problems occurring
during relational database evolution…

… and designed an
approach to tackle it.

!92

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model Including:

• a meta-model

• an approach to build it

• a tool to assess DB quality

• an approach to evolve DB

• empirical experiment(s) for
each part

… and designed an
approach to tackle it.

!93

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model Including:

• a meta-model

• an approach to build it

• a tool to assess DB quality

• an approach to evolve DB

• empirical experiment(s) for
each part

… and designed an
approach to tackle it.

!94

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model Including:

• a meta-model

• an approach to build it

• a tool to assess DB quality

• an approach to evolve DB

• empirical experiment(s) for
each part

… and designed an
approach to tackle it.

!95

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model Including:

• a meta-model

• an approach to build it

• a tool to assess DB quality

• an approach to evolve DB

• empirical experiment(s) for
each part

… and designed an
approach to tackle it.

!96

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model Including:

• a meta-model

• an approach to build it

• a tool to assess DB quality

• an approach to evolve DB

• empirical experiment(s)
for each part

Publications

!97

1 CodeCritics Applied to Database Schema: Challenges and First Results (ERA track) SANER’17
2 Relational Database Schema Evolution: An Industrial Case Study ICSME’18
3 Rotten Green Tests ICSE’19
4 Recommendations for Evolving Relational Databases CAISE’20
5 Rotten Green Tests: A Replication Study (in submission) ESE’20

6 Software Engineering Issues in RDBMS, a Preliminary Survey   BENEVOL’17
7 Définition et identification des tables de nomenclatures   INFORSID’18
8 Software Engineering Techniques Applied to Relational Databases (doctoral track)  ASE’18
9 Rotten Green Tests, A first Analysis   IWST’18
10 Magic Literals in Pharo.   IWST’19

Conferences and Journals

Workshops

Publications

!98

1 CodeCritics Applied to Database Schema: Challenges and First Results (ERA track) SANER’17
2 Relational Database Schema Evolution: An Industrial Case Study ICSME’18
3 Rotten Green Tests ICSE’19
4 Recommendations for Evolving Relational Databases CAISE’20
5 Rotten Green Tests: A Replication Study (in submission) ESE’20

6 Software Engineering Issues in RDBMS, a Preliminary Survey   BENEVOL’17
7 Définition et identification des tables de nomenclatures   INFORSID’18
8 Software Engineering Techniques Applied to Relational Databases (doctoral track)  ASE’18
9 Rotten Green Tests, A first Analysis   IWST’18
10 Magic Literals in Pharo.   IWST’19

Conferences and Journals

Workshops

Included in the thesis

Publications

!99

1 CodeCritics Applied to Database Schema: Challenges and First Results (ERA track) SANER’17
2 Relational Database Schema Evolution: An Industrial Case Study ICSME’18
3 Rotten Green Tests ICSE’19
4 Recommendations for Evolving Relational Databases CAISE’20
5 Rotten Green Tests: A Replication Study (in submission) ESE’20

6 Software Engineering Issues in RDBMS, a Preliminary Survey   BENEVOL’17
7 Définition et identification des tables de nomenclatures   INFORSID’18
8 Software Engineering Techniques Applied to Relational Databases (doctoral track)  ASE’18
9 Rotten Green Tests, A first Analysis   IWST’18
10 Magic Literals in Pharo.   IWST’19

Conferences and Journals

Workshops

Additional publications

Future works

• Abstract syntax tree reification in the meta-model

• Support data transformation in evolution operators

• Simulate a sequence of operators on the model

• Conflict management when applying sequence of
operators

!100

!101

• Identification of problems
during database evolution

• Meta-model

• Quality assessment based
on the meta-model

• Recommendations to
evolve databases

Contributions in a nutshell:

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!102

Relational Database Reverse
Engineering Techniques

!103

• Database schema analysis

• Data analysis

• Graphical User Interface (GUI) analysis

• Static program analysis

• Dynamic program analysis

Techniques [Meurice 2017]:

Instantiating the Meta-
Model

!104

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

!104

DDL code
analysis

Schema
refinement

Conceptualization

Schema
cleaning

1.

2.

3.

4.

Conceptual

schema

Logical

schema

Complete

physical

schema

Raw

Physical

schema

DDL code /

Metadata

Step of the process

Input/Output

Legend:

Data /

Source code /

Queries / ...

Database Reverse Engineering [Hainaut 2009]

False positives
Three categories of violations can be distinguished:

1. Real design issues

2. Issues that the DBA accept to live with

3. Issues due to limitations of DBCritics

Classifying violations in these categories can not be automated.

On AppSI v10, the DBA analysed the 81 rule violations: 
63% of the detected violations did point to quality problems

!105

Database Model of the
database

instance of

Chapter 4

Critic

Chapter 5

Change request

Recommendations

Chapter 6
Meta-model

Can not be generalised but gives an idea.

