Managing structural and behavioral evolution in relational database:

Application of Software Engineering techniques

Ph.D defense

Julien Delplanque

julien.delplanque@inria.fr

Roadmap

- Context & State of the Art
- Motivation
- A Behavior-Aware Meta-Model for Relational Databases
- Identifying Quality Issues in Relational Databases
- Recommendations for Evolving Relational Databases
- Conclusion

Roadmap

Context & State of the Art

- Motivation
- A Behavior-Aware Meta-Model for Relational Databases
- Identifying Quality Issues in Relational Databases
- Recommendations for Evolving Relational Databases
- Conclusion

Structure and behavior in relational databases

Structural entities describe how data are structured

- Columns
- Tables
- Primary Keys
- Foreign Keys

Behavioral entities describe computation

- Views
- Stored procedures
- Triggers

Software Evolution

E-type software: "Programs that mechanize a human or societal activity." [Lehman 1980]

Software Re-engineering

The horseshoe process [Kazman 1998]

Software Re-engineering

The horseshoe process [Kazman 1998]

Review of the literature based on 3 criteria

Approach	Crit. 1.	Crit. 2.	Crit. 3.
[Markowitz 1990]	Struct.	EER	Auto.
[Castellanos 1993]	Struct.	BLOOM	Human
[Shoval 1993]	Struct.	NBR	Human
[Premerlani 1993]	Struct.	OMT	Human
[Chiang 1994]	Struct.	EER	Auto.
[Petit 1994]	Struct.	EER	Auto.
[Henrard 1998]	Struct.	EER	Human
[Polo 2002]	Struct./Beha.	Custom meta-model	Auto.
[Cleve 2006]	Struct./Ext.	SDG	Auto.
[Cleve 2008]	Struct./Ext.	Not specified	Auto.
[Yeh 2008]	Struct.	EER	Auto.
[Wang 2009]	Struct.	Custom meta-model	Auto.
[Papastefanatos 2008]	Struct./Beha.	Directed graph	Auto.
[Alalfi 2009]	Ext.	Custom meta-model	Auto.
[Cleve 2011a]	Struct./Ext.	Not specified	Auto.
[Meurice 2016a]	Struct./Ext.	ER	Auto.

Crit. 1. For which kind of entities does the approach gather information to build a model of the database?

Approach	Crit. 1.	Crit. 2.	Crit. 3.
[Markowitz 1990]	Struct.	EER	Auto.
[Castellanos 1993]	Struct.	BLOOM	Human
[Shoval 1993]	Struct.	NBR	Human
[Premerlani 1993]	Struct.	OMT	Human
[Chiang 1994]	Struct.	EER	Auto.
[Petit 1994]	Struct.	EER	Auto.
[Henrard 1998]	Struct.	EER	Human
[Polo 2002]	Struct./Beha.	Custom meta-model	Auto.
[Cleve 2006]	Struct./Ext.	SDG	Auto.
[Cleve 2008]	Struct./Ext.	Not specified	Auto.
[Yeh 2008]	Struct.	EER	Auto.
[Wang 2009]	Struct.	Custom meta-model	Auto.
[Papastefanatos 2008]	Struct./Beha.	Directed graph	Auto.
[Alalfi 2009]	Ext.	Custom meta-model	Auto.
[Cleve 2011a]	Struct./Ext.	Not specified	Auto.
[Meurice 2016a]	Struct./Ext.	ER	Auto.

Crit. 1. For which kind of entities does the approach gather information to build a model of the database?

Approach	Crit. 1.	Crit. 2.	Crit. 3.
[Markowitz 1990]	Struct.	EER	Auto.
[Castellanos 1993]	Struct.	BLOOM	Human
[Shoval 1993]	Struct.	NBR	Human
[Premerlani 1993]	Struct.	OMT	Human
[Chiang 1994]	Struct.	EER	Auto.
[Petit 1994]	Struct.	EER	Auto.
[Henrard 1998]	Struct.	EER	Human
[Polo 2002]	Struct./Beha.	Custom meta-model	Auto.
[Cleve 2006]	Struct./Ext.	SDG	Auto.
[Cleve 2008]	Struct./Ext.	Not specified	Auto.
[Yeh 2008]	Struct.	EER	Auto.
[Wang 2009]	Struct.	Custom meta-model	Auto.
[Papastefanatos 20	Struct./Beha.	Directed graph	Auto.
[Alalfi 2009]	Ext.	Custom meta-model	Auto.
[Cleve 2011a]	Struct./Ext.	Not specified	Auto.
[Meurice 2016a]	Struct./Ext.	ER	Auto.

Crit. 1. For which kind of entities does the approach gather information to build a model of the database?

Approach	Crit 1	Crit 2	Crit 3
Approach	CIII. 1.	CIII. 2.	CIII. J.
[Markowitz 1990]	Struct.	EER	Auto.
[Castellanos 1993]	Struct.	BLOOM	Human
[Shoval 1993]	Struct.	NBR	Human
[Premerlani 1993]	Struct.	OMT	Human
[Chiang 1994]	Struct.	EER	Auto.
[Petit 1994]	Struct.	EER	Auto.
[Henrard 1998]	Struct.	EER	Human
[Polo 2002]	Struct./Beha.	Custom meta-model	Auto.
[Cleve 2006]	Struct./Ext.	SDG	Auto.
[Cleve 2008]	Struct./Ext.	Not specified	Auto.
[Yeh 2008]	Struct.	EER	Auto.
[Wang 2009]	Struct.	Custom meta-model	Auto.
[Papastefanatos 2008]	Struct./Beha.	Directed graph	Auto.
[Alalfi 2009]	Ext.	Custom meta-model	Auto.
[Cleve 2011a]	Struct./Ext.	Not specified	Auto.
[Meurice 2016a]	Struct./Ext.	ER	Auto.

Crit. 2. What formalism is used to model the database and programs using it?

Approach	Crit. 1.	Crit. 2.	Crit. 3.
[Markowitz 1990]	Struct.	EER	Auto.
[Castellanos 1993]	Struct.	BLOOM	Human
[Shoval 1993]	Struct.	NBR	Human
[Premerlani 1993]	Struct.	OMT	Human
[Chiang 1994]	Struct.	EER	Auto.
[Petit 1994]	Struct.	EER	Auto.
[Henrard 1998]	Struct.	EER	Human
[Polo 2002]	Struct./Beha.	Custom meta-model	Auto.
[Cleve 2006]	Struct./Ext.	SDG	Auto.
[Cleve 2008]	Struct./Ext.	Not specified	Auto.
[Yeh 2008]	Struct.	EER	Auto.
[Wang 2009]	Struct.	Custom meta-model	Auto.
[Papastefanatos 2008]	Struct./Beha.	Directed graph	Auto.
[Alalfi 2009]	Ext.	Custom meta-model	Auto.
[Cleve 2011a]	Struct./Ext.	Not specified	Auto.
[Meurice 2016a]	Struct./Ext.	ER	Auto.

Crit. 3. Is there a human intervention during the model importation or is the approach automatic?

Approach	Crit. 1.	Crit. 2.	Crit. 3.
[Markowitz 1990]	Struct.	EER	Auto.
[Castellanos 1993]	Struct.	BLOOM	Human
[Shoval 1993]	Struct.	NBR	Human
[Premerlani 1993]	Struct.	OMT	Human
[Chiang 1994]	Struct.	EER	Auto.
[Petit 1994]	Struct.	EER	Auto.
[Henrard 1998]	Struct.	EER	Human
[Polo 2002]	Struct./Beha.	Custom meta-model	Auto.
[Cleve 2006]	Struct./Ext.	SDG	Auto.
[Cleve 2008]	Struct./Ext.	Not specified	Auto.
[Yeh 2008]	Struct.	EER	Auto.
[Wang 2009]	Struct.	Custom meta-model	Auto.
[Papastefanatos 2008]	Struct./Beha.	Directed graph	Auto.
[Alalfi 2009]	Ext.	Custom meta-model	Auto.
[Cleve 2011a]	Struct./Ext.	Not specified	Auto.
[Meurice 2016a]	Struct./Ext.	ER	Auto.

Software Re-engineering

The horseshoe process [Kazman 1998]

Software Change Impact Analysis

"[...] the activity of identifying what to modify to accomplish a change, or of identifying the potential consequences of a change" [Arnold 1996]

Review of the literature based on 5 criteria

	Crit. 1.	Crit. 2.	Crit. 3.	Crit. 4.	Crit. 5.
	Initial	Impacted	Change	Script	Schema
Approach	change	entities	proposition	generation	consistency
[Sjøberg 1993]	Struc.	Ext.	×	×	×
[Haraty 2002]	Struc./Beha.	Ext.	×	×	×
[Gardikiotis 2006]	Struc./Beha.	Ext.	×	×	×
[Gardikiotis 2009]	Struc./Beha.	Ext.	×	×	×
[Maule 2008]	Struc./Beha.	Ext.	×	×	×
[Curino 2008]	Struc.	Ext.	×	1	×
[Papastefanatos 2008]	Struc./Beha.	Struc./Beha.	1	×	×
[Liu 2011]	Struc.	Ext.	×	×	×
[Meurice 2016a]	Struc.	Ext.	\checkmark	×	×

Crit. 1. On which kind of entities can the approach specify an initial change?

	Crit. 1.	Crit. 2.	Crit. 3.	Crit. 4.	Crit. 5.
	Initial	Impacted	Change	Script	Schema
Approach	change	entities	proposition	generation	consistency
[Sjøberg 1993]	Struc.	Ext.	×	×	×
[Haraty 2002]	Struc./Beha.	Ext.	×	×	×
[Gardikiotis 2006]	Struc./Beha.	Ext.	×	×	×
[Gardikiotis 2009]	Struc./Beha.	Ext.	×	×	×
[Maule 2008]	Struc./Beha.	Ext.	×	×	×
[Curino 2008]	Struc.	Ext.	×	1	×
[Papastefanatos 2008]	Struc./Beha.	Struc./Beha.	1	×	×
[Liu 2011]	Struc.	Ext.	×	×	×
[Meurice 2016a]	Struc.	Ext.	\checkmark	×	×

Crit. 2. On which kind of entities can the approach compute the impact of a change?

	Crit. 1.	Crit. 2.	Crit. 3.	Crit. 4.	Crit. 5.
	Initial	Impacted	Change	Script	Schema
Approach	change	entities	proposition	generation	consistency
[Sjøberg 1993]	Struc.	Ext.	×	×	×
[Haraty 2002]	Struc./Beha.	Ext.	×	×	×
[Gardikiotis 2006]	Struc./Beha.	Ext.	×	×	×
[Gardikiotis 2009]	Struc./Beha.	Ext.	×	×	×
[Maule 2008]	Struc./Beha.	Ext.	×	×	×
[Curino 2008]	Struc.	Ext.	×	1	×
[Papastefanatos 2008]	Struc./Beh	Struc./Beha.	1	×	×
[Liu 2011]	Struc.	Ext.	×	×	×
[Meurice 2016a]	Struc.	Ext.	✓	×	×

Crit. 3. Does the approach propose changes to accommodate impacted entities with the initial change?

	Crit. 1.	Crit. 2.	Crit. 3.	Crit. 4.	Crit. 5.
	Initial	Impacted	Change	Script	Schema
Approach	change	entities	proposition	generation	consistency
[Sjøberg 1993]	Struc.	Ext.	X	×	×
[Haraty 2002]	Struc./Beha.	Ext.	X	×	×
[Gardikiotis 2006]	Struc./Beha.	Ext.	X	×	×
[Gardikiotis 2009]	Struc./Beha.	Ext.	X	×	×
[Maule 2008]	Struc./Beha.	Ext.	X	×	×
[Curino 2008]	Struc.	Ext.	X	\checkmark	×
[Papastefanatos 2008]	Struc./Beha.	Struc./Beha.		×	×
[Liu 2011]	Struc.	Ext.	×	×	×
[Meurice 2016a]	Struc.	Ext.		×	×

Software Re-engineering

The horseshoe process [Kazman 1998]

Crit. 4. Can the approach generate a script to evolve impacted entities?

	Crit. 1.	Crit. 2.	Crit. 3.	Crit. 4.	Crit. 5.
	Initial	Impacted	Change	Script	Schema
Approach	change	entities	proposition	generation	consistency
[Sjøberg 1993]	Struc.	Ext.	×	×	×
[Haraty 2002]	Struc./Beha.	Ext.	×	X	×
[Gardikiotis 2006]	Struc./Beha.	Ext.	×	X	×
[Gardikiotis 2009]	Struc./Beha.	Ext.	×	×	×
[Maule 2008]	Struc./Beha.	Ext.	×	×	×
[Curino 2008]	Struc.	Ext.	×		×
[Papastefanatos 2008]	Struc./Beha.	Struc./Beha.	1	X	×
[Liu 2011]	Struc.	Ext.	×	X	×
[Meurice 2016a]	Struc.	Ext.	✓	X	×

Crit. 5. If a script is generated, does it handle database schema consistency?

	Crit. 1.	Crit. 2.	Crit. 3.	Crit. 4.	Crit. 5.
	Initial	Impacted	Change	Script	Schema
Approach	change	entities	proposition	generation	consistency
[Sjøberg 1993]	Struc.	Ext.	×	×	×
[Haraty 2002]	Struc./Beha.	Ext.	×	×	×
[Gardikiotis 2006]	Struc./Beha.	Ext.	×	×	X
[Gardikiotis 2009]	Struc./Beha.	Ext.	×	×	X
[Maule 2008]	Struc./Beha.	Ext.	×	×	×
[Curino 2008]	Struc.	Ext.	×	\checkmark	×
[Papastefanatos 2008]	Struc./Beha.	Struc./Beha.	1	×	×
[Liu 2011]	Struc.	Ext.	×	×	×
[Meurice 2016a]	Struc.	Ext.	\checkmark	×	X

Our approach: Software Engineering for Relational Databases

Position compared to the literature

Roadmap

Context & State of the Art

Motivation

- A Behavior-Aware Meta-Model for Relational Databases
- Identifying Quality Issues in Relational Databases
- Recommendations for Evolving Relational Databases
- Conclusion

Motivation

Relational Database Schema Evolution: An Industrial Case Study. ICSME'18

AppSI database overview

- Members, teams, funding support, etc. management in laboratories of our university;
- Used by software systems written in different programming languages;
- Used in multiple laboratories at the university.

An evolution of AppSI

person

id : serial (PK)

uid : varchar

email : varchar

Before the modification,

- It has a primary key (id column)
- It stores the LDAP identifiers in the *uid* column

New LDAP schema

- Users may have multiple identifiers
- ► *uid* attribute has been renamed into *login*

Consequently, *uid* column of *person* needs to be renamed into *login* to enforce consistency between LDAP and AppSI schemas.

An evolution of AppSI

After the modification,

- Gather all the secondary identifiers of a *person* → *login_alias* column

Experimental setup

- The architect of AppSI recorded his screen during 3 development sessions.
- A roadmap is used to keep track of the progress during the evolution.

Decomposing the evolution

• Videos were transcribed as entries (312 extracted)

- Entries are generalised as actions (18 identified)
 - 'Observe patch'
 - 'Execute DDL query from IDE'
 - 'Inactivity'
 - ► 'Other'
- Actions are grouped into activities (7 identified)
 - Implement changes into queries'
 - 'Execute queries in a transaction and commit'

Decomposing the evolution

• Videos were transcribed as entries (312 extracted)

- Entries are generalised as actions (18 identified)
 - 'Observe patch'
 - 'Execute DDL query from IDE'
 - 'Inactivity'
 - 'Other'
- Actions are grouped into activities (7 identified)
 - Implement changes into queries'
 - 'Execute queries in a transaction and commit'

Decomposing the evolution

• Videos were transcribed as entries (312 extracted)

- Entries are generalised as **actions** (18 identified)
 - 'Observe patch'
 - 'Execute DDL query from IDE'
 - 'Inactivity'
 - 'Other'
- Actions are grouped into activities (7 identified)
 - 'Implement changes into queries'
 - 'Execute queries in a transaction and commit'

Process identified

- **main loop**: complete implementation of a feature (might include multiple iterations on sub-loop A and/or sub-loop B).
- **sub-loop A:** resolution of syntax errors and execution errors (e.g. reference to nonexistent entities).
- sub-loop B: resolution of semantic errors.

Process identified

- main loop: complete implementation of a feature (might include multiple iterations on sub-loop A and/or sub-loop B).
- **sub-loop A:** resolution of syntax errors and execution errors (e.g. reference to nonexistent entities).
- sub-loop B: resolution of semantic errors.

Process identified

- main loop: complete implementation of a feature (might include multiple iterations on sub-loop A and/or sub-loop B).
- **sub-loop A:** resolution of syntax errors and execution errors (e.g. reference to nonexistent entities).
- sub-loop B: resolution of semantic errors.

- main loop: complete implementation of a feature (might include multiple iterations on sub-loop A and/or sub-loop B).
- **sub-loop A:** resolution of syntax errors and execution errors (e.g. reference to nonexistent entities).
- sub-loop B: resolution of semantic errors.

- main loop: complete implementation of a feature (might include multiple iterations on sub-loop A and/or sub-loop B).
- **sub-loop A:** resolution of syntax errors and execution errors (e.g. reference to nonexistent entities).
- sub-loop B: resolution of semantic errors.

- main loop: complete implementation of a feature (might include multiple iterations on sub-loop A and/or sub-loop B).
- **sub-loop A:** resolution of syntax errors and execution errors (e.g. reference to nonexistent entities).
- sub-loop B: resolution of semantic errors.

- main loop: complete implementation of a feature (might include multiple iterations on sub-loop A and/or sub-loop B).
- **sub-loop A:** resolution of syntax errors and execution errors (e.g. reference to nonexistent entities).
- sub-loop B: resolution of semantic errors.

- **main loop**: complete implementation of a feature (might include multiple iterations on sub-loop A and/or sub-loop B).
- **sub-loop A:** resolution of syntax errors and execution errors (e.g. reference to nonexistent entities).
- sub-loop B: resolution of semantic errors.

* IDE for relational databases

* IDE for relational databases

Problems identified

Problems

1. Relational databases are hard to understand.

- RDBMS meta-data are complex to query.
- Some meta-data are missing.
- 2. Relational databases are hard to evolve.
 - Dependencies between a database and a program using it are usually implicit.
 - The database schema can not be in an inconsistent state at any moment.

Problems

- **1. Relational databases are hard to understand.**
 - RDBMS meta-data are complex to query.
 - Some meta-data are missing.
- 2. Relational databases are hard to evolve.
 - Dependencies between a database and a program using it are usually implicit.
 - The database schema can not be in an inconsistent state at any moment.

Our approach: Software Engineering for Relational Databases

Our approach: Software Engineering for Relational Databases

Roadmap

- Context & State of the Art
- Motivation

A Behavior-Aware Meta-Model for Relational Databases

- Identifying Quality Issues in Relational Databases
- Recommendations for Evolving Relational Databases
- Conclusion

A Behavior-Aware Meta-Model for Relational Databases

Recommendations for Evolving Relational Databases. CAISE'20

Meta-model: Structural entities

Meta-model: Behavioral entities

Instantiating the Meta-Model

Evaluation of 3 approaches according to 3 criteria:

- 1. Completeness
- 2. Sensibility to RDBMS evolution
- 3. Complexity to migrate to another RDBMS

Approach	Completeness	Sensitivity to RDBMS evolution	Complexity to migrate to another RDBMS
Meta-data Analysis	incomplete	low	simple

Dump Analysis

Approach	Completeness	Sensitivity to RDBMS evolution	Complexity to migrate to another RDBMS
Meta-data Analysis	incomplete	low	simple
Dump Analysis	complete	high	complex

Hybrid Approach

Goal: illustrate that the problem « Relational databases are hard to understand » is addressed by the meta-model.

- Case study 1: Queries to support (re)modularization
- Case study 2: Retrieving Features Implemented by a Database

Context:

- Laboratory 1 & 2 are running 2 different instances of AppSI schema
- Multiple applications can use an instance.
- « web views » are only used by Web app 2

Problem:

- Web views should only be deployed on instances of AppSI that needs them.
- The current DBA of AppSI is not the person who created these views.

Methods:

- 1. Extract dependency relationships between web views and the rest of the database.
- 2. Analyze dependencies to take a decision on how to move web views to a separated namespace.

Results:

- No entity of the database depends on a web view.
- Entities of AppSI web views depend on are revealed.
- Web views were moved to a separated namespace without problem.

Context:

- AppSI evolves to fulfil new requirements of the laboratory.
- These requirements evolve with time depending on administrative processes.

Problem:

- Features implemented by AppSI emerged from successive evolutions of the database.
- Not clearly defined nor documented.
- Getting an overview of the database by reading the source code of its schema becomes harder and harder with time.

Methods (in a nutshell):

Case study 2: Retrieving Features Implemented by a Database

Results:

- Identified **11 feature groups** validated by the architect.
- 97% of behavioral entities are correctly assigned to their feature group based on their dependencies.
- Valuable documentation for future maintainers of AppSI.

Feature group	# Tables	# View	# Stored	# Trigger	# Trigger
			Proc.		Stored Proc.
Members management	31	24	30	13	18
Buildings management	8	0	1	0	0
Mailing list	4	1	0	0	0
PhD and HDR management	12	17	6	11	9
Public website	6	8	0	2	3
Structure of laboratory	24	24	10	4	7
Access management	1	0	0	1	0
System tables	16	0	1	0	0
Profile	2	0	0	0	0
Scientific production	4	1	0	0	0
Utilities	0	0	11	0	0

Summary

- Meta-Model representing both structural and behavioral entities.
- Evaluation of approaches to instantiate the meta-model and proposition of an hybrid approach.
- Case studies illustrating that our meta-model addresses the problem « Relational databases are hard to understand ».

Roadmap

- Context & State of the Art
- Motivation
- A Behavior-Aware Meta-Model for Relational Databases
- Identifying Quality Issues in Relational Databases
- Recommendations for Evolving Relational Databases
- Conclusion

Identifying Quality Issues in Relational Databases

CodeCritics Applied to Database Schema: Challenges and First Results. SANER'17

DBCritics

Apply traditional Software Quality Analysis methods to database schemas

Evaluation

• WikiMedia: 25 versions analysed

Open-source database

• AppSI: 12 versions analysed

Proprietary database

Portail du système d'information

Structure Cete application gère la structuration du laboratoire en équipes, thèmes et actions. Accéder * Cete application des membres a pour objectif la gestion fine des ressources humaines et l'affectation des supports de poste au sein du laboratoire. Accéder * Cete application permet la mise à jour du contenu éditorial du site Internet du laboratoire (www.lifl.fr). Accéder * Cete application permet la mise à jour du contenu éditorial du site Internet du laboratoire (www.lifl.fr). Cete application permet la mise à jour du contenu éditorial du site Internet du laboratoire (www.lifl.fr). Cete application permet la mise à jour du contenu éditorial du site Internet du laboratoire (www.lifl.fr).

Le tableau de bord regroupe les indicateurs de fonctionnement et de pilotage du LIFL.

Statistiques

Rule violations can be found in open source as well as in proprietary DB schemas.

Time-to-fix of a rule violation

Corrected violations:

- WikiMedia: 21/87
- AppSI: 3/85

On both DBs some violations are fixed but not all of them.

	Min	First quantile	Median	Third quantile	Max
WikiMedia	95	1227	1833	2403	3644
AppSI	3	/	125	/	278

Time (in days) needed to correct violations

Summary

- Rule violations can be found in open source as well as in proprietary database schemas.
- The number of violations increase with time.
- With time, on both databases, some violations are fixed but not all of them.

Roadmap

- Context & State of the Art
- Motivation
- A Behavior-Aware Meta-Model for Relational Databases
- Identifying Quality Issues in Relational Databases
- Recommendations for Evolving Relational Databases
- Conclusion

Recommendations for Evolving Relational Databases

Recommendations for Evolving Relational Databases. CAISE'20

Example: remove beer.id

Example: remove beer.id

Example: remove column beer.designation referenced in view

Example: remove column beer.designation referenced in view

VIEW person_to_favorite_designation

SELECT id, name, designation FROM person, beer WHERE person.favorite_beer = beer.id;

Example: remove column beer.designation referenced in view

VIEW person_to_favorite_designation

SELECT id, name, designation FROM person, beer WHERE person.favorite_beer = beer ic

VIEW person_to_favorite_designation

SELECT id, name, designation FROM person, beer

WHERE person.favorite_beer - beer.id;

Continues in cascade

Refuse change

Example: remove person.name

Example: remove person.name

You are here

82

You are here

Impact computation & Recommendations selection

С

s()

Impact computation & Recommendations selection

s()

С

SQL

Patch generation

Architect choices compilation

Architect choices compilation

- Post-mortem analysis of a SQL patch previously applied on AppSI
- We observed trial-and-error process from DBA to find dependencies between entities in motivation part
- 1h to achieve a script of 200 LOC / 19 statements

- 1. **Extract initial** semantic **operators** from roadmap and SQL script comments
- 2. Take decisions using **DBA's policy** when multiple possibilities (change reference target or alias reference)
- Execute generated SQL script on a database in the same state as information system's database before the migration

- **15 decisions** taken concerning the choice between changing reference target and aliasing reference.
- 270 LOC script with 27 SQL statements.
- Generated script **executed without error**.
- Single difference between the dump of the original database and our clone: a comment.
- **Time to implement** the evolution using our tool: **15 min** (v.s. 60 min without tool).

Summary

- Semi-automatic approach to address « Relational database are hard to evolve » problem
- Experiment to assess the effectiveness of our approach

Roadmap

- Context & State of the Art
- Motivation
- A Behavior-Aware Meta-Model for Relational Databases
- Identifying Quality Issues in Relational Databases
- Recommendations for Evolving Relational Databases
- Conclusion

We identified problems occurring during relational database evolution...

AppSI database overview					
	Portail du système d'information				
 Members, teams, funding support, etc. management in laboratories of our university; 	Structure Cere application give a structuration du laboratione en équipees, hières et actions.	Acolder +			
Used by software systems	Membres Cod de partor de mertores a por dejectif a perior fre des resources hunsies et l'affectation des suports de parte es ser de laboritans.	Accelder -			
written in different programming languages;	Generation du site web Ceneration permet la maie à jour du contanu éditorie du site internet du laboration jouwuillitit.	Accilder +			
Used in multiple laboratories at	Tableau de bord	Acolder +			
the university.	Statistiques Représentation graphiques des principaux indicativos du Laborations.	Acolder -			
	Thèses et HDR Cr mobile permit la gestion des subles, la salaie des thèses et HDR anni que l'organisation des souterances.	Accelder ×			
	12 ² Gestion des nomenclatures	-			

- sub-loop A: resolution of syntax errors and execution errors (e.g. reference nonexistent entities).
- sub-loop B: resolution of semantic errors.
- main loop: complete implementation of a feature (might include multiple iterations on loop A and/or loop B).

Quantitative Analysis

90

We identified problems occurring during relational database evolution...

- a meta-model
- an approach to build it
- a tool to assess DB quality
- an approach to evolve DB
- empirical experiment(s) for each part

- a meta-model
- an approach to build it
- a tool to assess DB quality
- an approach to evolve DB
- empirical experiment(s) for each part

- a meta-model
- an approach to build it
- a tool to assess DB quality
- an approach to evolve DB
- empirical experiment(s) for each part

- a meta-model
- an approach to build it
- a tool to assess DB quality
- an approach to evolve DB
- empirical experiment(s) for each part

- a meta-model
- an approach to build it
- a tool to assess DB quality
- an approach to evolve DB
- empirical experiment(s) for each part

Publications

Conferences and Journals

1	CodeCritics Applied to Database Schema: Challenges and First Results (ERA track)	SANER'17
2	Relational Database Schema Evolution: An Industrial Case Study	ICSME'18
3	Rotten Green Tests	ICSE'19
4	Recommendations for Evolving Relational Databases	CAISE'20
5	Rotten Green Tests: A Replication Study (in submission)	ESE'20

Workshops

6	Software Engineering Issues in RDBMS, a Preliminary Survey	BENEVOL'17
7	Définition et identification des tables de nomenclatures	INFORSID'18
8	Software Engineering Techniques Applied to Relational Databases (doctoral track)	ASE'18
9	Rotten Green Tests, A first Analysis	IWST'18
10	Magic Literals in Pharo.	IWST'19
Publications

Conferences and Journals

1	CodeCritics Applied to Database Schema: Challenges and First Results (ERA track)	SANER'17
2	Relational Database Schema Evolution: An Industrial Case Study	ICSME'18
3	Rotten Green Tests	ICSE'19
4	Recommendations for Evolving Relational Databases	CAISE'20
5	Rotten Green Tests: A Replication Study (in submission)	ESE'20

Workshops

6	Software Engineering Issues in RDBMS, a Preliminary Survey	BENEVOL'17
7	Définition et identification des tables de nomenclatures	INFORSID'18
8	Software Engineering Techniques Applied to Relational Databases (doctoral track)	ASE'18
9	Rotten Green Tests, A first Analysis	IWST'18
10	Magic Literals in Pharo.	IWST'19

Publications

Conferences and Journals

1	CodeCritics Applied to Database Schema: Challenges and First Results (ERA track)	SANER'17
2	Relational Database Schema Evolution: An Industrial Case Study	ICSME'18
3	Rotten Green Tests	ICSE'19
4	Recommendations for Evolving Relational Databases	CAISE'20
5	Rotten Green Tests: A Replication Study (in submission)	ESE'20

<u>Workshops</u>

6	Software Engineering Issues in RDBMS, a Preliminary Survey	BENEVOL'17
7	Définition et identification des tables de nomenclatures	INFORSID'18
8	Software Engineering Techniques Applied to Relational Databases (doctoral track)	ASE'18
9	Rotten Green Tests, A first Analysis	IWST'18
10	Magic Literals in Pharo.	IWST'19

Additional publications

Future works

- Abstract syntax tree reification in the meta-model
- Support data transformation in evolution operators
- Simulate a sequence of operators on the model
- Conflict management when applying sequence of operators

Managing structural and behavioral evolution in relational database:

Application of Software Engineering techniques

Contributions in a nutshell:

- Identification of problems during database evolution
- Meta-model
- Quality assessment based on the meta-model
- Recommendations to evolve databases

Relational Database Reverse Engineering Techniques

Techniques [Meurice 2017]:

- Database schema analysis
- Data analysis
- Graphical User Interface (GUI) analysis
- Static program analysis
- Dynamic program analysis

Instantiating the Meta-Model

False positives

Three categories of violations can be distinguished:

- 1. Real design issues
- 2. Issues that the DBA accept to live with
- 3. Issues due to limitations of DBCritics

Classifying violations in these categories can not be automated.

On AppSI v10, the DBA analysed the 81 rule violations:

63% of the detected violations did point to quality problems

Can not be generalised but gives an idea.