
Form Scene Graph
A New UI Rendering Framework

Ronie Salgado

RMoD, Inria, Lille, France

1

UI Scaling
Current Method - #fullDrawOn: & Canvas

2

UI Scaling
Scene Graph - Athens Backend

3

UI Scaling
Scene Graph - SDL2 Backend

4

How to Install

GitHub: https://github.com/ronsaldo/form-scene-graph

Metacello new

 baseline: 'FormSceneGraph';

 repository: 'github://ronsaldo/form-scene-graph';

 load.

5

https://github.com/ronsaldo/form-scene-graph

The Current Method: Canvas Metaphor
• Start from Morph >> #fullDrawOn: aCanvas

• Pre-order traversal of Morphs.

• Sequential and immediate drawing on a Form
Canvas.

• Requires immediate pixel access

• Difficult to accelerate with GPU.

• Large API: Canvas selectors size => 89

• Non-scalable with arbitrary affine transforms.

6

How to Draw Manually the world

7

Morph Drawing Sequence
• fullDrawOn: aCanvas -> on: Error do: [.. drawRedScreenOfDeath ..]

1. drawOn: aCanvas -> Draws the content of the morph itself

2. drawSubmorphsOn: aCanvas -> Draw the children morphs on top.

3. Additional effects (drawDropHighlightOn: and
drawMouseDownHighlightOn:)

• In parallel we have fullDrawOnAthensCanvas:

• If we want more rendering mechanisms with this approach, all Morphs and
subclasses must be extended, per-backend.

8

What Other UI Frameworks are Moving To:

• Gtk 3 uses Cairo (Athens) for rendering. They complaint about its
performance.

• Gtk 4 is introducing the Gtk Scene Graph (OpenGL and Vulkan).

• QT already uses a scene graph.

• 3D rendering frameworks are based on scene graphs.

• Spec 2 has a Gtk backend -> We need to integrate Morphic on Gtk.

9

Taking Inspiration on GSK
• A rendering tree.

• All shapes are rectangles.

• They are easy to draw individually.

• These shapes are composed.

• Selection of nodes based on CSS styling.

• Complex shapes are drawn statically with
Cairo into textures. They are composed
as rectangles.

typedef enum {
 GSK_NOT_A_RENDER_NODE = 0,
 GSK_CONTAINER_NODE,
 GSK_CAIRO_NODE,
 GSK_COLOR_NODE,
 GSK_LINEAR_GRADIENT_NODE,
 GSK_REPEATING_LINEAR_GRADIENT_NODE,
 GSK_BORDER_NODE,
 GSK_TEXTURE_NODE,
 GSK_INSET_SHADOW_NODE,
 GSK_OUTSET_SHADOW_NODE,
 GSK_TRANSFORM_NODE,
 GSK_OPACITY_NODE,
 GSK_COLOR_MATRIX_NODE,
 GSK_REPEAT_NODE,
 GSK_CLIP_NODE,
 GSK_ROUNDED_CLIP_NODE,
 GSK_SHADOW_NODE,
 GSK_BLEND_NODE,
 GSK_CROSS_FADE_NODE,
 GSK_TEXT_NODE,
 GSK_BLUR_NODE,
 GSK_OFFSET_NODE,
 GSK_DEBUG_NODE
} GskRenderNodeType;

10

Form Scene Graph Design

• Copy the nodes from GSK in Pharo classes.

• Builder class for instancing nodes. Some Canvas APIs are emulated here,
but they produce these same nodes.

• Renderer backends are implemented as visitors.

• Few nodes are needed for drawing most of Morphic.

11

The Size of a Renderer Backend

12

Rendering Morphic with the Scene Graph

• Like in the previous case, Morphic has to be extended:

• #buildFullSceneGraphWith:

• #buildSceneGraphNodeWith: (Most morphs need to override this)

• #buildClippedChildrenSceneGraphNodeWith:

• Once a Morph is adapted for building a scene graph, it can be rendered
with all of the backends.

• The scene graph by definition is scalable (Hi-DPI support).

13

Some Morph Adaptations
Morph >>

FormSGBuilder - Extension for Morphic:

ImageMorph >>

14

Performance
• AbstractWorldRenderer startProfilingRenderingTime enables displaying the

rendering time in the top-level corner.

• Athens Backend has CPU rendering. It is comparable to the previous renderer.
Performance degrades with resolution increments. (26 - 80 ms)

• OSWindowGenericRenderer Backend (SDL2) may use the GPU. Has better
performance in general, but gradient nodes are difficult to implement. (3 and 40 ms)

• OpenGL ES backend is faster and better than the OSWindowGenericRenderer.
Requires compiling and distributing ANGLE for OS X and Windows.

• AbstractGPU backend (Vulkan, Metal, Direct3D12) slightly faster than the
OpenGL ES backend. It suffers of stability issues (crashes on window resize).

15

Text Rendering
• This is a difficult process.

• Text rendering is the bottleneck.

• Subpixel antialiased font rendering ~~ Alpha Blending!

• Each color channel is used as a separate alpha factor!

• Two Pass Algorithm:

1. Subtract the color mask from the background:

glBlendFunc(GL_ZERO, GL_ONE_MINUS_SRC_COLOR)

2. Add the color mask multiplied by the text color:

glBlendFunc(GL_SRC_COLOR, GL_ONE)

• One Pass rendering is possible with shaders and dual source blending.

16

Scaling Text Rendering
• In the Athens backend, we just leave Cairo perform this task.

• Each renderer has a surfaceScaleFactor property.

• The active transform is not used for computing the text font scale to prevent thrashing the glyph cache on a
dynamic scale change.

• scaledFont := font withSizeIncrementedBy: (font pointSize*surfaceScaleFactor) - font pointSize

• If the current transform scale = surfaceScaleFactor, and there is no rotation, then attempt pixel perfect blitting
to avoid blurring:

• Compute the destination pixel and blit the glyph completely.

• Otherwise, compute the transformed destination rectangle and blit with the scale.

• Compute the glyph destination position by using unscaled glyphs to preserve the metrics, but use the scaled
font.

17

Caching Sub-Scenes
• The CachingSubSceneNode is container that draws its child on a texture, which is then reused on subsequent

redraws.

• Enabling the generation of this caching node on a Morph requires overriding the
#shouldCacheSceneGraphSurface to return true.

• Pixel perfect should be attempted to avoid text blurring.

• Caching enabled for Windows, Menus, Rubric and tables.

• This caching textures typically end with premultiplied alpha, so an adequate blending mode is required here:

• Premultiplied Alpha Over: glBlendFunc(GL_ONE, GL_ONE_MINUS_SRC_ALPHA)

• Composite Alpha Over: glBlendFuncSeparate(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ONE,
GL_ONE_MINUS_SRC_ALPHA)

• Subpixel antialiased text does not behave well on transparent backgrounds here.

18

Caching Sub-Scene

19

Questions?

20

