Thomas Dupriez Steven Costiou Stéphane Ducasse
Université de Lille, Inria, CNRS, Université de Lille, Inria, CNRS, Université de Lille, Inria, CNRS,

Central Lille, UMR 9189 - CRIStAL Central Lille, UMR 9189 - CRIStAL Central Lille, UMR 9189 - CRIStAL
France France France

MOTIVATION

MOTIVATION

| [

g

Johun

Good code

Greenm test

John is a serious developer.
His code is good, and the tests are green.

MOTIVATION

@ johnTest

MOTIVATION

John is a serious developer.
His code is good, and the tests are green.

John improves his code to make it better.

Good code Better code

Green test |@)johnTest

MOTIVATION

John is a serious developer.
His code is good, and the tests are green.

John improves his code to make it better.

But suddenly, the tests are red.

Good code Better code

Green test |@)JjohnTest Red test |@johnTest

MOTIVATION

John is a serious developer.
His code is good, and the tests are green.

John improves his code to make it better.
But suddenly, the tests are red.

John does not understand why his change
caused the test to fail. ot

Good code Better code

Green test |@)johnTest Red test |@johnTest

MOTIVATION

John is a serious developer.
His code is good, and the tests are green.

John improves his code to make it better.
But suddenly, the tests are red.

John does not understand why his change
caused the test to fail. ot

So John makes the only sensible decision...

Good code Better code

Green test |@)johnTest Red test |@johnTest

MOTIVATION

John is a serious developer.
His code is good, and the tests are green.

John improves his code to make it better.
But suddenly, the tests are red.

John does not understand why his change
caused the test to fail.

So John makes the only sensible decision...

Goool code Better codle

Green test |@) johnTest Red test |@johnTest

#

MOTIVATION

John is a serious developer.

His code is good, and the tests are green.

John improves his code to make it bette
But suddenly, the tests are red.

John does not understand why his c
caused the test to fail.

So John makes the only sensi

Goodl codle

Green test

Red test

MOTIVATION

John is a serious developer.
His code is good, and the tests are green.

John improves his code to make it better.
But suddenly, the tests are red.

John does not understand why his change
caused the test to fail. ot

So John makes the only sensible decision...

Good code Better code

Green test |@) JjohnTest Red test |@johnTest

MOTIVATION

John is a serious developer.
His code is good, and the tests are green.

John improves his code to make it better.
But suddenly, the tests are red.

John does not understand why his change
caused the test to fail. Jobun

Goodl code Better code

Green test |@)JjohnTest Red test |@johnTest

MOTIVATION

The Echo-debugger lets John:
1) Debug both the green test and red test execution
iNn parallel.

MOTIVATION

The Echo-debugger lets John:
1) Debug both the green test and red test execution
iNn parallel.

Even though they are on different
versions of the program.

MOTIVATION

The Echo-debugger lets John:
1) Debug both the green test and red test execution
iNn parallel.

Even though they are on different
versions of the program.

=> The Echo-Debugger and its Architecture oo

MOTIVATION

The Echo-debugger lets John:
1) Debug both the green test and red test execution
iNn parallel.

Even though they are on different
versions of the program.

=> The Echo-Debugger and its Architecture oo

2) Automatically find the control-flow divergences
and convergences between the executions.

MOTIVATION

The Echo-debugger lets John:
1) Debug both the green test and red test execution
iNn parallel.

Even though they are on different
versions of the program.

=> The Echo-Debugger and its Architecture Jodun

2) Automatically find the control-flow divergences
and convergences between the executions.

And jump the echo-debugger to them
If the executions are deterministic

MOTIVATION

The Echo-debugger lets John:

1) Debug both the green test and red test execution
iNn parallel.

Even though they are on different
versions of the program.

=> The Echo-Debugger and its Architecture

2) Automatically find the control-flow divergences
and convergences between the executions.

And jump the echo-debugger to them
If the executions are deterministic

=> The CDM (Convergence Divergence Mapping) Algorithm

MOTIVATION

The Echo-debugger lets John:

1) Debug both the green test and red test execution
iNn parallel.

Even though they are on different
versions of the program.

=> The Echo-Debugger and its Architecture

2) Automatically find the control-flow divergences
and convergences between the executions.

And jump the echo-debugger to them
If the executions are deterministic

=> The CDM (Convergence Divergence Mapping) Algorithm

.. Thanks to tHire Echo-debugger, John
understood wivwy his code change madle the
test red, and was able to fix the Bsue.

MOTIVATION

The Echo-debugger lets John:

1) Debug both the green test and red test execution
iNn parallel.

Even though they are on different
versions of the program.

=> The Echo-Debugger and its Architecture

Jothun
2) Automatically find the control-flow divergences JO"’H‘- U now a happy
and convergences between the executions. seriows developer!

And jump the echo-debugger to them
If the executions are deterministic

=> The CDM (Convergence Divergence Mapping) Algorithm

.. Thanks to Hire Echo-debugger, John
understood. wivwy his code change madle the
test red , and was able o fix the Bsue.

ECHO-DEBUGGER: ARCHITECTURE

Developer

Controller Image

Echo-Debugger

ysd

Debugger Client

™

Debugger Client

HTTP

Working Image

Debugger Server

Sindarin Debugger

Working Echo-Execution

HTTP

Failing Image

Debugger Server

Sindarin Debugger

Failing Echo-Execution

#

ECHO-DEBUGGER: ARCHITECTURE

Developer

Controller Image

e 3 runtimes

Echo-Debugger

ysd

Debugger Client

™

Debugger Client

HTTP

Working Image

Debugger Server

Sindarin Debugger

Working Echo-Execution

HTTP

Failing Image

Debugger Server

Sindarin Debugger

Failing Echo-Execution

#

ECHO-DEBUGGER: ARCHITECTURE

Developer

Controller Image

e 3 runtimes

:

* HTPP client/server

Echo-Debugger

communication

ysd

Debugger Client

™

Debugger Client

HTTP

Working Image

Debugger Server

¢

Sindarin Debugger

Working Echo-Execution

HTTP

Failing Image

Debugger Server

$

Sindarin Debugger

Failing Echo-Execution

#

ECHO-DEBUGGER: ARCHITECTURE

Developer

e 3 runtimes

Controller Image ¢

* HTPP client/server
communication

Echo-Debugger

<7 N

Debugger Client Debugger Client

* Sindarin (scriptable)
debuggers to control
TP TP the echo-executions

Working Image Failing Image
Debugger Server Debugger Server
Sindarin Debugger Sindarin Debugger
Working Echo-Execution Failing Echo-Execution

ﬁ

ECHO-DEBUGGER: CONTROLLER U

x =0 EchoDebugger
orking Execution Failing Execution
port port
1234 . Connect 5678 : Connect
Inspect Inspect
Refresh Refresh
stack stack
+Class + Selector : Class + Selector
TestAsserter assertequals: Object =
PCBTest testChildConfigurationLooksUpParentConfigura§ TestAsserter assert:equals:
UndefinedObject Doit PCBTest testChildConfigurationLooksUpParentConfigurati
BlockClosure newProcess UndefinedObject Dolt
BlockClosure newProcess
context context
+ key s value & key ¢ value
class TestAsserter class Object
method assert: actual equals: expected "This method raises an AssertionFailure if actual is diffd method =anObject "Answer whether the receiver and the argument represent the same object.
node a RBProgramNodeRepresentation(#class->"TestAsserter' #methodSelector->#asserteq] node a RBProgramNodeRepresentation(#class->"Object’ #methodSelector->#= #methodSourc
receiver PCBTest receiver nil
selector assert:equals: selector =
node (code) node (raw) node (code) node (raw)
. S e Cliva naac i = T - _
different (using #= me e) fron 1| = anObject
3 Else it does no d exe tinues 2 'Answer whether the re) s gument esent the
4 i
5 3 bj s redefi . clas nsid :
6 A self edet
7 assert: actual = expected 4 mes
8 description: mself comparingStringBetween: actual and: 5
expected] 6 *self == anObject

cho Debugging
status

MNode=? false

Operations
Step to next divergence
Step to sender until convergence
Analyze execution
Reset Echo Debugging
Inspect Echo Debugger

Inspect Echo Debugger Presenter

Debugger on working execution

Debugger on failing execution

¢Nature =W Steplr :F Stepin
start 0 0
Divergence7 7
Convergen:106 9
Divergence 115 18
Convergen 225 18
Divergence 227 20
Convergen-227 2
Divergence 230 25

GoTo

Inspect Selected

Control zone

NC A ~+n

SO —rtL—=MD0TO

<WI

-~ QO

20

CDM ALGORITHM: INTRODUCTION

e 2 executions in parallel (echo-executions)

COM = Convergence
Diergence Mapping

 Echo-executions start on the same statement

* Similar, but not identical code

CDM ALGORITHM: INTRODUCTION

e 2 executions in parallel (echo-executions)

COM = Convergence
Diergence Mapping

 Echo-executions start on the same statement

* Similar, but not identical code

e Goal:

— find when the control-flows diverge
and converge

— Store the number of steps it took each
echo-execution to get to each
divergence/convergence

#

CDM ALGORITHM: INTRODUCTION

* 2 executions in parallel (echo-executions)

COM = Convergence

* Similar, but not identical code Divergence Mappi

 Echo-executions start on the same statement

Navigation

() ° data
Goa l. = MNature =W StepIndex +F Step Index
— find when the control-flows diverge i
and converge e

Divergence 227 20
Convergence 227 22

— Store the number of steps ittook each e 2
echo-execution to get to each
divergence/convergence

GoTo

=> Ability to visit these events in the echo-debugger, by Noawvrgation Mayp

restarting the echo-executions and stepping this many times a

CDM ALGORITHM: ALGORITHM

CDM ALGORITHM: ALGORITHM

* 1) Echo-executions start convergent

CDM ALGORITHM: ALGORITHM

* 1) Echo-executions start convergent

* 2) Repeat until either echo-execution is over:

CDM ALGORITHM: ALGORITHM

* 1) Echo-executions start convergent

* 2) Repeat until either echo-execution is over:

— a) Step to next divergence

— b) Register divergence event

CDM ALGORITHM: ALGORITHM

* 1) Echo-executions start convergent

* 2) Repeat until either echo-execution is over:
— a) Step to next divergence
— b) Register divergence event

— ¢) Step to next convergence

— d) Register convergence event

CDM ALGORITHM: ALGORITHM

* 1) Echo-executions start convergent

* 2) Repeat until either echo-execution is over:

— |a) Step to next divergence

— b) Register divergence event

— |c) Step to next convergence

— d) Register convergence event

CDM ALGORITHM: NEXT DIVERGENCE

* |) Step each echo-execution once

* |I) Compare their current AST node

* |ll) Repeat until their current AST nodes are
different

CDM ALGORITHM: NEXT CONVERGENCE

CDM ALGORITHM: NEXT CONVERGENCE

* |) If the call stacks are not the same size, step the
longest one until both call stacks are the same size

Echo-execution 1

call

Method T >»| Method 2
on AST node 1

Echo-execution 2

call

Method T >»| Method 2
on AST node 1

#

CDM ALGORITHM: NEXT CONVERGENCE

* |) If the call stacks are not the same size, step the
longest one until both call stacks are the same size

Echo-execution 1 Divergence

call ca
Method 1 > Method 2)1/) Method 3 /

on AST node

Echo-execution 2

call

Method 1)/P%ethod 2

/ on AST node 2

CDM ALGORITHM: NEXT CONVERGENCE

* |) If the call stacks are not the same size, step the
longest one until both call stacks are the same size

Echo-execution 1

finish call

call
Method T >»| Method 2 /\ Method 3a

on AST node ?

Echo-execution 2

call

Method T >»| Method 2
on AST node 2

ﬂ

CDM ALGORITHM: NEXT CONVERGENCE

* |I) Compare the current AST nodes

Echo-execution 1

finish call

call
Method T >»| Method 2 /\ Method 3a

on AST node ?

Echo-execution 2

call

Method T >»| Method 2
on AST node 2

M

CDM ALGORITHM: NEXT CONVERGENCE

* |I) Compare the current AST nodes

* |ll) If different, finish the current call on both
stacks and go to ll)

Echo-execution 1

Method 1 —23ml Method 2
on AST node 3
Echo-execution 2 Different AST Nodes
Method 1 call > Method 2

on AST node 2

#

CDM ALGORITHM: NEXT CONVERGENCE

* |I) Compare the current AST nodes

* |ll) If different, finish the current call on both
stacks and go to Il)

Echo-execution 1

finish call

Method 1 /\ Method 2

on AST node ?

Echo-execution 2
finish call

Method T /\ Method 2

on AST node ?

#

CDM ALGORITHM: NEXT CONVERGENCE

* V) If equal, convergence found

Echo-execution 1
Convergence ,
finish call

Method 1 //\ Method 2

on AST node 4

Echo-execution 2 Same AST Nodes

finish call

Method 1 //\ Method 2

on AST node 4

#

CDM ALGORITHM: NEXT CONVERGENCE

* |) If the call stacks are not the same size, step the
longest one until both call stacks are the same size

* |I) Compare the current AST nodes

* |ll) If different, finish the current call on both
stacks and go to Il)

* IV) If equal, convergence found

CDM ALGORITHM: COMPARING AST NODES

CDM ALGORITHM: COMPARING AST NODES

* With equality? (=)

— No. Being on = AST nodes but in different methods is
still a control-flow divergence

CDM ALGORITHM: COMPARING AST NODES

* With equality? (=)

— No. Being on = AST nodes but in different methods is
still a control-flow divergence

* With identity! (==)

CDM ALGORITHM: COMPARING AST NODES

* With equality? (=)

— No. Being on = AST nodes but in different methods is
still a control-flow divergence

* With identity! (==)

* ...except the nodes are not in the same image

CDM ALGORITHM: COMPARING AST NODES

* With equality? (=)

— No. Being on = AST nodes but in different methods is still a
control-flow divergence

* With identity! (==)
* ...except the nodes are not in the same image

* Our AST nodes comparison operator has 4 criteria:
- Method selector
— Class name
— Source code

- Node type

ﬁ

CDM ALGORITHM: COMPARING AST NODES

* With equality? (=)

— No. Being on = AST nodes but in different methods is still a
control-flow divergence

* With identity! (==)
* ...except the nodes are not in the same image

* Our AST nodes comparison operator has 4 criteria:

¥: xInteger y: yInteger

— Method SeleCtOF "Answer an instance of me with coordinates xInteger and yInteger."

A zelf|l basicNew |setX: xInteger setY: yInteger

— Class name
— Source code

- Node type

M

CDM ALGORITHM: COMPARING AST NODES

* With equality? (=)

— No. Being on = AST nodes but in different methods is still a
control-flow divergence

* With identity! (==)

* ...except the nodes are not in the same image

* Our AST nodes comparison operator has 4 criteria:

¥: xInteger y: yInteger

e yy "Answer an instance of me with coordinates xInteger and yInteger."
Method selector «yx.y:

Class name
Source code

Node type

t’(P:'l t))

A zelf|l basicNew |setX: xInteger setY: yInteger

“basicNew”

“Mwe/ NW:)

ﬁ

WRAP-UP

WRAP-UP

* The Echo-Debugger debugs two parallel executions of
the same statement in different program versions

WRAP-UP

* The Echo-Debugger debugs two parallel executions of
the same statement in different program versions

* The CDM algorithm runs both executions to find when
they diverge/converge in control-flow

WRAP-UP

* The Echo-Debugger debugs two parallel executions of
the same statement in different program versions

* The CDM algorithm runs both executions to find when
they diverge/converge in control-flow

* If the executions are deterministic, the Echo-Debugger
can restart and step the executions to any divergence/
convergence

WRAP-UP

* The Echo-Debugger debugs two parallel executions of
the same statement in different program versions

* The CDM algorithm runs both executions to find when
they diverge/converge in control-flow

* If the executions are deterministic, the Echo-Debugger
can restart and step the executions to any divergence/
convergence

* ... Back-in-time debugger as back-end

ﬁ

WRAP-UP

* The Echo-Debugger debugs two parallel executions of
the same statement in different program versions

* The CDM algorithm runs both executions to find when
they diverge/converge in control-flow

* If the executions are deterministic, the Echo-Debugger
can restart and step the executions to any divergence/
convergence

* ... Back-in-time debugger as back-end

e ... State differences

ﬁ

WRAP-UP

* The Echo-Debugger debugs two parallel executions of
the same statement in different program versions

* The CDM algorithm runs both executions to find when
they diverge/converge in control-flow

* If the executions are deterministic, the Echo-Debugger
can restart and step the executions to any divergence/
convergence

* ... Back-in-time debugger as back-end
* ... State differences

* ... Automated setup tool

ﬁ

WRAP-UP

* The Echo-Debugger debugs two parallel executions of
the same statement in different program versions

* The CDM algorithm runs both executions to find when
they diverge/converge in control-flow

* If the executions are deterministic, the Echo-Debugger
can restart and step the executions to any divergence/
convergence

* ... Back-in-time debugger as back-end

e ... State differences

* ... Automated setup tool
lcons from Wttps:.//gome -Lcons.net

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59

