
1/59Séminaire LATECE

Modular oose

Nicolas Anquetil

A platform for in-the-large & in-the-small
reverse engineering

2/59Séminaire LATECE

Agenda

●Reverse engineering in the large/small

●Moose, some background

●Composable Meta-Model

●Integrated Reverse Engineering Environment

●Conclusion

3/59Séminaire LATECE

Agenda

●Reverse engineering in the large/small
●Moose, some background

●Composable Meta-Model

●Integrated Reverse Engineering Environment

●Conclusion

4/59Séminaire LATECE

Software maintenance

●

●

●

●“Today, you will use 13 COBOL applications”
[P. Nieuwbourg, 2012]

●To remain useful, systems must evolve

– Adaptation to new needs (GUI, cloud, …)

– Prepare for future evolution

5/59Séminaire LATECE

Software maintenance

●Windows NT 3.1 (1993)

– ≃ 4 a 5 MLOC

●Windows server 2003

– ≃ 50 MLOC

●Windows 10

– ???

4
7
m

4
2
m

6/59Séminaire LATECE

Software maintenance

●Ever living systems

●Intrinsic to software

●Involves understanding a mathematical model (program)

●Tools are needed

7/59Séminaire LATECE

Reverse engineering in the large/small

●Reverse engineering in the small

8/59Séminaire LATECE

Reverse engineering in the large/small

●Reverse engineering in the small

– On few entities (<10)

– Relevant code fits on 1 sheet of paper

– Complete understanding of each entity

9/59Séminaire LATECE

Reverse engineering in the large/small

●Reverse engineering in the large

– Eclipse v2.1 (Extensible IDE) v3.0 (Rich Client Platform)

10/59Séminaire LATECE

Reverse engineering in the large/small

●Reverse engineering in the large

– Restructure architecture

– Break a big class

– Introduce a design pattern (e.g. MVC, Hybernate)

– Migrate to a new library version

– …

11/59Séminaire LATECE

Reverse engineering in the large/small

●Reverse engineering in the large

– Can/Should occurs regularly (≠ often) in the life of a system

– On many entities (tens, hundreds) / all system

12/59Séminaire LATECE

Reverse engineering in the large/small

●Reverse engineering in the small

– Detailed understanding

– Instructions, AST

●Reverse engineering in the large

– High level view on the system (but details matter)

– Packages, classes, dependencies

13/59Séminaire LATECE

Reverse engineering in the large/small

●Reverse engineering in the small

– Detailed understanding

– Instructions, AST

●Reverse engineering in the large

– High level view on the system (but details matter)

– Packages, classes, dependencies

●+ generic tools

* Frightened kitten

14/59Séminaire LATECE

Agenda

●Reverse engineering in the large/small

●Moose, some background
●Composable Meta-Model

●Integrated Reverse Engineering Environment

●Conclusion

15/59Séminaire LATECE

 oose, some background

●A platform for software analysis

●Based on a generic meta-model (Famix)

●Developed since 1996

– https://github.com/moosetechnology/moose-wiki

– https://github.com/moosetechnology

https://github.com/moosetechnology/moose-wiki
https://github.com/moosetechnology

16/59Séminaire LATECE

 oose, some background

●A platform for software analysis

●

●

●

●

●

●Fast cycle by fast development of new analyses

h
y
p
o
t
h
e
si
s

t
a
s
k

a
n
al
y
si
s

in
f
o
r
m
a
ti
o
n

a
ct
io
n

17/59Séminaire LATECE

 oose, some background

●A platform for software analysis
F
a
m
i
x

18/59Séminaire LATECE

 oose, some background

●Importers

– Populate a model from existing documents

– Source code (4D, Ada, C/C++, COBOL, Fortran, Java, Mantis,
Pharo, PowerBuilder, SQL, TypeScript, VBA, ...)

– HTML, XML, CSV, …

– Bugs, authors, commits

19/59Séminaire LATECE

 oose, some background

●Visualizations

– Roassal: DSL to script visualizations
● “Agile Visualization” : explore data through visualizations
● http://agilevisualization.com/

– Telescope: Tool with configurable predefined visualizations
● Rendering with Roassal
● Rendering with Cytoscape (JavaScript)

http://agilevisualization.com/

20/59Séminaire LATECE

 oose, some background

●Visualizations

–

21/59Séminaire LATECE

 oose, some background

●Tools

– MooseQuery: DSL to query a model

– Software engineering metrics (cohesion/coupling,
Chidambler & Kemerer metrics, LCOM, cyclomatic
complexity, …)

– Tagging (labels and/or virtual entities)

– Data Mining algorithms

22/59Séminaire LATECE

 oose, some background

●Moose Query

– https://moosequery.ferlicot.fr/

– API to programmatically query FamixNG models
● Entities respecting some condition (name, metrics, …)
● Containment navigation (parent, children)
● Dependency navigation (clients/providers, invoked

methods,…)

https://moosequery.ferlicot.fr/

23/59Séminaire LATECE

 oose, some background

●Moose Query

– Java analysis: “All provider packages for
package p via method calls?”
(p queryOutgoing: FamixInvocation) atScope: FamixPackage

– SQL analysis: “All stored procedures accessing a given table
column c?”
c queryIncomingDependencies atScope:
FamixSQLStoredProcedure

24/59Séminaire LATECE

 oose, some background

●Moose Query

– Java analysis: “All provider packages for
package p via method calls?”
(p queryOutgoing: FamixInvocation) atScope: FamixPackage

– SQL analysis: “All stored procedures accessing a given table
column c?”
c queryIncomingDependencies atScope:
FamixSQLStoredProcedure

F
o
r

e
x
p
e
r
t
s

25/59Séminaire LATECE

 oose, some background

●Generic software meta-model (Famix)

26/59Séminaire LATECE

 oose, some background

●Generic software meta-model (Famix)

– Tyranny of the dominant
decomposition

27/59Séminaire LATECE

Software Meta-Modeling

●Generic software meta-model

– Dagstuhl Middle Meta-model

– Tyranny of the dominant
decomposition

28/59Séminaire LATECE

 oose, some background

●Generic software meta-model (Famix)

– Tyranny of the dominant
decomposition

F
o
r

e
x
p
e
r
t
s

29/59Séminaire LATECE

Agenda

●Reverse engineering in the large/small

●Moose, some background

●Composable Meta-Model
●Integrated Reverse Engineering Environment

●Conclusion

30/59Séminaire LATECE

Composable Meta-Model

●Famix: One generic meta-model for all languages

●Create specialized meta-model for each language

●FamixNG: Bare bones entities + composable properties

– Classes have attributes and methods and inheritance

– + visibility (public, private, protected, friend, …)

– + partial classes + extension methods + use traits

31/59Séminaire LATECE

Composable Meta-Model

●FamixNG

– ≃ 100 traits (i.e. a set of methods that classes can use with
a kind of “multiple inheritance”)

32/59Séminaire LATECE

Composable Meta-Model

●FamixNG

– ≃ 100 traits (i.e. a set of methods that classes can use with
a kind of “multiple inheritance”)

– Ex: TNamedEntity used by entities that have a name

– Ex: TNamespace used by entities that contain
TNamedEntity

33/59Séminaire LATECE

Composable Meta-Model

●FamixNG

– ≃ 100 traits (i.e. a set of methods that classes can use with
a kind of “multiple inheritance”)

– Ex: TNamedEntity used by entities that have a name

– Ex: TNamespace used by entities that contain
TNamedEntity

34/59Séminaire LATECE

Composable Meta-Model

●FamixNG

– ≃ 100 traits (i.e. a set of methods that classes can use with
a kind of “multiple inheritance”)

– Ex: TNamedEntity used by entities that have a name

– Ex: TNamespace used by entities that contain
TNamedEntity

35/59Séminaire LATECE

Composable Meta-Model

●Generic TClass in FamixNG uses:

– TType (which uses TNamedEntity)

– TWithComment

– TPackageable

– TWithInheritances

– TWithAttributes

– TWithMethods

– TInvocationsReceiver

36/59Séminaire LATECE

Composable Meta-Model

●JavaClass uses:

– TClass

– TWithVisibility

– TWithExceptions

●PharoClass uses:

– TClass

– TUsesTraits

– TWithExtentions

37/59Séminaire LATECE

Composable Meta-Model

●TMethod uses:

– TNamedEntity

– THasSignature

– TTypedEntity

– TWithClassScope

– TInvocable

●

– TWithImplicitVariables

– TWithLocalVariables

– TWithParameters

– TWithReferences

– TWithStatements

38/59Séminaire LATECE

Meta-Model builder

●“Builders” to create metamodels

– DSL (inspired by PlantUML)

– Can import other meta-models to compose meta-models
together (ex: Java program with SQL queries)

39/59Séminaire LATECE

Composable Meta-Model

●FamixNG

– Association traits (7):
Inheritance, Access, Invocation, Reference, UseTrait,
IncludeFile

– Technical traits (12):
SourceAnchor, metrics, queries

– Property traits(46):
name, comments, Typed, visibility, Invocable, …

– Terminal/Core/Entity traits (38):
Class, Method, Attribute, Parameter, Exception, Function, …

–

40/59Séminaire LATECE

Meta-Model builder

●New language meta-models built from FamixNG traits library

●“Builders” to create meta-models

41/59Séminaire LATECE

Meta-Model builder

●New language meta-models built from FamixNG traits library

●“Builders” to create meta-models

– DSL (inspired by PlantUML.com)

●@startuml
●Class1 <|-- Class2
●Class3 *-- Class4
●Class5 – Class6
●@enduml

https://plantuml.com/

42/59Séminaire LATECE

Meta-Model builder

●Example: Meta-model for commits

●Define classes
– entity := builder newClassNamed: ’Entity’.

file := builder newClassNamed: ’File’.
commit := builder newClassNamed: ’Commit’.
author := builder newClassNamed: ’Author’.

●Define properties
– commit property: ’revision’ type: #Number.

commit property: ’date’ type: #Object.
commit property: ’message’ type: #String.

43/59Séminaire LATECE

Meta-Model builder

●Example: Meta-model for commits

●Define inheritances
– file --|> entity.

file --|> TNamedEntity.
commit --|> entity.
author --|> entity.
author --|> TNamedEntity.

●Define relations
– file *-* commit.

commit *- author.

44/59Séminaire LATECE

Agenda

●Reverse engineering in the large/small

●Moose, some background

●Composable Meta-Model

●Integrated Reverse Engineering Environment
●Conclusion

45/59Séminaire LATECE

Integrated Reverse Engineering Environment

●Reverse engineering involves many tasks

– Visualization, query, metrics, navigation, dependency
analysis, control flow/data flow analysis

–

●This calls for many specialized tools collaborating

●The tools must be generic (meta-model agnostic)

●The tools must collaborate

46/59Séminaire LATECE

ModMoose

●ModMoose an Integrated Reverse Engineering Environment

●IREE

– Iree is of Hebrew origin and means: Gift of God

– In Jamaican English, iree (or irie) means: nice, good, or
pleasing; Iree is about being calm pleasant and taking life a
day at a time

–

47/59Séminaire LATECE

ModMoose

●ModMoose an Integrated Reverse Engineering Environment

Infrastructure Tools
Query Tags Visualization

Moose environment

buses

Tool Tool Tool Tool

Language metamodel

FamixNG composable traits

48/59Séminaire LATECE

ModMoose

●ModMoose an Integrated Reverse Engineering Environment

– The environment centralizes data and tool interactions

– Tools are focusing on a single task: e.g., the Query Browser
works on a set of model entities and produces another set
of entities

– Tools communicate through buses, they “read” model
entities on their bus(es) and “write” entities back on their
bus(es)

49/59Séminaire LATECE

Tools

●Model Browser (imports/selects models)

●Entity Inspector (Properties of selected entities + values)

●Query Browser (GUI for MooseQuery)

●Dependency Graph Browser (graph w/ incoming/outgoing
dependencies of entities)

●Duplication Browser (shows code clones occurances)

●Source Code (Listing of source code)

●Logger (Records each step with entities that pass on a bus)

50/59Séminaire LATECE

Tools

●Query Browser

51/59Séminaire LATECE

Tools

●Duplication Browser

52/59Séminaire LATECE

Tools

●Dependency Graph Browser

53/59Séminaire LATECE

Tools

●Entity Inspector

54/59Séminaire LATECE

Communication Buses

●Tools “read” and “write” model entities on buses

●Each tool can be attached to 0 to n buses

●Can have several instances of the same tool concurrently

●Ex: Compare dependencies of two set of entities

– Bus1: QueryBrowser1 + DependencyGraphBrowser1

– Bus2: QueryBrowser2 + DependencyGraphBrowser2

●

55/59Séminaire LATECE

Communication Buses

●Logger tool can be set as a bridge between all buses

– Listens to all buses (records all steps in session)

– Forwards its activity on all buses (to synchronize them)

●

56/59Séminaire LATECE

Tools

●Fine control of tool behavior

– Follow: Display incoming entities, produces outgoing entities

– Highlight: Highlight incoming entities in “frozen” display

– Frozen: Frozen display but, produces outgoing entities

57/59Séminaire LATECE

Agenda

●Reverse engineering in the large/small

●Moose, some background

●Composable Meta-Model

●Integrated Reverse Engineering Environment

●Conclusion

58/59Séminaire LATECE

WrapUp

●FamixNG

– Composition of programming language meta-models from
basic traits

●ModMoose

– Interactive Reverse Engineering Environment

– Specialized tools communicating through buses

59/59Séminaire LATECE

Modular oose
Nicolas Anquetil

nicolas.anquetil@inria.fr

Infrastructure Tools
Query Tags Visualization

Moose environment

buses

Tool Tool Tool Tool

Language metamodel

FamixNG composable traits

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59

