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Software maintenance

●

●

●

●“Today, you will use 13 COBOL applications”
[P. Nieuwbourg, 2012]

●To remain useful, systems must evolve

– Adaptation to new needs (GUI, cloud, …)

– Prepare for future evolution
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Software maintenance

●Windows NT 3.1 (1993)

– ≃ 4 a 5 MLOC

●Windows server 2003

– ≃ 50 MLOC

●Windows 10

– ???
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Software maintenance

●Ever living systems

●Intrinsic to software

●Involves understanding a mathematical model (program)

●Tools are needed
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Reverse engineering in the large/small

●Reverse engineering in the small
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Reverse engineering in the large/small

●Reverse engineering in the small

– On few entities (<10)

– Relevant code fits on 1 sheet of paper

– Complete understanding of each entity
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Reverse engineering in the large/small

●Reverse engineering in the large

– Eclipse v2.1 (Extensible IDE)  v3.0 (Rich Client Platform)
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Reverse engineering in the large/small

●Reverse engineering in the large

– Restructure architecture

– Break a big class

– Introduce a design pattern (e.g. MVC, Hybernate)

– Migrate to a new library version

– … 
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Reverse engineering in the large/small

●Reverse engineering in the large

– Can/Should occurs regularly (≠ often) in the life of a system

– On many entities (tens, hundreds) / all system
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Reverse engineering in the large/small

●Reverse engineering in the small

– Detailed understanding

– Instructions, AST

●Reverse engineering in the large

– High level view on the system (but details matter)

– Packages, classes, dependencies
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Reverse engineering in the large/small

●Reverse engineering in the small

– Detailed understanding

– Instructions, AST

●Reverse engineering in the large

– High level view on the system (but details matter)

– Packages, classes, dependencies

●+ generic tools

* Frightened kitten
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     oose, some background

●A platform for software analysis

●Based on a generic meta-model (Famix)

●Developed since 1996

– https://github.com/moosetechnology/moose-wiki 

– https://github.com/moosetechnology 

https://github.com/moosetechnology/moose-wiki
https://github.com/moosetechnology
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     oose, some background

●A platform for software analysis

●

●

●

●

●

●Fast cycle by fast development of new analyses
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     oose, some background

●A platform for software analysis
F
a
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     oose, some background

●Importers

– Populate a model from existing documents

– Source code (4D, Ada, C/C++, COBOL, Fortran, Java, Mantis, 
Pharo, PowerBuilder, SQL, TypeScript, VBA, ...)

– HTML, XML, CSV, …

– Bugs, authors, commits
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     oose, some background

●Visualizations

– Roassal: DSL to script visualizations
● “Agile Visualization” : explore data through visualizations
● http://agilevisualization.com/

– Telescope: Tool with configurable predefined visualizations
● Rendering with Roassal
● Rendering with Cytoscape (JavaScript)

http://agilevisualization.com/
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     oose, some background

●Visualizations

–
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     oose, some background

●Tools

– MooseQuery: DSL to query a model

– Software engineering metrics (cohesion/coupling, 
Chidambler & Kemerer metrics, LCOM, cyclomatic 
complexity, …)

– Tagging (labels and/or virtual entities)

– Data Mining algorithms
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     oose, some background

●Moose Query

– https://moosequery.ferlicot.fr/

– API to programmatically query FamixNG models
● Entities respecting some condition (name, metrics, …)
● Containment navigation (parent, children)
● Dependency navigation (clients/providers, invoked 

methods,…)

https://moosequery.ferlicot.fr/
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     oose, some background

●Moose Query

– Java analysis: “All provider packages for
package p via method calls?”
(p queryOutgoing: FamixInvocation) atScope: FamixPackage

– SQL analysis: “All stored procedures accessing a given table 
column c?”
c queryIncomingDependencies atScope: 
FamixSQLStoredProcedure
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     oose, some background

●Moose Query

– Java analysis: “All provider packages for
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(p queryOutgoing: FamixInvocation) atScope: FamixPackage

– SQL analysis: “All stored procedures accessing a given table 
column c?”
c queryIncomingDependencies atScope: 
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     oose, some background

●Generic software meta-model (Famix)
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●Generic software meta-model (Famix)

– Tyranny of the dominant
decomposition
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Software Meta-Modeling

●Generic software meta-model

– Dagstuhl Middle Meta-model

– Tyranny of the dominant
decomposition
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     oose, some background

●Generic software meta-model (Famix)

– Tyranny of the dominant
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Composable Meta-Model

●Famix: One generic meta-model for all languages

●Create specialized meta-model for each language

●FamixNG: Bare bones entities + composable properties

– Classes have attributes and methods and inheritance

– + visibility (public, private, protected, friend, …)

– + partial classes + extension methods + use traits
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Composable Meta-Model

●FamixNG

– ≃ 100 traits (i.e.  a set of methods that classes can use with 
a kind of “multiple inheritance”)
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– Ex: TNamedEntity used by entities that have a name

– Ex: TNamespace used by entities that contain
TNamedEntity
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Composable Meta-Model

●FamixNG

– ≃ 100 traits (i.e.  a set of methods that classes can use with 
a kind of “multiple inheritance”)

– Ex: TNamedEntity used by entities that have a name

– Ex: TNamespace used by entities that contain
TNamedEntity
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Composable Meta-Model

●Generic TClass in FamixNG uses:

– TType (which uses TNamedEntity)

– TWithComment

– TPackageable

– TWithInheritances

– TWithAttributes

– TWithMethods

– TInvocationsReceiver
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Composable Meta-Model

●JavaClass uses:

– TClass

– TWithVisibility

– TWithExceptions

●PharoClass uses:

– TClass

– TUsesTraits

– TWithExtentions
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Composable Meta-Model

●TMethod uses:

– TNamedEntity

– THasSignature

– TTypedEntity

– TWithClassScope

– TInvocable

●

– TWithImplicitVariables

– TWithLocalVariables

– TWithParameters

– TWithReferences

– TWithStatements
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Meta-Model builder

●“Builders” to create metamodels

– DSL (inspired by PlantUML)

– Can import other meta-models to compose meta-models 
together (ex: Java program with SQL queries)



39/59Séminaire LATECE

Composable Meta-Model

●FamixNG

– Association traits (7):
Inheritance, Access, Invocation, Reference, UseTrait, 
IncludeFile

– Technical traits (12):
SourceAnchor, metrics, queries

– Property traits(46):
name, comments, Typed, visibility, Invocable, …

– Terminal/Core/Entity traits (38):
Class, Method, Attribute, Parameter, Exception, Function, …

–
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Meta-Model builder

●New language meta-models built from FamixNG traits library

●“Builders” to create meta-models
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Meta-Model builder

●New language meta-models built from FamixNG traits library

●“Builders” to create meta-models

– DSL (inspired by PlantUML.com)

●@startuml
●Class1 <|-- Class2
●Class3 *-- Class4
●Class5 – Class6
●@enduml

https://plantuml.com/
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Meta-Model builder

●Example: Meta-model for commits

●Define classes
– entity := builder newClassNamed: ’Entity’.

file := builder newClassNamed: ’File’.
commit := builder newClassNamed: ’Commit’.
author := builder newClassNamed: ’Author’.

●Define properties
– commit property: ’revision’ type: #Number.

commit property: ’date’ type: #Object.
commit property: ’message’ type: #String.
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Meta-Model builder

●Example: Meta-model for commits

●Define inheritances
– file --|> entity.

file --|> TNamedEntity.
commit --|> entity.
author --|> entity.
author --|> TNamedEntity.

●Define relations
– file *-* commit.

commit *- author.
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Integrated Reverse Engineering Environment

●Reverse engineering involves many tasks

– Visualization, query, metrics, navigation, dependency 
analysis, control flow/data flow analysis

–

●This calls for many specialized tools collaborating

●The tools must be generic (meta-model agnostic)

●The tools must collaborate
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ModMoose

●ModMoose an Integrated Reverse Engineering Environment

●IREE

– Iree is of Hebrew origin and means: Gift of God

– In Jamaican English, iree (or irie) means: nice, good, or 
pleasing; Iree is about being calm pleasant and taking life a 
day at a time

–
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ModMoose

●ModMoose an Integrated Reverse Engineering Environment

Infrastructure Tools
Query Tags Visualization

Moose environment

buses

Tool Tool Tool Tool

Language metamodel

FamixNG composable traits



48/59Séminaire LATECE

ModMoose

●ModMoose an Integrated Reverse Engineering Environment

– The environment centralizes data and tool interactions

– Tools are focusing on a single task: e.g., the Query Browser 
works on a set of model entities and produces another set 
of entities

– Tools communicate through buses, they “read” model 
entities on their bus(es) and “write” entities back on their 
bus(es)
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Tools

●Model Browser (imports/selects models)

●Entity Inspector (Properties of selected entities + values)

●Query Browser (GUI for MooseQuery)

●Dependency Graph Browser (graph w/ incoming/outgoing 
dependencies of entities)

●Duplication Browser (shows code clones occurances)

●Source Code (Listing of source code)

●Logger (Records each step with entities that pass on a bus)
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Tools

●Query Browser



51/59Séminaire LATECE

Tools

●Duplication Browser
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Tools

●Dependency Graph Browser
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Tools

●Entity Inspector
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Communication Buses

●Tools “read” and “write” model entities on buses

●Each tool can be attached to 0 to n buses

●Can have several instances of the same tool concurrently

●Ex: Compare dependencies of two set of entities

– Bus1: QueryBrowser1 + DependencyGraphBrowser1

– Bus2: QueryBrowser2 + DependencyGraphBrowser2

●
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Communication Buses

●Logger tool can be set as a bridge between all buses

– Listens to all buses (records all steps in session)

– Forwards its activity on all buses (to synchronize them)

●
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Tools

●Fine control of tool behavior

– Follow: Display incoming entities, produces outgoing entities

– Highlight: Highlight incoming entities in “frozen” display

– Frozen: Frozen display but, produces outgoing entities



57/59Séminaire LATECE

Agenda

●Reverse engineering in the large/small

●Moose, some background

●Composable Meta-Model

●Integrated Reverse Engineering Environment

●Conclusion



58/59Séminaire LATECE

WrapUp

●FamixNG

– Composition of programming language meta-models from 
basic traits

●ModMoose

– Interactive Reverse Engineering Environment

– Specialized tools communicating through buses
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Modular      oose
Nicolas Anquetil

nicolas.anquetil@inria.fr

Infrastructure Tools
Query Tags Visualization

Moose environment

buses

Tool Tool Tool Tool

Language metamodel

FamixNG composable traits
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