Recommendations

for Evolving Legacy Databases

Julien Delplanque

juliendelplanque@inria.fr

Université i s o a®
de Lille (reeia— e

inventeurs du monde numeérique

https://rmod.inria.fr/web/

Overview

1. Reminder about relational databases
2. Recommendations for Evolving Legacy Databases

3. Conclusions and future work

RDBMS - Basic Entities

Table

JIIIIIIIIIIIIII

person ' favorite_beer

Julien
Benoit
Guillaume

Cyrille

J

“"' \FgbEEEEEEEEEEEEEERN

Primary key Foreian k
constraint oreign Key] . .
.- constraint beer id designation
Lupulus
Duvel
' Troll
Column

RDBMS - Behavioural entities

e Views: Named SELECT queries stored in the database.

e Stored procedures: Functions, written in a programming
language, implementing arbitrary computation.

e Jriggers: Entity listening to events happening on a table
and reacting to them.

Problems during DB
evolution

 No inconsistency is tolerated by the DBMS

e Stored procedures are black boxes

Examples

Example: remove beer.id

person ' favorite_beer

Julien
Benoit

Guillaume

Cyrille

designation

Example: remove beer.id

person ' favorite_beer

Julien
Benoit

Guillaume

Cyrille

Example: remove column
beer.designation referenced in view

person favorite_beer

Julien
Benoit
Guillaume

Cyrille

VIEW person_to_favorite_designation

SELECT i\d, name, designation — |
FROM person, beer

WHERE person.favorite_beer = beer.id;

s

Example: remove column
beer.designation referenced in view

VIEW person_to_favorite_designation

SELECT id, name, designation
FROM person, beer

WHERE person.favorite_beer = beer.id;

Refe’use change

Ve

/“(

VIE N e son_to _favorite deS|gn

SELECT id, naitne de g
FROM person, bget ‘f-

fAtion

WHERE nersdN.favorite ber beer.id;

Continues in cascade

Example: remove column
beer.designation referenced in view

VIEW person_to_favorite_designation

SELECT id, name, designation
FROM person, beer

WHERE person.favorite_beer = be

"\\‘ -

e
gl

VIE‘ son_to_favorite deS|gn
SELECT id, name de g
FROM person, Dge Py
WHERE DEFSON favorlte ber beer.id;

"'- |on

Continues in cascade

Example: remove
person.name

person ' name favorite_b=zer

R

Julien

Benoit

Guillaume

Cyrille

beer o] designation

-

STOR. PROC. id_of troll/ lovers
RETURN SEL\ECT perfon.id

Lupulus

Duvel
FROM person, beer
WHERE person.favorite_beer = beer.id

AND beer.designation = “Troll’;
— 10

Troll

person

Example: remove
person.name

name favorite b=zer
3

Julien

Benoit

Guillaume

Cyrille

)

designation

of

STOR,PK OT.. “troll/lovers Lupulus
RETURMG CT person.id Duvel
FROM person, beer

Troll

WHERE person.favorite_beer = beer.id
AND beer.designation = ‘Troll’;

i 10

Recommendations for
Evolving Legacy
Databases

Refactoring v.s. Change

Refactoring

Code evolution

Behaviour preserving

Modify software
features

12

Refactoring v.s. Change

Refactoring

Code evolution

Behaviour preserving

Modify software
features

12

Approach overview

AN

o |-

Change initialisation DBA decisions Op teratolrsttonSQL Patch generation
and impact computation ransiatio

13

You are here

Meta-model By

SQL
Operators to SQL i
. franslation Patch generation
StructuralEntity
+container +references
ColumnsContainer ; T TypeReference 0.*
4& +co|umn30..* +referencedType [1 +type [1
[oo e S

T gt 00| constain SRV — Type tructural entities
anie 1 +constraints +column

' +references [0..* . |

_ |+tableConstraint 1.* 1 +columnConstraint

TableConstraint 3 +referencedColumns, ColumnReference +referencedColumn 0..* | ColumnConstraint

BehaviouralEntity

||A\\

BehaviouralEntity

AN

PrimaryKey ForeignKey Unique Check Default NotNull
+parameters +tableReferenced
Parameter
0.* TableReference 1
+typeReference |4 0..* |+parameters
+typeRefgrence +IocaIVar|abIe
TypeReference |1 1
+typeReturnedReferen1ce LocalVariable 1 [+trigger
>
@)
3 +logalVariables Trigger
ColumnsContainer % +stored rocedure 0.+ |+triggers
l l ~ ‘ +coIReference
= =g i 1) StoredProcedure — ColumnReference
Behavioural entities View frodTania] DerivedTable
+dgrivedTable . storedProcedure
©
1 ’ o) 1
-..GE_) g. container
% 8 +storedProcedure
o 5] +queries
2 ol
+ D _)
g 1 % +definitionQuery CRUDQuery TriggerStoredProcedure 1
& DerivedTabIeReference§ 4
c Q
Re)
£ | [[|
S\
14 ? y SelectQuery InsertQuery UpdateQuery DeleteQuery

You are here

o a°) e

inalisatiofh isions” Operators to SQL
Change initialisatio \\!\‘ ptransatlon Patch generation

Impact computation
& Recommendations selection

s()

RETURN SELECT COUNT(") FROM t1 WHERE t1.c > 5;

SELECTti.c
FROM t1

Rename t.c column as t.d

SELECT vic 2.e SELECT v2.e
FROM v1; FROM v2;

15

You are here
/’f =

i N
Impact computation 0 E>
SQL
& Recommendations selection
Change initialisatiof \,\\ | Op?rglrt]glrgﬁtgnSQL Patch generation

s . s()
| ‘ i P RETURN SELECT COUNT(") FROM t1 WHERE t1.c > 5;

vi ——

SELECT e EL_:giL—d y . y depends on 3

FROM t1 ; Ly X
t2 WHERE ti.c = 1; X :referencetox Rename t.c column as t.d

e V2 T v3
SELECT vi.c, t2.e SELECT v2.e
FROM v1; FROM v2;

> Initial change O Change selected by developer
RenameColumn(t.c, t.d []| Impactedentity : : Change rejected by developer

—>» Impact of change ----» Recommendation to solve impact

15

You are here
/’f =

Impact computation E>S—QB
& Recommendations selection é \NE= /W |
o s()

| ‘ C P RETURN SELECT COUNT(") FROM t1 WHE%N_.C > ,;

vi ——
oSO e y . y depends on 3
FROM t1 vy X
e v2 i/ v3
SELECT vi.c, t2.e SELECT v2.e
\E:R 0 v EROM \@;

ColumnReferencef - - - - »__ReplaceReference(s, "t.c", "t.d") _> C > Initial change O Change selected by developer
RenameColumn(t.c, t.d []| Impactedentity : : Change rejected by developer

—>» Impact of change ----» Recommendation to solve impact

15

You are here
,,/f S

Impact computation
& Recommendations selection

o |-

initialisatio isi # Operators to SQL i
Change initialisatio \\,!\ deC|!¢ ptranslatio A Patch generation

\:'\‘-,_ =

1
M s(
§ C RETURN SELECT COUNT(*) FROM t1 WHERE t1.c > 5;
. X €— Y :ydependsonXx™,
e v3
SELECT v2.e
FROM v2;
CO}‘&T nReference ---- -)erlaceReference(s, el "t'dD O Initial change O Change selected by developer
RenameColumn(t.c, t.d ColumnReferencef ---- »<_ReplaceReference(v1, "t.c’,"td") > || Impactedentity " : Change rejected by developer

—>» Impact of change ----» Recommendation to solve impact

15

You are here

Impact computation
& Recommendations selection

o |-

initialisatio isi # Operators to SQL i
Change initialisatio \\,!\ deC|!; ptranslatio A Patch generation

o 0
| C RETURN SELECT COUNT(*) FROM t1 WHERE t1.c > 5;
. X €— Y :ydependsonXx™,
{0 i X :mleenceiox | Rename t.c column as t.d
e v3
SELECT vi.c, t2.e SELECT v2.e
FROM v1; FROM v2;

ColumnReferencel --- - »__ReplaceReference(s, "t.c", "t.d") > C > Initial change O Change selected by developer

ColumnReferencef - - - - »< ReplaceReference(v1, "t.c", "t.d") > |[___| Impactedentity " ": Change rejected by developer

... —> Impact of change ---» Recommendation to solve impact

RenameColumn(t.c, t

ColumnReferencef: - - - »:’AliasColumnDeclaration(v1, "t.c", "t.d").»

A< ReplaceReference(v1, "t.c", "t.d") >

15

You are here

Impact computation
& Recommendations selection

o |-

initialisatio isi # Operators to SQL i
Change initialisatio \\,!\ deC|!; ptranslatio A Patch generation

\;'\‘~,_ =

i S0

| ‘ C P RETURN SELECT COUNT(*) FROM 11 WHERE t1.c > 5;

A ——
SELECT t1.c EL;egiL_d I —— :
FROM t1 : .y depends on X™;
t2 WHERE ti.c = 1; ' X :referencetox | Rename t.c column as t.d
e v 1 v3
SELE SELECT v2.e
FROM v FROM v2:

ColumnReferencef ---- -)erlaceReference(s, "t.c", "t.d"

> Initial change O Change selected by developer

RenameColumni(t.c, t.d>—»| ColumnReference} - - - - < _ReplaceReference(v1, "t.c", "t.d") —> Impacted entity <" Change rejected by developer
... Impact of change ----» Recommendation to solve impact
ColumnReferencer: - - - »’AliasColumnDeclaration(v1, "t.c", "t.d"): v
A< ReplaceReference(v1, "t.c", "t.d")L_—>—»|ColumnReference} - - »<&asColumnDeclaration(v2, "v1.c", "vi.dD>
A:"ReplaceReference(v2, "v1.c", "vi.di)

15

Architect choices compilation

ReplaceReference(s, tc)
(2)

ReplaceReference(v1, “t@
(3)

ReplaceReference(v1, "t.c”, "t.d") '“C°'“m"0.ﬁ,‘;'aé%"°(’;(®
(4) '

RenameColumn(t.c, t.d)
(1)

Architect intervention 16

You are here

>

SQL

You are here

e /

Architect choices compilation ro&-.Q sal

. Begin
—3> Relation between operators of each step |
:] Technical operators :
l ModifyStoredProcedureBody(s)
" x l
ReplaceReference(s, "t.c", "t.d") |
e !
4 ModifyViewQuery(v1)
I (i)
RenameColumnit.c, t.d) ReplaceReference(v1, “tm I
@ |
1 ModifyViewQuery(v2)
| | (i)

ReplaceReference(vi, "t.c", "t.d") 'asc°'”m“D,?°1'aé,".“"°"("2-‘ vi.ch
@) e

RenameColumn(t.c, t.d)
(iv)

End
Translating reference-oriented operators
as entity-oriented operators

A
\ 4

—1
(©)}

Architect intervention Automatic process

You are here

e /

SQL

Architect choices compilation

Begin

—————> Relation between operators of each step

:] Technical operators

ModifyStoredProcedureBody(s)

ReplaceReference(s, tm
@

ReplaceRefer{cD ,‘d)

ReplaceRefer{ce(w, '1.,'. "t.d")

RenameColumn(t.c, t.d)

ModifyViewQuery(v2)
(iii)

fasColumnDeclaration(v2, "vi.c™
"V1 .d") (5)

RenameColumn(t.c, t.d)
(iv)

End
Translating reference-oriented operators
as entity-oriented operators

A
\
A

—1
(©)}

Architect intervention Automatic process

You are here

S .

e /(

SQL

Architect choices compilation

t1 s()
c RETURN SELECT COUNT(*) FROM t1 WHERE t1.c > 5;
vi
(— '.............................I
SELECT t1.c iLegend :
FROM t1 X <Yy :ydependsonx ;
t2 WHERE ti.c=1; ! X :reference to x

e \vz — w

SELECTvi.c 2.e SELECT v2.e
FROM v1; FROM v2;
| —

Begin , Begin
———> Relation between operators of each step i)
' > DeleteStoredProcedure(s) (a)
:] Technical operators) .
V> DeleteView(v3) (b)
\ ModifyStoredProcedureBody(s) - /
—> DeleteView(v2) (c)

ReplaceReference(s, "t.c", "t.d")
@

ReplaceRefer1cD ,‘td")
|

ReplaceRefer{ce(w, "t’ "t.d")

DeleteView(v1) (d)

ModifyViewQ ryiv1) |
(i)

~
J

RenameColumn(t.c, t.d)

—>
> RenameColumn(t.ct.d) (e)

ModifyViewQuery(v2)
(iii)

CreateView(v1) ()

fasColumnDeclaration(v2, "v1.c™
nv1 .d") (5)

RenameColumn(t.c, t.d)
(iv)

—
> CreateView(v2) (@)
>

CreateView(v3) (h)

CreateStoredProcedure(s) ()
End

End
Translating reference-oriented operators
as entity-oriented operators

Technical operator generation

A
\
A

>

—1
(©)}

Architect intervention Automatic process

You are here

e /(

SQL

Architect choices compilation

t1 s()
c RETURN SELECT COUNT(*) FROM t1 WHERE t1.c > 5;
vi
(— '.
SELECT t1.c iLegend :
FROM t1 X <Yy :ydependsonx ;
t2 WHERE ti.c=1; ! X :reference to x

e\m

SELECTvi.c 2.e

FROM v1;
-~/
Begin , Begin
————> Relation between operators of each step r)
' > DeleteStoredProcedure(s) (a)
:] Technical operators) < .
V> DeleteV 2w(v3) (b)
ModifyStoredProcedureBody(s) ™ -

ReplaceReference(s, tm e DeleteView(v2) (c)
@ 5 \)
— \ (") E - ~
RenameColumnt.c, t.d) ReplaceRefereglice(v1, "L, "t.d") > RenameColumn(t.c,t.d) (e)

» “

CreateView(v1) (f)

ModifyViewQuery(v2)
(iii)

. v

- ~

—>
lasColumnDeclaration(v2, "v1.c™
> CreateView(v2) (@
—

"1.d) (5)

ReplaceRefer{ce(vL 1’ "t.d")

. J

RenameColumn(t.c, t.d)
(iv)

Create w(v37)7 (h)

CreateStoredProcedure(s) ()
End

End
Translating reference-oriented operators
as entity-oriented operators

Technical operator generation

A
\
A

>

—1
(©)}

Architect intervention Automatic process

Experiment

e Information system to manage members of our university
department

e 95 tables, 63 views, 109 stored procedures, 20 triggers
e Post-mortem analysis of a SQL patch on this database

e \We observed trial-and-error process from DBA to find
dependencies between entities in a previous study”

e 1h to achieve a script of 200 LOC / 19 statements

* Julien Delplanque, Anne Etien, Nicolas Anquetil, and Olivier Auverlot. Relational Database Schema Evolution: An Industrial Case
Study. In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME), 2018.

17

http://rmod.inria.fr/archives/papers/Delp18c-ICSME-DatabaseSchemaEvolution.pdf
http://rmod.inria.fr/archives/papers/Delp18c-ICSME-DatabaseSchemaEvolution.pdf

Experimental protocol

. Extract initial semantic operators from SQL script

. Take decisions using DBA’s policy when multiple
possibilities

. Execute generated SQL script on a database in the

same state as information system’s database before
the migration

18

Experiment - Initial semantic
operators extracted

RenameColumn(person.uid, login)
RemoveFunction(key_for_uid(varchar))
RemoveFunction(is_responsible_of(int4))
RemoveFunction(is_responsible_of(int4,int4))
RenameFunction(uid(integer), login(integer))
RenamelocalVariable(login.uidperson, login.loginperson)

RemoveView(test_member_view)

19

Results

15 decisions taken concerning the choice between
renaming and aliasing.

270 LOC script with 27 SQL statements.
Generated script executed without error.

Single difference between the dump of the original
database and our clone: a comment.

Time to implement the evolution using our tool: 15 min
(v.s. 60 min without tool).

20

Conclusion

e Approach developed to address 2 main constraints set by DBMS:

1. No inconsistency is allowed

2. Stored procedure bodies are black box

e Main contributions:

A. Meta-model for relational databases easing impact
computation

B. Semi-automatic approach to help in database evolution

C. Experiment to assess the effectiveness of our approach

21

Future work

e Extend supported semantic operators

e Compare the performance of architects using or not our
tool to achieve the same evolution

e Empirical study on multiple open-source projects using
relational a database

» Assess if our tool can reproduce various changes

» Compare changes proposed by our tool with changes
historically applied on the database

22

Prototype

» v FmxSQLStoredProcedure cle_pour_uid
v % RenameColumn(public.personne.uid TO public.personne.login) * V¥ FmxSQLStoredProcedure est_responsable_de SHAMEREIETE
v RenameReferencelnStoredProcedure(uid => login) » v FmxSQLTriggerStoredProcedure t_personne_modification DoNothing()
v RenameReferencelnStoredProcedure(uid => login) v % FmxsQLStoredProcedure uid
v RenameReferencelnStoredProcedure(uid => login) = :

» %% FmxSQLView vue_annuaire_membres
» %~ FmxSQLView vue_annuaire_membres_test
» %~ FmxSQLView vue_entrees_par_annee
» % FmxSQLView web_annuaire_membres

-- Retourne |'uid LDAP d'un membre en fonction de sa clé primaire dans la table personne
- Auteur: Olivier Auverlot
-- Mise a jour: 01 septembre 2014

DECLARE
uidpersonne varchar := ;

BEGIN
SELECT uid INTO uidpersonne
FROM
personne
WHERE
clepersonne =cle;

RETURN uidpersonne;
END;

Example: remove
person.name

person name favorite_beer

designation

24

Example: remove
person.name

person

designation

24

Approach Description

A. Impact computation
B. Recommendations selection

C. Compiling architect choices as a valid SQL script

25

About my PhD

What quality problems
databases have?

About my PhD

What quality problems How DBAs make
databases have? their DB evolve?

20

About my PhD

What quality problems
databases have?

How to sustain
DB evolution using
software engineering
techniques?

How DBAs make
their DB evolve?

20

About my PhD

CodeCritics Applied to Database Schema:
Challenges and First Results

Julien Delplanque*T, Anne Etien*, Olivier Auverlot*, Tom Mens', Nicolas Anquetil* and Stéphane Ducasse*
* Université de Lille, CRIStAL, CNRS, UMR 9189, Lille, France
RMoD Team, Inria Lille Nord Europe
{firstname.lastname } @inria.fr
f Software Engineering Lab, Université de Mons, Belgium
julien.delplanque @student.umons.ac.be, tom.mens@umons.ac.be

Abstract—Relational databases (DB) play a critical role in many
information systems. For different reasons, their schemas gather
not only tables and columns but also views, triggers or stored
functions (i.e., fragments of code describing treatments). As for
any other code-related artefact, software quality in a DB schema
helps avoiding future bugs. However, few tools exist to analyse DB
quality and prevent the introduction of technical debt. Moreover,
these tools suffer from limitations like the difficulty to deal with
some entities (e.g., functions) or dependencies between entities.
This paper presents research issues related to assessing the
software quality of a DB schema by adapting existing source code
analysis research to database schemas. We present preliminary
results that have been validated through the implementation of

DBCritics, a prototype tool to perform static analysis on th@7

SQL source code of a database schema. DBCritics addresses the

The usual answer to DB evolution is to rely on metadata
describing the DB schema. But these metadata do not consider,
for example, the body of internal functions nor the requests
building views. As a consequence the issues described above
(similar to code smells), cannot be detected. Yet they may have
important impact on the application using the DB. Quality
analysis should therefore go beyond metadata only, and also
consider internal treatments (e.g. stored procedure, triggers).

This paper adopts a software engineering approach by
considering a DB similarly to a program and proposing to
adapt existing software quality tools and techniques to it. Such
an approach should be language dependent as is the case
for most static analysis techniques in reverse engineering. It
reaquires to reverse encineer the DB schema and to analvse its

About my PhD

CodeCritics Applied to Database Schema:
Challenges and First Results

Julien Delplanque*T, Anne Etien*, Olivier Auverlot*, Tom Mens', Nicolas Anquetil* and Stéphane Ducasse*
* Université de Lille. CRIStAT.. CNRS. UMR 9189. IL.ille. France

Abstre
informa
not onl;
function
any oth
helps av
quality
these to
some el
This p:
software
analysis
results
DBCeriti

SQL so

x — O Database Critics Browser - fhome/julien/Documents/Pharo/DCB/AppSI/schema20160125.

2R EL® O &« 2ed

(0 Column not key (PK/FK) including "cle" in name. (11)
Foreign key referencing a non primary key. (0)

@ High number of columns in a table/view. (2)

© High number of columns is SELECT request. (1)
SELECT request using *. (0)

@ Stub entity. (11)

@ Table alone. (13)

@ Table without primary key. (9)

© View using another view. (4)

@ View using only one table. (10)

Entities

diplome.cle_coencadrant (Column)
soutenance.cle_diplome (Column)
personne.cle_nationalite (Column)
quotite_support.cle_quotite (Column)
quotite_support.cle_support (Column)
web_equipes_cristal.cle_theme (Column)
web_equipes_cristal.cle_type_equipe (Column)
vue_liste_personnel_affectations.clepersonne (Column)
vue_annuaire_membres_test.clepersonne (Column)
vue_annuaire_membres.clepersonne (Column)
vue_liste_personnel_affectations.cletypesupport (Column)

Mark as false positive

Generally, when a column name uses "cle", it is either a PK or 2FK. If not the case, it may be an error.

metadata
consider,
> requests
»ed above
may have
). Quality
and also
riggers).

roach by
posing to
o it. Such
the case
ieering. It

nalvse its

About my Ph

Relational Database Schema Evolution:
An Industrial Case Study

Julien Delplanque, Anne Etien, Nicolas Anquetil and Olivier Auverlot
Université de Lille, CRIStAL, CNRS, UMR 9189,
RMoD Team, Inria Lille Nord Europe
Lille, France
{firstname }. {lastname } @inria.fr, olivier.auverlot@univ-lillel.fr

Abstract—Modern relational database management systems
provide advanced features allowing, for example, to include
behaviour directly inside the database (stored procedures). These
features raise new difficulties when a database needs to evolve
(e.g. adding a new table). To get a better understanding of these
difficulties, we recorded and studied the actions of a database
architect during a complex evolution of the database at the core
of a software system. From our analysis, problems faced by
the database architect are extracted, generalized and explored
through the prism of software engineering. Six problems are
identified: (1) difficulty in analysing and visualising dependencies
between database’s entities, (2) difficulty in evaluating the impact
of a modification on the database, (3) replicating the evolution
of the database schema on other instances of the database,
(4) difficulty in testing database’s functionalities, (5) lack of

synchronization between the IDE’s internal model of the database28

and the database actual state and (6) absence of an inteerated tool

introduce new complexity in the management of the databases.
We were asked by a database architect in our university to look
at the matter and see if we could propose solutions to help him
evolve a large PostgreSQL database (95 tables). This database
has some characteristics that make it difficult to evolve:

o It has many views (62). In PostgreSQL, modifying a table
used by a view might requires deleting the view first, then
modifying the table and finally recreating the view. If this
view itself is used by another view, the other one also has
to be removed and recreated (in cascade).

It has many stored functions (64). In PostgreSQL., stored
functions are just text, so if a stored function accesses
a table (or view) that has been modified, there is no
check or warnino from the RDRMS The validitv of the

The topic today

Recommendations for Evolving Legacy Databases

Abstract—Relational databases play a central role in many
information systems. Their schemas usually contain structural
and behavioral entity descriptions. However, as any piece of
software, they must continuously evolve to adapt to new require-
ments of a world in constant change. From an evolution point of
view, problems are twofold: (1) relational database management
systems do not allow inconsistencies i.e., no entity can reference
a non existing entity; (2) stored procedure bodies are black
boxes i.e., DBMS as PostgreSQL consider stored procedure
bodies as plain text and references to entities are unknown.
As a consequence, evaluating the impact of an evolution of the
database schema is a difficult task. In this article, we present
a semi-automatic approach based on recommendations (sort of
nested code transformations). Recommendations are proposed
to architects who select the ones fitting their needs. Selected
recommendations are then analysed and compiled to generate
SQL script respecting the constraints imposed by the RDBMS.
To support recommendations, we designed a meta-model for
relational databases easing computation of change impact. We
performed an experiment to validate the approach by reproduc-
ing a real evolution on a database. Thus, contributions are: 1) a
meta-model for relational databases easing the computation of the

impact of a change, 2) a semi-automatic approach for evolving ang

For example, to remove a column of a table from a database,
different cases occur:
(1) If the column is not referenced, the change can be
performed.

(1) If the column is a primary key and is referenced as foreign
key in another table, the removal is not allowed.

(111) If the column is referenced in views, the DBMS offers
two possibilities to the architect. Either the change is
refused or all the views referencing the column to re-
move must be dropped. In the later case, all the views
referencing the views to drop must also be transitively
dropped to keep the schema in a consistent state. The list
is provided to the architect before the removal. However,
the architect can only accept all the drops in cascade or
the initial change (removing the column of a table) is
refused.

(iv) If the column is referenced in a function, the DBMS
accepts the removal of the column, but an error might
occur at run time.

database while managing the impact of subsequent nested code Cases 11 and iii result from the first problem, ie., the way

