

A Weak Pharo

 Story

Smalltalk is a

GC'ed
language

Two kind of leaks

● Leak application objects
e.g., your domain objects, collections...

● Leak external objects
e.g., sockets, files, memory allocated
in C heap

Root objects hold yours!

These two
guys in the
red area are
never going to
be collected

But... we have Weak References

Weak References In One Slide

Not
Collected

What about external objects?

File id

Who closes the
file if it gets
collected?

Finalization

There is a registry of
“Objects to be notified when about to be

collected”

WeakRegistry default add: theInterestedGuy

Object Finalization

File id

The registry
notifies

finalize

close

But NONE of it is

[WARNING]

The following images
can affect sensitive
people

No matter how weak
your references are

Memory Leaks
will find you

The Weak Pharo Story (finally)

O nce upon a time, there was

Announcements, an event delivery library,

that the princess named Engineer used to

notify myObject from anEvent

announcer
 when: anEvent
 send: #message
 to: myObject

The Weak Pharo Story (II)

But Engineer did love myObject so much

that it did not want to retain it for ever. It did

not want announcer to hold myObject

strongly. She wanted a weak announcer.

announcer weak
 when: anEvent
 send: #message
 to: myObject

The Weak Pharo Story (III)

However, Engineer did not know this may

curse myObject to be alive for the eternity.

And never be collected and see his friends

die. And create OutOfMemory errors on the

land of objects to torment the rest of the

objects.

The end

Case 1: The Strong Announcer

Case 2: The Weak Announcer

Case 3: The Hybrid Announcer

Autopsy

● Weak references do not simply avoid leaks!

● Finalization itself can create leaks!

So... solutions?

1) How do we detect leaks?

2) How do we prevent some?

#1 - Detecting Leaks

Memory leaks investigation

Why ???

anObject pointersTo

● Very inefficient

SystemNavigation default allObjectsDo: [:e |
(e pointsTo: self) ifTrue: [

pointers add: e]].

Easy to get lost

anObject pointersTo first
pointersTo first pointersTo
second pointersTo last...

Open pointers to...

● Easy to use for simple cases
● Uses #pointersTo
● References from tools more mess▶

Hell of announcements and
weak references

RefsHunter

● Temporary snapshot of the object memory

RefsHunter

● Shows the shortest path from one object to
another

● Fast queries

 rh := RefsHunter snapshot.
 rh wayFrom: (Array>>#asArray)
 to: Smalltalk specialObjectsArray.

RefsHunter
● Find references path to global space
● Easy to use
● No GUI
● Memory inefficent

– more snapshots are not a good idea, really

● Download from the Catalog

Avoid memory leaks

● Memory leak tests
– Time consuming for basic Pharo image

#2 – Avoiding Leaks

● Ephemerons are special objects used for finalization

● They do not create leaks by themselves
(as the WeakRegistry did)

● Soon in Pharo 6.0

Ephemeron Finalization

Ephemerons in Case 3
Ephemeron

Ephemeron

Lessons learned

● Announcements are sometimes overused
● Crazy leaking objects in the image

– some tools opened in past during manual
integration referenced by active hand click
state

● Not every leak last forever
– it takes 30 seconds to garbage collect closed

Nautilus

● We need better tools support

Conclusions

● Weak references are nice
● But they are not magical

 You can still create memory leaks with them

● Ephemerons will fix it partially
 But you still need to know what you're doing a bit...

The End
or questions?

3.4 Exercises:
key

value
ephemeron

3.4 Ephemerons – Operational
View
● When the GC passes...
● 1) It does not traverse ephemerons:

 It queues them

● 2) Then

[traverses ephemerons whose key is referenced]
whileTrue: [

 there are ephemerons with keys referenced]

3.4 Exercises:
key

value
ephemeron

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

