
Virtual CPU
ESUG, Cambridge 2014

By Igor Stasenko & Max Mattone
RMod, Inria

Wednesday, August 20, 14

Highlights

• What?

• Why?

• How?

• Demo

• To Do

Wednesday, August 20, 14

What is VCpu?

• a framework to write low-level code

• can simulate & generate machine code

• multiple backends for ARM, x86/x64
code generation

• 100% implemented in smalltalk

Wednesday, August 20, 14

What is VCpu NOT

• NOT a full-fledged compiler with
numerous data “types”, like GCC/
LLVM

• NO direct support of calling
convention(s)

• it is a bare-bone model of computer
with CPU & memory.. to build on top of
it

Wednesday, August 20, 14

Requirements

• expressive power of smalltalk

• malleable

• extensible

• simple

• yet powerful

Wednesday, August 20, 14

Architecture

RTL VCPU Interface

Simulating CPU Generating CPU

Low-level intermediate

Liveness analysis

Register allocation

Optimizations

AsmJIT

Platform dependent

Platform neutral

Wednesday, August 20, 14

Why

• there’s no low-level compilers for
smalltalk

• on inventing own wheel: adapting
existing solutions costly as (h/w)ell

• lets us learn as we do it

Wednesday, August 20, 14

Don’t mode me in

Implementing low-level semantic

Idea Smalltalk Slang C Machine

Idea Machine

Wednesday, August 20, 14

A more correct picture

Idea Machine

Wednesday, August 20, 14

At the end of the day

memory at: x put: y

So, tell me, why you have to be expert in 10+
disciplines to do that?

Wednesday, August 20, 14

There must be a better
way

• i was looking for a nice & simple
solution since 2006

• VCpu interface, is product of number
of painful attempts to get there

• Now i am pleased (almost).

Wednesday, August 20, 14

How

• imperative rather than declarative

• coding with VCpu is just plain
smalltalk

Wednesday, August 20, 14

Imperative

• you don’t ‘compile’ or translate code,
you just execute own code istructing
CPU what to do: cpu doThat

Wednesday, August 20, 14

Dual nature

• can be either simulated or generating
machine code, just use different CPU

• you free to choose any style you want
to program it

Wednesday, August 20, 14

Machine word

• a facade object representing a virtual
CPU register/variable (machine word)

• it easy to manipulate with, since one
can define a usual arithmetic
operations, like #+ , #- , #*, #/ etc..

• serves as a basis of VCpu ‘DSL’

Wednesday, August 20, 14

Lets learn a new DSL

Wednesday, August 20, 14

Step 1. Creating a new
machine word

word := cpu word: 10.

Wednesday, August 20, 14

Step 2. Assigning new
value to existing one

word1 := cpu word: 10.

word2 := cpu word: 4.

word2 value: word1.

...

word2 := word1. Wrong!!!

Right

Wednesday, August 20, 14

Step 3. Arithmetic
expressions

word := x + y bitAnd: z

just keep in mind, it is not ‘school’ but ‘CPU’ math

Wednesday, August 20, 14

Step 3. Arithmetic
expressions

word := x + y bitAnd: z

the result of expression is
 always new machine word

just keep in mind, maybe you wanted:

word value: x + y bitAnd: z

... instead

Wednesday, August 20, 14

Step 3. Arithmetic
expressions

word := x + 5

.. expressions can be intermixed with regular
constants

as long as receiver is machine word

Wednesday, August 20, 14

Step 4. Memory access

word := address loadWord

address writeWord: x

Wednesday, August 20, 14

Step 5. Comparisons/
control flow

a>b ifTrue: [..] ifFalse: [..]

a to: b do: [:i |..]

x timesRepeat: [..]

Looks familiar?

Wednesday, August 20, 14

Thanks, we have Opal

• disable inlining (ifTrue:/to:do: ..etc)

expression ifTrue: [..] ifFalse: [..]

this is Sparta Pharo!

mustBeABoolean

Wednesday, August 20, 14

Step 6. Call/return

address call

cpu return.

cpu return: x **

** requires a notion of calling convention

Wednesday, August 20, 14

End of tutorial

Wednesday, August 20, 14

NativeBoost integration

abs: x
	 <primitive: #primitiveNativeCall module: #NativeBoostPlugin>
	 ^ self nbCallout
	 	 function: #(int abs (int x))
	 	 module: NativeBoost CLibrary

VCpu-style callout

NativeBoost-style callout

?

Wednesday, August 20, 14

NativeBoost integration

abs: x
	 <primitive: #primitiveNativeCall module: #NativeBoostPlugin>
	 ^ self nbCallout
	 	 function: #(int abs (int x))
	 	 module: NativeBoost CLibrary

abs: x
	 <primitive: #primitiveNativeCall module: #NativeBoostPlugin>
	 ^ self nbCallout
	 	 function: #(int abs (int x))
	 	 module: NativeBoost CLibrary

VCpu-style callout

NativeBoost-style callout

this is Sparta Pharo!
Wednesday, August 20, 14

Demo

Wednesday, August 20, 14

To Do

• Finish optimizations

• Test ARM Support (on real hardware)

• Complete NativeBoost VCpu
implementation

• Documentation

• Look forward for Spur integration

Wednesday, August 20, 14

?
Wednesday, August 20, 14

