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Why?

• You already know about Voyage 

• You already attended to a tutorial last year 

• But there are some recurrent problems people find 
when trying to use it



Review: What is Voyage?
• Abstraction layer to map objects into a database 

- Very well suited for document databases, but in theory, 
the approach will work for other kind of repositories 

‣ There was (long time ago) a Voyage-GLORP backend 

‣ There was (even more time ago) a Voyage-
ImageSegment backend 

• Voyage-Memory  

• Voyage-Mongo



Review: Voyage principles
• Behavioural complete (for common usage), but 

decoupled approach also possible.  

• Same design for different backends, but not a 
common abstraction 

- There is no such thing as a “voyage query 
language”, etc. 

- is a bit more work for users who want to switch, 
but a lot more happiness for the program itself 



So, what about those tips?



Think in objects



Impedance mistmatch

Table BTable A Table C

Class A Class B Class C

1..*

*..*

Ideal relational model
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A simple model

Hero Power
*..*



Persist

(Hero named: ‘Groot’) 
  addPower: ((Power named: ‘Plant Control’)  
 level: #epic; 
 yourself); 
  save.

No need of more complications!



Persist
{ 
  _id: OID(…), 
  #version: …,  
  #instanceOf: ‘Hero’, 
  name: ‘Groot’, 
  powers: [ { #collection: ‘Power’, __id: OID(…) } ]  
} 
!
{  
  _id: OID(…), 
  #version: …,  
  #instanceOf: ‘Power’, 
  name: ‘Plant Control’, 
  level: #epic, 
  heroes: [ #collection: ‘Hero’, __id: OID(…) ] 
}



Take control



A simple model  
(a bit more complete)

Hero Power
*..*

Equipment

1..*

Container Pistol

1..*



Persist

(Hero named: ‘Star-lord’) 
  addEquipment: (Container 
    addItem: Pistol new; 
    yourself); 
  save.

No need of more complications!



Persist (1)

{ 
  _id: OID(…), 
  #version: …,  
  #instanceOf: ‘Hero’, 
  name: ‘Star-lord’, 
  powers: [], 
  equipment: [ {  
    #instanceOf: ‘Container’,   
    ‘items’, [  
      { #instanceOf: ‘Pistol’ } ] } ]  
}



Persist (2)
{ 
  _id: OID(1), 
  #version: …,  
  #instanceOf: ‘Hero’, 
  name: ‘Star-lord’, 
  powers: [], 
  equipment: [ { #collection: ‘Equipment’, __id: OID(2) } ] 
} 
!
{ 
  _id: OID(2), 
  #version: …, 
  #instanceOf: ‘Container’, 
  items: [ { #collection: ‘Equipment’, __id: OID(3) } ] 
} 
!
{ 
  _id: OID(3), 
  #version: …, 
  #instanceOf: ‘Pistol’, 
}



Integrity is a 
consequence



Allowing missing content

• We do not have foreign keys 

- So we cannot do things like “ON DELETE 
CASCADE” 

- Even delete validations are difficult  

‣ Imagine “hero” has a “power”,and I remove the 
“power”. How can the hero notice it?



Persist

mongoContainer 
  <mongoContainer> 
!
  ^ VOMongoContainer new 
      collectionName: ‘powers’; 
      enableMissingContent; 
      yourself



Querying



Query (1)

Hero  
  selectMany: [ :each | … ] 
  sortBy: { #name -> VOOrder ascending } asDictionary 
  limit: 100 
  offset: 100 
  



Query (2)

Hero  
  selectMany: { 
    ‘name’ -> {  
      ‘$regexp’: ‘^G.\*’. 
      ‘$options’: ‘i’  
    } asDictionary 
  } asDictionary



Adapt schemes



The “scheme is not mine” 
problem

• Yes, it happens :( 

• You can use the Magritte-Voyage metamodel to 
read it anyway 

• You can change the versioning model too



Use it today!

Gofer it 
  smalltalkhubUser: ‘Pharo’ project: ’MetaRepoForPharo30’; 
  configurationOf: ‘VoyageMongo’; 
  loadStable.


