Voyag by examp\e

tips and tricks on persisting object models

Esteban Lorenzano

Pharo core developer

INRIA - RMoD
http://smallworks.eu

http://smallworks.eu

Why?

* You already know about Voyage
* You already attended to a tutorial last year

* But there are some recurrent problems people find
when trying to use it

Review: What is Voyage”

e Abstraction layer to map objects into a database

- Very well suited for document databases, but in theory,
the approach will work for other kind of repositories

» There was (long time ago) a Voyage-GLORP backend

» There was (even more time ago) a Voyage-
ImageSegment backend

e Voyage-Memory

* Voyage-Mongo

Review: Voyage principles

Behavioural complete (for common usage), but
decoupled approach also possible.

* Same design for different backends, but not a
common abstraction

- There Is no such thing as a "voyage query
language”, etc.

- 1S a bit more work for users who want to switch,
but a lot more happiness for the program itselt

S0, what about those tips”

Think in objects

Impedance mistmatch

Class A Class B Class C
Table A Table B Table C
N N

Ideal relational model

Impedance mistmatch

[firstObject

r\ aColection secondObject

anObject otherObject thirdObject

Reality object model

Impedance mistmatch

j firstObject
thirdObjeC/

r\ aColection

anObject otherObject

Reality object model

Impedance mistmatch

firstObject

f\> aColection >| secondObject

anObject otherObiject &hirdObject

N

Reality object model

A simple moael

Hero < > Power

Persist

(Hero named: ‘Groot’)
addPower: ((Power named: ‘Plant Control?’)
level: #epic;
yourself) ;
save.

No need of more complications!

Persist

{
_id: OIDC(..),
#version: ..,
#instanceOf: ‘Hero’,
name: ‘Groot’,
powers: [{ #collection: ‘Power’, __id: OID(..) }]

_id: OIDC(..),

#version: ..,

#instanceOf: ‘Power’,

name: ‘Plant Control’,

level: #epic,

heroes: [#collection: ‘Hero’, __id: OID(..)]

lake control

A simple model
(a bit more complete)

Hero < > Power

[

Equipment

(1.* /4 v\
Container Pistol

Persist

(Hero named: ‘Star-lord?’)
addEquipment: (Container
addItem: Pistol new;
yourself) ;
save.

No need of more complications!

Persist (1)

{
_id: OIDC(..),
#version: ..,
#instanceOf: ‘Hero’,
name: ¢‘Star-lord’,
powers: [],
equipment: [{
#instanceOf: ‘Container’,
‘items’, [
{ #instanceOf: ‘Pistol’ }] }]

Persist (2

{
_id: 0ID(1),
#version: ..,
#instanceOf: ‘Hero’,
name: ‘Star-lord’,
powers: [],
equipment: [{ #collection: ‘Equipment’, __id: OID(2) }]

¥
{
_id: 0ID(2),
#version: ..,
#instanceOf: ‘Container’,
items: [{ #collection: ‘Equipment’, __1id: 0ID(3) }]
ks
{

_1id: 0ID(3),
#version: ..,
#instanceOf: ‘Pistol’,

Integrity Is a
conseqguence

Allowing missing content

* We do not have foreign keys

- S0 we cannot do things like “ON DELETE
CASCADE”

- Even delete validations are difficult

» Imagine "hero” has a "power”,and | remove the
‘power”. How can the hero notice it?

Persist

mongoContainer
<mongoContainer>

A VOMongoContainer new
collectionName: ‘powers’;
enableMissingContent;
yourself

Querying

Query (1)

Hero
selectMany: [:each | ..]
sortBy: { #name -> VOOrder ascending } asDictionary
Llimit: 100
offset: 100

Query (2)

Hero
selectMany: {

‘name’ -> {
‘Sregexp’: ‘NG.*x’.
‘Soptions’: ‘i’

} asDictionary

} asDictionary

Adapt schemes

The “scheme Is not mine”
problem

* Yes, it happens :(

* You can use the Magritte-Voyage metamodel to
read it anyway

* You can change the versioning model too

Use It today!

Gofer 1t
smalltalkhubUser: ‘Pharo’ project: ’MetaRepoForPharo30’;

configurationOf: ‘VoyageMongo’;
loadStable.

