
Voyage by example
tips and tricks on persisting object models

Esteban Lorenzano
Pharo core developer

INRIA - RMoD
http://smallworks.eu

http://smallworks.eu

Why?

• You already know about Voyage

• You already attended to a tutorial last year

• But there are some recurrent problems people find
when trying to use it

Review: What is Voyage?
• Abstraction layer to map objects into a database

- Very well suited for document databases, but in theory,
the approach will work for other kind of repositories

‣ There was (long time ago) a Voyage-GLORP backend

‣ There was (even more time ago) a Voyage-
ImageSegment backend

• Voyage-Memory

• Voyage-Mongo

Review: Voyage principles
• Behavioural complete (for common usage), but

decoupled approach also possible.

• Same design for different backends, but not a
common abstraction

- There is no such thing as a “voyage query
language”, etc.

- is a bit more work for users who want to switch,
but a lot more happiness for the program itself

So, what about those tips?

Think in objects

Impedance mistmatch

Table BTable A Table C

Class A Class B Class C

1..*

..

Ideal relational model

Impedance mistmatch

anObject otherObject

aColection

firstObject

secondObject

thirdObject

Reality object model

Impedance mistmatch

Reality object model

anObject otherObject

aColection

firstObject

secondObject

thirdObject

Impedance mistmatch

Reality object model

anObject otherObject

aColection

firstObject

secondObject

thirdObject

A simple model

Hero Power
..

Persist

(Hero named: ‘Groot’)
 addPower: ((Power named: ‘Plant Control’)
 level: #epic;
 yourself);
 save.

No need of more complications!

Persist
{
 _id: OID(…),
 #version: …,
 #instanceOf: ‘Hero’,
 name: ‘Groot’,
 powers: [{ #collection: ‘Power’, __id: OID(…) }]
}
!
{
 _id: OID(…),
 #version: …,
 #instanceOf: ‘Power’,
 name: ‘Plant Control’,
 level: #epic,
 heroes: [#collection: ‘Hero’, __id: OID(…)]
}

Take control

A simple model
(a bit more complete)

Hero Power
..

Equipment

1..*

Container Pistol

1..*

Persist

(Hero named: ‘Star-lord’)
 addEquipment: (Container
 addItem: Pistol new;
 yourself);
 save.

No need of more complications!

Persist (1)

{
 _id: OID(…),
 #version: …,
 #instanceOf: ‘Hero’,
 name: ‘Star-lord’,
 powers: [],
 equipment: [{
 #instanceOf: ‘Container’,
 ‘items’, [
 { #instanceOf: ‘Pistol’ }] }]
}

Persist (2)
{
 _id: OID(1),
 #version: …,
 #instanceOf: ‘Hero’,
 name: ‘Star-lord’,
 powers: [],
 equipment: [{ #collection: ‘Equipment’, __id: OID(2) }]
}
!
{
 _id: OID(2),
 #version: …,
 #instanceOf: ‘Container’,
 items: [{ #collection: ‘Equipment’, __id: OID(3) }]
}
!
{
 _id: OID(3),
 #version: …,
 #instanceOf: ‘Pistol’,
}

Integrity is a
consequence

Allowing missing content

• We do not have foreign keys

- So we cannot do things like “ON DELETE
CASCADE”

- Even delete validations are difficult

‣ Imagine “hero” has a “power”,and I remove the
“power”. How can the hero notice it?

Persist

mongoContainer
 <mongoContainer>
!
 ^ VOMongoContainer new
 collectionName: ‘powers’;
 enableMissingContent;
 yourself

Querying

Query (1)

Hero
 selectMany: [:each | …]
 sortBy: { #name -> VOOrder ascending } asDictionary
 limit: 100
 offset: 100

Query (2)

Hero
 selectMany: {
 ‘name’ -> {
 ‘$regexp’: ‘^G.*’.
 ‘$options’: ‘i’
 } asDictionary
 } asDictionary

Adapt schemes

The “scheme is not mine”
problem

• Yes, it happens :(

• You can use the Magritte-Voyage metamodel to
read it anyway

• You can change the versioning model too

Use it today!

Gofer it
 smalltalkhubUser: ‘Pharo’ project: ’MetaRepoForPharo30’;
 configurationOf: ‘VoyageMongo’;
 loadStable.

