
Sista: Improving
Cog’s JIT

performance
Clément Béra

Main people involved in Sista
• Eliot Miranda

• Over 30 years experience in Smalltalk VM

• Clément Béra

• 2 years engineer in the Pharo team

• Phd student starting from october

Cog ?

• Smalltalk virtual machine

• Runs Pharo, Squeak, Newspeak, ...

Plan

• Efficient VM architecture (Java, C#, ...)

• Sista goals

• Example: optimizing a method

• Our approach

• Status

Virtual machine
High level code (Java, Smalltalk ...)

CPU: intel, ARM ... - OS: Windows, Android, Linux ..

Runtime environment (JRE, JDK, Object engine...)

Basic Virtual machine
High level code (Java, Smalltalk ...)

Compiler

Bytecode
Interpreter

Memory Manager

CPU RAM

BytecodeVM

Fast virtual machine
High level code (Java, Smalltalk ...)

Compiler

Bytecode
Interpreter

JIT
Compiler

Memory Manager

CPU RAM

BytecodeVM

Efficient JIT compiler
display: listOfDrinks

listOfDrinks do: [:drink |
self displayOnScreen: drink]

Execution
number

time to
run (ms) Comments

1 1 lookup of #displayOnScreen (cache) and byte code interpretation

2 to 6 0,5 byte code interpretation

7 2 generation of native code for displayOnScreen and native code run

•8 to 999 0,01 native code run

1000 2 adaptive recompilation based on runtime type information, generation
of native code and optimized native code run

1000 + 0,002 optimized native code run

In Cog
display: listOfDrinks

listOfDrinks do: [:drink |
self displayOnScreen: drink]

Execution
number

time to
run (ms) Comments

1 1 lookup of #displayOnScreen (cache) and byte code interpretation

2 to 6 0,5 byte code interpretation

7 2 generation of native code for display and native code run

•8 to 999 0,01 native code run

1000 2 adaptive recompilation based on runtime type information, generation
of native code and optimized native code run

1000 + 0,002 optimized native code run

A look into webkit
• Webkit Javascript engine

• LLInt = Low Level Interpreter

• DFG JIT = Data Flow Graph JIT

Webkit JS benchs

In Cog

What is Sista ?

• Implementing the next JIT optimization
level

Goals

• Smalltalk performance

• Code readability

Smalltalk performance
The Computer Language Benchmarks Game

Smalltalk performance
The Computer Language Benchmarks Game

Smalltalk performance
The Computer Language Benchmarks Game

Smalltalk is 4x~25x slower than Java

Smalltalk performance
The Computer Language Benchmarks Game

Smalltalk is 4x~25x slower than Java

Our goal is 3x faster:
1.6x~8x times slower than Java

+ Smalltalk features

Code Readability

• Messages optimized by the bytecode
compiler overused in the kernel

• #do: => #to:do:

Adaptive recompilation

• Recompiles on-the-fly portion of code
frequently used based on the current
environment and previous executions

Optimizing a method

Example

Example

• Executing #display: with over 30 000
different drinks ...

Hot spot detector

• Detects methods frequently used

Hot spot detector
• JIT adds counters on machine code

• Counters are incremented when code
execution reaches it

• When a counter reaches threshold, the
optimizer is triggered

Example

Can detect hot spot
(#to:do: compiled inlined)

Cannot detect hot spot

Hot spot detected

Over 30 000 executions

Optimizer
• What to optimize ?

Optimizer
• What to optimize ?

• Block evaluation is costly

Optimizer
• What to optimize ?

Stack frame
#display:

Stack frame
#do:

Stack
growing
downHot spot

detected
here

Optimizer
• What to optimize ?

Stack frame
#display:

Stack frame
#do:

Hot spot
detected

here

Find the best method

Find the best method

• To be able to optimize the
block activation, we need
to optimize both
#example and #do:

Inlining
• Replaces a function call by its callee

Inlining
• Replaces a function call by its callee

• Speculative: what if
listOfDrinks is not an
Array anymore ?

Inlining
• Replaces a function call by its callee

• Speculative: what if
listOfDrinks is not an
Array anymore ?

• Type-feedback from
inline caches

Guard

• Guard checks: listOfDrinks hasClass: Array

• If a guard fails, the execution stack is
dynamically deoptimized

• If a guard fails more than a threshold, the
optimized method is uninstalled

Dynamic deoptimization
• On Stack replacement

• PCs, variables and methods are mapped.

Stack frame
#display:

Stack frame
#do:

Stack frame
#optimizedDisplay:

Optimizations
• 1) #do: is inlined into #display:

Optimizations
• 2) Block evaluation is inlined

Optimizations
• 3) at: is optimized

• at: optimized ???

At: implementation

• VM implementation

• Is index an integer ?

• Is object a variable-sized object, a byte
object, ... ? (Array, ByteArray, ... ?)

• Is index within the bound of the object ?

• Answers the value

Optimizations
• 3) at: is optimized

• index isSmallInteger

• 1 <= index <= listOfDrinks size

• listOfDrinks class == Array

• uncheckedAt1: (at: for variable size objects with in-
bounds integer argument)

Restarting
• On Stack replacement

Stack frame
#display:

Stack frame
#do:

Stack frame
#optimizedDisplay:

Our approach

In-image Optimizer
• Inputs

• Stack with hot compiled method

• Branch and type information

• Actions

• Generates and installs an optimized compiled method

• Generates deoptimization metadata

• Edit the stack to use the optimized compiled method

In-image Deoptimizer
• Inputs

• Stack to deoptimize (failing guard,
debugger, ...)

• Deoptimization metadata

• Actions

• Deoptimize the stack

• May discard the optimized method

Advantages

• Optimizer / Deoptimizer in smalltalk

• Easier to debug and program in Smalltalk
than in Slang / C

• Editable at runtime

• Lower engineering cost

Advantages

Stack frame
#display:

Stack frame
#do:

Stack frame
#optimizedDisplay:

On Stack replacement done with Context manipulation

Cons

• What if the optimizer is triggered while
optimizing ?

Advantages

• CompiledMethod to optimized CompiledMethod

• Snapshot saves compiled methods

Cons

• Some optimizations are difficult

• Instruction selection

• Instruction scheduling

• Register allocation

Critical optimizations

• Inlining (Methods and Closures)

• Specialized at: and at:put:

• Specialized arithmetic operations

Interface VM - Image

• Extended bytecode set

• CompiledMethod introspection primitive

• VM callback to trigger optimizer /deoptimizer

Extended bytecode set

• Guards

• Specialized inlined primitives

• at:, at:put:

• +, - , <=, =, ...

Introspection primitive
• Answers

• Type info for each message send

• Branch info for each conditional jump

• Answers nothing if method not in machine
code zone

VM callback

• Selector in specialObjectsArray

• Sent to the active context when hot spot /
guard failure detected

Stability

• Low engineering resources

• No thousands of human testers

Stability

• Gemstone style ?

• Large test suites

Stability

• RMOD research team

• Inventing new validation techniques

• Implementing state-of-the-art validators

Stability goal

• Both bench and large test suite run on CI

• Anyone could contribute

Anyone can contribute

Anyone can contribute

Stability goal

• Both bench and large test suite run on CI

• Anyone could contribute

Status
• A full round trip works

• Hot spot detected in the VM

• In-image optimizer finds a method to
optimize, optimizes it an install it

• method and closure inlining

• Stack dynamic deoptimization

Status: hot spot detector
• Richards benchmark

• Cog: 341ms

• Cog + hot spot detector: 351ms

• 3% overhead on Richards

• Detects hot spots

• Branch counts ⇒ basic block counts

Next steps
• Dynamic deoptimization of closures is not

stable enough

• Efficient new bytecode instructions

• Stabilizing bounds check elimination

• lowering memory footprint

• Invalidation of optimized methods

• On stack replacement

Thanks

• Stéphane Ducasse

• Marcus Denker

• Yaron Kashai

Conclusion

• We hope to have a prototype running for
Christmas

• We hope to push it to production in
around a year

Demo

...

Questions

