
Remote Debugging and
Reflection in Resource
Constrained Devices
Nikolaos Papoulias - December 2013

����

! 1

Outline

Introduction

Related Work

Contributions

Implementation

Validation

Conclusion & Future Work

2

Context - Constrained Devices

Cannot locally support an IDE & Dev-Tools

Have different HW/SW Configurations from Dev-Machines
3

Context - Debugging
Constrained Devices

Emulators

Post-Mortem Analysis

Developer's
end Target Devices

Deployment

Log
Collection

1

Coding /
Compilation

2

Execution

3

45

Post-mortem
analysis

Logging
4

Context - Debugging
Constrained Devices

Emulators

Post-Mortem Analysis

Deployment

Inspection

Coding /
Compilation

2

Ex
ec

ut
io

n

3

Action /
Modification

1
4

5

Developer's
end Target Devices

Remote Debugging
5

Remote Debugging

Impact on productivity due to re-deployments
[ZeroTurnAround 2011]

Lacks facilities otherwise available in a local
setting (e.g O-Centric Debugging [Ressia 2012b])

Is a solution that is distributed in a nature:

6

Research Questions

What are the properties of an ideal remote
debugging solution ?

Given these properties which model for remote
debugging can exhibit them ?

What are the trade-offs between this ideal model
and a real world implementation ?

7

Thesis Statement - Properties

Interactiveness
Instrumentation
Distribution
Security

An ideal remote debugging
solution should support

8

Interactiveness

the ability to incrementally update all parts
of a remote application without losing the running

context (i.e without stopping the application).

Add/Rem Packages, Add/Rem Classes, Add/Rem Fields,
Edit Hierarchy, Add/Rem Methods

9

Instrumentation

the ability to alter the semantics of
a running process in order to assist debugging

Method/Statement Execution, Class Instantiation/Field Read/Write
Object Read/Write/Send/Receive/Argument/Store/Interact

10

Distribution

the ability of a debugging solution to adapt its
framework while debugging a remote target

No-Distribution / Fixed Middleware /
Extensible Middleware / Adaptable Middleware

11

Security

the availability of prerequisites
for security mechanisms such as

authentication and access restriction

Internal / External / Target-Side / Client-Side

12

Outline

Introduction

Related Work

Contributions

Implementation

Validation

Conclusion & Future Work

13

Related Work - Overview

Interactiveness (6)

Instrumentation (13)

Distribution (+++)

Security (4)

1 1 1 6 6 6 6

4 4 5 4 4 3 12

+ ++ + + + - -

3 4 2 3 3 0 0

GDB DCEJPDA .NET JREBEL SMALLTALK BIFROST

14

1 1 1 6 6 6 6

4 4 5 4 4 3 12

+ ++ + + + - -

3 4 2 3 3 0 0

Related Work - Overview

GDB DCEJPDA .NET JREBEL SMALLTALK BIFROST(A) None of the
existing solutions

met all of our
criteria

(B) But reflective
debugging proved

superior to other
approaches in a local

setting
15

1 1 1 6 6 6 6

4 4 5 4 4 3 12

+ ++ + + + - -

3 4 2 3 3 0 0

Related Work - Overview

GDB DCEJPDA .NET JREBEL SMALLTALK BIFROST

(B) Since reflective
debugging proved

superior to other
approaches in a local

setting

(C) Investigate
Remote Reflection

Design Patterns

16

Remote Reflection

DATA

PROGRAM

Meta System

INTERPRETER

Part of the world

DATA

PROGRAM

Reflective System

INTERPRETER

act upon
represent

DISTRIBUTED-SELF-REPRESENTATION OF SYSTEM B

System A System B

Remote Proxy / Remote Facade / Mirrors

17

Mirrors - Explicit Meta-Objects

18

ObjectMirrorObject

anObject anObjectMIrrorreflects on

<<ObjectMirrorInterface>>

getClass()

Encapsulation
Stratification
Ont. Correspondance

Mirror on: anObject
Indirection

Design Patterns - Criteria

Extensibility, Re-use

Distribution

Identity [Bracha 2010]

Meta-recursion [Denker 2008]

Mirrors can be seen as
an extension to both
the remote proxy and

the remote facade
patterns

19

Mirrors - Open Issues

Mirrors and the Problem of State - debugging
meta-information in cohesive language kernels

Mirrors and Intercession - advanced
instrumentation support while debugging

20

Outline

Introduction

Related Work

Contributions

Implementation

Validation

Conclusion & Future Work

21

Our Proposals

Α solution to the problem of Reflective-Data [Maes
1987b] in the context of mirrors [Bracha 2004]

The definition of a model for remote debugging that
can exhibit the properties of: interactiveness,
instrumentation distribution and security

MetaTalk

Mercury
22

Our Proposal MetaTalk

From a language design perspective meta-
objects should be both:

Pluggable as mirrors are
and State-Full as 3-KRS meta-objects

23

MetaTalk Kernel

Object

Point

Class

aPoint
BASE LEVEL META LEVEL

ObjectMirror ClassMirror

Mirror

AbstractMirror
Object

AbstractMirror
Class

Mirror on:
ClassMirror on:

aPoint

Mirror on:
Object

Mirror on:
Point

24

MetaTalk Implementation

MetaTalk-VM is written in Pharo
MetaTalk-Compiler relies on Petit-Parser
Object-Model inspired by ObjVLisp

http://www.squeaksource.com/MetaTalk/

25

Our Proposals

Α solution to the problem of Reflective-Data [Maes
1987b] in the context of mirrors [Bracha 2004]

The definition of a model for remote debugging that
can exhibit the properties of: interactiveness,
instrumentation distribution and security

MetaTalk

Mercury
26

Overview

DEBUGGED
APPLICATION

DEVELOPER'S END TARGET

RUN-TIME
DEBUGGING SUPPORT

MIDDLEWARE

DEBUGGER / IDE

MODEL
OF THE DEBUGGED APP

MIDDLEWARE

Interactiveness - through a mirror-based remote
meta-level that is causally connected to its target

Mercury

1

27

Core Model
Target Side

Object Point

aPoint

instance of
RTSupport

RunTimeDebuggingSupport

+ objectinstVarAt(forObject:
Object, anIvName: String):
Object
+ ...

.....

Mirror

- targetObject: Object

ObjectMirror

- rtMirror: RunTimeMirror

+ instVarAt(anIvName:
String): ObjectMirror
+ ...

mirrorO
nAPoint

RunTimeMirror

- runTime: RTDebuggingSupport

+ objectinstVarAt(forObject: Object,
anIvName: String): ObjectMirror
+ ...

.....

aRunTime
Mirror

runTimeDebuggingSupp
ort

1*

1 1

reflects on

instance of

Development Side

M
I
D
D
L
E
W
A
R
E

28

Interactiveness

(2) Computational
 Reflection

ExceptionMirror

ProcessMirror

ContextMirror
+ saveAndContinue
(newSrc: String):
ContextMirror

(1) Structural Reflection Mirror
- targetObject: Object

RunTimeMirror
- runTime:
RunTimeDebuggingSupport

ObjectMirror
- rtMirror: RunTimeMirror

+ setClass(aClassMirror: ClassMirror): ClassMirror

.....

EnvironmentMirror
+ newPackageNamed(aPackageName:
String): PackageMirror
+ removePackageNamed(aPackageName:
String): PackageMirror

ClassMirror
+ setSuperClass(aClassMirror: ClassMirror):
ClassMirror
+ addInstVarName(anIvName: String):
ClassMirror
+ deleteInstVarName(anIvName: String):
ClassMirror
+ addMethod(methodName: String, source:
String): MethodMirror
+ deleteMethod(methodName: String):
MethodMirror

PackageMirror
+ newClassNamed(aClassName: String):
ClassMirror
+ removeClassNamed(aClassName: String):
ClassMirror

MethodMirror
+ recompileWithSource(src: String):
MethodMirror

29

Our Proposal - Overview

DEBUGGED
APPLICATION

DEVELOPER'S END TARGET

RUN-TIME
DEBUGGING SUPPORT

MIDDLEWARE

DEBUGGER / IDE

MODEL
OF THE DEBUGGED APP

MIDDLEWARE

Instrumentation - through reflective intercession
by reifying the underlying execution environment

2

30

Instrumentation
Target Side Object

Closure

LocalCallBack

RemoteCallBack

ImplicitMetaObject
- onReceive: Closure
- onSend: Closure
- onRead: Closure
- onWrite: Closure
….

Interpreter
baseMetaDict: Dictionary

RunTimeDebuggingSupport

+ ...
+ objectHalt(): Object
+ objectHaltOnReceive(): Object
+ objectOnReceive(callBack:
LocalCallBack)
+ objectOnReceive(callBack:
RemoteCallBack)

interpreter: Interpreter

values: Dictionary<Object>

MetaEnvironment

1

1

1

1

*

*

*

1

*1

31

Our Proposal - Overview

DEBUGGED
APPLICATION

DEVELOPER'S END TARGET

RUN-TIME
DEBUGGING SUPPORT

MIDDLEWARE

DEBUGGER / IDE

MODEL
OF THE DEBUGGED APP

MIDDLEWARE

Distribution - through an Adaptable Middleware

3

32

Distribution

Middleware
Deamon

Marshaller

DistributionPolicy Transporter

SecurityPolicy

33

Middleware
Deamon

Marshaller

DistributionPolicy Transporter

SecurityPolicy

1 1

1

11

Our Proposal - Overview

DEBUGGED
APPLICATION

DEVELOPER'S END TARGET

RUN-TIME
DEBUGGING SUPPORT

MIDDLEWARE

DEBUGGER / IDE

MODEL
OF THE DEBUGGED APP

MIDDLEWARE

Security - security by decomposing and
authenticating access to reflective facilities

4a

4b

34

Security
Development Side

Reflection

+ onEnvironment(environmentAddress:
RemoteEnvironment) : EnvironmentMirrorRemoteEnvironment

- address: String

uses a

Mirror

- targetObject: Object

ObjectMirror

- rtMirror: RunTimeMirror

RunTimeMirror

- runTime:
RunTimeDebuggingSupport

+ instVarAt(anIvName: String):
ObjectIntrospectionMirror
+ ...

IntrospectionMirrorForAPoint

instance of
ObjectIntrospectionMirror

SecurityPolicy Process
11 is invoked by

IntrercessionMirrorForAPoint

instance of

EnvironmentIntrospectionMi
rror

EnvironmentIntercessionMir
ror

ProcessIntrospectionMirror

ProcessIntercessionMirror

ObjectIntercessionMirror

+ instVarAtPut(anIvName: String,
aValue: ObjectIntercessionMirror):
ObjectIntercessionMirror
+ ...

.....

35

Comparison

1 1 1 6 6 6 6 6

4 4 5 4 4 3 12 13

+ ++ + + + - - +++

3 4 2 3 3 0 0 4

GDB DCEJPDA .NET JREBEL SMALLTALK BIFROST MERCURY

36

Interactiveness (6)

Instrumentation (13)

Distribution (+++)

Security (4)

Outline

Introduction

Related Work

Contributions

Implementation

Validation

Conclusion & Future Work

37

Implementation Overview

Mercury-Core Mercury-Ui

Seamless MetaStackVM

(Alexandria)

http://ss3.gemstone.com/ss/Mercury-Prototype.html

http://ss3.gemstone.com/ss/Seamless.html

http://ss3.gemstone.com/ss/mSVM.html
38

Meta-Recursion - mStackVM

39

Interpreter
on: MessageReceived
for: anObject
do: [:reifications |

anObject incrementMessageCounter.
anObject

perform: reifications selector
withArguments: reifications arguments]

Ooops !

MetaStackVM - Reflectogram

40

Interpreter
on: MessageReceived
for: anObject
do: [:reifications :reflectogram |

reflectogram disable.
anObject incrementMessageCounter.
reflectogram enable.
reflectogram

returnValue: reflectogram defaultAction]

MetaStackVM - Reflectogram

41

Interpreter
on: MessageReceived
for: anObject
do: [:reifications :reflectogram |

reflectogram disable.
anObject incrementMessageCounter.
reflectogram enable.
reflectogram

returnValue: reflectogram defaultAction]

Reflectogram

+ ..
+ enable
+ disable
+ remove
+…
+ defaultAction
+ returnValue:
+ …
+ processMetaLevel
+ objectMetaLevel
+ …
+ obj:perform:

Implementation Trade-offs

Through Local Reflection
Through Virtual-Machine support
Through Byte-code manipulation

Supporting Interactiveness and Instrumentation

42

Benchmark

No Instrumentation

Disabled Instrumentation

Enabled Instrumentation

1x 1x

1x 1x

35x 8x

Mercury

Benchmark based
on Tanter [Tanter 2003]

43

Outline

Introduction

Related Work

Contributions

Implementation

Validation

Conclusion & Future Work

44

Experimental Setting

Developer-Machine

Mac-Mini - (2.3 GHz / 4GB RAM)
Ubuntu 12.04

Constraint Device (A)
Phone

Galaxy Nexus - (1.2 GHz / 1GB RAM)
Android 4.3

Constraint Device (B)
Tablet

Galaxy Tab - (1.0 GHz / 1GB RAM)
Android 4.0

Constraint Device (C)
Remote Server

Running

HP Workstation - (2.3 GHz / 4GB RAM)
Ubuntu 12.04

over wifi / usb
over wifi / usb

over ethernet

ETH: 10.1.10.206
WIFI: 10.1.160.116
USB: PORT-FWD

WIFI: 10.1.160.158
USB: PORT-FWD

ETH: 10.1.10.81WIFI: 10.1.160.92
USB: PORT-FWD

Mercury IDE

45

Alexandria

46

Experimental Setting 47

Objectives
Verify the applicability of Mercury for these
constrained debugging targets.

Illustrate how a debugging session benefits from
Mercury’s properties

Remote Agile
Debugging

Remote Object
Instrumentation

Case-Study I Case-Study II

48

49

Remote Agile Debugging

Phone: ’/charger’
Tablet: ’/default.prop’
Server: ’/User/.profile-xmind-portable-201212250029’

Suffix Bug

Remote Agile Debugging

Developer-Machine

Mac-Mini - (2.3 GHz / 4GB RAM)
Ubuntu 12.04

Constraint Device (A)
Phone

Galaxy Nexus - (1.2 GHz / 1GB RAM)
Android 4.3

Constraint Device (B)
Tablet

Galaxy Tab - (1.0 GHz / 1GB RAM)
Android 4.0

Constraint Device (C)
Remote Server

Running

HP Workstation - (2.3 GHz / 4GB RAM)
Ubuntu 12.04

over wifi / usb
over wifi / usb

over ethernet

ETH: 10.1.10.206
WIFI: 10.1.160.116
USB: PORT-FWD

WIFI: 10.1.160.158
USB: PORT-FWD

ETH: 10.1.10.81WIFI: 10.1.160.92
USB: PORT-FWD

Mercury IDE

50

FileBrowserTest

+ suffixOf: aString
+ testSuffixWithDot
+ testSuffixWithoutDot
+ testLongFilePath

TestCase
FileBrowserTest

+ suffixOf: aString
+ testSuffixWithDot
+ testSuffixWithoutDot
+ testLongFilePath

TestCase

FileBrowserTest

+ suffixOf: aString
+ testSuffixWithDot
+ testSuffixWithoutDot
+ testLongFilePath

TestCase

Remote Agile Debugging 51

Objectives
Verify the applicability of Mercury for these
constrained debugging targets.

Illustrate how a debugging session benefits from
Mercury’s properties

Remote Agile
Debugging

Remote Object
Instrumentation

Case-Study I Case-Study II

52

53

Remote Object Instrumentation

Suffix Bug

Phone: ’/charger’
Tablet: ’/default.prop’
Server: ’/User/.profile-xmind-portable-201212250029’

FileDirectory dot

Remote Object
Instrumentation

54

Remote Object Instrumentation

55

Results

56

Outline

Introduction

Related Work

Contributions

Implementation

Validation

Conclusion & Future Work

57

Summary - Contributions

Identification of four desirable properties for remote
debugging: interactiveness, instrumentation,
distribution and security.

The definition of a model for remote debugging
(Mercury) that exhibits these desirable properties.

A solution to the problem of Reflective-Data [Maes
1987b] in the context of mirrors [Bracha 2004]
(MetaTalk)

58

Contributions

The reification of a previously illustrative notion (that of
the reflectogram [Tanter 2003])

Prototype implementation of our model for remote
debugging in the context of reflective languages.

Implementation of an adaptable middleware
[David 2002] for supporting distribution (Seamless).

Implementation of a dedicated VM for Pharo
(MetaStackVM) for advanced intercession facilities.

59

Diffusion of Results
Submitted/Published: Nikolaos Papoulias, Noury Bouraqadi, Marcus Denker,
Stéphane Ducasse and Luc Fabresse. Towards Structural Decomposition of
Reflection with Mirrors}. In Proceedings of International Workshop on Smalltalk
Technologies (IWST’11), Edingburgh, United Kingdom, 2011. 105

Conference Talk: Nikolaos Papoulias. Seamless -- Let a thousand systems
bloom. 20th International Smalltalk Conference, Ghent, Belgium, 2012.

To Be Submitted: Nikolaos Papoulias, Noury Bouraqadi, Luc Fabresse, Marcus
Denker and Stéphane Ducasse. Mercury: Live Remote Debugging in
Reflective Languages. To be submitted in The Journal of Object Technology.

To Be Submitted: Nikolaos Papoulias, Stéphane Ducasse, Marcus Denker,
Guillermo Pollito, Noury Bouraqadi and Luc Fabresse. MetaTalk: Designing a
Language with a Pluggable Meta-Level. To be submitted in The Journal for
Universal Computer Science.

Invited Chapter: Nikolaos Papoulias. Seamless: an Adaptable Middleware
Solution. Invited Chapter to be submitted for the forthcoming book Pharo in the
Enterprise, by Square Bracket Associates.

60

Future Work

Language and Virtual-Machine Debugging in
the Same Model
Integration of Automated Debugging Techniques
(e.g delta-debugging) in Developer-Driven
Debugging

61

MetaTalk

Mercury

����

Thank you !

!

62

Mercury-Core Mercury-Ui

Seamless MetaStackVM

(Alexandria)

Nick Papoulias
2013

Some time left ?
Groovy !!

63

Collaborations

Seamless as a library for the Continuous integration
services of Pharo.

The MetaTalk model as a case-study for
bootstraping OO - languages.

Mercury integration with the PhaROS robotic
middleware (on-going effort).

64

Design Patterns - Mirrors

Explicit meta-object
Abstract class / Interface
Factory
Facade and Bridge

65

Conditional Meta-Action
[:reifications :reflectogram |

 reifications trigger halt.
 reflectogram
 override: true;
 returnValue: reflectogram defaultAction.

]

66

Seamless Initialization
SeamlessDeamon class>>newDefaultWithGlobalAccess

 ^ self new
 buildWithTransporterClass: SeamlessSocketStreamTransporter
 transcoderClass: SeamlessFuelTranscoder
 proxyClass: SeamlessFastDNUProxy
 garbageCollectorClass: SeamlessDefaultGarbageCollector
 andAuthenticationManager: ((SeamlessAuthenticationManager new)
 addGroup: [...]
 withPolicy: (SeamlessDistributionPolicy

 newWithEntryPoint: [...]
 classesToPassByValue: [...]
 classesToPassByShallowCopy: [...]
 andSecurityPolicy: (SeamlessSecurityPolicy

 newWithClassesToPassByReference: [..]
 classesNotToReference: [..]
 includingMessages: [...]
 excludingMessages: [...]);
 addUser: [...] withPassword: [...] inGroup: [...]).

67

Seamless

SeamlessTranscoder SeamlessConnection

SeamlessTransporter

Seamless
ObjectTransporter

Seamless
Protocol

Seamless
ProcessManager

Seamless
DistributionTable

SeamlessDeamon

SeamlessSession

Seamless
AuthenticationManager

Seamless
DistributionStrategy

Seamless
UserGroup

Seamless
User

Seamless
DistributionPolicy

Seamless
SecurityPolicy

68

JMercury - Our model on
top of Java

JPDA + DCE VM (Interactiveness)
Reflex / ASM / JavaAssist
(Instrumentation)
Cajo Project (Distribution)
Decomposed Hierarchy of Mirrors / Closer
integration with SecurityManager (Security)

69

Emulators - Field Experience

IPhone/Android emulators (different
models - versions of OSes - gyroscopes
- touch gestures ...)
Car-Team experience -- RoboShop
2013 Demo (unanticipated changes -
people walking by - glass walls ...)

70

