
NativeBoost
today and tomorrow

‘Igor Stasenko’
at: ‘Smalltalks 2012 conference’
location: ‘Puerto Madryn, Argentina’

• Abstract

• Philosophy

• What we have today

• Where we heading

I trying to DRY

• Google for:

03-24-ESUG-NativeBoost.pdf

• or just: ‘NativeBoost pdf’

What is NativeBoost?

• A framework for using native code:

• generating

• executing

• managing

(NativeBoost == FFI) == false

(NativeBoost includes: FFI) == true

To make it clear:

NB is infrastructure

• it is not an “end-user” ready-made
solution.

• you build on top of it

A philosophy

• No barriers

• No magic

• ALL interesting stuff should happen at
language side (and better it has to be
Smalltalk)

Turtles all the way down

Turtles all the way down

whatIsAPrimitive ?But wait ...
whatIsAPrimitive
	
 "Some messages in the system are responded to primitively. A primitive
	
 response is performed directly by the interpreter rather than by evaluating
	
 expressions in a method. The methods for these messages indicate the
	
 presence of a primitive response by including <primitive: xx> before the
	
 first expression in the method.
	

	
 Primitives exist for several reasons. Certain basic or 'primitive'
	
 operations cannot be performed in any other way. Smalltalk without
	
 primitives can move values from one variable to another, but cannot add two
	
 SmallIntegers together. Many methods for arithmetic and comparison
	
 between numbers are primitives. Some primitives allow Smalltalk to
	
 communicate with I/O devices such as the disk, the display, and the keyboard.
	
 Some primitives exist only to make the system run faster; each does the same
	
 thing as a certain Smalltalk method, and its implementation as a primitive is
	
 optional.
	

	
 When the Smalltalk interpreter begins to execute a method which specifies a
	
 primitive response, it tries to perform the primitive action and to return a
	
 result. If the routine in the interpreter for this primitive is successful,
	
 it will return a value and the expressions in the method will not be evaluated.
	
 If the primitive routine is not successful, the primitive 'fails', and the
	
 Smalltalk expressions in the method are executed instead. These
	
 expressions are evaluated as though the primitive routine had not been
	
 called.
	

	
 The Smalltalk code that is evaluated when a primitive fails usually
	
 anticipates why that primitive might fail. If the primitive is optional, the
	
 expressions in the method do exactly what the primitive would have done (See
	
 Number @). If the primitive only works on certain classes of arguments, the
	
 Smalltalk code tries to coerce the argument or appeals to a superclass to find
	
 a more general way of doing the operation (see SmallInteger +). If the
	
 primitive is never supposed to fail, the expressions signal an error (see
	
 SmallInteger asFloat).

	

	
 Each method that specifies a primitive has a comment in it. If the primitive is
	
 optional, the comment will say 'Optional'. An optional primitive that is not
	
 implemented always fails, and the Smalltalk expressions do the work
	
 instead.
	

	
 If a primitive is not optional, the comment will say, 'Essential'. Some
	
 methods will have the comment, 'No Lookup'. See Object
	
 howToModifyPrimitives for an explanation of special selectors which are
	
 not looked up.
	

	
 For the primitives for +, -, *, and bitShift: in SmallInteger, and truncated
	
 in Float, the primitive constructs and returns a 16-bit
	
 LargePositiveInteger when the result warrants it. Returning 16-bit
	
 LargePositiveIntegers from these primitives instead of failing is
	
 optional in the same sense that the LargePositiveInteger arithmetic
	
 primitives are optional. The comments in the SmallInteger primitives say,

Turtles all the way
down ... to C ?

Turtles all the way
down ... to C ?

But C is not nearly as deep down
as we need! Hardware is!

C stands for C[rutches],
not C[ar]

Not a rocket science
• machines can run only machine code

• compilers is made to help us to abstract
from gory details

• but often at a price being unable to
harness the power of hardware at full
potential

Can’t go fast using crutches

Compiler is a funnel

Metaphor by: Marcus Denker

Supported semantics: X,Y,Z

X

Y
Z

L
a
n
g
u
a
g
e

H
a
r
d
w
a
r
e

Compiler is a funnel

Metaphor by: Marcus Denker

Supported semantics: X,Y,Z

X

Y
Z

 Z(y) <Z

Compiler maps X->Y->Z(y)
But we want X->Z, simply because:

L
a
n
g
u
a
g
e

H
a
r
d
w
a
r
e

Language
potential

Hardware potential
Translator
(Compiler)

When compiler fits:

Language
potential

Hardware potential
Translator
(Compiler)

And when it’s not:

Language
potential

Hardware potential
Translator
(Compiler)

And when it’s not:

But i want that part. And i mean it

multiply: a with: b

^ (a * b) onArithmeticOverflow: [

self primitiveFail].

Example: Arithmetic Overflow

multiply: a with: b

| result |

result := a * b.

	
 "check for C overflow by seeing if computation is reversible"

	
 ((b = 0) or: [(result // b) = a])
	
 	
 	
 ifTrue: [^ result]
	
 	
 	
 ifFalse: [self primitiveFail]]

Arithmetic Overflow, how it is done

multiply: a with: b

| result |

result := a * b.

	
 "check for C overflow by seeing if computation is reversible"

	
 ((b = 0) or: [(result // b) = a])
	
 	
 	
 ifTrue: [^ result]
	
 	
 	
 ifFalse: [self primitiveFail]]

Arithmetic Overflow, how it is done

But CPU has a flag to indicate arithmetic overflow!

Shall we extend C compiler
 to suit better for our language/VM?

Shall we extend C compiler
 to suit better for our language/VM?

Compilers tend to be complex.
And what language fits better for
complex things, C or Smalltalk?

Shall we extend C compiler
 to suit better for our language/VM?NO

asm
mul: a with: b;
jumpIfOverflow: #overflow;
ret.

asm label: #overflow.
interpreterProxy primitiveFail.
asm ret.

Oh, look! Magic!
We can test for overflow!

Arithmetic Overflow, how it can be done with NB:

That’s my point

.

and motivation to
develop NB

What we have today:

• x86, x64 assemblers.

• VMs for Linux, Mac and Windows

• VM interface (InterpreterProxy)

• FFI

• Callbacks

• integration with JIT (first results)

• helpers for external resource & session

Details: Assembler
• direct x86/x64 instruction database (no

funneling, remember?)

• you free to use it (and contribute to it)
outside NB (see AsmJit on
squeaksource)

• you free/welcome to implement more
abstract (platform-neutral) assembler/
compiler/whatever on top of it

• AsmJIT assemblers will be always
platform dependent. see rule #1

The magic
CompiledMethod

Header

Literals...

...

Bytecode

...

source pointer Method trailer

The magic
CompiledMethod

Header
Literals...

...

Bytecode

...

machine code ...

source pointer
Method trailer

The magic
CompiledMethod

Header
Literals...

...

Bytecode

...

machine code ...

source pointer

#primitiveNativeCall
...

function := pointer to:(machine
code).

result := function().
...

The JIT magic
CompiledMethod

Header
Literals...

...

Bytecode

...

machine code ...

source pointer

primitive #220 (voltage)

JITed method aka
CogMethod

primitive section

jited bytecode of method

Details: VM

• A custom VM with some changes to
better support native code

• which includes NativeBoost plugin

• it is decided to be the default VM for
future releases of Pharo (nobody asked
me about it)

Details: VM

• built on Jenkins server:

http://pharo.gforge.inria.fr/ci/vm/nbcog/

• additionally includes Cairo graphics
library, bundled together with VM

http://pharo.gforge.inria.fr/ci/vm/nbcog/
http://pharo.gforge.inria.fr/ci/vm/nbcog/

Details: FFI

• using external libraries

• make calls, callbacks

• implement primitives

• fast, flexible, extensible

Details: FFI

• used by Athens

• NBOpenGL -> SourceCity

• more things is under active
development inside and outside our
team @Lille

Types

• support for most basic C types: int, float
etc

• C structures (see NBExternalStructure
and subclasses)

• values of certain type

• arrays of value types (to be added)

Examples & Demo

Future calls:

• unify existing FFI interfaces

• provide solution for platforms with no
dynamic code generation allowed (yes
it will be limited one)

• threading (aka non-blocking calls)

Налево пойдешь - коня потеряешь,
Направо пойдешь - жизнь потеряешь,
Прямо пойдешь - жив будешь, да себя позабудешь.

turn left - lose the horse
turn right - lose own life
go straight - you’ll keep your life, but lose all your memories

Fear Uncertainty Doubt

U
ns

ec
ur

e

Unse
cu

re

Unsecure

UnsecureUns
ec

ur
e

Unsecure
Unsecure

Unsecure Unsec
ure

Unsecure Unsecure

• Performance

• Flexibility

• Full control

Focus on what you will win, not
lose

?

The end

