
Opening our brains
rethinking our language
dogmas

http://stephane.ducasse.free.fr

Monday, November 5, 12

The only way to convince
myself to accept to do this
keynote was to it
unconventional

Monday, November 5, 12

Monday, November 5, 12

La perfection est atteinte, non pas lorsqu’il n’y a plus rien à ajouter, mais lorsqu’il n’y a plus rien
à retirer. St-Exupery

Memory object swapper, First class references

Classboxes: Modules for open-classes, OOPAL: OOP + APL
Generalizing message passing

Language symbiosis (Jour. Program)

Encapsulation for dynamic languages, Reusable behavior: Traits

Revisiting Dynamic
Language Infrastructure

Monday, November 5, 12

Impacts

Traits used by Perl-6, PHP5.4, Squeak/Pharo, Slate,
Dr-Scheme variants: Fortress (SUN Microsystems),
Scala (EPFL), Multiple type systems

Pharo http://www.pharo-project.org

Monday, November 5, 12

 Objective 3: Ecosystem around Pharo

Pure object-oriented language
Fully reflective with an agile and powerful IDE
Running on mac, linux, windows, android, iOS
Active and growing community: 40 active committers
30 or more companies
2 releases/year, 100 fixes/month
Couple hundred of libraries
Actively supported by Inria

compiler, core classes (stream, collections, unicode), IDE (editor, inspector, debugger, code versioning,...), Versioning model, code
model, UI frameworks (widgets, theme), FFI, JIT and on the fly assembly generation, Graphics (soon opengl), Object serializer,
Network, HTTP, Proxy, Logging, Web frameworks: seaside, iliad, HTTP2 XML, HTML scraping, Zodiac, HTTPS, WebSocket,
Graphical frameworks: Roassal, Mondrian, EyeSee, Athens, Tool builder: Glamour, MetaTools: Moose, Databases: DBXTalk, Mongo,
Riak, CouchDB, Parser: Petit Parser, SmaCC, Units (Aconcagua, Units),

6

Monday, November 5, 12

You are young

Monday, November 5, 12

You are smart

Monday, November 5, 12

...probably :)

Monday, November 5, 12

but sometimes you are old
inside

Monday, November 5, 12

Teaching for years,
I saw so many syntactic
people

Monday, November 5, 12

{ }; versus ()

Monday, November 5, 12

end. vs)

is it not the same?

Monday, November 5, 12

a.max(b)

vs.

a max: b
Monday, November 5, 12

Java is not close to C++
even if they both have {}
syntax

Monday, November 5, 12

Java is closer to Smalltalk
than C++

Monday, November 5, 12

Java is a Smalltalk with type
problems

Monday, November 5, 12

Do not confuse form and
contents

Monday, November 5, 12

This is not because this is
saved in XML that you will
be able to do anything with
it!

Monday, November 5, 12

<?xml version=”1.0”?>
<foo>
16089151
</foo>

Monday, November 5, 12

What is the impact of our
education on our choices?

Monday, November 5, 12

Why can’t we work on
something else than
mainstream?

Monday, November 5, 12

Is there any interest in all of
us working with the same
constraints?

Monday, November 5, 12

Between 98 and 2002
we could only work on Java

Monday, November 5, 12

“Language engineering in
post Java era” workshop
was the first revolt against
this mindset

Monday, November 5, 12

Javascript/scala will be the
new dogma :)

Monday, November 5, 12

until the next one :)

Monday, November 5, 12

Some Examples

Traits

Path execution based conditional halt

Seaside

Smalltalk in a nutshell

Monday, November 5, 12

The story behind Traits

Developed in Smalltalk

Now in Php 5.4, Perl.6, Squeak, Pharo

Somehow Scala, Fortress

Monday, November 5, 12

Designing traits with Java
would have led to just
another type system

Monday, November 5, 12

Units of composable
behavior

multiple implementation inheritance

composer is in control

resolve conflicts via ignore / alias

backward compatible

Monday, November 5, 12

Traits are parameterized behaviors:
- provide a set of methods
- require a set of methods
- purely behavioral (no state)

TMagnitude
>
>=
between:an
d:
<=
...

hash
=
<

Monday, November 5, 12

Class

=
Superclass

+ State
+ Traits

+ Methods

Monday, November 5, 12

foo

 ^ 33

A

A

foo

 ^ 33

TraitT1

Using T1

Monday, November 5, 12

Binary method problems

T1 defined and applied on Point, Book....
so as what is the type of this?

We need an anchor based type system

Monday, November 5, 12

Path based conditional halt

Would be good if we could say:

“Stop method bar only if you are invoked it from
testBar”

bar
 ...
 self haltIf: #testBar....

 ...

Monday, November 5, 12

In 5 lines
Object>>haltIf: aSelector

 | cntxt |
 cntxt := thisContext.
 [cntxt sender isNil] whileFalse: [
! cntxt := cntxt sender.
! (cntxt selector = aSelector)
 ifTrue: [Halt signal].
!].
!

Monday, November 5, 12

Seaside

HTTP considering harmfull

Web framework for the heretics

Invented by Avi Briant and J. Fiztell

Enhanced by L. Renggli, P. Marshall, J. Fiztell

http://www.seaside.st

http://book.seaside.st

Monday, November 5, 12

http://www.seaside.st
http://www.seaside.st
http://www.seaside.st
http://www.seaside.st

1Natural Flow

Monday, November 5, 12

Demo
Monday, November 5, 12

<form action="second.html">
 <input type="text" name="value1">
 <input type="submit" value="OK">
</form>

Monday, November 5, 12

<form action="second.html">
 <input type="text" name="value1">
 <input type="submit" value="OK">
</form>

<form action="result.html">
 <input type="text" name="value2">
 <input type="submit" value="OK">
</form>

Monday, November 5, 12

<p>
 <% value1 + value2 %>
</p>

<form action="second.html">
 <input type="text" name="value1">
 <input type="submit" value="OK">
</form>

<form action="result.html">
 <input type="text" name="value2">
 <input type="submit" value="OK">
</form>

Monday, November 5, 12

<p>
 <% value1 + value2 %>
</p>

<form action="second.html">
 <input type="text" name="value1">
 <input type="submit" value="OK">
</form>

<form action="result.html">
 <input type="text" name="value2">
 <input type="submit" value="OK">
</form>

Monday, November 5, 12

<p>
 <% value1 + value2 %>
</p>

<form action="second.html">
 <input type="text" name="value1">
 <input type="submit" value="OK">
</form>

<form action="result.html">
 <input type="text" name="value2">
 <input type="submit" value="OK">
</form>

Monday, November 5, 12

<p>
 <% value1 + value2 %>
</p>

<form action="second.html">
 <input type="text" name="value1">
 <input type="submit" value="OK">
</form>

<form action="result.html">
 <input type="text" name="value2">
 <input type="submit" value="OK">
</form>

Monday, November 5, 12

<form action="result.html">
 <input type="hidden" name="value1" value="<% value1 %>">
 <input type="text" name="value2">
 <input type="submit" value="OK">
</form>

<p>
 <% value1 + value2 %>
</p>

<form action="second.html">
 <input type="text" name="value1">
 <input type="submit" value="OK">
</form>

Monday, November 5, 12

<form action="result.html">
 <input type="hidden" name="value1" value="<% value1 %>">
 <input type="text" name="value2">
 <input type="submit" value="OK">
</form>

<p>
 <% value1 + value2 %>
</p>

<form action="second.html">
 <input type="text" name="value1">
 <input type="submit" value="OK">
</form>

Monday, November 5, 12

Who cares about
HTTP anyway?

Monday, November 5, 12

Monday, November 5, 12

Monday, November 5, 12

is different

Monday, November 5, 12

Concentrate on
your application ...

Monday, November 5, 12

... no manual
request parsing

Monday, November 5, 12

... no XML
configuration files

Monday, November 5, 12

3 user interactions

Monday, November 5, 12

3 lines of code

Monday, November 5, 12

value1 := self request: ‘First Number’.

Monday, November 5, 12

value1 := self request: ‘First Number’.

value2 := self request: ‘Second Number’.

Monday, November 5, 12

value1 := self request: ‘First Number’.

value2 := self request: ‘Second Number’.

self inform: value1 + value2.

Monday, November 5, 12

A

call:A Bx :=

Monday, November 5, 12

AB

call:A Bx :=

Monday, November 5, 12

AB

answer:B

Monday, November 5, 12

A

answer:B

Monday, November 5, 12

A

x :=

Monday, November 5, 12

Challenges

Hide continuations from developers

Combine objects and continuations

Multiple control flow on a single page

Optimize the use of continuations

Monday, November 5, 12

Fuel

Fast object serialization
Is part of the PhD of M. Martinez-Peck
Can serialize everything:objects (integer, true...)

classes (more challenging) methods.

stackframes!!!

Monday, November 5, 12

Now people
serialize a
debugger stack
and load it in
another system :)

Monday, November 5, 12

Simplicity and purity

Monday, November 5, 12

Smalltalk OO model
Everything is an object

Only message passing

Only late binding

Instance variables are private to the object

Methods are public

Everything is a pointer

Garbage collector

Single inheritance between classes

Monday, November 5, 12

All the syntax on a postcard

example WithNumber: x
“A method that illustrates every part of Smalltalk method syntax except primitives. It has
unary, binary, and key word messages, declares arguments and temporaries (but not block
temporaries), accesses a global variable (but not and instance variable), uses literals (array,
character, symbol, string, integer, float), uses the pseudo variable true false, nil, self, and
super, and has sequence, assignment, return and cascade. It has both zero argument and
one argument blocks. It doesn’t do anything useful, though”
	
 |y|
	
 true & false not & (nil isNil) ifFalse: [self halt].
	
 y := self size + super size.
	
 #($a #a ‘a’ 1 1.0)
	
 	
 do: [:each | Transcript

show: (each class name);
show: (each printString);
show: ‘ ‘].

	
 ^ x < y

Monday, November 5, 12

Messages and Composition

Three kinds of messages

Unary: Node new, Point new, Browser open
Binary: 1 + 2, 3@4
Keywords: aTomagoshi eat: #cooky furiously: true

 Message Priority
 (Msg) > unary > binary > keywords
 Same Level from left to right

Monday, November 5, 12

Examples

(10@0 extent: 10@100) bottomRight

s isNil
 ifTrue: [self halt]

#(1 2 3 4 5 6) select: [:each | each odd]
> #(1 3 5)

Monday, November 5, 12

Numbers...

1000 factorial / 999 factorial

Monday, November 5, 12

Yes ifTrue: is just a message

Weather isRaining

 ifTrue: [self takeMyUmbrella]
 ifFalse: [self takeMySunglasses]

ifTrue:ifFalse is sent to an object: a boolean!
Of course the compiler optimize it like a mad :)

Monday, November 5, 12

Yes a l

#(1 2 -4 -86)
 do: [:each | Transcript show: each abs printString ;cr]
> 1
> 2
> 4
> 86

Yes we ask the collection object to perform the
loop on itself!

Monday, November 5, 12

http://stephane.ducasse.free.fr
Monday, November 5, 12

http://stephane.ducasse.free.fr
http://stephane.ducasse.free.fr

