
Software Evolution: a 
Maintenance Perspective
S. Ducasse
http://rmod.lille.inria.fr

Monday, November 5, 12

http://rmod.lille.inria.fr
http://rmod.lille.inria.fr


http://stephane.ducasse.free.fr
Co-creator of Moose

Co-founder of http://www.synectique.eu

Core http://www.pharo-project.org developer

Coder and designer

Monday, November 5, 12

http://stephane.ducasse.free.fr
http://stephane.ducasse.free.fr
http://www.pharo-project.org
http://www.pharo-project.org


Monday, November 5, 12



So end of the story?!

Monday, November 5, 12



No just the graal

Monday, November 5, 12



Software is 

Complex
Monday, November 5, 12



1946

Monday, November 5, 12



1’000’000 lines of code

* 2s = 2’000’000 seconds
/ 3600 = 560 hours
/ 8 = 70 days
/ 20 = 3 months

Monday, November 5, 12



Facts	

Cobol > 60% world software
70% of business applications
Applications cobol handle 85%
Cobol grows of 5 billions lines of code 
per year [eWeeks, 2001]

Monday, November 5, 12



Counting a bit

1 sheet ~ 60 lines of code

Two sides ~ 120 loc 

Monday, November 5, 12



Windows NT 3.1 (1993)

4 à 5 MLOC

3.75m 3.2m

Encyclopedia Britanica
(15 ed., 32 volumes)

Monday, November 5, 12



Windows server 2003
50 MLOC

41.m 46 m

Monday, November 5, 12



Business Relevance

1990 → 120 billions LOC in maintenance 
(Ulrich, 1990)   100 km height :)
2000 → 250 billions LOC in maintenance 
(Sommerville, 2000)
Maintained code double every 7 years 
(Müller et al., 1994)

Monday, November 5, 12



$$$

US Yearly cost > $70 billions (Sutherland, 
1995; Edelstein, 1993)
Nokia spent $90 millions on 2000 migration
US Federal Gov spent $8.38 Billions over 5 
yers for the 2000 migration

Monday, November 5, 12



% maintenantce in total cost

Monday, November 5, 12



What? It still exist?

Advanced languages (OO, AOP)
Modern Processes (RUP, Agiles)
Quality (CMMi)
New Development (MDE, SOA)

Monday, November 5, 12



One upon a time
l Un marchand de moules construit un magasin à 

Dunkerque ...

Monday, November 5, 12



Il était une fois ...
l Les affaires marchent bien

Monday, November 5, 12



Il était une fois ...
l Vraiment bien 

Monday, November 5, 12



Il était une fois ...
l Les employés veulent un restaurant

Monday, November 5, 12



Il était une fois ...
l Les directeurs, une terrasse

Monday, November 5, 12



Il était une fois ...
l La loi impose une sortie de secours

Monday, November 5, 12



Il était une fois ...
l La concurrence offre des goodies aux clients, 

l'entreprise … une piscine !

Monday, November 5, 12



Il était une fois ...
l etc … 

Monday, November 5, 12



Laws of software evolution
Continuing change

A program that is used in a real-world environment 
must change, or become progressively less useful in 
that environment.

Increasing complexity

As a program evolves, it becomes more complex, 
and extra resources are needed to preserve and 
simplify its structure.

Monday, November 5, 12



Software is a living entity...
Early decisions were certainly good at that 
time
But the context changes
Customers change
Technology changes
People change

Monday, November 5, 12



Maintenance = Success!!

Monday, November 5, 12



We only maintain useful 
successful software

Monday, November 5, 12



Maintenance is controlled by 
external factors (Success, 
laws, people...) and not 
driven by software

Monday, November 5, 12



Having better languages does not simplify really 
maintenance (C++, template, overriding, oop, ....)

Having better languages just make sure that we will 
build richer systems

Monday, November 5, 12



Maintenance is continuous 
Development

Between 50% and 80% of 
global effort is spent on 

“maintenance” !

18% Corrective
(fixing reported errors)

18% Adaptive
(new platforms or OS)

60% Perfective
(new functionality)

4% Other

80%

20%

60%
18%

18%
4%

“Maintenance”
Monday, November 5, 12



“Forward Engineering is the traditional process of moving 
from high-level abstractions and logical, implementation-
independent designs to the physical implementation of a 
system.”

“Reverse Engineering is the process of analyzing a subject 
system to identify the system’s components and their 
interrelationships and create representations of the system in 
another form or at a higher level of abstraction.”

“Reengineering ... is the examination and alteration of a 
subject system to reconstitute it in a new form and the 
subsequent implementation of the new form.”

Monday, November 5, 12



System daily duties

System assessment

System reorganization

Migration 

Goals

Monday, November 5, 12



 RMOD
RMoD: code analysis, metamodeling, software metrics, program 
understanding, program visualization, evolution analysis,
refactorings, legacy code, quality, ...

Current focus
 Remodularization analyses
 Quality models (PSA-Airfrance)
 Towards semantic merge
 Rule and bug assessment

Collaborations
Soft-VUB (Belgium), Pleiad (Chile)
UFMG (Brazil), SCG (Swiss), LIRMM

Representation Transformations

Reverse

Engineering

Analyses

Evolution

34

Monday, November 5, 12



One picture is worth one thousand 
words

Which one?

How could it be that simple?

35

Monday, November 5, 12



Program visualization is difficult

Limited number of colors: 12 

Blur and color emergence

Limited screen size

Limited context, edges crossing

Limited short-term memory (three to nine)

Difficult to remember too many symbols/semantics

Culture, Colorblind

36

Monday, November 5, 12



Visualization principles in 3 min

• Preattentive visualization (unconscious < 200ms)
• Gestalt principles (from 1912)

• 70% of our sensors are dedicated to vision

Monday, November 5, 12



How many 5?

3332123466509000096766689877835367
7866760910919818971746433039821768
34467865860880221167687687789762

Monday, November 5, 12



How many 5?

3332123466509000096766689877835367
7866760910919818971746433039821768
34467865860880221167687687789762

Monday, November 5, 12



Tudor Gîrba

Preattentive attributes

40

Color intensity

Form: orientation, line length, line width, size, shape, 
added marks, enclosure

Spatial position (2D location)

Motion (flicker)

Monday, November 5, 12



Tudor Gîrba

Color / intensity

41
Monday, November 5, 12



Position

Monday, November 5, 12



Form / Orientation

Monday, November 5, 12



Form / Line length

Monday, November 5, 12



Form / Line width

Monday, November 5, 12



Form / Size

Monday, November 5, 12



Form / Shapes

Monday, November 5, 12



Form / Added marks

Monday, November 5, 12



Form / Enclosure

Monday, November 5, 12



Context

Monday, November 5, 12



Tudor Gîrba

Gestalt Principles of  Visual 
Perception

51

Back in 1912, from the Gestalt School of psychology

Still stand today

Gestalt means patterns

How do we perceive pattern, form, and organization?

Monday, November 5, 12



Principle of Proximity

Monday, November 5, 12



Principle of Similarity

Monday, November 5, 12



Principle of Similarity

Monday, November 5, 12



Principle of Enclosure

Monday, November 5, 12



Principle of Enclosure

Monday, November 5, 12



Principle of Closure

Monday, November 5, 12



Principle of connectivity

Monday, November 5, 12



Principle of connectivity

Monday, November 5, 12



How properties spread on a system?

• Where author X worked?
• What are the classes under development the last two 

weeks?

• Distribution Map [ICSM]

Monday, November 5, 12



���������	����
��������
	���	��

   Packages    Properties 

Monday, November 5, 12



Monday, November 5, 12



Monday, November 5, 12



Monday, November 5, 12



Monday, November 5, 12



Monday, November 5, 12



Monday, November 5, 12



Monday, November 5, 12



Challenges

How to modularize a system?

Where are the cycles?

What produce cycles?

Where are the layers

Monday, November 5, 12



S.Ducasse LSE
����

Graph you said?

70

Monday, November 5, 12



S.Ducasse LSE
����

Graph you said?

70

Monday, November 5, 12



S.Ducasse LSE
����

Graph you said?

70

Monday, November 5, 12



S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

71

Monday, November 5, 12



S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

71

Monday, November 5, 12



S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

71

Monday, November 5, 12



S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

71

Monday, November 5, 12



S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

71

Monday, November 5, 12



S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

71

Monday, November 5, 12



S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

72

Monday, November 5, 12



S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

72

Monday, November 5, 12



S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

72

Monday, November 5, 12



S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

72

Monday, November 5, 12



S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

72

Monday, November 5, 12



S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

72

Monday, November 5, 12



S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

72

Monday, November 5, 12



S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

72

Monday, November 5, 12



S.Ducasse LSE
����

Identify cycles

73

Monday, November 5, 12



S.Ducasse LSE
����

Identify cycles

73

Monday, November 5, 12



S.Ducasse LSE
����

Identify cycles

73

Monday, November 5, 12



S.Ducasse LSE
����

Identify cycles

73

Monday, November 5, 12



S.Ducasse LSE
����

Identify cycles

73

Monday, November 5, 12



S.Ducasse LSE
����

Identify cycles

73

Monday, November 5, 12



S.Ducasse LSE
����

Causes and distribution

74

Monday, November 5, 12



S.Ducasse LSE
����

Causes and distribution

74

Monday, November 5, 12



D: two classes referring 

each other

F: candidate for direct 

cycle fix

I: incoming funnel

A: indirect cycle

E: high % of target 

impacted

G: invocations

H: inheritance 

+ otherC: accesses

F: candidate for 

direct cycle

fix

B: complex cycle
B: complex cycle

C: accesses

E: high % of source 

I: outgoing funnel

Monday, November 5, 12



Challenges

How to help taking the right decision?

What are possible futures impact of a change?

Monday, November 5, 12



Orion

Supporting multiple versions of analyzed projects

Applying analyses on different modifications

Monday, November 5, 12



Challenges

How can we help merging?

What is the impact of a change?

Monday, November 5, 12



How to support merging branches?

Git

Forks

Dependencies 
between changes

Manual tasks 
are needed 

Integrator is not 
the author of the 
changes

No guarantee that
the system will 
work

79

Monday, November 5, 12



Torch: Which changes?
Where? Who? What? 

80

A set of changes, involving:

Monday, November 5, 12



Torch: Which changes?
Where? Who? What? 

80

5 packages,
A set of changes, involving:

Monday, November 5, 12



Torch: Which changes?
Where? Who? What? 

80

5 packages,
9 classes,

A set of changes, involving:

Monday, November 5, 12



Torch: Which changes?
Where? Who? What? 

80

5 packages,
9 classes,

A set of changes, involving:

~40 methods

Monday, November 5, 12



Streams of Changes: 
On what other changes does this change depend?

109.cmm109.cmm

106.cmm

105.cmm110.cmm

109.cmm

108.ul

107.cmm

106.cmm

105.cmm

111.cmm

source branch

210.sd

209.sd

208.sd

207.md

206.md

target branch

81

Monday, November 5, 12



Challenges

How can we abstract from details but still access them 
and scale?

FAMIX (language independent metamodel)

OMG AST meta model

Monday, November 5, 12



Maintenance is important

http://rmod.lille.inria.fr

http://www.synectique.eu

Monday, November 5, 12

http://rmod.lille.inria.fr
http://rmod.lille.inria.fr
http://www.synectique.eu
http://www.synectique.eu

