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00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 

RMOD Challenges

How can we build evolvable software?
- systems that runs 24h 7/7 
- in my system some objects were born in 1980 and 
migrated since then, how can we make this the default?

How can we build dynamic but safer?
- Need for reflective and dynamic systems
- Can we make them safer?
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00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 

Two faces of the same coin

How to help maintaining large systems?
we design meta analyses & tools (to invent new tools and 
analyses ;))

What is the language runtime infrastructure to support 
evolution?

we are rethinking dynamic language fundamentals
Mixing OSes and languages
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Axis 2- Past: Dynamic Language Infrastructure
La perfection est atteinte, non pas lorsqu’il n’y a plus rien à ajouter, mais lorsqu’il n’y a plus 
rien à retirer.  St-Exupery

Some Topics 
Classboxes: Modules for open-classes [OOPSLA’05]
OOPAL: OOP + APL Generalizing message passing [OOPSLA’03]
Encapsulation for dynamic languages [ECOOP ‘04, OOPSLA’04]
Reusable behavior: Traits [ECOOP’03, OOPSLA’03, Toplas, ..., OOPSLA’07]

Impacts
Traits used by

Perl-6, PHP 5.4, Squeak/Pharo, Dr-Scheme
variant Fortress (SUN Microsystems), Scala (EPFL), Multiple type 
systems (Drossopoulos, Reppy, Liquori, Bono...)

6
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00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION - 

Infrastructure for Safer Reflective Systems

- Unpluggable reflection
- Isolation
- Fast serializers
- First class references
- Clutter collector (memory)

First Class 
References

Proxy

Isolation

unPlugMeta

Bootstrap
Clutter Collector

First Class Slots

OpalNativeBoost

Fast Serializer
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Software is 

Complex
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1946
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1’000’000 lines of code

* 2s = 2’000’000 seconds
/ 3600 = 560 hours
/ 8 = 70 days
/ 20 = 3 months
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Facts	

Cobol > 60% world software
70% of business applications
Applications cobol handle 85%
Cobol grows of 5 billions lines of code 
per year [eWeeks, 2001]
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Counting a bit

1 sheet ~ 60 lines of code

Two sides ~ 120 loc 
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Windows NT 3.1 (1993)

4 à 5 MLOC

3.75m 3.2m

Encyclopedia Britanica
(15 ed., 32 volumes)
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Windows server 2003
50 MLOC

41.m 46 m
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Business Relevance

1990 → 120 billions LOC in maintenance 
(Ulrich, 1990)   100 km height :)
2000 → 250 billions LOC in maintenance 
(Sommerville, 2000)
Maintained code double every 7 years 
(Müller et al., 1994)
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What? It still exist?

Advanced languages (OO, AOP)
Modern Processes (RUP, Agiles)
Quality (CMMi)
New Development (MDE, SOA)
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One upon a time
l Un marchand de moules construit un magasin à 

Dunkerque ...
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Il était une fois ...
l Les affaires marchent bien
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Il était une fois ...
l Vraiment bien 
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Il était une fois ...
l Les employés veulent un restaurant
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Il était une fois ...
l Les directeurs, une terrasse
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Il était une fois ...
l La loi impose une sortie de secours

Wednesday, December 12, 12



Il était une fois ...
l La concurrence offre des goodies aux clients, 

l'entreprise … une piscine !
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Il était une fois ...
l etc … 
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Laws of software evolution
Continuing change

A program that is used in a real-world environment 
must change, or become progressively less useful in 
that environment.

Increasing complexity

As a program evolves, it becomes more complex, 
and extra resources are needed to preserve and 
simplify its structure.
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Software is a living entity...
Early decisions were certainly good at that 
time
But the context changes
Customers change
Technology changes
People change
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Maintenance = Success!!
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We only maintain useful 
successful software
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Maintenance is controlled by 
external factors (Success, 
laws, people...) and not 
driven by software
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Maintenance is continuous 
Development

Between 50% and 80% of 
global effort is spent on 

“maintenance” !

18% Corrective
(fixing reported errors)

18% Adaptive
(new platforms or OS)

60% Perfective
(new functionality)

4% Other

80%

20%

60%
18%

18%
4%

“Maintenance”
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 RMOD
RMoD: code analysis, metamodeling, software metrics, program 
understanding, program visualization, evolution analysis,
refactorings, legacy code, quality, ...

Current focus
 Remodularization analyses
 Quality models (PSA-Airfrance)
 Towards semantic merge
 Rule and bug assessment

Collaborations
Soft-VUB (Belgium), Pleiad (Chile)
UFMG (Brazil), SCG (Swiss), LIRMM

Representation Transformations

Reverse

Engineering

Analyses

Evolution

32
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S.Ducasse LSE
����

34

Representation Transformations

Reverse

Engineering

Analyses

Evolution

Language Independent Meta 
Model (FAMIX) 
An Extensible Reengineering 
Environment 

Reengineering Patterns
Version Analyses 
HISMO metamodel

Understanding Large Systems
Static/Dynamic Information 
Feature Analysis
Class Understanding 
Package Blueprints
Distribution Maps

Software Metrics 
Quality Models
Duplicated Code Identification
Test Generation
Code Pattern Identification
Cycle and Layer Identification
Merging technics

Language Independent 
Refactorings
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One picture is worth one thousand 
words

Which one?

How could it be that simple?

35
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Program visualization is difficult

Limited number of colors: 12 

Blur and color emergence

Limited screen size

Limited context, edges crossing

Limited short-term memory (three to nine)

Difficult to remember too many symbols/semantics

Culture, Colorblind

36
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How many 5?

3332123466509000096766689877835367
7866760910919818971746433039821768
34467865860880221167687687789762
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How many 5?

3332123466509000096766689877835367
7866760910919818971746433039821768
34467865860880221167687687789762
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Tudor Gîrba

Preattentive attributes

39

Color intensity

Form: orientation, line length, line width, size, shape, 
added marks, enclosure

Spatial position (2D location)

Motion (flicker)
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Tudor Gîrba

Color / intensity

40
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Position
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Form / Orientation
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Form / Line length
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Form / Line width
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Form / Size
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Form / Shapes
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Form / Added marks
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Form / Enclosure
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Context
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Tudor Gîrba

Gestalt Principles of  Visual 
Perception

50

Back in 1912, from the Gestalt School of psychology

Still stand today

Gestalt means patterns

How do we perceive pattern, form, and organization?
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Principle of Proximity
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Principle of Similarity
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Principle of Similarity
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Principle of Enclosure
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Principle of Enclosure

Wednesday, December 12, 12



Principle of Closure
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Principle of connectivity
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Principle of connectivity
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How properties spread on a system?

• Where author X worked?
• What are the classes under development the last two 

weeks?

• Distribution Map [ICSM]
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   Packages    Properties 
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Challenges

How to modularize a system?

Where are the cycles?

What produce cycles?

Where are the layers
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S.Ducasse LSE
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Graph you said?

69
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Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0
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7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71
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Identify cycles

72

Wednesday, December 12, 12



S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12



S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12



S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12



S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12



S.Ducasse LSE
����

Identify cycles
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Causes and distribution

73
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Causes and distribution
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D: two classes referring 

each other

F: candidate for direct 

cycle fix

I: incoming funnel

A: indirect cycle

E: high % of target 

impacted

G: invocations

H: inheritance 

+ otherC: accesses

F: candidate for 

direct cycle

fix

B: complex cycle
B: complex cycle

C: accesses

E: high % of source 

I: outgoing funnel
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Challenges

How to help taking the right decision?

What are possible futures impact of a change?
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Orion

Supporting multiple versions of analyzed projects

Applying analyses on different modifications

Comparing different futures
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Challenges

How can we help merging?

What is the impact of a change?
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How to support merging branches?

Git

Forks

Dependencies 
between changes

Manual tasks 
are needed 

Integrator is not 
the author of the 
changes

No guarantee that
the system will 
work

78
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Assisted Integration

79

Approach(
Overview(
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Assisted Integration
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Approach(
Overview(

Source Code Meta-Model (Ring)

Single delta (commit)

Single-delta Change Meta-
Model and Analyses (RingS)

Changes list

Parameters

Color Legend

Metrics

Changes 
visualizations

Changes details

packages

classes

methods

in place diff as a 
fly-by-help

comments

variables

inheritance
(intra-package)

Torch
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Assisted Integration
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Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Stream of changes (chains of commits)

Change & Dependency 
Meta-Model and Analyses 

(RingC)

History Meta-
Model and 

Analyses (RingH)

change dependencies

deltas
source code diff

changes

delta dependencies

package versions

conventions

Single delta (commit)

Single-delta Change Meta-
Model and Analyses (RingS)

Changes list

Parameters

Color Legend

Metrics

Changes 
visualizations

Changes details

packages

classes

methods

in place diff as a 
fly-by-help

comments

variables

inheritance
(intra-package)

JET Torch
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The Torch Dashboard 80
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The Torch Dashboard 80

Torch: Supporting Commit Understanding
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Visualization:  Changed Packages (details)

Package Structure

81
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Visual representation of changed classes

Class Representation
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Source Code as a fly-by-help

Omnipresent source code

83
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Torch: Which changes?
Where? Who? What? 

84

A set of changes, involving:
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Torch: Which changes?
Where? Who? What? 

84

5 packages,
A set of changes, involving:
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Torch: Which changes?
Where? Who? What? 

84

5 packages,
9 classes,

A set of changes, involving:
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Torch: Which changes?
Where? Who? What? 

84

5 packages,
9 classes,

A set of changes, involving:

~40 methods
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Streams of Changes: 
On what other changes does this change depend?

109.cmm109.cmm

106.cmm

105.cmm110.cmm

109.cmm

108.ul

107.cmm

106.cmm

105.cmm

111.cmm

source branch

210.sd

209.sd

208.sd

207.md

206.md

target branch

85
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The JET Tools

86

Characterizing,
Streams,of,
Changes,
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The JET Tools
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change dependencies

deltas
source code diff

changes

delta dependencies

package versions
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The JET Tools
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change dependencies

deltas
source code diff

changes

delta dependencies

package versions
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Characterizing,
Streams,of,
Changes,

intermediate deltas

source deltas

end deltas

delta dependencies

124 depends on 113 and 122

124 is the dependency of 132
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The JET Tools

86

change dependencies

deltas
source code diff

changes

delta dependencies

package versions

conventions

Characterizing,
Streams,of,
Changes,

intermediate deltas

source deltas

end deltas

delta dependencies

124 depends on 113 and 122

124 is the dependency of 132

change history
source code diff

callers

implementors

change dependencies
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Maintenance is important
and Fun ;)

http://rmod.lille.inria.fr

http://www.synectique.eu
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