
Software Evolution: a
Maintenance Perspective
S. Ducasse
http://rmod.lille.inria.fr

Wednesday, December 12, 12

http://rmod.lille.inria.fr
http://rmod.lille.inria.fr

Wednesday, December 12, 12

http://stephane.ducasse.free.fr
Co-creator of Moose

Co-founder of http://www.synectique.eu

Core http://www.pharo-project.org developer

Coder and designer

Wednesday, December 12, 12

http://stephane.ducasse.free.fr
http://stephane.ducasse.free.fr
http://www.pharo-project.org
http://www.pharo-project.org

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -

RMOD Challenges

How can we build evolvable software?
- systems that runs 24h 7/7
- in my system some objects were born in 1980 and
migrated since then, how can we make this the default?

How can we build dynamic but safer?
- Need for reflective and dynamic systems
- Can we make them safer?

Wednesday, December 12, 12

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -

Two faces of the same coin

How to help maintaining large systems?
we design meta analyses & tools (to invent new tools and
analyses ;))

What is the language runtime infrastructure to support
evolution?

we are rethinking dynamic language fundamentals
Mixing OSes and languages

Wednesday, December 12, 12

����

Axis 2- Past: Dynamic Language Infrastructure
La perfection est atteinte, non pas lorsqu’il n’y a plus rien à ajouter, mais lorsqu’il n’y a plus
rien à retirer. St-Exupery

Some Topics
Classboxes: Modules for open-classes [OOPSLA’05]
OOPAL: OOP + APL Generalizing message passing [OOPSLA’03]
Encapsulation for dynamic languages [ECOOP ‘04, OOPSLA’04]
Reusable behavior: Traits [ECOOP’03, OOPSLA’03, Toplas, ..., OOPSLA’07]

Impacts
Traits used by

Perl-6, PHP 5.4, Squeak/Pharo, Dr-Scheme
variant Fortress (SUN Microsystems), Scala (EPFL), Multiple type
systems (Drossopoulos, Reppy, Liquori, Bono...)

6

Wednesday, December 12, 12

00 MOIS 2011EMETTEUR - NOM DE LA PRESENTATION -

Infrastructure for Safer Reflective Systems

- Unpluggable reflection
- Isolation
- Fast serializers
- First class references
- Clutter collector (memory)

First Class
References

Proxy

Isolation

unPlugMeta

Bootstrap
Clutter Collector

First Class Slots

OpalNativeBoost

Fast Serializer

Wednesday, December 12, 12

Wednesday, December 12, 12

Software is

Complex
Wednesday, December 12, 12

1946

Wednesday, December 12, 12

1’000’000 lines of code

* 2s = 2’000’000 seconds
/ 3600 = 560 hours
/ 8 = 70 days
/ 20 = 3 months

Wednesday, December 12, 12

Facts	

Cobol > 60% world software
70% of business applications
Applications cobol handle 85%
Cobol grows of 5 billions lines of code
per year [eWeeks, 2001]

Wednesday, December 12, 12

Counting a bit

1 sheet ~ 60 lines of code

Two sides ~ 120 loc

Wednesday, December 12, 12

Windows NT 3.1 (1993)

4 à 5 MLOC

3.75m 3.2m

Encyclopedia Britanica
(15 ed., 32 volumes)

Wednesday, December 12, 12

Windows server 2003
50 MLOC

41.m 46 m

Wednesday, December 12, 12

Business Relevance

1990 → 120 billions LOC in maintenance
(Ulrich, 1990) 100 km height :)
2000 → 250 billions LOC in maintenance
(Sommerville, 2000)
Maintained code double every 7 years
(Müller et al., 1994)

Wednesday, December 12, 12

What? It still exist?

Advanced languages (OO, AOP)
Modern Processes (RUP, Agiles)
Quality (CMMi)
New Development (MDE, SOA)

Wednesday, December 12, 12

One upon a time
l Un marchand de moules construit un magasin à

Dunkerque ...

Wednesday, December 12, 12

Il était une fois ...
l Les affaires marchent bien

Wednesday, December 12, 12

Il était une fois ...
l Vraiment bien

Wednesday, December 12, 12

Il était une fois ...
l Les employés veulent un restaurant

Wednesday, December 12, 12

Il était une fois ...
l Les directeurs, une terrasse

Wednesday, December 12, 12

Il était une fois ...
l La loi impose une sortie de secours

Wednesday, December 12, 12

Il était une fois ...
l La concurrence offre des goodies aux clients,

l'entreprise … une piscine !

Wednesday, December 12, 12

Il était une fois ...
l etc …

Wednesday, December 12, 12

Laws of software evolution
Continuing change

A program that is used in a real-world environment
must change, or become progressively less useful in
that environment.

Increasing complexity

As a program evolves, it becomes more complex,
and extra resources are needed to preserve and
simplify its structure.

Wednesday, December 12, 12

Software is a living entity...
Early decisions were certainly good at that
time
But the context changes
Customers change
Technology changes
People change

Wednesday, December 12, 12

Maintenance = Success!!

Wednesday, December 12, 12

We only maintain useful
successful software

Wednesday, December 12, 12

Maintenance is controlled by
external factors (Success,
laws, people...) and not
driven by software

Wednesday, December 12, 12

Maintenance is continuous
Development

Between 50% and 80% of
global effort is spent on

“maintenance” !

18% Corrective
(fixing reported errors)

18% Adaptive
(new platforms or OS)

60% Perfective
(new functionality)

4% Other

80%

20%

60%
18%

18%
4%

“Maintenance”
Wednesday, December 12, 12

 RMOD
RMoD: code analysis, metamodeling, software metrics, program
understanding, program visualization, evolution analysis,
refactorings, legacy code, quality, ...

Current focus
 Remodularization analyses
 Quality models (PSA-Airfrance)
 Towards semantic merge
 Rule and bug assessment

Collaborations
Soft-VUB (Belgium), Pleiad (Chile)
UFMG (Brazil), SCG (Swiss), LIRMM

Representation Transformations

Reverse

Engineering

Analyses

Evolution

32

Wednesday, December 12, 12

}

{

}

{

}

{
}

{

}

{

McCabe = 21
LOC = 75

3,0
00

classes select: #isGod ...

Wednesday, December 12, 12

S.Ducasse LSE
����

34

Representation Transformations

Reverse

Engineering

Analyses

Evolution

Language Independent Meta
Model (FAMIX)
An Extensible Reengineering
Environment

Reengineering Patterns
Version Analyses
HISMO metamodel

Understanding Large Systems
Static/Dynamic Information
Feature Analysis
Class Understanding
Package Blueprints
Distribution Maps

Software Metrics
Quality Models
Duplicated Code Identification
Test Generation
Code Pattern Identification
Cycle and Layer Identification
Merging technics

Language Independent
Refactorings

Wednesday, December 12, 12

One picture is worth one thousand
words

Which one?

How could it be that simple?

35

Wednesday, December 12, 12

Program visualization is difficult

Limited number of colors: 12

Blur and color emergence

Limited screen size

Limited context, edges crossing

Limited short-term memory (three to nine)

Difficult to remember too many symbols/semantics

Culture, Colorblind

36

Wednesday, December 12, 12

How many 5?

3332123466509000096766689877835367
7866760910919818971746433039821768
34467865860880221167687687789762

Wednesday, December 12, 12

How many 5?

3332123466509000096766689877835367
7866760910919818971746433039821768
34467865860880221167687687789762

Wednesday, December 12, 12

Tudor Gîrba

Preattentive attributes

39

Color intensity

Form: orientation, line length, line width, size, shape,
added marks, enclosure

Spatial position (2D location)

Motion (flicker)

Wednesday, December 12, 12

Tudor Gîrba

Color / intensity

40
Wednesday, December 12, 12

Position

Wednesday, December 12, 12

Form / Orientation

Wednesday, December 12, 12

Form / Line length

Wednesday, December 12, 12

Form / Line width

Wednesday, December 12, 12

Form / Size

Wednesday, December 12, 12

Form / Shapes

Wednesday, December 12, 12

Form / Added marks

Wednesday, December 12, 12

Form / Enclosure

Wednesday, December 12, 12

Context

Wednesday, December 12, 12

Tudor Gîrba

Gestalt Principles of Visual
Perception

50

Back in 1912, from the Gestalt School of psychology

Still stand today

Gestalt means patterns

How do we perceive pattern, form, and organization?

Wednesday, December 12, 12

Principle of Proximity

Wednesday, December 12, 12

Principle of Similarity

Wednesday, December 12, 12

Principle of Similarity

Wednesday, December 12, 12

Principle of Enclosure

Wednesday, December 12, 12

Principle of Enclosure

Wednesday, December 12, 12

Principle of Closure

Wednesday, December 12, 12

Principle of connectivity

Wednesday, December 12, 12

Principle of connectivity

Wednesday, December 12, 12

How properties spread on a system?

• Where author X worked?
• What are the classes under development the last two

weeks?

• Distribution Map [ICSM]

Wednesday, December 12, 12

���������	����
��������
	
���	��

   Packages   Properties

Wednesday, December 12, 12

Wednesday, December 12, 12

Wednesday, December 12, 12

Wednesday, December 12, 12

Wednesday, December 12, 12

Wednesday, December 12, 12

Wednesday, December 12, 12

Wednesday, December 12, 12

Challenges

How to modularize a system?

Where are the cycles?

What produce cycles?

Where are the layers

Wednesday, December 12, 12

S.Ducasse LSE
����

Graph you said?

69

Wednesday, December 12, 12

S.Ducasse LSE
����

Graph you said?

69

Wednesday, December 12, 12

S.Ducasse LSE
����

Graph you said?

69

Wednesday, December 12, 12

S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

70

Wednesday, December 12, 12

S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

70

Wednesday, December 12, 12

S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

70

Wednesday, December 12, 12

S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

70

Wednesday, December 12, 12

S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

70

Wednesday, December 12, 12

S.Ducasse LSE
����

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

70

Wednesday, December 12, 12

S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71

Wednesday, December 12, 12

S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71

Wednesday, December 12, 12

S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71

Wednesday, December 12, 12

S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71

Wednesday, December 12, 12

S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71

Wednesday, December 12, 12

S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71

Wednesday, December 12, 12

S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71

Wednesday, December 12, 12

S.Ducasse LSE
����

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

71

Wednesday, December 12, 12

S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12

S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12

S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12

S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12

S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12

S.Ducasse LSE
����

Identify cycles

72

Wednesday, December 12, 12

S.Ducasse LSE
����

Causes and distribution

73

Wednesday, December 12, 12

S.Ducasse LSE
����

Causes and distribution

73

Wednesday, December 12, 12

D: two classes referring

each other

F: candidate for direct

cycle fix

I: incoming funnel

A: indirect cycle

E: high % of target

impacted

G: invocations

H: inheritance

+ otherC: accesses

F: candidate for

direct cycle

fix

B: complex cycle
B: complex cycle

C: accesses

E: high % of source

I: outgoing funnel

Wednesday, December 12, 12

Challenges

How to help taking the right decision?

What are possible futures impact of a change?

Wednesday, December 12, 12

Orion

Supporting multiple versions of analyzed projects

Applying analyses on different modifications

Comparing different futures

Wednesday, December 12, 12

Challenges

How can we help merging?

What is the impact of a change?

Wednesday, December 12, 12

How to support merging branches?

Git

Forks

Dependencies
between changes

Manual tasks
are needed

Integrator is not
the author of the
changes

No guarantee that
the system will
work

78

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Single delta (commit)

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Single delta (commit)

Single-delta Change Meta-
Model and Analyses (RingS)

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Single delta (commit)

Single-delta Change Meta-
Model and Analyses (RingS)

Changes list

Parameters

Color Legend

Metrics

Changes
visualizations

Changes details

packages

classes

methods

in place diff as a
fly-by-help

comments

variables

inheritance
(intra-package)

Torch

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Stream of changes (chains of commits) Single delta (commit)

Single-delta Change Meta-
Model and Analyses (RingS)

Changes list

Parameters

Color Legend

Metrics

Changes
visualizations

Changes details

packages

classes

methods

in place diff as a
fly-by-help

comments

variables

inheritance
(intra-package)

Torch

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Stream of changes (chains of commits)

History Meta-
Model and

Analyses (RingH)

Single delta (commit)

Single-delta Change Meta-
Model and Analyses (RingS)

Changes list

Parameters

Color Legend

Metrics

Changes
visualizations

Changes details

packages

classes

methods

in place diff as a
fly-by-help

comments

variables

inheritance
(intra-package)

Torch

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Stream of changes (chains of commits)

Change & Dependency
Meta-Model and Analyses

(RingC)

History Meta-
Model and

Analyses (RingH)

Single delta (commit)

Single-delta Change Meta-
Model and Analyses (RingS)

Changes list

Parameters

Color Legend

Metrics

Changes
visualizations

Changes details

packages

classes

methods

in place diff as a
fly-by-help

comments

variables

inheritance
(intra-package)

Torch

Wednesday, December 12, 12

Assisted Integration

79

Approach(
Overview(

Source Code Meta-Model (Ring)

Stream of changes (chains of commits)

Change & Dependency
Meta-Model and Analyses

(RingC)

History Meta-
Model and

Analyses (RingH)

change dependencies

deltas
source code diff

changes

delta dependencies

package versions

conventions

Single delta (commit)

Single-delta Change Meta-
Model and Analyses (RingS)

Changes list

Parameters

Color Legend

Metrics

Changes
visualizations

Changes details

packages

classes

methods

in place diff as a
fly-by-help

comments

variables

inheritance
(intra-package)

JET Torch

Wednesday, December 12, 12

The Torch Dashboard 80

Wednesday, December 12, 12

The Torch Dashboard 80

Torch: Supporting Commit Understanding

Wednesday, December 12, 12

Visualization: Changed Packages (details)

Package Structure

81

Wednesday, December 12, 12

Visual representation of changed classes

Class Representation

82

Wednesday, December 12, 12

Source Code as a fly-by-help

Omnipresent source code

83

Wednesday, December 12, 12

Torch: Which changes?
Where? Who? What?

84

A set of changes, involving:

Wednesday, December 12, 12

Torch: Which changes?
Where? Who? What?

84

5 packages,
A set of changes, involving:

Wednesday, December 12, 12

Torch: Which changes?
Where? Who? What?

84

5 packages,
9 classes,

A set of changes, involving:

Wednesday, December 12, 12

Torch: Which changes?
Where? Who? What?

84

5 packages,
9 classes,

A set of changes, involving:

~40 methods

Wednesday, December 12, 12

Streams of Changes:
On what other changes does this change depend?

109.cmm109.cmm

106.cmm

105.cmm110.cmm

109.cmm

108.ul

107.cmm

106.cmm

105.cmm

111.cmm

source branch

210.sd

209.sd

208.sd

207.md

206.md

target branch

85

Wednesday, December 12, 12

The JET Tools

86

Characterizing,
Streams,of,
Changes,

Wednesday, December 12, 12

The JET Tools

86

change dependencies

deltas
source code diff

changes

delta dependencies

package versions

conventions

Characterizing,
Streams,of,
Changes,

Wednesday, December 12, 12

The JET Tools

86

change dependencies

deltas
source code diff

changes

delta dependencies

package versions

conventions

Characterizing,
Streams,of,
Changes,

intermediate deltas

source deltas

end deltas

delta dependencies

124 depends on 113 and 122

124 is the dependency of 132

Wednesday, December 12, 12

The JET Tools

86

change dependencies

deltas
source code diff

changes

delta dependencies

package versions

conventions

Characterizing,
Streams,of,
Changes,

intermediate deltas

source deltas

end deltas

delta dependencies

124 depends on 113 and 122

124 is the dependency of 132

change history
source code diff

callers

implementors

change dependencies

Wednesday, December 12, 12

Maintenance is important
and Fun ;)

http://rmod.lille.inria.fr

http://www.synectique.eu

Wednesday, December 12, 12

http://rmod.lille.inria.fr
http://rmod.lille.inria.fr
http://www.synectique.eu
http://www.synectique.eu

