
1

Mariano Martinez Peck
marianopeck@gmail.com

http://marianopeck.wordpress.com/

RMod

Problems and Challenges
when Building a Manager for

Unused Objects

Friday, November 4, 2011

mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com

The context
In OOP primary memory is represented by an object graph

A B C

D E F G H

Y

K

X

I LJ

Z

2

Friday, November 4, 2011

What is an used
object?

3

An object that receives a message or that is directly used
by the virtual machine during a specific period of time.

Friday, November 4, 2011

4

The Garbage Collectors only collects objects that nobody
else points to.

But...what happens with referenced yet unused objects?

A B C

D E F G H

Y

K

X

I LJ

Z

Friday, November 4, 2011

Our proposal

5

Build an Unused Object Manager
(UOM)

Friday, November 4, 2011

The paper...

 Describes problems we have found so far.

 Lists “non-working” alternatives.

 Shows the first steps of our alternative.

6

Friday, November 4, 2011

UOM in a nutshell

1. Detect unused objects to swap out.

2. Replace some objects with proxies.

3. Serialize the original object and write it to
disk.

7

Swapping out:

1. When a proxy intercepts a message,
materialize object from disk.

2. Replace proxies with loaded objects.

Swapping in:

Friday, November 4, 2011

UOM subsystems

8

Unused
Object

Manager
 Unused Objects

Detector

Object Serializer Object Swapper

Proxifier

Friday, November 4, 2011

9

Basic Swapping Issues

Friday, November 4, 2011

Swapping unit

10

A

B C

E F

GC Root

Primary memory Secondary memory

Friday, November 4, 2011

Swapping unit

10

A

B

E F

GC Root

Primary memory Secondary memory

C

Pc

Friday, November 4, 2011

Swapping unit

10

A

B

E

GC Root

Primary memory Secondary memory

C

Pc

Friday, November 4, 2011

Lesson

11

To be efficient, we need to group objects and replace
several objects with one or a few proxies.

Friday, November 4, 2011

Not everything can
be swapped out

 Special objects: specialObjectsArray, nil,
true, false.

 Special classes: ProtoObject, Object, Array,
Symbol, BlockClosure, CompiledMethod,
MethodDictionary, SmallInteger, etc.

 Objects/Classes needed to swap in/out.

12

Friday, November 4, 2011

Lesson

13

We need a way to tag system classes and objects that
we shouldn’t swap.

Friday, November 4, 2011

14

Proxies and Memory

Friday, November 4, 2011

Methods not
intercepted 1/2

15

 If we use #doesNotUnderstand: , then all
messages understood are not intercepted.

 Compiler optimizations: #ifTrue:, #ifNil:,
#whileFalse:, #to:do:, etc (not so many at the end)

Friday, November 4, 2011

16

 Special bytecode: #class

 (anObject class = User)
ifTrue: [self doSomething]

 ifFalse: [self doSomethingDifferent]

 (anObject == anotherObject)
 ifTrue: [self doSomething]
 ifFalse: [self doSomethingDifferent]

Methods not
intercepted 2/2

Special bytecode: #== is not a problem because there is a
#become: between the proxy and the target.

Friday, November 4, 2011

Lessons

17

We should not replace instances of True, False,
BlockCloure and SmallInteger with proxies.

Some optimizations such as #class should be disabled.

Friday, November 4, 2011

pointer swizzling

18

A

B

D

E F

GC Root

Primary memory Secondary memory

C

Pc

Friday, November 4, 2011

pointer swizzling

18

A

B

D

E F

GC Root

Primary memory Secondary memory

C

Pc

?
- file name
- index in a table
- an ID

Friday, November 4, 2011

pointer swizzling

18

A

B

D

E F

GC Root

Primary memory Secondary memory

C

Pc

?
- file name
- index in a table
- an ID

- one file per object
- one file for all objects
- a database

?

Friday, November 4, 2011

Lessons

19

We need to map memory addresses of primary
memory to addresses in secondary memory.

We need to define how objects are stored in
secondary memory.

Friday, November 4, 2011

Small proxies

 Proxies as regular objects.

 Store the minimal possible state.

 Proxies as immediate objects.

 We need space in the memory address.

20

Friday, November 4, 2011

Lesson

21

We have to make proxies use as little memory as possible.

Friday, November 4, 2011

Special proxies

22

john

B User

D

E F

GC Root

instance of

Friday, November 4, 2011

Special proxies

22

john

B

D

E F

GC Root

Pr

instance of

Friday, November 4, 2011

Special proxies

22

john

B

D

E F

GC Root

Pr

john foo

instance of

Friday, November 4, 2011

Special proxies

22

john

B

D

E F

GC Root

Pr

john foo

instance of

VM Crash!

Friday, November 4, 2011

Lesson

23

We need special proxies for those classes that the VM
expects to have certain shape.

Friday, November 4, 2011

24

Graphs and Shared Objects

Friday, November 4, 2011

25

A

B C

E F

GC Root

Primary memory Secondary memory

How to group them

Friday, November 4, 2011

25

A

B

E F

GC Root

Primary memory Secondary memory

Pc

How to group them

C, E, F

Friday, November 4, 2011

25

A

B

GC Root

Primary memory Secondary memory

Pc

How to group them

C, E, F

Friday, November 4, 2011

Lesson

26

Grouping unused objects in graphs allows us to use
less proxies. In addition, objects inside a graph may

be used all together or not used at all.

Friday, November 4, 2011

27

A

B C

E F

GC Root

Primary memory Secondary memory

Shared objects

D

?

Friday, November 4, 2011

27

A

B

E F

GC Root

Primary memory Secondary memory

Pc

Shared objects

C, E, F

D

?

Friday, November 4, 2011

27

A

B

F

GC Root

Primary memory Secondary memory

Pc

Shared objects

C, E, F

D

?

Friday, November 4, 2011

27

A

B

F

GC Root

Primary memory Secondary memory

Pc

Shared objects

C, E, F

D

?

Friday, November 4, 2011

27

A

B

F

GC Root

Primary memory Secondary memory

Pc

Shared objects

C, E, F

D

?

- Should we swap shared
objects or not?
- If not... proxies for them too?
- How can we detect shared
objects?
- Much more...

For more details, read the
paper :)

Friday, November 4, 2011

Lesson

28

Correct and efficient handling of shared objects
inside graphs is a really difficult task.

Friday, November 4, 2011

29

Our first steps...

Friday, November 4, 2011

UOM subsystems

30

Unused
Object

Manager
 Unused Objects

Detector

Object Serializer Object Swapper

Proxifier

Friday, November 4, 2011

31

 http://rmod.lille.inria.fr/web/pier/software/Marea

http://www.squeaksource.com/Marea.html

Friday, November 4, 2011

http://rmod.lille.inria.fr/web/pier/software/Marea
http://rmod.lille.inria.fr/web/pier/software/Marea
http://www.squeaksource.com/Marea.html
http://www.squeaksource.com/Marea.html

Marea subsystems

32

Unused Objects
Detector

Object Serializer Object Swapper

Proxifier

Friday, November 4, 2011

Marea subsystems

32

Unused Objects
Detector

Object Serializer Object Swapper

Proxifier

UnusedObjects

Friday, November 4, 2011

Marea subsystems

32

Unused Objects
Detector

Object Serializer Object Swapper

Proxifier

UnusedObjects

Friday, November 4, 2011

Marea subsystems

32

Unused Objects
Detector

Object Serializer Object Swapper

Proxifier

UnusedObjects

Friday, November 4, 2011

Marea subsystems

32

Unused Objects
Detector

Object Serializer Object Swapper

Proxifier

UnusedObjects

Friday, November 4, 2011

Unused Objects
 CogVM fork to mark objects when “used”.

 Image side code to set and get “usage bit”.

 Some other useful primitives.

33

Friday, November 4, 2011

Unused Objects
 CogVM fork to mark objects when “used”.

 Image side code to set and get “usage bit”.

 Some other useful primitives.

33

Paper accepted

Smalltalks 2010

Friday, November 4, 2011

 Do not use #doesNotUnderstand.

 Intercept “all” messages (except the optimized
ones).

 Uniform (e.g, it can proxify classes and methods).

 Stratified.

 Small memory footprint.

34

Friday, November 4, 2011

 Do not use #doesNotUnderstand.

 Intercept “all” messages (except the optimized
ones).

 Uniform (e.g, it can proxify classes and methods).

 Stratified.

 Small memory footprint.

34

Paper accepted

IWST 2011

Friday, November 4, 2011

 Fast.

 Easy to adapt to my custom needs.

 Complete: can serialize almost any type of object.

 Well tested and benchmarked.

35

Friday, November 4, 2011

 Fast.

 Easy to adapt to my custom needs.

 Complete: can serialize almost any type of object.

 Well tested and benchmarked.

35

Paper accepted

IWST 2011

Friday, November 4, 2011

Object Swapper

 Still in development.

 How to efficiently solve the problem of shared
objects.

 Complete the process:

 Which graphs to swap out.

 When to swap out.

36

Friday, November 4, 2011

37

Mariano Martinez Peck
marianopeck@gmail.com

http://marianopeck.wordpress.com/

RMod

Thanks

http://rmod.lille.inria.fr/web/pier/software/Marea

Friday, November 4, 2011

mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
mailto:marianopeck@gmail.com
http://rmod.lille.inria.fr/web/pier/software/Marea
http://rmod.lille.inria.fr/web/pier/software/Marea

