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The context
In OOP primary memory is represented by an object graph
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What is an used 
object?
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An object that receives a message or that is directly used 
by the virtual machine during a specific period of time.
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The Garbage Collectors only collects objects that nobody 
else points to.

But...what happens with referenced yet unused objects?
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Our proposal
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Build an Unused Object Manager 
(UOM)
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The paper...

 Describes problems we have found so far.

 Lists “non-working” alternatives.

 Shows the first steps of our alternative.
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UOM in a nutshell

1. Detect unused objects to swap out.

2. Replace some objects with proxies.

3. Serialize the original object and write it to 
disk. 
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Swapping out:

1. When a proxy intercepts a message, 
materialize object from disk.

2. Replace proxies with loaded objects. 

Swapping in:
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UOM subsystems
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Basic Swapping Issues
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Swapping unit
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Swapping unit
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Swapping unit
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Lesson
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To be efficient, we need to group objects and replace 
several objects with one or a few proxies.
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Not everything can 
be swapped out

 Special objects: specialObjectsArray, nil, 
true, false.

 Special classes: ProtoObject, Object, Array, 
Symbol, BlockClosure, CompiledMethod, 
MethodDictionary, SmallInteger, etc.

 Objects/Classes needed to swap in/out. 
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Lesson
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We need a way to tag system classes and objects that 
we shouldn’t swap.
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Proxies and Memory
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Methods not 
intercepted 1/2

15

 If we use #doesNotUnderstand: , then all 
messages understood are not intercepted. 

 Compiler optimizations: #ifTrue:, #ifNil:, 
#whileFalse:, #to:do:, etc  (not so many at the end)
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 Special bytecode: #class

 (anObject class = User)
ifTrue: [ self doSomething] 

        ifFalse: [self doSomethingDifferent]

 (anObject  == anotherObject)
         ifTrue: [ self doSomething] 
         ifFalse: [self doSomethingDifferent] 

Methods not 
intercepted 2/2

Special bytecode: #== is not a problem because there is a 
#become: between the proxy and the target.
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Lessons
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We should not replace instances of  True, False, 
BlockCloure and SmallInteger with proxies. 

Some optimizations such as #class should be disabled. 
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pointer swizzling
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pointer swizzling
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pointer swizzling
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- one file per object
- one file for all objects
- a database

?
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Lessons
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We need to map memory addresses of primary 
memory to addresses in secondary memory.

We need to define how objects are stored in 
secondary memory.
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Small proxies

 Proxies as regular objects.

 Store the minimal possible state.

 Proxies as immediate objects.

 We need space in the memory address.
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Lesson
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We have to make proxies use as little memory as possible.
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Special proxies
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Special proxies
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Special proxies
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Lesson
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We need special proxies for those classes that the VM 
expects to have certain shape. 
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Graphs  and Shared Objects
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Lesson
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Grouping unused objects in graphs allows us to use 
less proxies. In addition, objects inside a graph may 

be used all together or not used at all.
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- Should we swap shared 
objects or not?
- If not... proxies for them too?
- How can we detect shared 
objects?
- Much more...

For more details, read the 
paper :)
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Lesson
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Correct and efficient handling of shared objects 
inside graphs is a really difficult task.
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Our first steps...
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UOM subsystems
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 http://rmod.lille.inria.fr/web/pier/software/Marea

http://www.squeaksource.com/Marea.html
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Marea subsystems
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Marea subsystems
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Unused Objects
 CogVM fork to mark objects when “used”.

 Image side code to set and get “usage bit”.

 Some other useful primitives.
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Unused Objects
 CogVM fork to mark objects when “used”.

 Image side code to set and get “usage bit”.

 Some other useful primitives.
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 Do not use #doesNotUnderstand.

 Intercept “all” messages (except the optimized 
ones).

 Uniform (e.g, it can proxify classes and methods).

 Stratified.

 Small memory footprint.
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 Fast.

 Easy to adapt to my custom needs.

 Complete: can serialize almost any type of object.

 Well tested and benchmarked. 
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Object Swapper

 Still in development.

 How to efficiently solve the problem of shared 
objects.

 Complete the process: 

 Which graphs to swap out.

 When to swap out. 
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