
M.Denker - Bootstrapping a Smalltalk November 2011

Bootstrapping a Smalltalk
G. Casaccio, S. Ducasse, L. Fabresse, J-B. Arnaud, B. van Ryseghem

Presented by: M. Denker

November 2011M.Denker - Bootstrapping a Smalltalk -

What is Bootstrapping?

A process that builds
the minimal infrastructure of a language

that is reusable to define this language itself

November 2011M.Denker - Bootstrapping a Smalltalk -

Example: Bootstrapping a language X

Compiler
Tools

Loader

Language X

November 2011M.Denker - Bootstrapping a Smalltalk -

Compiler
Tools

Loader

Language X

How to create/write all of this for language X?

Example: Bootstrapping a language X

November 2011M.Denker - Bootstrapping a Smalltalk -

Compiler
Tools

Loader

Language X

Language Y
Compiler

or
Loader

description

Example: Bootstrapping a language X

November 2011M.Denker - Bootstrapping a Smalltalk -

Compiler
Tools

Loader

Language X

Language Y
Compiler

or
Loader

description

Java

Resilient

Example: Bootstrapping a language X

≠

November 2011M.Denker - Bootstrapping a Smalltalk -

Compiler
Tools

Language X

Language Y description

Slang

Squeak/Pharo

⊃

Example: Bootstrapping a language X

Compiler
or

Loader

Loader

November 2011M.Denker - Bootstrapping a Smalltalk -

Why Bootstrapping?

- Agile and explicit process

- Explicit malleability and evolution support

- Warranty of initial state

- Minimal self reference

November 2011M.Denker - Bootstrapping a Smalltalk -

Existing approaches

(tracing)
Static-based

Dumping RecreatingOnAbsence OnPresence
ChacharasSpoon MicroSqueak

Hazelnut GNU ST
CorGen

Execution-based
(generation)

Bootstrap Approaches

November 2011M.Denker - Bootstrapping a Smalltalk -

Existing approaches

(tracing)
Static-based

Dumping RecreatingOnAbsence OnPresence
ChacharasSpoon MicroSqueak

Hazelnut GNU ST
CorGen

Execution-based
(generation)

Bootstrap Approaches

November 2011M.Denker - Bootstrapping a Smalltalk -

Spoon

- Client / Server approach
- Client side starts as minimal
- On each slot access if the target object is missing, fetch and copy it from
the server

ClientServer

1. slot access

2. slot absent grabbing
it from server

3.
co

py
ing

 ob
jec

t

4.
inj

ec
tin

g o
bje

ct

November 2011M.Denker - Bootstrapping a Smalltalk -

Chacharas

Same approach as Spoon but:

- Analyze a server side execution

- All reached objects are copied on the client

November 2011M.Denker - Bootstrapping a Smalltalk -

MicroSqueak

MicroSqueak
Kernel

MicroSqueak
Kernel

MicroSqueak
Kernel

MicroSqueak
Kernel

Create stub objects
Fix references of

classes and
metaclasses

Fix references of
compiled method Save it

1 - A kernel is loaded from
files into a namespace

November 2011M.Denker - Bootstrapping a Smalltalk -

Hazelnut

Same approach as MicroSqueak but:

- does not rely on a specific list of class that are manually edited

- takes a list of classes as input and recursively copy classes into a new
namespace

November 2011M.Denker - Bootstrapping a Smalltalk -

Discussion

Execution-based approaches:
- difficult to control which objects will be selected for the
bootstrapped image
- reflection breaks tracing
- not suitable for interactive programs
+ suitable to compute the minimal runtime required by a program

Static-based approaches:
+ easier to control the result of a static generation
+ suitable for deep changes in a system (new object format, ...)
- hard to specify / write / maintain

(tracing)
Static-based

Dumping RecreatingOnAbsence OnPresence
ChacharasSpoon MicroSqueak

Hazelnut GNU ST
CorGen

Execution-based
(generation)

Bootstrap Approaches

November 2011M.Denker - Bootstrapping a Smalltalk -

Our approach

(tracing)
Static-based

Dumping RecreatingOnAbsence OnPresence
ChacharasSpoon MicroSqueak

Hazelnut GNU ST
CorGen

Execution-based
(generation)

Bootstrap Approaches

November 2011M.Denker - Bootstrapping a Smalltalk -

CorGen

1. Creation of the stub objects for literal
objects: nil, true, false, characters
2. Definition of classes and metaclasses
3. Method compilation
4. Creation of process and special object array
5. Image serialization.

Bootstrap>>bootstrap [

 self
 instantiateSmalltalkObjects;

 importClassesFromSources;
 processClasses;
 setupSmalltalkObjects;
 saveImage]

November 2011M.Denker - Bootstrapping a Smalltalk -

Stubs Creation

Bootstrap>>instantiateSmalltalkObjects [
 self
 instantiateNilGst;
 instantiateTrueGst;
 instantiateFalseGst;
 instantiateCharactersTable; "build all the characters"
 instantiateEnvironment "create System Dictionary"]

November 2011M.Denker - Bootstrapping a Smalltalk -

Classes/Metaclasses creation

Bootstrap>>processClasses [
 "fill the class stubs with real classes"
 self
 "create classes and add them to System Dictionary"
 createClasses;

 "compile and install CompileMethods"
 compileMethods]

November 2011M.Denker - Bootstrapping a Smalltalk -

Compile Methods

- Methods either taken from the model or the source files

- Use a compiler parametrized by an environment and a symbol table

- Deep changes may be applied (change bytecode set, other optimization, ...)

November 2011M.Denker - Bootstrapping a Smalltalk -

Initializing the System

Bootstrap>>setupSmalltalkObjects [
 self setupCharacter; "insert references to the Character table"
 setupSymbol; "insert references to the Symbol table"
 setupProcessor "create Processor and install it"]

 Bootstrap>>setupProcessor [| processorGst |
 processGst := self createProcess.
 processorGst := GstProcessorScheduler new.
 processorGst scheduler: nilGst;
 processes: self buildProcessList;
 activeProcess: processGst;
 idleTasks: nilGst.]

November 2011M.Denker - Bootstrapping a Smalltalk -

Initializing the System

Bootstrap>>createProcess [
 | processGst |
 (processGst := GstProcess new)
 nextLink: nilGst;
 suspendedContext: self createInitContext;
 priority: 4;
 myList: nilGst;
 name: GstString new;
 interrupts: nilGst;
 interruptLock: nilGst]

November 2011M.Denker - Bootstrapping a Smalltalk -

Saving the Image

- Comply with image file format:
- Image header
- Special object array

- Serialize objects according to their shape (CompiledMethods, ...)

- Avoid object duplication during serializing

November 2011M.Denker - Bootstrapping a Smalltalk -

The Result

Kernel (15 classes): Behavior, BlockClosure, BlockContext, Boolean, Class,
ClassDescription, ContextPart, False, Metaclass, MethodContext, MethodInfo, Object,
ProcessorScheduler, True, UndefinedObject.

Collection (27 classes): Array, ArrayedCollection, Bag, BindingDictionary, ByteArray,
CharacterArray, Collection, CompiledBlock, CompiledCode, CompiledMethod, Dictionary,
HashedCollection, IdentityDictionary, Iterable, Link, LinkedList, LookupTable,
MethodDictionary, OrderedCollection, Process, Semaphore, SequenceableCollection, Set,
String, Symbol, SystemDictionary, WeakSet.

Magnitude (12 classes): Association, Character, Float, Fraction, Integer, LookupKey,
Magnitude, MethodInfo, Number, SmallInteger, VariableBinding, HomedAssociation.

A 54 classes Smalltalk Kernel:

November 2011M.Denker - Bootstrapping a Smalltalk -

Related Work
- Lisp : using image such Smalltalk, the bootstrap is done by migrate the
current image, using a cross-compiler include in the host image.

- Ruby : the kernel is load and initialize by the VM some low level initialization
is done in C, all the other is done by ruby processing. After all the module is
load separately by the Virtual Machine.

- Python : the Python virtual machine is initialized. Some classes stubs are
created and initialized in the virtual machine. (close of the ruby bootstrap)

November 2011M.Denker - Bootstrapping a Smalltalk -

Conclusion and Future Work

Pros and Cons:
 - Execution-based bootstrapping (tracing) such as Hazelnut
 - Static-based bootstrapping (declarative) such as CoreGen

Future work: Boostrapping Pharo
 - use an execution-based approach as an intermediate solution
 - reach a static-based bootstrap that can easily be maintained and co-
evolve with the system

M.Denker - Bootstrapping a Smalltalk November 2011

Bootstrapping a Smalltalk
G. Casaccio, S. Ducasse, L. Fabresse, J-B. Arnaud, B. van Ryseghem

Presented by: M. Denker

THANKS

