
Visually Supporting Source Code
Changes Integration: the Torch

Dashboard

Verónica Uquillas Gómez
Stéphane Ducasse

Theo D’Hondt

WCRE 2010
17th Working Conference on Reverse Engineering
October 13-16, 2010 - Beverly, USA

*in open source software

Conceptual process of change
integration*

2

*in open source software

Conceptual process of change
integration*

2

Characterize and Understand Changes

Integration is difficult

3

?

Integration is difficult

‣ Requires expertise on the system

3

?

Integration is difficult

‣ Requires expertise on the system

‣ May demand a lot of time

3

?

Integration is difficult

‣ Requires expertise on the system

‣ May demand a lot of time

‣ Limited support for integrators

3

?

We aim at supporting...

‣ Integrators

✓ aiding in understanding changes

✓ taking decisions about the integration process

‣ Developers

✓ controlling their changes before publishing

4

The Torch Dashboard

‣ Visualization tool

✓ provides an overview of changes

✓ characterizes changes (size, structure, kind of
actions, scope,vocabulary)

‣ Written in Smalltalk - Pharo

‣ Integrated with Monticello 1

5

The Torch Dashboard 6

The Torch Dashboard main components 7

Different change visualizations offered by Torch

Component: Change visualizations

‣ Package-centric

‣ Class-centric

‣ Symbolic clouds

8

Visualization: Changed Packages (details)

Package Structure

9

Source Code as a fly-by-help

Omnipresent source code

10

Complete class structure as a fly-by-help

Omnipresent class structure

11

General summaries of changes

Component: Summaries
‣ Metrics with overview of changes

✓ Entities x Kind of actions

✓ Users x Kind of actions

‣ Allow to list changes per metric

12

Change list / Change details

13

Package slices extracted from PharoInbox and PharoTreatedInbox repositories

Detecting Change Patterns

‣ Removing a feature

‣ Pushing up/Introducing methods in a class
hierarchy

‣ Editing comments

‣ Replacing method calls

14

Removing a feature (I)

15

Removed Pen and PenPointRecorder

Removing a feature (II)

16

Visualization: Changed packages (details)

Changing Hierarchies (I)

‣ Hierarchies may be distributed in different
packages

17

Visualization: Changed packages (details)

Changing Hierarchies (I)

‣ Hierarchies may be distributed in different
packages

‣ Showing inter-package relationship is needed

17

Visualization: Changed classes (details)

Changing Hierarchies (II)

18

Changing Hierarchies (III)

19

Pushed up indexOfAnyOf: / Introduced findFirstInByteString:startingAt:

Changing Hierarchies (IV)

20

A yellow box next to the class’ name represents a modified comment

Editing comments

21

Replacing method calls (I)

22

Replacing method calls (II)

23

Visualization: Symbolic Clouds

Replacing method calls (III)

24

Future Work

‣ Detect and display other changes

✓ refactorings

✓ co-related changes

✓ semantical changes

‣ Integrate Torch with the merging process

‣ Perform a large experiment

✓ integrators & developers

25

Summary

‣ Torch v1 - http://soft.vub.ac.be/torch

✓ change characterization

✓ change overview

✓ omnipresent contextual diff

26

http://soft.vub.ac.be/torch
http://soft.vub.ac.be/torch

Verónica Uquillas Gómez - vuquilla@vub.ac.be 27

mailto:vuquilla@vub.ac.be
mailto:vuquilla@vub.ac.be

