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Characterize and Understand Changes



Integration is difficult
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Integration is difficult

‣ Requires expertise on the system

‣ May demand a lot of time

‣ Limited support for integrators
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We aim at supporting...

‣ Integrators

✓ aiding in understanding changes

✓ taking decisions about the integration process

‣ Developers

✓ controlling their changes before publishing
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The Torch Dashboard

‣ Visualization tool

✓ provides an overview of changes

✓ characterizes changes (size, structure, kind of 
actions, scope,vocabulary)

‣ Written in Smalltalk - Pharo

‣ Integrated with Monticello 1
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The Torch Dashboard 6



The Torch Dashboard main components 7



Different change visualizations offered by Torch

Component: Change visualizations

‣ Package-centric

‣ Class-centric

‣ Symbolic clouds
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Visualization:  Changed Packages (details)

Package Structure
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Source Code as a fly-by-help

Omnipresent source code
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Complete class structure as a fly-by-help

Omnipresent class structure
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General summaries of changes

Component: Summaries
‣ Metrics with overview of changes 

✓ Entities x Kind of actions

✓ Users x Kind of actions

‣ Allow to list changes per metric
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Change list / Change details
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Package slices extracted from PharoInbox and PharoTreatedInbox repositories

Detecting Change Patterns

‣ Removing a feature

‣ Pushing up/Introducing methods in a class 
hierarchy

‣ Editing comments

‣ Replacing method calls
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Removing a feature (I)
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Removed Pen and PenPointRecorder

Removing a feature (II)
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Visualization:  Changed packages (details)

Changing Hierarchies (I)

‣ Hierarchies may be distributed in different 
packages
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Visualization:  Changed packages (details)

Changing Hierarchies (I)

‣ Hierarchies may be distributed in different 
packages

‣ Showing inter-package relationship is needed
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Visualization:  Changed classes (details)

Changing Hierarchies (II)
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Changing Hierarchies (III)
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Pushed up indexOfAnyOf:  / Introduced findFirstInByteString:startingAt:

Changing Hierarchies (IV)
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A yellow box next to the class’ name represents a modified comment

Editing comments
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Replacing method calls (I)
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Replacing method calls (II)
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Visualization:  Symbolic Clouds

Replacing method calls (III)
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Future Work

‣ Detect and display other changes

✓ refactorings

✓ co-related changes

✓ semantical changes

‣ Integrate Torch with the merging process

‣ Perform a large experiment 

✓ integrators & developers
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Summary

‣ Torch v1  -  http://soft.vub.ac.be/torch

✓ change characterization

✓ change overview

✓ omnipresent contextual diff

26

http://soft.vub.ac.be/torch
http://soft.vub.ac.be/torch


Verónica Uquillas Gómez   -   vuquilla@vub.ac.be 27

mailto:vuquilla@vub.ac.be
mailto:vuquilla@vub.ac.be

