

Fuel

a fast and flexible object deployment tool

Intro

Goal in a nutshell

Store objects and restore them fast.

The store time is not
the focus.

It will work with any
kind of objects, but its

main focus is on storing
classes and methods.

Other goals

● Have a minimal restore package (to work with
Seed kernels).

● Be flexible and configurable so that it could be
useful for more low-level kind of storing
(Mariano's Marea).

● Also other tools could use it for storing their
objects (Moose?)

Other goals (II)

● Allow other ways of reading the stream:
● Partial loading: sometimes we don't want all the

stored objects.
● Brief info extraction: it would be nice to do a 'light'

read of the stream, to extract some information but
not restoring the objects.

Problems

Identity: reference vs. creation

● Some objects in the graph shouldn't be stored,
but only put a reference to them.

● Simple examples:
● A reference to Transcript
● A reference to a system class like Integer

● But there are examples much more hard to
detect and also restore the reference later:
● A reference to a 'user defined' singleton instance.

Cycles

● When traversing the
graph is necessary to
check for cycles.

● This check has a high
cost, but only affects
on storing time.

Class shape changing

When loading an object,
it can happen that its
class has changed. So
we could:
● Have some automatic

tolerance.
● Allow the user to solve

conflicts easily.

Portability

● Between tool versions:
● When restoring from a stream, we should look what

version was used to store it, and then act in
consequence.

● Between image versions:
● Suppose that CompiledMethod implementation

changes. We should be able to adapt the original
format, or at least detect a problem and throw an
error.

● Between dialects:
● Is not a goal for us.

Minimal loading

● Fuel would be used for binary loading of
packages in a Seed image.
● Maybe in absence of a Compiler.

● In order to achieve this minimality, the
packages for reading should be independent
of the ones for writing.

Known implementations

● Parcels (VW)
● ReferenceStream / SmartRefStream
● Magma
● Monticello2
● SRP (VW)
● BOSS (VW)
● ObjectDumper (GNU Smalltalk)
● SIXX

Our solution

(idea taken from VW's Parcels)

Principles

● Store iteratively the
object graph, in two
parts:
● Instances (nodes)
● References (edges)

● Group the objects
and write them in
such way to have
very fast loading.

Current implementation

Main classes

Materialization protocol should
be moved to another class,
in order to have a minimal

independent package for loading.

ClusterSerializer hierarchy

So, this hierarchy of around
20 classes (and still growing)

should be duplicated.
Good idea?

Rectangles

0 5000 10000 15000 20000 25000 30000 35000
0

5000

10000

15000

20000

25000

30000

35000

 Fuel Materialization
 Fuel Serialization
 ReferenceStream
Materialization
 ReferenceStream
Serialization

sample size

tim
e

 (
m

s)

In several runs,
this peak was

always present.
The reason is

unknown for now.

Strings

0 20000 40000 60000 80000 100000 120000 140000
0

1000

2000

3000

4000

5000

6000

7000

8000

 Fuel
Materialization
 Fuel Serialization
 ReferenceStream
Materialization
 ReferenceStream
Serialization

sample size

tim
e

 (
m

s)

12 22 32 42 52 62 72 82 92
0

500

1000

1500

2000

2500

 Fuel Materialization
 Fuel Serialization
 ReferenceStream
Materialization
 ReferenceStream
Serialization

% of repeated items

tim
e

(m
s)

Array with repeated integers*

The sample here is
an Array which size

is fixed (65k), but the
number of repeated

items varies
along the x-axis.

*: Probably this chart is
worthless, and it only
shows the Fuel's bad
performance storing

small integers.

Next steps

● Fuel portability between its versions.
● Store a full class (and a trait). Now it only stores

a reference to a class (which has to be present
in the image).

● Class shape changing.
● Isolate reading from storing?
● Optimize times.

Discussion

Storing with too much detail?

An Ordered
Collection is
stored with its
internal
representation
● Not portable
● Slow?

Storing with too much detail?

A compiled method is stored with its full internal
representation.
● Avoids using compiler

● Faster
● Minimal

● Could be a security problem

Summary

● Problems
● Identity: reference vs. creation
● Cycles
● Class shape changing
● Portability
● Minimal loading

● Our solution
● Current implementation + benchmarks
● Discussion

