
Traits @ Work
S. Ducasse, D. Cassou, C. Delaunay, D. Pollet

INRIA

Monday, November 8, 2010

Roadmap

• Reuse in single inheritance world

• Traits

• Applications

Monday, November 8, 2010

The evil root problem

• http://onsmalltalk.com/sandstonedb-simple-
activerecord-style-persistence-in-squeak

• To use SandstoneDb, just subclass
SDActiveRecord

• Well I already have a domain root

Monday, November 8, 2010

http://onsmalltalk.com/sandstonedb-simple-activerecord-style-persistence-in-squeak
http://onsmalltalk.com/sandstonedb-simple-activerecord-style-persistence-in-squeak
http://onsmalltalk.com/sandstonedb-simple-activerecord-style-persistence-in-squeak
http://onsmalltalk.com/sandstonedb-simple-activerecord-style-persistence-in-squeak

S.Ducasse LSE

Another example

To get Undo working inherit from UObject

4

Monday, November 8, 2010

S.Ducasse LSE

Can’t we?

Plug behavior without having
to change superclass?

Reuse the same behavior?

5

Monday, November 8, 2010

Use delegation

Monday, November 8, 2010

Use delegation

Monday, November 8, 2010

Copy and paste

Monday, November 8, 2010

Copy and paste

Monday, November 8, 2010

Classes... hmmm
Classes are schizophrenic!

units of creation vs. units of reuse

Traits: Units of composable behavior (no state)
multiple implementation inheritance

composer is in control

resolve conflicts via ignore / alias

E.g.: Magnitude, or Ruby’s Comparable

given the total order relation,

provide the comparison operators ≤, <, >,

≥…
Monday, November 8, 2010

Units of composable
behavior

multiple implementation inheritance

composer is in control

resolve conflicts via ignore / alias

backward compatible

Monday, November 8, 2010

Traits are parameterized behaviors:
- provide a set of methods
- require a set of methods
- purely behavioral (no state)

TMagnitude
>
>=
between:a
nd:
<=
...

hash
=
<

Monday, November 8, 2010

Class

=
Superclass

+ State
+ Traits

+ Methods

Monday, November 8, 2010

Traits do NOT exist at
runtime

• Traits are like macros

• Method defined in class take precedence
over trait methods

Monday, November 8, 2010

foo

 ^ 33

A

A

foo

 ^ 33

TraitT1

Using T1

Monday, November 8, 2010

A

A

foo

 ^ 33

TraitT1

Not using anymore T1

Monday, November 8, 2010

foo

 ^ 42

A

foo

 ^ 42

A

foo

 ^ 33

TraitT1

Composer has power

Monday, November 8, 2010

Composer has power

foo

 ^ 42

A

foo

 ^ 42

A

foo

 ^ 33

TraitT1

Monday, November 8, 2010

foo

 ^ 33

TraitT2

foo

 ^ 33

B

foo

 ^ 42

A

foo

 ^ 666

TraitT1

B

Monday, November 8, 2010

foo

 ^ 33

TraitT2

foo

 ^ 33

B

foo

 ^ 42

A

foo

 ^ 666

TraitT1

B

Monday, November 8, 2010

foo

 ^ 33

B

foo

 ^ 42

A

foo

 ^ 33

B

Monday, November 8, 2010

foo

 ^ 33

TraitT2

foo

 ^ 33

B

foo

 ^ 42

A

foo

 ^ 666

TraitT1

B

foo

 ^ 33

Monday, November 8, 2010

Conflicts

A

foo

 ^ 33

TraitT1

foo

 ^ 666

TraitT2

Conflict

Monday, November 8, 2010

Resolved: “Overrides”

foo

 ^ 42

A

foo

 ^ 33

TraitT1

foo

 ^ 666

TraitT2

Conflict

Monday, November 8, 2010

Resolved: Ignore

A

foo

 ^ 33

TraitT1

foo

 ^ 666

TraitT2

Conflict

-foo

foo

 ^ 33

A

Monday, November 8, 2010

Access to ignored
methods

foo

 self fooT1

+ self foo t2

A

foo

 ^ 33

TraitT1

foo

 ^ 666

TraitT2

-foo -> fooT2

-foo -> fooT1

Monday, November 8, 2010

Applications

• Building tests out of common traits

• Nile

• Polymorph

• Miro

Monday, November 8, 2010

Ph
ot

o
fr

om
 h

tt
p:

//w
w

w
.fl

ic
kr

.c
om

/p
ho

to
s/

co
ba

lt/
 (

C
re

at
iv

e
C

om
m

on
s

BY
-N

C
-S

A
 2

.0
)

Test Traits

Monday, November 8, 2010

http://www.flickr.com/photos/cobalt/
http://www.flickr.com/photos/cobalt/

Common Protocols
accessing size capacity at: at:put:

testing isEmpty occurrencesOf:
 includes: contains:

adding,
removing

 add: addAll:
 remove: removeAll: remove:ifAbsent:

enumerating do: collect: select: reject:
 inject:into: detect: detect:ifNone:

converting asBag asSet asArray asOrderedCollection
 asSortedCollection asSortedCollection:

creating with: withAll:

Monday, November 8, 2010

Existing Tests

“Test-by-Use™”

No systematic testing
features

limit conditions

Duplicated test methods

Tests for ad hoc behavior

: (

Monday, November 8, 2010

Test Traits

One test trait per protocol
requires accessors to a fixture

provides systematic domain-level tests

Test classes
compose test traits

define the fixture

define additional specific tests

Test Class =

Superclass (TestCase)

+ fixture
+ test traits
+ glue methods

Monday, November 8, 2010

TPutTest >> testAtPut
 self nonEmpty at: self anIndex put: self aValue.
 self assert:
 (self nonEmpty at: self anIndex) == self aValue.

TPutTest >> testAtPutOutOfBounds
 self
 should: [self empty at: self anIndex put: self aValue]
 raise: Error.

TPutTest >> testAtPutTwoValues
 self nonEmpty at: self anIndex put: self aValue.
 self nonEmpty at: self anIndex put: self anotherValue.
 self assert:
 (self nonEmpty at: self anIndex) == self anotherValue.

Monday, November 8, 2010

For TPutTest, the fixture must provide:

empty nonEmpty: instances of the collection
anIndex: integer or dictionary key or…
aValue anotherValue: legal for the collection

Each test class:

controls which test traits to compose (and how)

provides ad-hoc tests

groups all test code for a domain class :)
Monday, November 8, 2010

Results

27 test traits

150 tests written

29 fixture req.

test runner reports:
765 runs

Monday, November 8, 2010

Results

One test written, ~4.7 run
average on a wide subset of the collections classes

still 1.8 / 1 when counting all methods

Balances to strike:
tests & fixtures: explicit vs. generic

inheritance, pre-composed traits…

:)

Monday, November 8, 2010

do:
nextMatchFor:
next:
peekFor:
skip:
skipTo:
upTo:
upToEnd
upToElementSatisfying:

atEnd
next
peek
outputCollectionClass

TGettableStream

atEnd
atStart
back
close
isEmpty
position:
reset
setToEnd

position
setPosition:
size

TPositionableStream
nextPutAll:
next:put:
print:
flush

nextPut:
TPuttableStream

Core

collection
contents
next
next:
nextPut:
nextPutAll:
originalContents
outputCollectionClass
peek
position
resetContents
size

collection
position
streamSize

CollectionStream

binary
close
closed
isBinary
isClosed
isStream

TStream

back
backUpTo:
match:
nextDelimited:
skip:

TGettablePositionableStream TPuttablePositionableStream

writeBack

@ {#basicBack->#back}

atEnd
nextPut:
next
outputCollectionClass

fileID:
filename
isBinary

FileStream

cr
tab
space

TCharacterWriting

int16:
uint16:
uint32:

TByteWriting

next
nextPut:

StringStream

ByteStream

ReadableCollectionStream

next
outputCollectionClass
peek
...

TReadingCollectionStream

....

collection
position

AbstractCollectionStream

....
streamSize
WriteableCollectionStream

ReadWriteCollection
Stream

Backward Compatible

- {#back}

- {#back}

Nile
Reimplementing streams in
Pharo and Squeak

Supports old and new styles with
the same traits recomposed

Monday, November 8, 2010

S.Ducasse LSE

The great story of Nile
First ReadStream/ReadWriteStream/WriteStream
rewritten based on traits
but Squeakers not happy with old design anyway

Second (in 2 hours)
ReadStream/ReadWriteStream/WriteStream rewritten
based on traits
+ one single class Stream based on the same traits
+ backward compatible

37

Monday, November 8, 2010

S.Ducasse LSE

Example
Object subclass: #NSFileStream

! uses: NSTGettablePositionableStream + NSTPuttablePositionableStream ...

Object subclass: #NSCollectionStream
! uses: NSTGettablePositionableStream + NSTPuttablePositionableStream ...

NSCollectionStream
! next
! "Reads the next object in the stream and returns it."
! <primitive: 65>
! ^ self atEnd
! ! ifFalse: [collection at: (position := position + 1)]

NSFileStream>>next: amount
! "Reads the next amount objects in the stream and returns a collection containing them in the same order."
! | count buff |
! buff := self outputCollectionClass new: amount.
! count := self primRead: self getFileID into: buff startingAt: 1 count: amount.
! ^ count = amount
! ! ifTrue: [buff]
! ! ifFalse: [buff copyFrom: 1 to: count].
NSFileStream>>next

"Reads the next object in the stream and returns it. Please ensure that the stream is not at its end before calling #next.
Behavior is not defined if the stream is at its end."

! ^ (self next: 1) first

38

Monday, November 8, 2010

S.Ducasse LSE39

Traits
Implemented in Squeak/Pharo Smalltalk

Fully backwards compatible
No performance penalty for method lookup
Refactored Streams
Collection tests

In Scala (but looks more like mixins)
Replace classes in Fortress (SUN MicroSystems)
Introduced in Perl6, Slate, DrScheme, AmbiantTalk,
May be in Javascript!

Monday, November 8, 2010

Monday, November 8, 2010

