
Stéphane Ducasse

Dr. Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

RModRMod

Quality and Software
Visualization

1

RMOD expertise

Supporting software evolution and software composition
Axis 1: Reengineering

Maintaining large software systems
Moose: a powerful platform for reengineering
Nokia, Daimler, Harman-Becker, Siemens, Cincom

Axis 2: Dynamic languages to support evolution
Revisiting fundamental aspects of OO languages
Reuse Traits: Fortress (SUN Microsystems), Perl-6, Scala (EPFL), Squeak, Dr-
Scheme,
Security and Dynamic Languages

2

RMod

S.Ducasse LSE
RMod

A word of presentation
Since 1996 Moose (reengineering platform)

Object-Oriented Reengineering Patterns

Grounded in reality
Maintainer of open-source projects

Worked with:
Harman-Becker AG
Bedag AG,
Nokia, Daimler

3

S.Ducasse LSE
RMod

4

S.Ducasse LSE
RMod

Let’s face it, this is the Graal

5

S.Ducasse LSE
RMod

Roadmap
• Some software development facts
• Our approach

• Supporting maintenance
• Moose an open-platform

• Visual principles in 3 min
• Some visual examples
• Conclusion

6

S.Ducasse LSE
RMod

Software...

The Standish Group, 2004

53% Challenged

18% Failed

29% Succeeded

7

S.Ducasse LSE
RMod

53% Challenged

18% Failed

29% Succeeded

8

Software is complex.

1946

S.Ducasse LSE
RMod

How large is your project?

1’000’000 lines of code
* 2 = 2’000’000 seconds

/ 3600 = 560 hours
/ 8 = 70 days

/ 20 = 3 months

10

S.Ducasse LSE
RMod

Maintenance: Continuous Development

11

Between 50% and 75% of global
effort is spent on
“maintenance” ! 17.4% Corrective

(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

4.1% Other

The bulk of the maintenance cost is due to new functionality
even with better requirements, it is hard to predict new functions

S.Ducasse LSE
RMod

Lehman’s Software Evolution Laws
Continuous Change: “A program that is used in a
real-world environment must change, or become
progressively less useful in that environment.”

Software Entropy: “As a program evolves, it becomes
more complex, and extra resources are needed to
preserve and simplify its structure.”

12

S.Ducasse LSE
RMod

System evolution is like... SimCity

13

S.Ducasse LSE
RMod

Software are living…
Early decisions were certainly good at that time
But the context changes
Customers change
Technology changes
People change

14

Software development
is more than forward engineering.

Forward engineering

Actual development
}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

Maintenance is
is needed to evolve the code.

Rev
er

se
 en

gin
ee

rin
g

Forward engineering

Actual development
}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

S.Ducasse LSE
RMod

Roadmap
• Some software development facts
• Our approach

• Supporting maintenance
• Moose an open-platform

• Visual principles in 3 min
• Some visual examples
• Conclusion

17

S.Ducasse

Help teams maintaining large software

What is the xray for software?
code, people, practices

Which analyses?
How can you monitor your system (dashboards....)
How to present extracted information?

18

S.Ducasse

Since 1996...

Topics
Metamodeling, metrics,
program understanding,
visualization, evolution analysis,
duplicated code detection,
code Analysis, refactorings,
test generation...

Contributions
Moose: an open-source extensible reengineering
environment: (Lugano, Bern, Annecy, Anvers, Louvain la
neuve, ULB, UTSL)

Contacts
Harman-Becker (3 Millions C++), Bedag (Cobol), Nokia,
ABB, IMEC

19

Representation Transformations

Reverse

Engineering

Analyses

Evolution

S.Ducasse LSE
RMod

20

Representation Transformations

Reverse

Engineering

Analyses

EvolutionLanguage Independent Meta
Model (FAMIX)

[UML99]
An Extensible Reengineering
Environment (Moose)

[Models 06]

Reengineering Patterns
Version Analyses

[ICSM 05]
HISMO metamodel

[JSME 05]

Understanding Large Systems
 [WCRE99, TSI00, TSE03]
Static/Dynamic Information

[ICSM99]
Feature Analysis

 [JSME 06]
Class Understanding

[OOPSLA01,TSE04]
Package Blueprints

[ICSM 07]
Distribution Maps

[ICSM 06]

Software Metrics
[LMO99, OOPSLA00]

Duplicated Code Identification
[ICSM99, ICSM02]

Group Identification
[ASE03]

Test Generation
 [CSMR 06]
Concept Identification

[WCRE 06]

Language Independent
Refactorings

[IWPSE 00]

S.Ducasse

An example: who is responsible of what?

21

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

S.Ducasse

An example: who is responsible of what?

22

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Distribution Map of authors
on JBoss

S.Ducasse LSE
RMod

Distribution Map

23

}

{

}

{

}

{
}

{

}

{

McCabe = 21

LO
C =

 75
3,0

00
NOM = 102

Metrics Queries Visualizations ...

Moose is a powerful environment

Moose is designed to be extensible

Method Class

Inheritance

Method Class

Inheritance

Author

File

Duplication

Event

Trace

Class
Version

Class
History

open
meta-described

S.Ducasse LSE
RMod

Moose has been validated on real life systems

Several large, industrial case studies (NDA)
Harman-Becker
Nokia
Daimler
Siemens

Different implementation languages (C++, Java, Smalltalk,
Cobol)

We use external C++ parsers
Different sizes
Moose is used in several research groups

26

S.Ducasse LSE
RMod

Visualization principles in 3 min

• Preattentive visualization (unconscious < 200ms)
• Gestalt principles (from 1912)
• 70% of our sensors are dedicated to vision

27

Tudor Gîrba

How many 5?

28

3332123466509000096766689877835367
7866760910919818971746433039821768
34467865860880221167687687789762

Tudor Gîrba

How many 5?

29

3332123466509000096766689877835367
7866760910919818971746433039821768
34467865860880221167687687789762

Tudor Gîrba

Preattentive attributes

30

Color intensity

Form: orientation, line length, line width, size, shape,
added marks, enclosure

Spatial position (2D location)

Motion (flicker)

Tudor Gîrba

Color / intensity

31

Tudor Gîrba

Position

32

Tudor Gîrba

Form / Orientation

33

Tudor Gîrba

Form / Line length

34

Tudor Gîrba

Form / Line width

35

Tudor Gîrba

Form / Size

36

Tudor Gîrba

Form / Shapes

37

Tudor Gîrba

Form / Added marks

38

Tudor Gîrba

Form / Enclosure

39

Tudor Gîrba

Context

40

Tudor Gîrba

Principle of Proximity

41

Tudor Gîrba

Principle of Similarity

42

Tudor Gîrba

Principle of Similarity

43

Tudor Gîrba 44

Principle of Enclosure

Tudor Gîrba

Principle of Enclosure

45

Tudor Gîrba

Principle of Closure

46

Tudor Gîrba 47

Principle of connectivity

Tudor Gîrba

Principle of connectivity

48

S.Ducasse LSE
RMod

Roadmap
• Some software development facts
• Our approach

• Supporting maintenance
• Moose an open-platform

• Visual principles in 3 min
• Some visual examples
• Conclusion

49

S.Ducasse LSE
RMod

Challenges in Visualization
Screen size
Max 12 colors
Edge-crossing
Limited short-term memory (three to nine)
Extracting semantics out
Beauty cannot be a goal

Get some help from
Gestalt principles
pre-attentive visualization

50

S.Ducasse LSE
RMod

Understanding large systems
Understanding code is difficult!
Systems are large
Code is abstract
Should I really convinced you?

Some existing approaches
Metrics: you often get meaningless results once
combined
Visualization: often beautiful but with little meaning

51

Polymetric views show up to 5 metrics.

Color
metric

Width metric

Height metric

Position metrics

Lanza etal, 03

System Complexity shows class hierarchies.

lines

attributes

methods

S.Ducasse LSE
RMod

Polymetric views condense information

54

Classes+Inheritance
W: # of Added Methods
H: # of Overridden Methods
C: # of Method Extended

To get a feel of the inheritance
semantics: adding vs. reusing

methods
 LOC
 # statements
 # parameters

S.Ducasse LSE
RMod

Understanding classes
Understanding even a class is difficult!

55

Class Blueprint shows class internals.

Initialize Interface Internal Accessor Attribute

invocation and access direction

Ducasse, Lanza, 05

Class Blueprint shows class internals.

S.Ducasse LSE
RMod

Cycles?
Identify
Understand
Fix

Enhancing Dependency Structural Matrix

59

S.Ducasse LSE
RMod

Graph you said?

60

S.Ducasse LSE
RMod

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

61

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

62

S.Ducasse LSE
RMod

Identify cycles

63

S.Ducasse LSE
RMod

Causes and distribution

64

D: two classes referring

each other

F: candidate for direct

cycle fix

I: incoming funnel

A: indirect cycle

E: high % of target

impacted

G: invocations

H: inheritance

+ otherC: accesses

F: candidate for

direct cycle

fix

B: complex cycle
B: complex cycle

C: accesses

E: high % of source

I: outgoing funnel

S.Ducasse LSE
RMod

How developers develop?
• More efficient to put people working together in the

same office?
• How can we optimize software development?

66

S.Ducasse LSE
RMod

Who did that?

67

Files

Time

S.Ducasse LSE
RMod

Line colors show which author owned
which files in which period

68

File A

File B

Green author
large commit

Green author
ownership

Blue author
small commit

S.Ducasse LSE
RMod

Which author “possesses” which files?

69

S.Ducasse LSE
RMod

Alphabetical order is no order!

70

S.Ducasse LSE
RMod

 Based on similar commit signature

71

DialogueMonologue

Edit Takeover

Familiarization

S.Ducasse LSE
RMod

Language Independent
Language independent, Textual,
	
 [ICSM’99], M. Rieger’s PhD. Thesis

Duploc handled
Pascal, Java, Smalltalk, Python,
Cobol, C++, PDP-11, C

Slower than other approaches but...
Max 45 min to adapt our approach to
	
 a new language
Between 3% and 10%
	
 less identification than parametrized match

72

Exact Copies

a b c d e f a b c d e f

Copies with

a b c d e fa b x y e f

S.Ducasse LSE
RMod

A Conceptual Matrix
File A

File A

File B

File B

Exact Copies

a b c d e f a b c d e f

Copies with

a b c d e fa b x y e f

Variations
73

S.Ducasse LSE
RMod

Evolution holds useful information

74

A

B

A

BC

A

BC

D

A

BC

D

A

D

time

B is stable

C was removed

E is newborn

A is persistent

D inherited from C and then from A …

S.Ducasse LSE
RMod

Hierarchy Evolution Complexity View
characterizes class hierarchy histories

75

B is stable

C was removed

E is newborn

A is persistent

D inherited from C and then from A …

A

B

E

C

D

ENOS

Removed

Age

Removed

Age Inheritance
History

Class
History

ENOM

S.Ducasse LSE
RMod

Class hierarchies over 40 versions of
Jun - a 740 classes, 3D framework

76

S.Ducasse LSE
RMod

We are interested in your
Remodularization/Repackaging
SOA - Service Identification
Architecture Extraction/Validation
Software Quality
Cost prediction
EJB Analysis
Business rules extraction
Model transformation

and also language challenges...

77

S.Ducasse LSE

Evolution is difficult

• We are interested in your problems!
• Moose is open-source, you can use it, extend it, change

it
• We can collaborate!

78

}

{

}

{

}

{
}

{

}

{

NOM > 10 &
LOC > 100

