
Stéphane Ducasse

Dr. Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

RModRMod

RMOD

1

Wednesday, November 18, 2009

http://www.iam.unibe.ch/~ducasse/
http://www.iam.unibe.ch/~ducasse/

S.Ducasse LSE
RMod

A word of presentation
Since 1996 Moose (reengineering platform)

Object-Oriented Reengineering Patterns

Grounded in reality
Maintainer of open-source projects

Worked with:
Harman-Becker AG
Bedag AG,
Nokia, Daimler

2

Wednesday, November 18, 2009

RMOD expertise

Supporting software evolution and software composition
Axis 1: Reengineering

Maintaining large software systems
Moose: a powerful platform for reengineering
Nokia, Daimler, Harman-Becker, Siemens, Cincom

Axis 2: Dynamic languages to support evolution
Revisiting fundamental aspects of OO languages
Reuse Traits: Fortress (SUN Microsystems), Perl-6, Scala (EPFL), Squeak, Dr-
Scheme,
Security and Dynamic Languages

3

RMod

Wednesday, November 18, 2009

Axis 1: Reengineering

Maintaining large software systems
Moose: a powerful platform for reengineering
Nokia, Daimler, Harman-Becker, Siemens, Cincom

4

RMod

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

5

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Let’s face it, this is the Graal

6

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Roadmap
• Some software development facts
• Our approach

• Supporting maintenance
• Moose an open-platform

• Some visual examples
• Conclusion

7

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Software...

The Standish Group, 2004

53% Challenged

18% Failed

29% Succeeded

8

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

53% Challenged

18% Failed

29% Succeeded

9

Software is complex.

Wednesday, November 18, 2009

1946

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

How large is your project?

1’000’000 lines of code
* 2 = 2’000’000 seconds

/ 3600 = 560 hours
/ 8 = 70 days

/ 20 = 3 months

11

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Maintenance: Continuous Development

12

Between 50% and 75% of global
effort is spent on
“maintenance” ! 17.4% Corrective

(fixing reported errors)

18.2% Adaptive
(new platforms or OS)

60.3% Perfective
(new functionality)

4.1% Other

The bulk of the maintenance cost is due to new functionality
even with better requirements, it is hard to predict new functions

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Lehman’s Software Evolution Laws
Continuous Change: “A program that is used in a
real-world environment must change, or become
progressively less useful in that environment.”

Software Entropy: “As a program evolves, it becomes
more complex, and extra resources are needed to
preserve and simplify its structure.”

13

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

System evolution is like... SimCity

14

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Software are living…
Early decisions were certainly good at that time
But the context changes
Customers change
Technology changes
People change

15

Wednesday, November 18, 2009

Software development
is more than forward engineering.

Forward engineering

Actual development
}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

Wednesday, November 18, 2009

Maintenance is
is needed to evolve the code.

Rev
er

se
 en

gin
ee

rin
g

Forward engineering

Actual development
}

{

}

{

}

{

}

{
}

{

}

{

}

{
}

{

}

{

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Roadmap
• Some software development facts
• Our approach

• Supporting maintenance
• Moose an open-platform

• Some visual examples
• Conclusion

18

Wednesday, November 18, 2009

S.Ducasse

Help teams maintaining large software

What is the xray for software?
code, people, practices

Which analyses?
How can you monitor your system (dashboards....)
How to present extracted information?

19

Wednesday, November 18, 2009

S.Ducasse

Since 1996...

Topics
Metamodeling, metrics,
program understanding,
visualization, evolution analysis,
duplicated code detection,
code Analysis, refactorings,
test generation...

Contributions
Moose: an open-source extensible reengineering
environment: (Lugano, Bern, Annecy, Anvers, Louvain la
neuve, ULB, UTSL)

Contacts
Harman-Becker (3 Millions C++), Bedag (Cobol), Nokia,
ABB, IMEC

20

Representation Transformations

Reverse

Engineering

Analyses

Evolution

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

21

Representation Transformations

Reverse

Engineering

Analyses

EvolutionLanguage Independent Meta
Model (FAMIX)

[UML99]
An Extensible Reengineering
Environment (Moose)

[Models 06]

Reengineering Patterns
Version Analyses

[ICSM 05]
HISMO metamodel

[JSME 05]

Understanding Large Systems
 [WCRE99, TSI00, TSE03]
Static/Dynamic Information

[ICSM99]
Feature Analysis

 [JSME 06]
Class Understanding

[OOPSLA01,TSE04]
Package Blueprints

[ICSM 07]
Distribution Maps

[ICSM 06]

Software Metrics
[LMO99, OOPSLA00]

Duplicated Code Identification
[ICSM99, ICSM02]

Group Identification
[ASE03]

Test Generation
 [CSMR 06]
Concept Identification

[WCRE 06]

Language Independent
Refactorings

[IWPSE 00]

Wednesday, November 18, 2009

S.Ducasse

An example: who is responsible of what?

22

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Wednesday, November 18, 2009

S.Ducasse

An example: who is responsible of what?

23

(1) Extraction

(2) Modèle

(4) Visualisation

(3) Analyses

Distribution Map of authors
on JBoss

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Distribution Map

24

Wednesday, November 18, 2009

}

{

}

{

}

{
}

{

}

{

McCabe = 21

LO
C =

 75
3,0

00
NOM = 102

Metrics Queries Visualizations ...

Moose is a powerful environment

Wednesday, November 18, 2009

Moose is designed to be extensible

Method Class

Inheritance

Method Class

Inheritance

Author

File

Duplication

Event

Trace

Class
Version

Class
History

open
meta-described

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Moose has been validated on real life systems

Several large, industrial case studies (NDA)
Harman-Becker
Nokia
Daimler
Siemens

Different implementation languages (C++, Java, Smalltalk,
Cobol)

We use external C++ parsers
Different sizes
Moose is used in several research groups

27

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Roadmap
• Some software development facts
• Our approach

• Supporting maintenance
• Moose an open-platform

• Some visual examples
• Conclusion

28

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Challenges in Visualization
Screen size
Max 12 colors
Edge-crossing
Limited short-term memory (three to nine)
Extracting semantics out
Beauty cannot be a goal

Get some help from
Gestalt principles
pre-attentive visualization

29

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Understanding large systems
Understanding code is difficult!
Systems are large
Code is abstract
Should I really convinced you?

Some existing approaches
Metrics: you often get meaningless results once
combined
Visualization: often beautiful but with little meaning

30

Wednesday, November 18, 2009

Polymetric views show up to 5 metrics.

Color
metric

Width metric

Height metric

Position metrics

Lanza etal, 03

Wednesday, November 18, 2009

System Complexity shows class hierarchies.

lines

attributes

methods

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Polymetric views condense information

33

Classes+Inheritance
W: # of Added Methods
H: # of Overridden Methods
C: # of Method Extended

To get a feel of the inheritance
semantics: adding vs. reusing

methods
 LOC
 # statements
 # parameters

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Understanding classes
Understanding even a class is difficult!

34

Wednesday, November 18, 2009

Class Blueprint shows class internals.

Initialize Interface Internal Accessor Attribute

invocation and access direction

Ducasse, Lanza, 05

Wednesday, November 18, 2009

Class Blueprint shows class internals.

Wednesday, November 18, 2009

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Cycles?
Identify
Understand
Fix

Enhancing Dependency Structural Matrix

38

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Graph you said?

39

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Graph you said?

39

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Graph you said?

39

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

40

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

40

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

40

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

40

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

40

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Building a DSM

A B C D

A X

B X X

C X X

D X

A B

C D

A B C D

A 0 1 0 0

B 1 0 1 0

C 1 0 0 1

D 0 0 1 0

40

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

41

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

41

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

41

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

41

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

41

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

41

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

41

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

7 Packages visualization

1 cell = 1 dependency
1 column = used packages
1 line = using packages

x x x x x x x x x x

x

x

x 71 3

x 2 1 8 7 6

x 3

x 4 51 2 2 2

x 4 10 4 34 3

x 15 1

x 30

x 2 2 6

41

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Identify cycles

42

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Identify cycles

42

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Identify cycles

42

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Identify cycles

42

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Identify cycles

42

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Identify cycles

42

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Causes and distribution

43

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Causes and distribution

43

Wednesday, November 18, 2009

D: two classes referring

each other

F: candidate for direct

cycle fix

I: incoming funnel

A: indirect cycle

E: high % of target

impacted

G: invocations

H: inheritance

+ otherC: accesses

F: candidate for

direct cycle

fix

B: complex cycle
B: complex cycle

C: accesses

E: high % of source

I: outgoing funnel

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Language Independent
Language independent, Textual,
	
 [ICSM’99], M. Rieger’s PhD. Thesis

Duploc handled
Pascal, Java, Smalltalk, Python,
Cobol, C++, PDP-11, C

Slower than other approaches but...
Max 45 min to adapt our approach to
	
 a new language
Between 3% and 10%
	
 less identification than parametrized match

45

Exact Copies

a b c d e f a b c d e f

Copies with

a b c d e fa b x y e f

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

A Conceptual Matrix
File A

File A

File B

File B

Exact Copies

a b c d e f a b c d e f

Copies with

a b c d e fa b x y e f

Variations
46

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Evolution holds useful information

47

A

B

A

BC

A

BC

D

A

BC

D

A

D

time

B is stable

C was removed

E is newborn

A is persistent

D inherited from C and then from A …

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Hierarchy Evolution Complexity View
characterizes class hierarchy histories

48

B is stable

C was removed

E is newborn

A is persistent

D inherited from C and then from A …

A

B

E

C

D

ENOS

Removed

Age

Removed

Age Inheritance
History

Class
History

ENOM

Wednesday, November 18, 2009

S.Ducasse LSE
RMod

Class hierarchies over 40 versions of
Jun - a 740 classes, 3D framework

49

Wednesday, November 18, 2009

S.Ducasse LSE

Evolution is difficult

• We are interested in your problems!
• Moose is open-source, you can use it, extend it, change

it
• We can collaborate!

50

}

{

}

{

}

{
}

{

}

{

NOM > 10 &
LOC > 100

Wednesday, November 18, 2009

Axis 2: Dynamic Languages

Revisiting fundamental aspects of OO languages
Reuse Traits: Fortress (SUN Microsystems), Perl-6, Scala
(EPFL), Squeak, Dr-Scheme,
Security and Dynamic Languages

51

RMod

Wednesday, November 18, 2009

Axis 2: Dynamic Languages
Infrastructure

Topics
Components for field devices (Pecos IST Project)
Classboxes: Modules for open-classes [OOPSLA’05]
OOPAL: OOP + APL Generalizing message passing [OOPSLA’03]
Language symbiosis (Jour. Program)
Encapsulation for dynamic languages [ECOOP ‘04, OOPSLA’04]
Reusable behavior: Traits [ECOOP’03, OOPSLA’03, Toplas, ..., OOPSLA’07]

Impacts
Traits used by Fortress (SUN Microsystems), Scala (EPFL), Perl-6, Squeak, Slate, Dr-Scheme,
Multiple type systems (Drossopoulos, Reppy, Liquori, Bono...)

La perfection est atteinte, non pas lorsqu’il n’y a plus rien à ajouter,
mais lorsqu’il n’y a plus rien à retirer. St-Exupery

52

Wednesday, November 18, 2009

Reconciling reuse and single inheritance

class = superclass + state + traits + glue

Contributions
Traits
Stateful traits
Freezable traits

Impacts
Fortress (SUN Microsystems), Scala (EPFL), Perl-6, Squeak, Slate, Dr-Scheme
Multiple type systems (Drossopoulos, Reppy, Liquori, Bono...)

Object

ColoredCircle

TColor

TCircle

53

Wednesday, November 18, 2009

Class

=
Superclass

+ State
+ Traits

+ Methods

Wednesday, November 18, 2009

Traits do NOT exist at
runtime

• Traits are like macros

• Method defined in class take precedence
over trait methods

Wednesday, November 18, 2009

foo

 ^ 33

A

A

foo

 ^ 33

TraitT1

Using T1

Wednesday, November 18, 2009

A

A

foo

 ^ 33

TraitT1

Not using anymore T1

Wednesday, November 18, 2009

foo

 ^ 42

A

foo

 ^ 42

A

foo

 ^ 33

TraitT1

Composer has power

Wednesday, November 18, 2009

Composer has power

foo

 ^ 42

A

foo

 ^ 42

A

foo

 ^ 33

TraitT1

Wednesday, November 18, 2009

foo

 ^ 33

TraitT2

foo

 ^ 33

B

foo

 ^ 42

A

foo

 ^ 666

TraitT1

B

Wednesday, November 18, 2009

foo

 ^ 33

TraitT2

foo

 ^ 33

B

foo

 ^ 42

A

foo

 ^ 666

TraitT1

B

Wednesday, November 18, 2009

foo

 ^ 33

B

foo

 ^ 42

A

foo

 ^ 33

B

Wednesday, November 18, 2009

foo

 ^ 33

TraitT2

foo

 ^ 33

B

foo

 ^ 42

A

foo

 ^ 666

TraitT1

B

foo

 ^ 33

Wednesday, November 18, 2009

Conflicts

A

foo

 ^ 33

TraitT1

foo

 ^ 666

TraitT2

Conflict

Wednesday, November 18, 2009

Resolved: “Overrides”

foo

 ^ 42

A

foo

 ^ 33

TraitT1

foo

 ^ 666

TraitT2

Conflict

Wednesday, November 18, 2009

Resolved: Ignore

A

foo

 ^ 33

TraitT1

foo

 ^ 666

TraitT2

Conflict

-foo

foo

 ^ 33

A

Wednesday, November 18, 2009

Access to ignored
methods

foo

 self fooT1

+ self foo t2

A

foo

 ^ 33

TraitT1

foo

 ^ 666

TraitT2

-foo -> fooT2

-foo -> fooT1

Wednesday, November 18, 2009

Applications

• Building tests out of common traits

• Nile

• Polymorph

• Miro

• Large BBC software in Perl

Wednesday, November 18, 2009

do:
nextMatchFor:
next:
peekFor:
skip:
skipTo:
upTo:
upToEnd
upToElementSatisfying:

atEnd
next
peek
outputCollectionClass

TGettableStream

atEnd
atStart
back
close
isEmpty
position:
reset
setToEnd

position
setPosition:
size

TPositionableStream
nextPutAll:
next:put:
print:
flush

nextPut:
TPuttableStream

Core

collection
contents
next
next:
nextPut:
nextPutAll:
originalContents
outputCollectionClass
peek
position
resetContents
size

collection
position
streamSize

CollectionStream

binary
close
closed
isBinary
isClosed
isStream

TStream

back
backUpTo:
match:
nextDelimited:
skip:

TGettablePositionableStream TPuttablePositionableStream

writeBack

@ {#basicBack->#back}

atEnd
nextPut:
next
outputCollectionClass

fileID:
filename
isBinary

FileStream

cr
tab
space

TCharacterWriting

int16:
uint16:
uint32:

TByteWriting

next
nextPut:

StringStream

ByteStream

ReadableCollectionStream

next
outputCollectionClass
peek
...

TReadingCollectionStream

....

collection
position

AbstractCollectionStream

....
streamSize
WriteableCollectionStream

ReadWriteCollection
Stream

Backward Compatible

- {#back}

- {#back}

Nile
Reimplementing streams in
Pharo and Squeak

Supports old and new styles with
the same traits recomposed

Wednesday, November 18, 2009

S.Ducasse LSE70

Traits
Implemented in Squeak/Pharo Smalltalk

Fully backwards compatible
No performance penalty for method lookup
Refactored Streams
Collection tests

In Scala (but looks more like mixins)
Replace classes in Fortress (SUN MicroSystems)
Introduced in Perl6, Slate, DrScheme, AmbiantTalk,
May be in Javascript!

Wednesday, November 18, 2009

S.Ducasse LSE

Conclusion

Better tools and approaches to deal with complex system
http://moose.unibe.ch

Better languages for developing better applications

71

Wednesday, November 18, 2009

http://moose.unibe.ch
http://moose.unibe.ch

