
Implementing pgloader

from python to Common Lisp

Dimitri Fontaine
2ndQuadrant France

PostgreSQL Major Contributor
dimitri@2ndQuadrant.fr

ABSTRACT
In this paper, we use the example of rewriting from scratch
a data loader application for PostgreSQL from python to
Common Lisp to compare the offerings of those two well
established Dynamic Languages.

1. PGLOADER
pgloader is an application to load external data into a

PostgreSQL database. The external data is often organised
into a flat file formatted in the infamous CSV format, or
sometimes in a fixed width specification format.
While PostgreSQL includes the COPY command and a

streaming protocol, it will not parse and accept any input
format and the transactional behavior is not optimal in the
case of loading an important set of data. Whether important
means that the data is of value or that the set of data is big,
the COPY command being run in a single transaction means
that any error in the input will cancel the whole loading.
That’s where pgloader comes into play, by dealing with

errors and implementing a solution on top of the COPY com-
mand and protocol so that it is able to separate the good
input from the bad one and provide both a log file and a
reject file for later reprocessing.
The very first version of pgloader had been written in the

TCL dynamic programming language. The second version
series was a complete rewrite in Python and came with new
features. After almost a decade of maintaining that code,
the need to better handle huge volumes of data and some
problems tied to the choice of Python led pgloader author
to reconsider the programming language used to implement
it, and the third version of pgloader is being written from
scratch again this time in Common Lisp.

1.1 The PostgreSQL COPY protocol
PostgreSQL includes a very efficient data loading protocol

which works in a streaming fashion and is called the COPY
protocol. There’s also a command of the same name so that
you do not need to read the protocol documentation in order

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
7th Workshop on Dynamic Languages and Applications
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

to benefit from the improved performance characteristics.
Of course, the COPY command happens within a single

transaction. That means that in case of failure to load any
row of data, the whole loading is aborted. In most cases,
that’s not what we want, so pgloader needs a way around
that.

1.2 Handling errors in data
PostgreSQL checks that the input data you send at it

conforms to the data type you’ve specified, in a way that
some other systems are not used to. So for example the
date 0000-00-00 is refused with an ERROR, because the year
zero is not part of our calendar, which goes from year -1 to
year 1.
The way to address data problems is simple and effective:

split the input data in batches and submit them in separate
commands and transactions. In case of error, split the batch
in halves and submit each half independantly again. When
the batch contains only 1 row and you have an error, then
log that as a bad data and continue.

2. THE PGLOADER COMMAND LANGUAGE
The current version of pgloader has no command lan-

guage yet, and this lack of an advanced Domain Specific
Language is a limiting factor to the possible evolutions of
the software.
To help with understanding what pgloader is all about,

this section presents the work in progress language syntax.
While some basic implementation has been done with py-
parsing in Python and with cl-yacc in Common Lisp, an-
other tool to test is the smug Monadic Parser Combinators.
Two alternatives are being studied for the pgloader com-

mand language, first a COPY variant:

COPY cluttured
FROM ’cluttered/cluttered.data’

(a, c newline escaped by \, b)
AS text

WITH field_sep = ^, field_count = 3;

This command would read as: please copy data from the
cluttered/cluttered.data file which has 3 fields separated
by the ˆ character, and which is not respecting the CSV
format as the second column contains newline characters
escaped with a backslash, unquoted. Also, the fields int the
file are in order (a, c, b) when matching them with the
names of the columns in the database table.
And also a LOAD variant:

http://www.postgresql.org/
http://www.postgresql.org/docs/9.2/interactive/sql-copy.html
http://www.tcl.tk/
http://python.org/
http://cliki.net/

LOAD foo
FROM ’path/to/file’

AS text
CASE WHEN 1:2 = "43"

THEN table(a, c)
SPEC (a sep ’;’,

b sep ’=’, -- field is not loaded
c sep ’;’)

WHEN 001:003 = "HDR"
THEN table(a, c)
SPEC (a, b, c)
WITH field_sep = ’,’

END
SET maintenance_work_mem TO ’128 MB’;

That LOAD command would load data from path/to/file
into the table named table, into its columns a and c. It
would deal with a very strange file format indeed, such as
when the line begins with "43" then the file has a column
followed by the ; separator, then another column followed
by the = separator, then a third column followed by a ;.
When the line begins with "HDR" then there’s only one field
separator and this times it’s a comma (,).
It’s possible to find such file formats for real, generally it’s

easier to fix the exporting process though. Still, it’s a feature
set that’s been asked by pgloader users used to other tools
able to cope with such oddities.
The main advantage of the LOAD variant is to stay away

from PostgreSQL’s own COPY command and syntax, as Post-
greSQL already ships with both a server and a client version
of that command (on the client, it’s spelled \copy).

3. IMPLEMENTING PGLOADER IN PYTHON
This implementation already was a rewrite, so we mostly

had the specifications of the program and even some prac-
tical ways to attack the main problem which is all about
separating away the bad data so that the good data is loaded
into PostgreSQL.
pgloader had to be rewritten in order to complement a

data migration from Informix to PostgreSQL, where the
best way to attack things was to use the Informix UNLOAD
command then load back the data into PostgreSQL. The
then current version of pgloader (in TCL) was not able to
read those files because of encoding problems, and it ap-
peared very soon that the input format wouldn’t be easy to
process.
The UNLOAD command output is kind of interesting. It

pretends to be somewhat like a CSV derivative, but only is
able to maintain that appearance for some seconds, as it will
not quote values even when they expand over multiple lines.

3.1 Main design
Even if the task at hand was restricted to parsing the

UNLOAD ouput, the design was made with custom CSV for-
mat instead so as to be able to reuse code later. To that end,
any random bits about the input format was turned into a
non default setup in the way pgloader would parse the flat
files, so that the default setup could remain sane and usable
outside of that project.
The first version of that code then was simple enough:

• fetch the current setup to drive the run,

• init a loader object per command
• parse the file into rows,
• load the rows into PostgreSQL with a database object.

This design is quite classic and Object Oriented: the work
to be done has been organized into sub-parts, each of them
being handled by a specific object that knows nothing about
the rest of the system.
While this design is good for codemodularity, it’s not good

at all for flexibility and growing features into the code base,
or even for design refactoring. Typically, adding template
sections in the configuration file format and later parallelism
to load the file both have included really disruptive changes
in the code base.

3.2 Handling errors in data
The Python implementation of that idea uses a cStringIO

buffer that is sent to COPY when considered full. That in-
volves more data copying than strictly necessary, from the
input reader buffer to the internal batch buffer then to the
COPY buffer, which is implemented in a C extension that very
well might include another copying of the source data.

3.3 Those infamous .INI files
In Python when you need to read a setup usually you’re

using some user format, meaning not Python itself. As
the default distribution of Python includes the capability
to parse INI files, that’s the easiest way to get started.
There are only two other possibilities, either write a spe-

cialized parser or hand over Python itself to your users. Even
the second one is not as easy as it sounds, which favors the
INI format a lot.
The problem with the INI format is with representing

complex commands rather than just simple key-value setup,
and it so happens that what pgloader really needed was a
complex command input.
That setup versus command problem is one important fac-

tor into the decision to rewrite pgloader in Common Lisp:
one of the goals had been to keep it as something that is
easy to install, as easy as a single file script if at all possible.
While that is not been true of long, the latest Python ver-
sion of pgloader still is easily relocatable and only depends
on a bare Python installation.
Adding a command language would require a new depen-

dency, and the best candidate that has been tried has been
pyparsing, see above for some examples of the command lan-
guage design candidates.

3.4 A try at going parallel workers
Little did I know about the Global Interpreter Lock when

I convinced myself that a parallel approach is what pgloader
needed to be faster at what it did.
About the Global Interpreter Lock, the Python documen-

tation says that “The Python interpreter is not fully thread-
safe. In order to support multi-threaded Python programs,
there’s a global lock, called the global interpreter lock or
GIL, that must be held by the current thread before it can
safely access Python objects”, and then continues saying
that “Therefore, the rule exists that only the thread that
has acquired the GIL may operate on Python objects or call
Python/C API functions”.
Two concurrency approaches are possible here:

• have a reader that fills a shared queue and several con-

http://docs.python.org/2/c-api/init.html#thread-state-and-the-global-interpreter-lock

sumers on that queue that will each handle separate
batches

• have several input file readers each working on a chunk
of the input file and doing the whole processing of what
they read.

Those two approaches have been implemented in pgloader
using Threads and a BoundedSemaphore in the main con-
troler thread. Of course, the GIL makes it so that no im-
provement has been experienced from there.
The way to properly address the concurrency loading of

data with Python would be using multiprocessing and find
a way to communicate data in between the main reader and
the workers. The problem with the communication is that
we don’t have the same facilities depending on the OS: no
pipes on windows, where you have to use local sockets.
Switching from threads to multiprocessing has been on the

todo list for a while, but didn’t get addressed before the
rewrite, and wouldn’t have possibly solved the problems of
copying too much data in memory, nor the command lan-
guage problem.

3.5 Python as a platform
Meantime, the great question had to be answered: which

version of Python to target in your applications, Python2 or
Python3? Note that any answer here is not going to help
solving the three main problems of pgloader at this point:

• the command syntax;
• the concurrency capabilities;
• how to really improve performances.

4. COMMON LISP
Common Lisp has been made to ease the developer task,

and offers a quite unique dynamic programming experience.

4.1 A unique programming experience
To program in Lisp, the first step is to start the Lisp

Image which contains all the facilities you expect as a devel-
oper: compiler, command line interaction which acts like a
interpreter, etc. From within this environment you can load
your code and play with it interactively.
When using an integrated environment, you get some fac-

itilies to edit the code in some files and load whatever form
you’re currently working on in the image. So if you write a
new function you can have only that function compiled and
loaded, and you can test it right away at the prompt.
And when you change the function definition, you can

compile the new version and load it into the running Lisp
program in exactly the same way, and continue playing with
your test case at the REPL only with the new definition now.
This flexibility includes also reloading whole Lisp files or

systems live in the environement, at runtime. And it also
includes data (variables) and data types: structures and
classes can be reloaded in the live environement and the
objects of those type will get migrated to the new type defi-
nition automatically by the system, when that makes sense.
If any error in your program or test occurs, the interactive

debugger opens and you can inspect what’s going on and of
course evaluate expressions within the scope of the faulty
frame.
While contemplating the dynamic nature of a Lisp sys-

tem, it’s important to remember that the code is actually

compiled to machine code. You have full access to the com-
piler at runtime, and when you execute the function you
just loaded from your editor with a single key-chord, that
function is actually compiled to machine code within the
running Lisp image.
There’s no reason in Lisp to compromise between per-

formance characteristics and a very dynamic programming
experience, you have it all.

4.2 Data Structures
Lisp is known to be all about list processing, and that has

to do with how the code is written: s-expression forms. The
programmer still has access to the most common data struc-
tures, not just lists: symbols, integers, fixnums and bignums,
rational numbers, hash tables, vectors, bit vectors, integers
as bit vectors, multi-dimensionnal arrays, structures, classes,
user defined types, characters, strings, conses and lists, se-
quences, filenames, files, streams.
The common Lisp standard is quite verbose about the

exact behaviour of each of those types, and they are very
well integrated overall.
Also, in Common Lisp the values are typed, not the bind-

ings or the variables. Which means that the data type
checked are dynamic and will only fire when the value is not
of the expected type, independently of the binding holding
the value. That’s a great flexibility for dynamic program-
ming.
It means, though, that the compiler will not typically be

able to help you catch typing errors straight from the code
it sees, as the behavior is all to be determined at run time.
Common Lisp provides features to help the programmers in
that area: it’s possible to declare the expected type of any
variable, parameter or binding so that the compiler knows
how to produce optimized code. Then if you’re lying to
the compiler, the behavior is undefined. It’s possible to use
check-type to catch those errros and have a deterministic
behavior or signaling a correctable error of type type-error
instead.

4.3 Imperative, Functional, Object Oriented,
all at once

As is the case with Python, Common Lisp doesn’t care
which tools you prefer for your code. It’s possible to mix
imperative, functionnal and object oriented code in the same
program. The Object Oriented system is called Common
Lisp Object System or CLOS for short.
Common Lisp implements multiple-dispatch with support

for dispatching not only on full blown CLOS objects but also
on lighter structures. Any standard type can also be used
to dispatch on a method (such as integer or vector), and
there’s the eql specializer allowing to dispatch on symbols.
Here’s a simple example of implementing the flatten

function with the help of the CLOS system:

1 (defmethod flatten ((x list))
2 (reduce ’append (mapcar ’flatten x)))
3

4 (defmethod flatten (x)
5 (list x))
6

7 CL-USER> (flatten ’(1 2 (3 4) 5))
8 (1 2 3 4 5)

The first method is only called when the given argument

is a list object, otherwise the other method is executed.

4.4 General syntax for assignments
Common Lisp has a concept of places where you can assign

values. That concept is also know as a generalized reference
and allows the implementation of the setf macro, that you
as a programmer can expand to handle your own objects.
Let’s see an example, assigning to a hash table:

1 CL-USER> (defvar ht (make-hash-table))
2 HT
3 CL-USER> (gethash ’key ht)
4 NIL
5 NIL
6 CL-USER> (setf (gethash ’key ht) ’value)
7 VALUE
8 CL-USER> (gethash ’key ht)
9 VALUE

10 T

The setf macro offers a way to register your own assigne-
ments and is provided with support for the included data
types when that’s relevant, such as hash tables. We can
expand the macro and see what it does:

1 CL-USER> (macroexpand-1
2 ‘(setf (gethash key ,ht) value))
3 (CCL::PUTHASH
4 KEY
5 #<HASH-TABLE :TEST EQL size 2/60 #x30200E09F46D>
6 VALUE)
7 T

Now, it’s also possible to directly go increment a counter
stored inside the hash table, like this:

1 CL-USER> (setf (gethash ’counter ht) 0)
2 0
3 CL-USER> (incf (gethash ’counter ht))
4 1
5 CL-USER> (incf (gethash ’counter ht))
6 2

All the mechanics to add generalized references to your
own code are of course provided, and the easiest way to
benefit from them is using a structure as in the next example:

1 CL-USER> (defstruct person (name "007" :type string))
2 PERSON
3 CL-USER> (make-person :name "James")
4 #S(PERSON :NAME "James")
5 CL-USER> (person-name (make-person :name "James"))
6 "James"

Here when defining the person structure the defstruct
macro will automaticall create a bunch of function for us,
a constructor and accessors. The best part is that it’s easy
to write such a macro, so that power is all available to the
programmer too.
That general syntax for assignments allow programmers

to use a unified programming style based on forms that can
look functionnal for the untrained. Using assignment is def-
initely an imperative style of programming though.

4.5 Scoping rules
A binding binds a variable symbol with a value. Lexical

scope means that a binding is only available from within the
lexical extent of code in which it appears. Dynamic binding
means that the binding’s new value remains visible for the
whole extent of all the nested code that is run.
The API defvar and defparameter both introduce dy-

namic bindings, and you can declare any binding to be
special to have them dynamic too within a specific run-time
code extent.
By default, any other binding is introduced as lexically

scoped.
Here’s a little example including dynamic bindings

1 (defparameter *days*
2 ’(monday tuesday wednesday
3 thursday friday saturday sunday)
4 "List of days in the week")
5

6 (defun any-day-but-monday? (day)
7 "Returns a generalized boolean,
8 true unless DAY is ’monday"
9 (member day

10 (remove-if (lambda (day) (eq day ’monday))
11 *days*)))
12

13 CL-USER> (any-day-but-monday? ’monday)
14 NIL
15

16 CL-USER> (any-day-but-monday? ’tuesday)
17 (TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY SUNDAY)

We can see in that example that the binding day is a
different variable within the member form and within the
lambda form, thanks to lexical binding, whereas the binding
days is bound to the same value.
This example is also using the notion of a generalized

boolean in Common Lisp where nil is considered to mean
false and anything else is then true. Remember that nil and
’() (the empty list) are the same thing in Common Lisp.

4.6 Compiler
Having a compiler allows to have compile-time checks

about the program you’re writing, and to avoid spending
too much time on program testing. The most helpful com-
piler warning I came to appreciate in Common Lisp is the
Unused lexical variable one that somehow always pair with
the Undeclared free variable one, meaning there’s yet an-
other variable name with a typo in the code.

4.7 Advanced control flow operators
The two most important things to consider when program-

ming certainly are the data structures and then the control
flow operators. Common Lisp provides with all you need as
a programmer.

4.7.1 Looping
Basic flow control operators include dotimes and dolist,

and Common Lisp also includes the very general facility
loop, which we have to see an example of as it’s the kitchen
sink of looping constructs:

1 CL-USER> (defun fib-list (n)
2 "Fibonnacci suite from 1 to n"

3 (loop
4 repeat n
5 for x = 0 then y
6 and y = 1 then (+ x y)
7 collect y))
8 FIB-LIST
9 CL-USER> (fib-list 10)

10 (1 1 2 3 5 8 13 21 34 55)
11 CL-USER> (time (last (fib-list 100)))
12 (LAST (FIB-LIST 100))
13 took 15 microseconds (0.000015 seconds) to run.
14 During that period, and with 4 available CPU cores,
15 15 microseconds were spent in user mode
16 15 microseconds were spent in system mode
17 1,984 bytes of memory allocated.
18 (354224848179261915075)

Note: The timing has been edited to fit in the paper col-
umn size.
To understand this example you need to know that:

• the look will stop as soon as it’s been done n times,

• the for/and construct introduces a parallel per-loop
assignment, meaning that at the time of the assigne-
ment no binding sees the new values or the previous
binding,

• it’s possible to have serial assignment by just using as
many for constructs as you need, one after the other,

• collect will prepare a list of its arguments and have
the whole loop form return that when it’s done.

The loop facility also supports initialising and final steps,
and collecting elements, as we can see in a more complex
real-world example:

1 (loop
2 with schema = nil
3 for (table-name . coldef)
4 in
5 (caar (cl-mysql:query (format nil "
6 select table_name, column_name,
7 data_type, column_type, column_default,
8 is_nullable, extra
9 from information_schema.columns

10 where table_schema = ’~a’
11 order by table_name, ordinal_position" dbname)))
12 do
13 (let ((entry
14 (assoc table-name schema :test ’equal)))
15 (if entry
16 (push coldef (cdr entry))
17 (push (cons table-name (list coldef))
18 schema)))
19 finally (return schema))

4.7.2 Lexical and dynamic flow control
The advanced control flow operators include block, return

and return-from that allows to jump from wherever you are
in a lexical code structure back to the introduction of the
block. Of course any function is a block.
The tagbody and go special forms act like a generalized

goto statement limited to a lexical environement.

The unwind-protect form guarantees that some cleanup
forms will be run, whatever happens in the protected forms
at run time. Here’s an example where we want to be sure
to free our resources, even if we fail to run a query:

1 (cl-mysql:connect :host host :user user :password pass)
2 (unwind-protect
3 (mapcan #’identity
4 (caar (cl-mysql:query "show databases")))
5 (cl-mysql:disconnect))

It’s also possible to control the flow in more dynamic ways,
thanks to the throw and catch constructs and with the abil-
ity to signal a condition.

4.8 Lambda lists
Each time in Common Lisp when you can construct a

list of arguments to be matched against, you deal with some
form of a lambda list. The main examples are of course defun
with defgeneric and defmethod, but some more interesting
uses are possible with destructuring-bind.

1 ; helper function
2 CL-USER> (defun iota (n)
3 (loop for i from 1 to n collect i))
4 IOTA
5 CL-USER> (iota 3)
6 (1 2 3)
7 CL-USER> (destructuring-bind (a b c)
8 (iota 3)
9 ;; do interesting things with a, b and c

10 (+ a (* b c)))
11 7

The allowed matches for the lambda lists are &key for
named arguments, &optional for arguments that you might
bypass at call sites (you can provide default values for them
in the lambda list of course), &rest to collect a bunch of
parameters together inside a single list, allowing a unknown
number of parameters to be passed in, and &aux to declare
extra local bindings from the parameter list itself.
Of course &aux parameters default values can be expressed

in terms of other parameters, that are always processed first.
And it’s possible to mix and match about any of those

kinds of parameters in the same lambda list.

4.9 It’s Lisp all the way down
Having access to the Common Lisp compiler at run time

means that you can actually generate code (e.g. using defmacro)
that is compiled once then run as usual, and you can do that
either at compile time or at run time. It’s even more pow-
erful than that, because the reader step is clearly separated
away from the compiler step. And of course the reader itself
is implemented in Lisp and accepts reader macros, allowing
you to dispatch your own Lisp code so that it’s used when
reading some code.
Most other programming environements need several helper

tools (such as make, sometime some level of awk or m4, etc)
to add some levels of flexibility in preparing the code before
the build process can have at it. In Lisp it’s considered a
part of the programming to have to prepare the code, and
you can do that in Lisp too.

4.10 Multi Threading
Multi threading is not part of the Common Lisp standard

document, so different implementations are free to imple-
ment it in different ways. In practice though, a portable
library has been made that offers a consolidated threading
API to programmers in a portable way: it uses each im-
plementation constructs so that the common API behaves
always the same. That library is called bordeaux-threads.
On top of bordeaux-threads it’s possible to use lparallel, a

library with concepts such as queues and workers, making it
easy to have parallel workers sharing a work load and using
communication channels in between them rather than hav-
ing to share some memory and implement the right locking
behavior.
The way to share memory in between threads is quite

easy in Common Lisp when equiped with bordeaux-threads:
declare a special variable (e.g. using defvar) and only bind
it from within threads. Then they will all have access to the
same binding and will share it. Now implement locking if
you need some.
To avoid locking, you can restrict the ability to actually

edit the contents of the shared memory in a single worker
thread and use a communication facility for that worker to
receive the data changes to apply to the shared object. lpar-
allel makes implementing that rather straightforward.

5. IMPLEMENTING PGLOADER IN COM-
MON LISP

Now that we have a great replacement option for Python,
allowing us to achieve much better performances while also
adding the ability to easily embed an advanced command
syntax and real concurrency, it’s time to actually use the
new tools and rewrite pgloader.

5.1 First attempts at writing pgloader in Com-
mon Lisp

The main problem to solve had been the pgloader com-
mand syntax. So the first code written in Common Lisp at-
tempted to solve that problem, and was a command parser
for pgloader, using a syntax in between the PostgreSQL
COPY command and the SQL Loader LOAD command.
Writing a parser without having an API to target proved

a rather fruitless task, so the real way to attack the problem
is to get back to basics: loading data from flat file, pushing
that data into PostgreSQL using the COPY protocol.
Meanwhile, the early history of pgloader stroke back in a

good way, as a new customer wanted to migrate his MySQL
databases to PostgreSQL. We did use the Python version of
pgloader to that end, with some difficulties, and a migrating
timing that wasn’t appropriate. Something needed to be
done now.

5.2 Main design
The main things that pgloader will have to do are:

• read data from some input, either flat files or some-
thing else

• process that data so as to have proper rows (list of
strings)

• bulk load the rows using the COPY protocol
• handle data errors and batch retry

Having in mind the limitations of the Python version of
pgloader, the most attractive way to address the needs here
is using some concurrency already:

• a reader thread reads the data and pre-process it
• then fills a shared queue
• a copy thread reads from the queue, builds batches
and copy them over

The Common Lisp package lparallel is implementing some
high level facilities to hand over a task to a thread worker,
and provides a queue to share data through. Using that, it’s
been easy to implement a streaming behaviour for the data
loader.

5.3 lparallel queues
Thanks to our pgloader use case, the lparallel queues

are now available either with auto-expand behavior or in a
fixed capacity. The data streaming needs the latter so that it
acts like a Unix Pipe and blocks the reader when the writer
is not keeping up.
The main entry point for a new data source reader is a

map-rows function that will know how to parse the data
input and map a given function on each of those rows.
It’s then possible to install a genericmap to queue function

to handle the specifics of our internal streaming protocol, as
we can see here:

1 (defun map-push-queue (queue map-row-fn &rest initial-args)
2 "Apply MAP-ROW-FN on INITIAL-ARGS and a function of ROW
3 that will push the row into the queue. When MAP-ROW-FN
4 returns, push :end-of-data in the queue.
5

6 Returns whatever MAP-ROW-FN did return."
7 (unwind-protect
8 (apply map-row-fn
9 (append initial-args

10 (list
11 :process-row-fn
12 (lambda (row)
13 (lq:push-queue row queue)))))
14 ;; in all cases, signal the end of the producer
15 (lq:push-queue :end-of-data queue)))

5.4 The PostgreSQL batch writer
The writer side implements a copy-from-queue function

that knows how to pop data from the queue and send it over
to PostgreSQL. Note that this processing only needs to keep
a copy of the input data to process it again in case of failure
to commit the batch.
Common Lisp includes some very useful control flow fa-

cilities, and it’s possible to use throw and catch in order to
implement reading from the queue as as single function and
still stop at batch boundaries to go commit pending work,
handle the retrying when necessary, etc.
In the following code excerpt, the map-pop-queue function

is fetching data from the queue and knows nothing about
splitting the data into batches and having to retry in case
of errors:

1 (defvar *batch* nil
2 "Current batch of rows being processed.")
3

4 (defvar *batch-size* 0

http://lparallel.org/

5 "How many rows are to be found in current *batch*.")
6

7 (defun make-copy-and-batch-fn (stream)
8 "Returns a function of one argument, ROW.
9

10 When called, the function returned reformats the
11 row, adds it into the PostgreSQL COPY STREAM,
12 and push it to BATCH (a list). When batch’s size
13 is up to *copy-batch-size*, throw the
14 ’next-batch tag with its current size."
15 (lambda (row)
16 ;; maintain the current batch
17 (push reformated-row *batch*)
18 (incf *batch-size*)
19

20 ;; send the reformated row in the PostgreSQL
21 ;; COPY stream
22 (cl-postgres:db-write-row stream row)
23

24 ;; return control in between batches
25 (when (= *batch-size* *copy-batch-size*)
26 (throw ’next-batch
27 (cons :continue *batch-size*)))))

Then the idea is to stream the queue content directly into
the PostgreSQL COPY protocol stream, but COMMIT every
copy-batch-size rows.
That allows to have to recover from a buffer of data only

rather than restart from scratch each time we have to find
which row contains erroneous data. BATCH is that buffer.
So that the main copy-from-queue function is now doing

the following in a loop:

1 (let* ((stream
2 (cl-postgres:open-db-writer conspec
3 table-name
4 nil))
5 (*batch* nil)
6 (*batch-size* 0))
7 (unwind-protect
8 (let ((process-row-fn
9 (make-copy-and-batch-fn stream))

10

11 (catch ’next-batch
12 (pgloader.queue:map-pop-queue dataq
13 process-row-fn)))
14

15 ;; in case of data-exception,
16 ;; split the batch and try again
17 (handler-case
18 (cl-postgres:close-db-writer stream)
19 ((or CL-POSTGRES-ERROR:UNIQUE-VIOLATION
20 CL-POSTGRES-ERROR:DATA-EXCEPTION) (e)
21

22 (retry-batch dbname table-name
23 (nreverse *batch*) *batch-size*)))))

We can see that we take benefits from using dynamic bind-
ings and reset them in each turn, avoiding to have to pass
them explictly to our helper functions.
The control flow is also non trivial:

• the pgloader.queue:map-pop-queue function shown
above is the main control point, responsible for pop-

ping elements out of the queue, and knows nothing
about batch and their boundaries,

• the helper function make-copy-and-batch-fn is used
to produce a new function at each batch iteration, its
job is to prepare then send the data over the Post-
greSQL stream that it’s been given, keeping a copy
of the data in case we need to reprocess it later as
erroneous; it will also throw control away so that the
current batch can be closed,

• the main loop prepares a batch and an helper function,
then arrange for the map-pop-queue to have at it; it
only gets the control back when the control is trans-
fered explicitely (that’s the catch construct) or when
the queue is empty.

The main loop also handles COMMIT, and as that’s when
we know about any errors in the data, it handles unique
violation and data exception errors by retrying the batch
from the copy we’ve been maintaining.
This code is responsible for controling the whole data

loading in PostgreSQL. It’s not only much shorter than the
Python version, and is also much faster.

5.5 Handling errors in data
The retry-batch function itself is pretty well defined too,

it’s responsible only for retrying the batch in smaller chunks
of data. The implementation of it is not doing any data
copying, it’s moving in the batch and sending over a limited
number of rows at a time.

5.6 New sources of data
The first implementation lying around was all about im-

porting data from a flat file, but equiped with a simple
streaming protocol that only needs a map-rows function, it’s
quite easy to implement a MySQL reader.

1 ;;;
2 ;;; Map a function to each row extracted from MySQL
3 ;;;
4 (defun map-rows (dbname table-name
5 &key
6 process-row-fn
7 (host *myconn-host*)
8 (user *myconn-user*)
9 (pass *myconn-pass*))

10 "Extract MySQL data and call PROCESS-ROW-FN
11 function with a single argument (a list of
12 column values) for each row."
13

14 (cl-mysql:connect :host host
15 :user user
16 :password pass)
17

18 (unwind-protect
19 (progn
20 ;; Ensure we’re talking utf-8
21 ;; and connect to DBNAME in MySQL
22

23 (cl-mysql:query "SET NAMES ’utf8’")
24 (cl-mysql:query
25 "SET character_set_results = utf8;")
26 (cl-mysql:use dbname)

27

28 (let* ((sql
29 (format nil
30 "SELECT * FROM ~a;" table-name))
31 (q (cl-mysql:query sql :store nil))
32 (rs (cl-mysql:next-result-set q)))
33 (declare (ignore rs))
34

35 ;; Now fetch MySQL rows directly
36 ;; in the stream
37 (loop
38 for row =
39 (cl-mysql:next-row
40 q :type-map (make-hash-table))
41 while row
42 counting row into count
43 do (funcall process-row-fn row)
44 finally (return count))))
45

46 ;; free resources
47 (cl-mysql:disconnect))
48

49 ;;; Export MySQL data to our lparallel data queue.
50 ;;; All the work is done in other basic layers,
51 ;;; simple enough function.
52 (defun copy-to-queue (dbname table-name dataq)
53 "Copy data from MySQL table DBNAME.TABLE-NAME into
54 queue DATAQ"
55

56 (let ((read
57 (pgloader.queue:map-push-queue
58 dataq #’map-rows dbname table-name)))
59 (pgstate-incf *state* table-name :read read)))

The PostgreSQL specific parts (handling the COPY proto-
col, the batch building and retrying) are not affected at all
by the adding of new readers, yet there’s not much infras-
tructure written to get there.

5.7 Migration tool
To get from the ability to load data from either flat files or

a live database to an online migration tool, pgloader only
missed the ability to extract the database schema (list of
tables, attributes with their names and data types, indexes,
sequences) from the source and cast that to a PostgreSQL
compatible definition, then apply it.
That feature set has been added for MySQL, the API

might not be stable until we add some more source variants
of course. Then remain the problem of how to expose that
feature in the pgloader command language.

5.8 Controlling pgloader
The command language still has to be designed, the idea

being to have a COPY like command syntax that you can use.
A parser will be responsible of transforming that command
into a proper Lisp program, then compile it dynamically
and finally run the compiled code.
The current UI design is to either run pgloader with

a bunch of commands to be found in a file, or to run a
pgloader service to which you could send-in new commands,
either from a command-line tool or from a web interface.

5.9 Extra: Signaling conditions and PostgreSQL
notifications

In Common Lisp it’s possible to implement exception by
using the condition system. When confronted to some un-
usual situation, it’s possible to signal it to the main program,
which can decide to handle the situation by itself or use a
restart that has been provided by the lower level code.
Apart from allowing a very nice error control flow while

preserving the ability to write the error handling code at the
right layer in the code, this condition system also allows to
process asynchronous messages.
In PostgreSQL, the LISTEN and NOTIFY commands im-

plement asynchronous messaging for your application. It’s
no surprise then that the PostgreSQL driver for Common
Lisp, postmodern is using conditions to make notifications
available to your code:

1 (defun reset-all-sequences (dbname)
2 "Reset all sequences to the max value of the column
3 they are attached to."
4

5 (let ((connection
6 (apply #’cl-postgres:open-database
7 (remove :port (get-connection-spec dbname)))))
8

9 (cl-postgres:exec-query connection "listen seqs")
10

11 (prog1
12 (handler-case
13 (cl-postgres:exec-query connection "
14 DO $$
15 DECLARE
16 n integer := 0;
17 r record;
18 BEGIN
19 FOR r in
20 SELECT ’select ’
21 || trim(trailing ’)’
22 from replace(pg_get_expr(d.adbin, d.adrelid),
23 ’nextval’, ’setval’))
24 || ’, (select max(’ || a.attname || ’) from only ’
25 || nspname || ’.’ || relname || ’));’ as sql
26 FROM pg_class c
27 JOIN pg_namespace n on n.oid = c.relnamespace
28 JOIN pg_attribute a on a.attrelid = c.oid
29 JOIN pg_attrdef d on d.adrelid = a.attrelid
30 and d.adnum = a.attnum
31 and a.atthasdef
32 WHERE relkind = ’r’ and a.attnum > 0
33 and pg_get_expr(d.adbin, d.adrelid) ~ ’^nextval’
34 LOOP
35 n := n + 1;
36 EXECUTE r.sql;
37 END LOOP;
38

39 PERFORM pg_notify(’seqs’, n::text);
40 END;
41 $$; ")
42 ;; now get the notification signal
43 (cl-postgres:postgresql-notification (c)
44 (parse-integer
45 (cl-postgres:postgresql-notification-payload c))))
46 (cl-postgres:close-database connection))))

The usual way to run that code would have been to issue

the main catalog query twice here, the first time to know
how many sequences we are going to reset and the second
time to actually reset them. Using the advanced features of
both PostgreSQL and Common Lisp, it’s easy to run only
the single query that is needed.

6. CONCLUSION
The rewrite in Common Lisp did allow to use advanced

features not to be found in Python: concurrency abilities
thanks to lparallel and its queueing support, the control flow
mechanisms (catch and throw, conditions, loop, map) and
its performances (in some testing, between 5 and 120 times
better than Python: the code is actually compiled).
It’s quite impressive how dynamic Common Lisp really

is with its advanced REPL (where you can migrate objects
when changing their classes definitions), interactive debug-
ging abilities (you do not have to decide to run the debugger
before hand, any unexpected error will bring you there and
you can directly work on fixing the problem), and introspec-
tion abilities.
Of course a part of why the new implementation is so

much better than the previous one is just because we kept
the author, so all the pitfalls and knowledge about the pre-
vious implementation were not lost. Still, the tooling is now
much better.

	pgloader
	The PostgreSQL COPY protocol
	Handling errors in data

	The pgloader command language
	Implementing pgloader in Python
	Main design
	Handling errors in data
	Those infamous .INI files
	A try at going parallel workers
	Python as a platform

	Common Lisp
	A unique programming experience
	Data Structures
	Imperative, Functional, Object Oriented, all at once
	General syntax for assignments
	Scoping rules
	Compiler
	Advanced control flow operators
	Looping
	Lexical and dynamic flow control

	Lambda lists
	It's Lisp all the way down
	Multi Threading

	Implementing pgloader in Common Lisp
	First attempts at writing pgloader in Common Lisp
	Main design
	lparallel queues
	The PostgreSQL batch writer
	Handling errors in data
	New sources of data
	Migration tool
	Controlling pgloader
	Extra: Signaling conditions and PostgreSQL notifications

	Conclusion

