
A Unified Approach to Identifying and Healing
Vulnerabilities in x86 Machine Codes

Kirill Kononenko
kirill.kononenko@ec-spride.de

Darmstadt Technical University

ABSTRACT
The software systems’ security is threatened by a wide range
of attacks, such as buffer overflows, insecure information flow,
and timing channels, which can leak private information, e.g.
by monitoring a program’s execution time. Even if program-
mers manage to avoid such vulnerabilities in a program’s
source code or bytecode, new vulnerabilities can arise as
compilers generate machine code from those representations.

We present a unified approach to the secure execution
of programs based on a virtual execution environment that
combines information from compositional, static and dynamic
program analysis in order to identify timing channels, and
which uses code transformations to prevent those channels
from being exploited. To achieve an appropriate level of
performance, as well as combine the analysis results, our
approach stores summary information that can be shared
between analyses.

Categories and Subject Descriptors
D.4.6 [Programming Languages]: Security and Protec-
tion - access controls, invasive software, security kernels,
verification

General Terms
Design, Performance, Security, Verification

Keywords
Cryptography, cyber security, cloud computing, timing chan-
nels

1. INTRODUCTION
In modern programming systems, vulnerabilities can arise

from many sources. The code generated by the compiler can
contain multiple vulnerabilities. With the current approach
to code optimization, it appears that there are numerous
vulnerabilities in applications. They can occur due to an
incorrect or faulty source code, or through broken software
utilities in a software developer’s tools, such as compilers or
run-time libraries. A software program may only detect or
correct such threats if they have a known static structure.

More difficult vulnerabilities are those that appear dy-
namically as a result of certain random conditions arising
at run-time. Threats of this type require an application
of fast and efficient methods of detection and correction.
Currently, there are various software packages available [2]
(e.g GenProg); however, they occupy too much memory and
resources. For example, GenProg requires infinite mutation

spaces. They also do not aim at the correction of bugs and
vulnerabilities which arise during the course of program exe-
cution. Other methods have a specific character, but they
are oriented to find a very limited number of vulnerabilities.
If we consider the tasks involved in programming embedded
systems, then these methods are not applicable due to the
limited amount of resources, memory and CPU time avail-
able. In addition, embedded systems are available for limited
modifications after their commissioning and fixing any found
vulnerability requires a large amount of resources.

To get rid of the limitations of applicable methods, we
set a goal of offering a unified approach to identifying and
correcting vulnerabilities, which would be more efficient,
and which would have a universal character as opposed
to individual solutions. It should be possible to formulate
this in a unified way and with the means of detecting and
counteracting vulnerabilities of various types.

As a starting point, we measured vulnerabilities associated
with the program’s execution time. A timing channel is a
vulnerability that arises as a consequence of a correlation
between program’s execution’s time with the data processed
by the program. Such correlation can be applied by an
external observer to receive these data by means of analyze
of timing parameters of program’s execution. An example of
the simplest timing channel with leakage of data is shown
in Figure 1. Using the public key, by comparing its length
with the private key’s length, one can find out the private
key’s length. Private key’s length can be found with help of
a process similar to a search. Such algorithm sets the public
key’s parameters and gets the private key’s parameters.

The peculiarity of these types of vulnerabilities is that
the total time of the program’s execution depends on many
complex factors: processor data caching techniques; branch-
ing operation results prediction; the combination of libraries
used; and on the program’s execution on concrete hardware
platforms. As a result, program execution time dependencies
that appear complex from many parameters, lead to timing
channels which only appear dynamically.

The easiest way to eliminate a timing channel is to make
the time of the execution - the timing channel code - a con-
stant for all variants during the program’s execution; then
the various states of the program will be externally indis-
tinguishable. However, this approach is not practical in
tasks requiring high performance. Practicable, applicable
methods of optimizing timing channels result in two prob-
lems: detection of the timing channels, and the correction
of timing channels in a program at a certain stage of its
execution. Detection of timing channels usually happens



1 if (privateKey.length == publicKey.length) result = alg1();
2 else result = alg2();

Figure 1: Example of source code with timing channel

statically. Algorithms for the correction of timing channels
try to counteract them dynamically using the results of their
search. Therefore, to eliminate the timing channels we must
apply the methods of static and dynamic analyses, which will
permit us to work out the direction of the unified approach
for identifying and correcting various types of threats.

2. UNIFIED APPROACH

2.1 Overview of Approach
Vulnerabilities’ indicators can be static or dynamic found

during the execution of the program. For instance, operating
system exceptions, failures in hardware, special high-level
language constructions, conditional jumps in pre-marked
blocks of code. They can be a value of the program’s monitors,
a large variation in codes execution time, data writing into
suspicious areas of code, administrator rights.

Practically applicable methods of vulnerability neutral-
ization need to solve two problems: 1. the detection of a
vulnerability and 2. its correction in the program during
its execution. The solution should be conducted with much
analysis with high computational complexity, which requires
huge investment in resources and time which consequently
leads to a poorer program performance. Conducting such
analysis, particularly interprocedurally, may be performed
statically. However, static estimates are not accurate enough
and cannot always identify all timing channels.

Therefore, it is possible apply a dynamic estimation, in
which optimizations apply information that is unavailable
ahead of time before the moment of program execution, by
clarifying the results of static analyses and by minimizing
additional time delays.

Profiling of code execution time in test examples and
dynamic ”just-in-time” compilation allows us to conduct an
estimation of the execution time of different blocks of code.

Thus we face a problem - combining both static as well
as dynamical analyses, where the static phase would be
efficiently complemented by the dynamical, in order, to min-
imize the loss rate of the program and improve the accuracy
of identifying threats and eliminate them.

At the core of our proposed approach is the usage of iden-
tification and counteraction of the vulnerabilities from a
specialized virtual execution environment, that supports a
set of compositional, static and dynamical techniques. This
execution environment eliminates threats in the code, by com-
bining methods of static detection, and dynamical methods
of correction ”just-in-time” during program execution.

The execution environment removes threats, starting the
system of dynamical code correction, which works in parallel
to the main program, providing a constant search for dynamic
vulnerabilities.

The virtual execution environment has access to the source
code analysis’ summaries results, which allows the run-time
in a case of faults, creation of new versions of binary codes
from the original summaries.

The result of all static and dynamical analyses are stored
in a single cache to speed up the re-compilation. Changes
in the results of the analysis make it possible to include

algorithms of counteraction of threats in newer versions of
binary code, or to disable them, in case if it is necessary
at some time in the future. The analysis results are stored
very compactly and occupy little space, thus we call them
summaries of analysis.

Let us demonstrate how the choice of removal method of
threats is ensured.

For each type of dynamic vulnerability, as already known
and yet unknown, at the development stage of the program
are allowed various methods of detection and correction -
from complete neutralization, up to a mitigation of vulner-
ability, and neglect. Controlling capacities of dynamical
compilations happens on foundation of usage of combina-
tion of special annotations of code blocks, that initialize
use of analyses. Annotations are general-purpose. First,
annotations turn on, vulnerabilities’ profiling, and, analysis
of programs work parameters. Second, they designate the
boundaries of possible threats in code’s blocks (for example,
the timing channel boundaries). Thirdly, annotations per-
form an initialization of threats’ monitors. Fourthly, they
designate the ways of vulnerabilities’ counteraction.

After the vulnerability was indicated and a way of its
correction was found, the virtual environment dynamically
compiles a new version of the binary code. New program’s
generation is performed in a linear time due to usage of
summaries of analyses.

For example, in the case of malicious code, such as, a
call of malicious function, the correction may remove that
code entirely, e.g., the call of this function, inserting instead
operations of NOP instead of the source code. Another
instance - register allocation can give a priority for the blocks
of code, that create timing channels, or change the order
of register allocation. Thus, this approach firstly permits
to execute a static version of the program’s binary code, in
this case triggering the threats’ indicator and performing a
dynamic compilation of the binary code’s next version. As
a result, a program is created with removed or mitigated
vulnerability.

2.2 Application
As a practical application of vulnerability healing we devel-

oped a Libjit-Linear-Scan [4, 5] plugin for the CLR compiler.
Libjit-Linear-Scan supports methods of rapid compilation
and analysis based on linear scan.

Firstly, the compiler solved the problem of detecting timing
channels and identifying their types. In the second stage,
it solved the problem of the dynamic identification of the
data input into timing channels, as well as their dynamic
neutralization, with a certain level of reliability and stability.
Static searches of timing channels occurred interprocedurally,
based on a special IR and the abstract state machine that it
uses.

It generates rules in the language of authorization DKAL
[3], which are saved in the summaries for later use during
recompilation at run-time. The intermediate representation
Libjit-Linear-Scan IR permits to conduct dynamic recompi-
lation. Based on line-scanning heuristic rules in the code the
environment automatically based on these rules selects the
heuristic method for eliminating vulnerabilities, such as the
timing channel’s neutralization technique during the program
execution. For each threat Libjit-Linear-Scan uses its unique
heuristics. Vulnerability removal rules are inserted in code
automatically or manually, by performing heuristical rules.



Vulnerability detection rules and its neutralization are exe-
cuted automatically with each new pass. Automatic removal
of threats consists of a constant heuristic rules verification;
including constant search for vulnerabilities and an applica-
tion of methods to make corrections outside the programs
main execution process. For instance, in heuristic correction
rule: a data channel’s leakage may be due to the fact that
its bandwidth is above a predetermined one. Analogically
we can do also for other dynamic vulnerabilities.

The sequence of executed steps is shown in Figure 2.
To form a virtual execution environment, we compile the

source code in C language into CIL byte code, which is then
dynamically compiled into binary code with the help of the
compilation model of Libjit-Linear-Scan into intermediate
representation Libjit-Linear-Scan IR.

A representation of the program in this execution envi-
ronment allows one to detect threats, which in the virtual
environment, are represented as results of analysis, as well
as code blocks’ sampling values and its properties’ statistics.
It creates ”fat” executable files, that contain executable code,
as well as an intermediate representation Libjit-Linear Scan
IR of the program, suitable for dynamic compilation of opti-
mized versions of the executable code. This allows inserting
into the binary code arbitrary changes, as well as produce
an instrumentation of code.

For the code in the Libjit-Linear-Scan IR representation
the virtual execution environment generates summaries with
the results of static and dynamic analysis. The intermediate
form of Libjit-Linear-Scan IR allows one to identify created
results of analysis for the original C code at any stage of code
optimization. After the execution of all static analyses the
intermediate form of Libjit-Linear-Scan is compiled into the
Vx32 [1] processor’s machine code. The Vx32 architecture
enables to execute the binary code more deterministically.
Hereby, we obtain on one hand the safety due to usage of
the .NET execution environment that supports, for example,
exceptions handling mechanism. Also, this virtualization
environment instead of the original machine code, generates
machine code without vulnerabilities, e.g., which does not
contain timing channels. The critical part of the code of
the original C program is being executed in a virtualization
mode [1].

2.3 Dynamic Analysis and Tranformations
Static analysis and transformation use algorithms, which

have a polynomial complexity, because they are not critical
at the time, which is spent on them. On the other hand, a
dynamical analysis and transformation must occur quickly
and have a low complexity of computation, for example, a
linear one. Dynamic elimination of timing channels must use
light-weight techniques, but has the advantage of being able
to focus only on hazards that actually materialize at runtime.
This is done using runtime monitoring and recompilation.
Statically prepared information about the potential classifi-
cation and declassification of data triggers recompilation at
runtime. A first recompilation pass instruments the relevant
code regions. A subsequent recompilation pass processes the
gathered timing data to determine if a timing channel really
exists (based on time variability in the gathered profile data),
and if needed, eliminates the timing-channel using one of
several techniques.

Our dynamic analysis uses a few timing channel techniques
for neutralization. First, it can use monitors, which quickly

Figure 2: Sequence of passes

analyse emergence of vulnerabilities during execution of the
program. Frequently they do not allow one even to use
more complex techniques for elimination of timing channels.
Secondly, this is a dynamical compilation of code inside the
timing channel. Dynamical analysis may use techniques of
timing channel neutralization using rapid transformation of
code in the timing channel, for example, register allocation
based on linear scan, that can use statistics. Thirdly, this is
quantification of the program execution time. If the hardware
platform supports creation of parallel processes, then the
parallel processes allows a creation of ”bundles” of alterna-
tive processes. For account of parallel processes we make a
dynamical quantification of the time of execution of the code.
Fourthly, we can insert into the code random delays and a
complex random noise.

3. EVALUATION
To date, we tested the performance of the proposed ap-

proach for the detection and neutralization of threats in C
programs, for which, with help of the software packages GCC,
DotGNU and .NET Micro Framework, an environment based
on the CIL virtual machine has been implemented. For this,
we used such means as Portable.NET, Libjit-Linear-Scan,
NativeProfiler and GCC4NET.

For the generation of test programs with vulnerabilities,
we used a special script written in Ruby language. It was
used for the creation of 10,000 programs, based on code
templates for various operations of the virtual machine, such
as arithmetic operations, access to arrays, exceptions han-
dling, conditional jumps, loops and function calls, as well as
examples of timing channels. We also used the PNetMark
and LINPACK benchmarks, which show the performance
of virtual execution environments for various operations of
the virtual machine. PNetMark is a performance test for
various virtual execution environments (CLR). It is based on
techniques used in CaffeineMark to measure the performance
of Java. LINPACK is a software library for linear algebra
operations. It was originally written in Fortran and was
intended for use on supercomputers in the 1970s and 1980s.

During the testing, we compared the performance of our
environment for the programs without and with vulnerabili-
ties.

In the context to timing channels, we measured the pro-
gram’s execution time over varying lengths in our environ-
ment. We considered two cases: firstly, this is the case of
normal compilation and optimization, without the use of the



analyses’ summaries; secondly, this is a case when the anal-
yses’ summaries were used. From standard code templates,
we created programs of various t lengths: 1, 10, 100, 200,
400, 500, 1000, 2000 and 4000 operations. Then, using our
profiler, we measured the program execution time for 100
runs. The program made calculations of the mean and the
standard deviation of the program’s execution time in these
examples. The results of the first series of tests we designate
as times E (length) and σ (length). The results of the second
test series we designate as times E∗ (length) and σ∗ (length).
The coefficient k (length) = E (length) /E∗ (length); i.e. the
ratio k is equal to the ratio of the program’s execution time
without using summaries of analyses divided by the execution
time with usage of summaries of analyses. Figure 3 shows
the graph of dependence of the values of coefficient k from
the program’s length.

The graph shows that coefficient k is increasing rapidly.
Thus, the analyses’ summaries allow one to perform a recom-
pilation of large amounts of code in real time. That time is
significant with a large program length. For example, the
coefficient k for the LINPACK benchmark is more than 20
times. Neutralizing timing channel application techniques
show the decrease in the standard deviation of the code
execution time in cases of analyses summaries when usage
ranges from a few times to 1000 times relative to the code,
but which does not take into account the possibility of the
appearance of timing channels.

It was confirmed that for all programs where threats were
created by us, the environment successfully identified and
counteracted all of the proposed vulnerabilities. Herewith,
the decrease in test program performance in the vulnera-
bilities neutralization mode was no more than 10-15%, and
certain programs actually executed faster. Experimental
data show that our approach increases the security of code
execution. It quickly neutralizes vulnerabilities, in case of
their identification, spending a few seconds on this, instead of
hours and days required for analysis using the vulnerabilities
corrections techniques, which perform code compilation, from
the beginning without taking in the account the summaries
of analyses.

We plan to continue testing our environment to search for
other vulnerabilities, for instance: the correction of incorrect
generated code by the static compiler GCC; the search for
program Trojans; the discovery of dynamic viruses; obtaining
unauthorized administrative rights; as well as analysing the
vulnerabilities related to buffer overflows and accesses of data
into unauthorized code areas.

4. CONCLUSION AND FUTURE WORK
For each new vulnerability, we are able to create new rules

of search and neutralization of threats that can be checked
at each new pass through the code. Vulnerability search
rules allows one to create monitors of threats in the binary
code. Vulnerability correction rules allows one to introduce
changes into the binary code, that counteract the threat.

This system checks the dynamic code patches that performs
corrections. In the original program before execution of
the program, monitors indicate areas of binary code that
can potentially contain vulnerabilities. An example of a
vulnerabilities’ indication can be a variation of code execution
time, an invocation of a banned function, a call of a function
with zero address, or access to a null pointer. If the monitors
show the threat, then a model’s parameter change, which

Figure 3: Dependence of coefficient k from the program’s
length

control the hazard is performed. Then in case of another
code execution, instead of the original code, is executed the
version of code with the neutralized vulnerability.

As it appears, this approach allows one to find and coun-
teract threats that are caused by incorrect software optimiza-
tion, due to hardware failures, various types of data leakages,
buffers overflows, software viruses and trojans. Basically -
these are bugs, which have a dynamic nature and appear
only in certain dynamic conditions of program execution,
related to inaccuracies in the source or binary code of the
program. Alternatively, these are bugs and threats, which
can be checked and quickly corrected with an algorithm with
linear complexity.

The limitations of the approach is the amount of available
memory and the number of available processors that can
run in parallel, switching from one task to another on the
hardware platform in the mode of application of dynamic
patches.

5. REFERENCES
[1] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan

Ford. Efficient system-enforced deterministic parallelism.
Commun. ACM, 55(5):111–119, May 2012.

[2] Manuel Egele, Theodoor Scholte, Engin Kirda, and
Christopher Kruegel. A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput.
Surv., 44(2):6:1–6:42, March 2008.

[3] Yuri Gurevich and Itay Neeman. Dkal:
Distributed-knowledge authorization language. In
Proceedings of the 2008 21st IEEE Computer Security
Foundations Symposium, CSF ’08, pages 149–162,
Washington, DC, USA, 2008. IEEE Computer Society.

[4] Kirill Kononenko. Fast compilation in o(n). In
Proceedings of the 2010 International Conference on
Theoretical and Mathematical Foundations of Computer
Science, TMFCS ’10, pages 51–56, 2010.

[5] Kirill Kononenko. Libjit linear scan: a model for fast
and efficient compilation. In International Review on
Modeling and Simulations, volume 3 N.5, October 2010.


	Introduction
	Unified Approach
	Overview of Approach
	Application
	Dynamic Analysis and Tranformations

	Evaluation
	Conclusion and Future Work
	References

