
Powerful Tools for
Live Development

with Pharo
http://stephane.ducasse.free.fr

http://www.pharo.org

http://stephane.ducasse.free.fr
http://www.pharo.org

A journey in a live environment
and its companion tools

• Pharo in 7 min

• Some advanced features

• Some tools

• Pharo is research friendly

Pharo!
• System: Pure object language + full IDE

• Powerful, elegant and fun to program

• Living system under your fingers

• Works on Mac OSX, Linux(es), iOS,
Windows, Pi, and “android”

• 100% MIT

Pharo in Numbers
13 releases since 2008

Language Core + IDE +
Tools + Frameworks

710 packages (tests
included)

~ 27000 tests

5 platforms

9 400 classes

130 000 methods

61 Mb (64 bits)

http://github.com/pharo-
project/Pharo (~220
forks, 15/123
international

contributors)

Growing ecosystem

polymath

pharo-graphics

pharo-gis

pharo-container

pharo-ai

http://github.com/pharo-project/Pharo
http://github.com/pharo-project/Pharo

Pharo is our vehicle
We improve it everyday

 A powerful engine �
 to invent (y)our future

An ecosystem where
innovation/business bloom

Some

Success Stories

@ pharo.org/
success

http://pharo.org/success
http://pharo.org/success
http://pharo.org/success

Elegant!

• Full syntax on a postcard

• Simple and powerful objet model

A Pure World of Objects
Only

objects + messages +

closures

mouse, booleans, arrays, numbers, strings, windows, scrollbars, canvas, files, trees, compilers, sound, url, socket, fonts, text, collections, stack, shortcut,
streams, …

A Fully Uniform Model

• Dynamically typed

• Everything is an object instance of a class

• All methods are public virtual

• All attributes are protected

• Single inheritance with traits

Less is more!
No constructors, no static methods, no operators

No type declaration, no primitive types,

No interfaces, no need for factory

No packages/private/protected modifiers

No parametrized types

No boxing/unboxing

Still powerful

Pharo is highly immersive

Immersing…

Pharo is not a blackbox
Everything is fully inspectable and
reflective

You are immersed and
interacting with objects

We can do the same with
web app, sockets, networks,
sensors, living programing….

Hackers
scripting live
the coffee
machine

Selected Infrastructure

Fully Written in Itself

Selected features
• First class instance variables (daemons, relationships…)

• Fast resumable exceptions

• Runtime classes and objects migration

• Customizable compiler

• Serializable and shareable execution stack

• Optional system virtualization

• Fully bootstrapped kernel(s) (down to 200kb)

Advanced reflective layer
• Versatile AST annotations and transformations @

runtime

• Full stack reification (continuations, exceptions…)

• Instance enumeration

• Causally connected “Software as Objects”

• Atomic bulk object swapping

• … more but no time for that

Tools are our friends

How to find information?

• Libraries are large

• You know what you want

• You do not know how to express it

11 ??? 2 should give 5

11 ??? 2 should give 5.5

What are the messages
send to $0 that return true

Tools

• Shape our mind…

• Pharo has moldable tools: you CAN
adapt them to you and your process
and not the inverse

• Build fast your own tools

Pharo has amazing
moldable tools

Customizable object
interaction/presentations

Inspecting live a 3D object

The views of a file
reference

It is cool but it is not magic
You can define your own

Implementing a pane!

Files are
boring…

What about
inside

the
system?

A class is an object we can
inspect!

“A class has a method dictionary”
they said… let us verify

Dissecting one method
object

I do not want to be a
compiler!

It looks like a method

Numbers are not that
obscure

And mapping them to the
good abstraction helps

Yes pushRcvr: 1 means the
second field!

Pharo Pro devs do
XtremeTDD

• Get productivity boost

• Xtreme TDD

• write test, test fails and

• code in debugger

Pharo Pro devs
• Get productivity boost

• Xtreme TDD

• write test,

• test fails and

• code in debugger

Hot update on the fly
customizable debugger

Hot update on the spot
customizable debugger

A specific
parser compiler

debugger

specific view

object centric +
adv scripting (AST + call stack)

Live visualisation scripting
• The next level

• Roassal 3.0 by Prof. A. Bergel/Object Profile University
of Chile at Santiago

• Simply gorgeous

• Check http://agilevisualization.com

Includes a DSL for Scripting
visualisations

b := RTMondrian new.

	 b shape rectangle

	 	 withBorder;

	 	 width: [:cls | cls numberOfVariables * 5];

	 	 height: [:cls | cls numberOfMethods].

	 b nodes: Collection withAllSubclasses.

	 b edges connectToAll: [:cls | cls subclasses].

	 b layout tree.

	 b normalizer

	 	 normalizeColorAsGray: [:cls |

cls numberOfLinesOfCode].

	 b

One hour about Basic
https://pharoweekly.wordpress.com/
2020/05/24/roassal-1-hour-xp-
assembly-code-of-gwbasic/

Execution of IA generating
tests

Analysis Android application

execution d'un algo genetique pour creer des unit tests

Often developers
write their own tools

Building your own tool
• Example Javascript analysis

execution d'un algo genetique pour creer des unit tests

Probabilistic Data Structure
• https://github.com/osoco/PharoPDS

• Defined new data structure

• And the analysis tools

https://github.com/osoco/PharoPDS

HTTP traffic analysis
• http://youtu.be/rIBbeMdFCys

Stepping ARM 64 bits asm

Moments of grace…

I want my halt to only
stop when called from
THAT test called testMe!

mycode
 self haltIf: #testMe

…

Use stack reification
Walk it
Halt if needed
(in 5 lines)

haltIf: aSelector
| cntxt |
cntxt := thisContext.
[cntxt isNil] whileFalse: [

cntxt selector = aSelector
 ifTrue: [self halt].

cntxt := cntxt sender]

Dynamically rewriting
deprecated calls @
runtime

We deprecate API
How to help our users to migrate?

How to support
migration to new
versions

Caller

x.Method()

Method

Deprecation
+ Transformation

Definition

Method
Execution

Sender

x.NewMethod()

Declaration
Deprewriter

Annotation (1)

Execution (2)

Exception handling (3)
Caller rewriting (4)

Execution continues (5)
Warning

crLog: aString

self
deprecated: 'Please use trace* methods instead.'
transformWith:

'`@receiver crLog: `@statements1'
-> '`@receiver crTrace: `@statements1'.

self crTrace: aString

Rewriting deprecation

Run your tests.
Your code and your
tests use the new
API!

At notification time:
Walk the stack
Get caller AST
If should be rewriten
Rewrite it and proceed
execution

transform
| node rewriteRule aMethod |
aMethod := self contextOfSender method.

node := self contextOfSender sourceNodeExecuted.
rewriteRule := self rewriterClass new

replace: rule key with: rule value.
(rewriteRule executeTree: node)

ifFalse: [^ self signal].
node replaceWith: rewriteRule tree.

Pharo is
research friendly

Lafhis (AR)

SCG (CH) 
CAR (FR) 
RMOD (FR)

Ummisco (IRD)

Reveal (CH)

Lysic (FR)

ENSTA-Bretagne (FR)

CEA-List (FR)

Ryerson (CAN)

OC (FR)

CCMI-FIT (CZ)

ASERG (BR)

Pleiad (CL) 
Macau (UNO)

Cirad (FR)

USTH (Vietnam)

Soft-Qual (Serbia)

Uni. Quilmes (AR)

ENIT (FR)

CS (Bo)

Maroua (CAM)

ETS (CAN)

International Research Groups

http://materias.fi.uba.ar/7507/
http://scg.unibe.ch/
http://www.ensm-douai.fr/
http://www.ensm-douai.fr/
http://www.imus.univ-savoie.fr/

We are ready
to help you

validate
your ideas

We are interested in

Tools, tests, refactorings, program
transformation, visualisation, merge, code
review, debugging, test selection, migration,
navigation, IDE, code browsing, DSL,
recommander, profiler, specific datastructure,
type inference, code optimizers, …

We can be
your guinea

pigs,…

(well kind of…. we have real users)

Actively supporting research
eg. SCG from Uni. Berne

Best Paper Award @
ICPC’19

Kubelka, Bergel, Robbes,
“Live Programming and Software Evolution: Questions

during a Programming Change Task”

DrTests: a plugin-
based architecture to
plug test analyses

We validated our 27000
tests for Rotten Green
Tests (ICSE’19)

Test Amplification
by S. Demeyer, H. Rocha, M. Abdi of Antwerp

Universiteit

Map reduce
debugging

by M. Marra and Prof. E. Gonzales Boix from Vrije
Universiteit Brussel

Code Review
by A. Bachelli, A. Bergel / ObjectProfile

Advanced UIs at

Thales (flights, submarines,…)

2D, 3D, Tactile, VR,…

Empowering
is the right word

• Pharo is an energizing and creative environment

• Moldable tools are powerful

• Tried to share my feeling

• But “The idea of experience does not replace
experience.” Alain

Fun, simple

Pure & elegant

Productive

Empowering

Addictive

Full access

