
Pharo Bytecode
Compiler Roadmap 2022

Marcus Denker, Inria

http://marcusdenker.de

http://marcusdenker.de

The Compiler

• Smalltalk compiler -> Compiler Facade

• But the real work is done by a set of visitors

The Compiler

Source AST Annotated
AST

IRAnnotated
AST Bytecode

RBParser OCSemanticAnalyzer

OCASTTranslator/
IRBuilder

IRBytecodeGenerator

Done in 2021

• Simplified AST: RBVariableNode subclasses removed

• Name Analysis redone: uses Variable Hierarchy

• Much simpler!

• Debugger uses variable meta objects to read/write

• Old DebuggerMethodMap API finally removed

Done in 2021

• Removed support for inlined Blocks and old Bytecode set

• Clean Blocks: pre-compile blocks that do not access
outer variables / need outer block (not active)

• Literals are compiled as read-only objects

What needs improvement?

• It is still too complex for what it is

• We need some new features

• Better Documentation / Tutorial

Why is it difficult

• The Compiler is not just a library that is used

• Improvements are often not just internal, but have impact
everywhere

• Lots of interactive usage via complex APIs

• Good solutions often at the Language Kernel level (e.g.
reflective API), not the compiler

Backward Compatibility

• Compiler was designed to be backward compatible

• Exceptions

• API

• Exact Bytecode emitted

Exceptions are a mess

• A syntax errors is no Error but SyntaxErrorNotification

• OCSemanticWarning is not a Warning

• Really complex:

• call #notify:at:in: to print into the editor

• Suggest what to do (UI!) for Undeclared vars

Exceptions are a mess

• We still support ST80 #failBlock: (exception handling of
before exceptions where introduced)

• Oh, and there is ReparseAfterSourceEditing (aargh…)

• And then, with all that, in non-interactive mode we just
write to the transcript and compile

Proposal: No Exceptions

• Why not compile and let the Tools handle what to do?

• Remember: this is all *only* for interactive use !

• We log the errors

• Tools provide UI to the user to fix what is broken

Proposal: Logging

• Instead of Transcript, log Objects describing what
happened

• The UI of the logger can provide “fix it” buttons for all
problems encountered.

• Both useful in interactive and non-interactive use

Problem with TDD
• If we have compiled an Undeclared, there is no way to

interact with the programmer

• How we turn a DNU on UndefinedObject into a variable
definition popUp.

Idea to improve TDD

• Compile Undeclared access as message send to the
UndeclaredVariable instance

• This would then allow us to execute code at read / write
to prompt interaction to declare the variable

• evaluating “<undeclared> new” then would work as it
does now: prompting a fix in interactive mode

Improve Playground
Variables

• Review automatic variable definition in the Playground

• Source of many problems in the past

• Code very hard to understand

• Better: ask the developer before defining a var

Improve Structure
• Revise the odd implementation idea off the two

subclasses of OCASTTranslator (one for value, one for
effect)

• Lots of logic is implemented on the level of the
RBMethodNode and IRMethod (Idea from ST80)

• AST holds on to IR representation

Simplify code gen
optimised code

• Originally, we tried to emit the same bytecode as ST80
Compiler

• Lots of cases hard coded

• Do we need it from the VM side?

• Benchmark!

Evaluate Code Gen

• OCASTTranslator now directly emit optimised code
(ifTrue: …)

• Evaluate if we can not do this as a second pass

• Start to evaluate backend: Too complex!

• This is for later

Simplify DoItIn:
• Simplify DoItIn: Evaluation

• Very slow and odd due to AST rewrites

• Denis did a first step to simplify

• Evaluate: Can we compile DoIts to Closures, not
Methods?

Simplify Tool API

• SpCodeInteractionModel shows the complexity that
the compiler forces on the tools

• 5 subclasses, lot of methods

• This should not need so much code!

• And definitely not on this level!

Compiler Plugins

• Better Compiler Plugin Infrastructure

• Plugins for different phases

• Revisit #compilerClass / #compiler

• Allow the compiler to be set in the Fluid Class Definition

Meta Data

• Compiler meta-data need to be stored in the
CompiledMethod

• We e.g do not know if a method was compiled with
non-standard options

• Maybe encode flags as an integer in the literals?

Clean Blocks

• We should enable Clean Blocks by default

• Provides some speedup (~5-7% for e.g. compiler
recompiling the image)

• reduces memory due to not referencing the outer context

• Compiler + Debugger works, but Fuel needs work

• Need to test the new version

Documentation

• Need to have a booklet describing the compiler

• Need a tutorial

• Show how to extend the compiler by subclassing

• Show how to define code gen for your own Variables

