
Live tools are
developers’ best

friends
http://www.pharo.org

Novi Sad - 2024

http://stephane.ducasse.free.fr

http://www.pharo.org
http://stephane.ducasse.free.fr

A journey in a live environment
and its companion tools

• Pharo in 5 min

• Some advanced features

• Cool tools

Pharo!
• System: Pure object language + full IDE

• Powerful, elegant and fun to program

• Living system under your fingers

• Works on 11 oses, 32/64, X86, ARM,
M1

• 100% MIT

Pharo in Numbers
17 releases since 2008
Language Core + IDE +
Tools + Frameworks
~ 800 packages (tests
included)

~ 27000 tests
10k classes
137k methods
61 Mb (64 bits)

http://github.com/pharo-
project/Pharo (~300
forks, 15/123
international
contributors)

Ecosystem
polymath
pharo-graphics
pharo-gis
pharo-container
pharo-ai

http://github.com/pharo-project/Pharo
http://github.com/pharo-project/Pharo

Pharo is our vehicle
We improve it everyday

 A powerful engine
 to invent (y)our future

An

Some
Success Stories

@ pharo.org/
success

http://pharo.org/success
http://pharo.org/success
http://pharo.org/success

Elegant!

• Full syntax on a postcard

• Simple and powerful objet model

Yes the full Syntax!

Yes there is nothing else…

method
annotation

comment

parameter

return

local var

parameter

affectation
instance var

local var

closure

arg closure

cascade
separator

binary msg

unary msg
keyword msg

binary msg

string
symbol

array character

number

A Pure World of Objects
Only
objects + messages +
closures

mouse, booleans, arrays, numbers, strings, windows, scrollbars, canvas, files, trees, compilers, sound, url, socket, fonts, text, collections, stack, shortcut,
streams, …

A Fully Uniform Model

• Dynamically typed

• Everything is an object instance of a class

• All methods are public virtual

• All attributes are protected

• Single inheritance with traits

Pharo is highly immersive

if a compiler would be an
aquarium

compiling a program would
like writing on a black board

Immersing…

Pharo is not a blackbox
Everything is fully inspectable and
reflective

You are immersed and
interacting with objects

We can do the same with
web app, sockets, networks,
sensors, living programing….

Hackers
scripting live
the coffee
machine

Selected Infrastructure

Fully Written in Itself

Selected features
• First class instance variables (daemons, relationships…)

• Fast resumable exceptions

• Runtime classes and objects migration

• Customizable compiler

• Serializable and shareable execution stack

• Optional system virtualization

• Fully bootstrapped kernel(s) (down to 200kb)

Advanced reflective layer
• Versatile AST annotations and transformations @

runtime

• Full stack reification (continuations, exceptions…)

• Instance enumeration

• Causally connected “Software as Objects”

• Atomic bulk object swapping

• … more but no time for that

Tools are our friends
But they shape our mind

How to find information?

• Libraries are large

• You know what you want

• You do not know how to express it

11 ??? 2 should give 5

11 ??? 2 should give 5.5

What are the messages
send to $0 that return true

Tools

• Shape our mind…

• Pharo has moldable tools: you CAN
adapt them to you and your process
and not the inverse

• Build fast your own tools

Pharo has amazing
moldable tools

Customizable object
interaction/presentations

Inspecting live a 3D object

The views of a file
reference

Looking at a file reference

Oh! a file browser in my
inspector!

But I have a file reference: a
dull object

Quite boring object

We can see the png ;)

Looking inside that PNG file

But still a file reference!

See! an archive ‘.zip’

Kind of clear…

An object can expose
multiple interactive views!

• You can use the best view for your task!

• You can add views to your domain objects

It is cool but it is not magic
You can define your own

Implementing a pane!

Files are
boring…

What about
inside

the
system?

A class is an object we can
inspect!

“A class has a method dictionary”
they said… let us verify

Dissecting one method
object

I do not want to be a
compiler!

It looks like a method

Numbers are not that
obscure

And mapping them to the
good abstraction helps

Yes pushRcvr: 1 means the
second field!

Pharo Pro devs do
XtremeTDD

• Get productivity boost

• Xtreme TDD

• write test, test fails and

• code in debugger

Micro commits are
your friends

Micro commits?

• Record all your activities

• Support the replay,
query and reload of
actions

Going back in time

Navigating/Querying past
activities

Selective
Replay

What about tests?

Tests are also our best
friends

• DrTests

• Plugin for Rotten Green tests

• Executable comments

• Mutalk: Mutation analyser
framework

DrTests: a plugin-
based architecture to
plug test analyses

We validated our 27000
tests for Rotten Green
Tests (ICSE’19)

Hot update on the fly
customizable debugger

Hot update on the spot
customizable debugger

A specific
parser compiler

debugger

specific view

object centric +
adv scripting (AST + call stack)

Debug actions

• Since Pharo 12

• Toggle set of stop points:

• toggle off + run the tests + toggle on and code

• Chain stop points: only stop here if you stopped there

Dynamically rewriting
deprecated calls @
runtime

We deprecate API
How to help our users to migrate?

How to support
migration to new
versions

Caller

x.Method()

Method

Deprecation
+ Transformation

Definition

Method
Execution

Sender

x.NewMethod()

Declaration
Deprewriter

Annotation (1)

Execution (2)

Exception handling (3)
Caller rewriting (4)

Execution continues (5)
Warning

crLog: aString

self
deprecated: 'Please use trace* methods instead.'
transformWith:

'`@receiver crLog: `@statements1'
-> '`@receiver crTrace: `@statements1'.

self crTrace: aString

Rewriting deprecation

Run your tests.
Now your code and
tests use the new
API!

At notification time:
Walk the stack
Get caller AST
If should be rewriten
Rewrite it and proceed
execution

transform
| node rewriteRule aMethod |
aMethod := self contextOfSender method.

node := self contextOfSender sourceNodeExecuted.
rewriteRule := self rewriterClass new

replace: rule key with: rule value.
(rewriteRule executeTree: node)

ifFalse: [^ self signal].
node replaceWith: rewriteRule tree.

Live visualisation scripting

• Kind of another level

• Roassal 3.0 by Prof. A. Bergel

• Simply gorgeous

• Check http://agilevisualization.com

Includes a DSL for Scripting
visualisations

b := RTMondrian new.
	 b shape rectangle
	 	 withBorder;
	 	 width: [:cls | cls numberOfVariables * 5];
	 	 height: [:cls | cls numberOfMethods].

	 b nodes: Collection withAllSubclasses.
	 b edges connectToAll: [:cls | cls subclasses].
	 b layout tree.
	 b normalizer
	 	 normalizeColorAsGray: [:cls |
cls numberOfLinesOfCode].
	 b

One hour about Basic
https://pharoweekly.wordpress.com/
2020/05/24/roassal-1-hour-xp-
assembly-code-of-gwbasic/

Execution of IA generating
tests

Analysis Android application

execution d'un algo genetique pour creer des unit tests

Often developers
write their own tools

Building your own tool
• Example Javascript analysis

execution d'un algo genetique pour creer des unit tests

Probabilistic Data Structure
• https://github.com/osoco/PharoPDS

• Defined new data structure

• And the analysis tools

https://github.com/osoco/PharoPDS

HTTP traffic analysis
• http://youtu.be/rIBbeMdFCys

AOT compiler CFG

A little binary stepper

Moments of grace…

I want my halt to only
stop when called from
THAT test called testMe!

mycode
 self haltIf: #testMe

…

Use stack reification
Walk it
Halt if needed
(in 5 lines)

haltIf: aSelector
| cntxt |
cntxt := thisContext.
[cntxt isNil] whileFalse: [

cntxt selector = aSelector
 ifTrue: [self halt].

cntxt := cntxt sender]

Pharo is
research friendly

Lafhis (AR)
SCG (CH)
CAR (FR)
RMOD (FR)
Ummisco (IRD)
Reveal (CH)
Lysic (FR)
ENSTA-Bretagne (FR)
CEA-List (FR)
Ryerson (CAN)
OC (FR)
CCMI-FIT (CZ)

ASERG (BR)
Pleiad (CL)
Macau (UNO)
Cirad (FR)
USTH (Vietnam)
Soft-Qual (Serbia)
Uni. Quilmes (AR)
ENIT (FR)
CS (Bo)
Maroua (CAM)
ETS (CAN)

International Research Groups

http://materias.fi.uba.ar/7507/
http://scg.unibe.ch/
http://www.ensm-douai.fr/
http://www.ensm-douai.fr/
http://www.imus.univ-savoie.fr/

We can be
your guinea

pigs,…

(well kind of…. we have real users)

Was actively supported research
e.g., SCG from Uni. Bern

Best Paper Award @
ICPC’19

Kubelka, Bergel, Robbes,
“Live Programming and Software Evolution: Questions

during a Programming Change Task”

Map reduce
debugging

by M. Marra and Prof. E. Gonzales Boix from Vrije
Universiteit Brussel

Empowering
is the right word

• Pharo is an energizing and creative environment

• Moldable tools are powerful

• Tried to share my feeling

• But “The idea of experience does not replace
experience.” Alain

Fun with Us
• 1 hour from Paris, 1:30 from London, 35 min from Brussels

• Internships 3 to 6 months (right now we have 8 interns)

• Google Summer of Code

• PhDs / co supervision (e.g., B. Sarenac)

• Engineer position

• Visitors (Magadascar, Chile, Montreal, …)

