Scriptable debugging, execution
querying and other advanced
debugging techniques

Maximilian Ignacio Willembrinck Santander
PharoDays 2022

V4
- g
Lniversite S @RIStAL 7 o®
d e LI l le Centre de Recherche en Informatique, W RMod ’
Signal et AutomatiquedeLile ~~ INVENTEURS DU MONDE NUMERIQUE

Get the code here: https://github.com/maxwills/PharoDays2022

Presentation Format

A mix of hands-on, demonstration and explanations.

Follow the examples:

Code here: https://github.com/maxwills/PharoDays2022

Let's go!

Get the code here: https://github.com/maxwills/PharoDays2022

Presentation Agenda

Introduction and what to expect
Context
Motivation

Obtaining Code insertion (+ Conditions)

Execution Data Instrumentation (+ Reflection)

Sindarin

Scriptable-Debuggers
Seeker

Get the code here: https://github.com/maxwills/PharoDays2022

What to expect
(Spoilers)

We will explore a program execution, trying to answer a few
debugging questions.

We will go from commonly-used tools and techniques to
not so commonly-used:

Halts, Logging, Breakpoints, MetaLinks, MethodProxies

We will show usage of Scriptable Debuggers in Pharo.

Get the code here: https://github.com/maxwills/PharoDays2022

“The debugging activity does not take place only in the Debugger”.

Presentation Agenda

Introduction and what to expect
Context
Motivation

Obtaining Code insertion (+ Conditions)

Execution Data Instrumentation (+ Reflection)

Sindarin

Scriptable-Debuggers
Seeker

Motivation

We will explore a program
using several debugging tools and techniques

"This is the execution we must explore"

| a winner |

a := AppleHunt new.

a giveHuntersSomeBags.

a goHunting.

winner := a calculateRanks first.
winner biggestBagSize.

A winner

W oo~ P wWwN

Our program tells a story ...

Motivation

Getting data from the execution:

Q1. How many times the method orderedCollection>>add: is called?
(and with an Apple as argument?)

Q2. How many times any method with selector add: is called? What is
the actual method in every case?

Presentation Agenda

Introduction and what to expect
Context
Motivation

Obtaining Code insertion (+ Conditions)

Execution Data Instrumentation (+ Reflection)

Sindarin

Scriptable-Debuggers
Seeker

(To the code!)

Obtaining Execution Data

Code Insertion

We change the code of the execution to include our inquisitive actions.

Al {}Amay2D » instanceside &[]
Sparse » (&) extensions
Extensions { } sortedCollection ¥ breakpoints
» B¢ Te | v {}C ictionary accessing
» [Collections-Stack { } OrderedIdentityDictionary adding
» [Collections-Stack-Tests converting
» [Collections-Streams copying
» B Collections-Streams-Tests enumerating
» [Collections-Strings © initialization
» [Collections-Strings-Tests m private
» [Collections-Support removing
» [Collections-Support-Tests sorting
Filter... o Filter. splitioin

? Comment x || © OrderedCollecti x

add: newObject

2312

A self addLast: newObject

@ add:after:

@ add:afterindex:

@ add:before:

@ add:beforeindex:

@ addAll:

@ addAllFirst

@ addAllFirstunlessAlreadyPresent:
@ addAllLast:

@ addFirst:

@ addLast:

@ asAmay

@ asOrderedCollection

A UML-Class x || =+ Inst. side methc x

x # adding (] extension (J F +L W

Original OrderedCollection>>add: method

(comments removed)

add: newObject

self halt.

A self addLast: newObject
add: newObject

MyLoggerUtil log: 'OrderedCollection >> add: called'.

A self addLast: newObject

Note: Images for illustrative purpose only.
Don't put an Halt in OrderedCollection>>add:
H(

10

Obtaining Execution Data

Code Insertion
We change the code of the execution to include our inquisitive actions.

e Logging (printing)

e Halt

Getting data from the execution:

Q1. How many times the method orderedCollection>>add: is called? (and with an Apple as
argument?)

11

Obtaining Execution Data

Code Insertion

Getting data from the execution:

aFeHReRtS
Q2. How many times any method with selector add: is called? What is the actual method in
every case? Consider only cases when adding Apple, or Hunter objects.

Problem:
There are several possible methods with the #add: selector. What to do?

12

Presentation Agenda

Introduction and what to expect
Context
Motivation

Obtaining Code insertion (+ Conditions)

Execution Data Instrumentation (+ Reflection)

Sindarin

Scriptable-Debuggers
Seeker

13

Obtaining Execution Data

Instrumentation

This time, to include our inquisitive actions, we change the execution without
altering it's code.

appleHunt

appleHunt
"This is the execution we must explore"

"This is the execution we must explore"

| a winner | | a winner |
a := AppleHunt new. a := AppleHunt new. A Breakpoint
a giveHuntersSomeBags. P

a giveHuntersSomeBags.
(1] a goHunting.
:= a calculateRanks first.

a goHunting.
winner := a calculateRanks first. winner :
winner biggestBagSize. @ winner biggestBagSiz

A winner \{ A Conditional Breakpoint]

A winner

+ [Metalinks] [MethodProxies]

14

Obtaining Execution Data

Instrumentation

This time, to include our inquisitive actions, we change the execution without
altering it's code.

e Breakpoints
e MetaLinks

e MethodProxies

15

Instrumentation with MetalLinks

Adds a extra instructions to our execution without
modifying its code.

The code:

add: newObject

A self addLast: newObject

16

Instrumentation with MetalLinks

When a method is compiled:

add: newObject

A self addLast: newObject

An AST is produced:

¥ RBMethodNode(add: newObject * self addLast: newObject)
RBVariableNode(newObject)
¥ RBSequenceNode(* self addLast: newObject)
¥ RBReturnMode(" self addLast: newObject)
¥ RBMessageNode(self addLast: newObject)
RBVariableNode(self)
RBVariableNode(newObject)

17

Instrumentation with MetalLinks

MethodNode
Source:
(add: newObject
A self addLast: newObject)

argument(s) body
y4 N
VariableNode SequenceNode
Source: Source:
(newObject) (A self addLast: newObiject)
|
statemenents
v
ReturnNode
Source:

(M self addLast: newObject)

MessageNode
Source:
(self addLast: newObject)
Selector: #add:

messageReceiver messageArgument(s)

P

VariableNode VariableNode
Source: Source:
(self) (newObiject)

Instrumentation with MetalLinks

MethodNode

Source:

(add: newObject

A self addLast: newObject)

argument(s,

4 N
VariableNode SequenceNode
Source: Source:
(newObject) (~ self addLast: newObject)
|
statemenents
ReturnNode
Source:
(~ self addLast: newObject)
MessageNode
Source:
(self addLast: newObiject)
Selector: #add:
messageReceiver messageArgument(s)
P
VariableNode VariableNode
Source: Source:
(self) (newObiject)

“When that node is executed,
execute THIS other code!”

Transcript show: ‘#add: called’

19

Showing the code in Pharo

Instrumentation through MetaLinks Examples
+ Reflection

20

MethodProxies

Some facts:

e Not included in Pharo.

o Getithere:
https://qithub.com/pharo-contributions/MethodProxies

The package is developed and maintained by S. Ducasse, G. Polito and P.
Tesone, but feel free to give a hand.

21

https://github.com/pharo-contributions/MethodProxies

Instrumentation with MethodProxies

Adds a extra instructions to our execution without modifying its code,
by “proxying” its method(s).

{ ¥ Array2D » instance:” |@ add:
v { } OrderedCollection » [extensior | add:after:
{ } SortedCollection #¥ breakpoi | @ add:afterindex:
v { } OrderedDictionary accessing @ add:before:
{ } OrderedidentityDictionary adding (0 add:beforeindex:

convertin | addall:
copying | © addAllFirst:
enumera | addAllFirstUnlessAlreadyPresent:

Instrumentation with MethodProxies

When a method is compiled, the created CompiledMethod object is
stored in the methodDictionary of the class.

OrderedCollection

methodDictionary rr--------- methodDictionary
#add: aCompiledMethod
#add:after: aCompiledMethod
#add:afterindex: aCompiledMethod
#add:before: aCompiledMethod

Instrumentation with MethodProxies

When sending a message to an object of our class, Pharo will get the
CompiledMethod object of the dictionary, and will execute it.

myCollection add: 1

OrderedCollection

methodDictionary o ittt methodDictionary

‘ aCompiledMethod ‘
#add:after: | aCompiledMethod |

’#add:afterlndex: ‘—>’ aCompiledMethod ‘

‘#add:before: H‘ aCompiledMethod ‘

Instrumentation with MethodProxies

To instrument our method, we can replace the CompiledMethod

with a Proxy

MyOwnAmazingProxy
installInMethod: #add:
ofClass: OrderedCollection

OrderedCollection

methodDictionary ~ rr--------- methodDictionary

} aMyOwnAmazingProxy “‘ o
} aCompiledMethod |

‘#add:afterlndex: l—>’ aCompiledMethod ‘

#add:before: ’ aCompiledMethod ‘

X

(To the code!) 25

Obtaining Execution Data

Comparison of approaches

Code Insertion
- Halt
- Logging

Instrumentation

- Breakpoints
- MetalLinks
- MethodProxies

Code
Insertion

Instrumentation

“Simple” to understand.

S

“Simple” to debug.

®

Don't modify the debugged
program code.

Persistent (recompilation)

Good Scalability

26

By instrumenting a program, we alter its execution.
(Even if we don't modify it's code)

Can we extract execution data without altering the execution
at all?

27

Presentation Agenda

Introduction and what to expect
Context
Motivation

Obtaining Code insertion (+ Conditions)

Execution Data Instrumentation (+ Reflection)

Sindarin

Scriptable-Debuggers
Seeker

28

Scriptable Debuggers

e Allow developers to automate debugging tasks.
e Expose an APl to:
- Manipulate the debugger and debugged execution.

- Obtain information about the debugged execution.

Less tedious manual debugging work for the developer

29

Sindarin

Included in Pharo

e Two flavors:

o With Ul: Extension of the StDebugger.
m Has to activated from the Pharo settings.

o Headless: The SindarinDebugger Object.
m Already included in Pharo 9.0 and Pharo 10

30

Sindarin

Enabling the Ul version

Hit return to acc
2 -~
v % Tools > H o + X
E2 Show line numbers in code panels
sindarin stepOver
e CompiledMethod valueWithReceiver:argumen Kemel
> S Reflectivity SpCodeDebugltCommand [aCompiledMethod value Spec2-Code
¥ % Debugging FullBlockClosure (BlockClosi [self value. "IMPORTANT: D Kernel
¥ % Debugger Extensions
v B2 Activate extensions...
» % Breakpoints
» 9 Bytecode
v % sindarin | hunte |
untEvent winner
o l:. huntEvent := AppleHunt -.
5 huntEvent goHunting.
B3 Det e [
: B . winner := huntEvent calculateRanks first.
» 9 Debuggers
4 Default debugger spec layout debuggerWithoutExtensionsSpec .
- » ¥ Deprecation handling = v +Variable
o Rl paciages implicit © self
Activate the tool tab in the debugger right column. temp.var @ huntEvent
temp.var @ winner

StDebugger with Sindarin Ul Extension

Enable it in the Pharo Settings

(To the code)

32

Presentation Agenda

Introduction and what to expect
Context
Motivation

Obtaining Code insertion (+ Conditions)

Execution Data Instrumentation (+ Reflection)

Sindarin

Scriptable-Debuggers
Seeker

33

Seeker

A prototype scriptable and queryable debugger

e Ul version only (as an extension of the StDebugger).
e Notincluded in Pharo.
e Query-based debugging.

e Time-Traveling mechanics.

Get the code here: https://github.com/maxwills/PharoDays2022

34

(To the code)

35

The Query Notation
(From scripting to querying)

| callsToAdd |
callsToAdd := OrderedCollection new.

seeker restartAtBytecodeOne.
[seeker canStep] whileTrue: [
seeker step.
(seeker currentState isMessageSend and: [seeker currentState node selector = #add:])
ifTrue: [

callsToAdd add: seeker currentState methodAboutToExecute]
A callsToAdd

A (Query from: seeker newProgramStates

collect: [:state | state methodAboutToExecute]) asOrderedCollection

select: [:state | state isMessageSend and: [state node selector = #add:

|
4

]

36

Standard Query Notation

Equivalent queries in other languages

Pharo (Prototype implementation for Pharo 9.0/Pharo10)

A (Query from: seeker newProgramStates
select: [:state | state isMessageSend and: [state node selector = #add:]]
collect: [:state | state methodAboutToExecute]) asOrderedCollection

SQL Query C# (Linq)
SELECT state.methodAboutToExecute var results=(
FROM state in seeker.newProgramStates
FROM ProgramStates .
9 WHERE state.isMessageSend && state.node.selector == "add:"
WHERE state.isMessageSend AND SELECT state.methodAboutToExecute
.ToList () ;
state.node.selector = 'add:') .ToList ()

Python (List comprehension + properties)

results = [

state.methodAboutToExecute

for state in seeker.newProgramStates

if state.isMessageSend and state.node.selector == "add:" (TO the code!)

37

Queries In Seeker

e Not any kind of queries, but Time-Traveling Queries
(TTQs).

e Aset of ready-to-use TTQs are provided.

e Developers can write their own Queries and TTQs.

38

Summary

e The debugger is not your only tool for debugging.

e Inserting extra behavior to study your program execution for your debugging
sessions.

o Code Insertion, Instrumentation, and dangers.
e Reflection is a powerful mechanism to obtain execution data.
e Scriptable debuggers: Sindarin.
e Scriptable Time-Traveling Queryable Debugger prototype: Seeker.

o Query Notation and Time-Traveling Queries

Have a good day!

Get the code here: https://github.com/maxwills/PharoDays2022

39

Presentation is finished.
Extra slides next.

40

Context
What to expect

We will explore an execution, to find answer to debugging
questions.

Everything goes!

The standard debugger, breakpoints, logging, proxies,
reflection, scripting, speculating, etc.

| will break some Pharo Images, and show how you can avoid
that (*).

Get the code here: https://github.com/maxwills/PharoDays2022
41

Context
What to expect

By the end of the session you will:

e Be aware of currently available yet not-so-commonly used tools
in Pharo.

e Have the knowledge on what is to come in some aspects of
debugging.

And (hopefully)

e Your debugging techniques repertory is expanded.

e You had a blast!

Get the code here: https://github.com/maxwills/PharoDays2022

42

More on Conditions ...

Global state] (Global variables, Classes, SharedVariables, etc)

[Conditi Method activation state| (Self, arguments of method, instance
ondaitions L (local) variables of self, temporal variables, etc)

Execution State]w,[Reflection] (thisContext, “execution stack’,

activeProcess, etc)

43

Querying the execution
What is happening?

x -0 AppleHunt>>initialize 2
Stack i Seeker
) Stepping Control
Class Method Package -« » + 4+ @ > Q
AppleHunt initialize PharoDays2022 Bkl Advl AdvSatement PrevSatement Reset Tofnd STOP
AppleHunt class (Behavior) new Kernel Query Scripting
UndefinedObject Dolt - Query for All the assignments of variables with selected name:) Re-execute
Compi i i Kernel v step Variable Current Value Tobe Assigned Method C
PN AN G SR ©
Proceed Into Over Though Rumto Restart Retum Whereis? Creste Advanced Step
1 initialize
2
3| random := self newRandom.
4| hunters := Dictionary new
5 add: #Alice -> AppleHunter newAlice;
6 add: #Bob -> AppleHunter newBob;
7 addpmnto * er newCharlie;
ry S P Doit %D
#k Debugit 0%D
(i 1 Filter.
P> Printit ®P - =
55 Profileit Showing 0 results, fetched in: Oms.
4 DebugitinSeeker ¢ 36 405 (1.72% of k
Code search »
an AppleHunt Sine 5 D & an UndefinedObject (nil) L, WS -
1 Toretun Queries the execution, from start to
+Type +Variable = 2 - = 3
yp . S % Nextinstance creation R Dresknois Y NeY, | 1o cvery <message send>whase
i 4 Next callin receiver +Variable <selector> matches the <selected text>.
€ hunters % To method entry © self Every listed result corresponds to the
€ random 3 Nextcallin class i moment before performing the message =
3 stackTop -

¥ [Al Message Sends |send. (sender's point of view)

g se¢ | Messages-ObjectCentric)
[Copy. %# Instances Creations » 5] All Received messages
3 Cut 1oy Assignments- Object Centric b

[l Paste xv‘ <> Assignments - General >

Dpase.. ceien 0

W Accept ®S

X Cancel s

Querying during a debugging session

x -0 AppleHunt>>initialize
Stack " Seeker
Stepping Control
Class Method Package A e o» 4 1 4a » ©
AppicHant i Pharobays2022 Bkl vl AdvSatement PrvSatement Reet Tofed STOP
AppleHunt class (Behavior) new Kernel Query Scripting
UndefinedObject Dolt = Query for All Message Sends with selected selector : (add:)
c 4 Kernel v step Msg Receiver oid Msg Selector
> ¥ A2 » 31 & o @ + ¢ 1 aDictionary() (Dictionarynew) 319 add:
Poced o O Twwh Rt Resat Reum Wheres) Cote AbancedStep 2 aDictionary(#Alice->an Apple... 319 add:
1 aDictionary(#Alice->an Apple... 319 add:
; initialize 4 bags (OrderedCollection) 8 add:
. 5 bags (OrderedCollection) ™ add:
3| random := self newRandom. :
Rt 6 bags (OrderedCollection) 535 add:
4 hunters := Dictionary new : s
5 add: #Alice -> AppleHunter newAlice; i bags (OrderedCollection) 535 k
6 add: #Bob -> AppleHunter newBob; 8 bags (OrderedCollection) 535 add:
7 add: #Charlie -> AppleHunter newCharlie; o] Sl
" JoursaLE 10 bag (OrderedCollection) 126 add:
1 bag (OrderedCollection) 1126 add:
Filter.
Showing 89 results, fetched in: 503ms.
| ExecutedBytecode: 405 (1.72% of known execution)
an AppleHunt i an UndefinedObject (ni)
iType +Variable +Value SER wreakpoints | Meta
© self an AppleHunt +Variable “Value
© hunters nil ;
© self nil
nstvar @ random aRandom
molicit 3 stackToo #Alice->an AopleHunter b --1£ -T2 - Y

Re-execute
Argum #
anArma
anArra
anArra
anArra:
anArra:
anArra
anArra
anArra:
an Arra:
anArra
anArra

Results are display

44

Querying the execution

What is happening?

]

Oid
319
319
319
348
722
535
535
535
535
1126
1126

x -0 AppleHunt>>initialize
Seeker
Stack 1% =
Stepping Control
Class Method Package N e = @ >
AppleHunt s PharoDays2022 Backl Adv.l Adv.Statement Prev.Statement Reset ToEnd STOP
AppleHunt class (Behavior) new Kernel Query Scripting
UndefinedObject Doit > Query for All Message Sends with selected selector : (add:)
Compil Kernel v Step Msg Receiver
» » A ™ 31 G o Q EE © 1 405 a Dictionary() (Dictionary new)
Proceed into Over Through Runto Restart Retum Whereis? (Create Advanced Step 2 592 a Dictionary(#Alice->an Apple...
3 a Dictionary(#Alice->an Apple...
; initialize 4 bags (OrderedCollection)
5 bags (OrderedCollecti
3| random := self newRandom. g (OrderedCollection)
e 6 bags (OrderedCollection)
4 hunters := Dictionary new g o e
5 add: #Alice -> AppleHunter newAlice; e 2gs (OrderedCol thon)
6 add: #Bob -> AppleHunter newBob; 8 Baghs (OrderedCollection)
7 add: #Charlie -> AppleHunter newCharlie; ° bags (OrderedCollection)
8 yourself 10 bag (OrderedCollection)
11 bag (OrderedCollection)
Filter...
Showing 89 results, fetched in: 503ms.
'ExecutedB ecode: 405 (1.72% of known execution) l
an AppleHunt an UndefindlObject (nil)
“Type #Variable #Value “ Raw Bbakpoints = Meta
© self af‘ AppleHunt +Variablg +Value
© hunters nil .
© sel nil
€ random aRandom
3 stackToo #Alice->an AopleHunter ¥ -

Msg Selector
add:

add:
add:
add:
add:
add:
add:
add:
add:
add:
add:

The developer is currently observing
the [execution state 405]

Re-execute

Argum ~
anArra
anArra;
anArra:
anArra
anArra
anArra;
anArra;
anArra;
an Arra-
anArra
anAra;

A UserTTQ from: seeker newProgramStates
select: [:state| state isMessageSend and: [state messageSelector =
collect: [:state| MessagesTTQResultItem new
bytecodeIndex: state bytecodeIndex;
messageArguments: state messageArguments;
messageReceiver: state messageReceiver;
messageSelector: state messageSelector;
yourself]

The TTQ to be executed looks like this

#add:]]

45

Querying the execution

What is happening?

On query activation:

1. The debugger traversing mechanism goes back to

[execution state 1.

x -0 AppleHunt>>initialize
Stack 2 g Seeker
Stepping Control

Class Method Package M e » 4 1+ @ i
AppleHunt initialize PharoDays2022 Buckcl /S ke t V. ot Bred: Stassant i et 180
AppleHunt class (Behavior) new Kernel Query Scripting

UndefinedObject Dolt = Query for All the assignments of variables with select
Compi d i i Kernel v Step Variable Current

> ¥ A » I G H Q + ¢

Proceed into Over Through Runto Restart Retum Whereis? Create Advanced Step

initialize

1

2

3 random := self newRandom.

4 hunters := Dictionary new

5 add: #Alice -> AppleHunter newAlice;

6 add: #Bob -> AppleHunter newBob;

7 add: #Charlie -> AppleHunter newCharlie;
8 yourself

Filter...
Showing 0 results, fetched in: Oms.
ExecutedBytecode: 405 J1.72% of known execution)

an AppleHunt s D & @ an UndefinedObject (nil)

x -0 UndefinedObject>>Dolt
Stack 2y Seeker
Stepping Control
Class Method Package & @ L2 + T @ E]
UndefinedObject Dolt _ Backl Adv.l Adv.Statement Prev.Statement Reset Tof
CompiledMethod valueWithReceiver:arguments: Kernel Query Scripting
pC ommi[aCompi Seeker Query for All the assignments of variables with select¢
FullBlockClosure (BlockClosure [self value. "IMPORTANT: Do n Kernel v Step Variable Current\
b ¥ 2 » I G S Q +
Proceed Into Over Through Runto Restat Retum Whereis? Creste Advanced Step
1| DoIt
2
3 | huntEvent winner |
4 huntEvent := AppleHunt new.
5 huntEvent giveHuntersSomeBags.
6 huntEvent goHunting.
7 winner := huntEvent calculateRanks first.
8 A winner
Filter...
Showing 0 results, fetched in: Oms.
ExecutedBytecode: 1 §0.00% of known execution)
an UndefinedObject (nil) 4 O & @ an UndefinedObject (nil)

46

Querying the execution
What is happening?

2. The debugger traversing logic is executed, while selecting and collecting
relevant data, until the end of the execution.

% =0
Stack
Class

UndefinedObject
CompiledMethod

SpCodeDebugltinSeekerCommand
FullBlockClosure (BlockClosure)

™

B
£iw

»
Procesd

1

g

It

3| huntEvent winner |

Teogh

Method Package

valueWithReceiver:arguments Kernel

aCompiledMethod valueV Seeker

[selfvalue. "IMPORTANT: Do not step Kernel

Q

G S
Betat Bem W0 G Advanced Sup

4 huntEvent := AppleHunt new.
5 huntEvent giveHuntersSomeBags.

6 huntEvent goHunting.

winner := huntEvent calculateRanks first.

8 * winner

an UndefinedObject (nil)

sType :Variable
e self
€ huntEvent
& winner

+Value

nil
nil
nil

Aneintins

UndefinedObject>>Dolt
8
Stepping Control
« - + 1T L] » ©

Bakl ANl AdvSltement PrevSutemest et Tobnd STOP

Query for All Message Sends with selected selector : (add:)

Step Msg Receiver

1(0.00% of k

4 ¢ & [nUndefinedobiect (nil

“ Raw Breakpoints Meta

+ Variable = Value
© self nil

Msg Selector Arguments

VY 42 0 & @ x

06e 06

o0o00oo0oo

47

https://docs.google.com/file/d/1e8fuqa-XHk73oP7NAuoUW80qRmFntmoQ/preview

Querying the execution
What is happening?

3. The debugger goes back to the state the developer was observing
(Execution state 405).

x -0 UndefinedObject>>Dolt x -0 AppleHunt>>initialize
Stack (8 g fiSeken Stack it Seeker
Stepping Control Stepping Control
Class Method Package ~A @ » + 1+ @ 3 Class Method Package R] » 4 1+ f@
UndefinedObject Dolt _ Backl Adv.l Adv.Statement Prev.Statement Reset Tof AppleHunt iR PharoDays2022 Backl Adv.l Adv.Statement Prev.Statement Reset To
Compil hod i iver:arguments: Kernel Query Scripting AppleHunt class (Behavior) new Kernel Query Scripting
SpC: ommi[aCompi d Seeker Query for All the assignments of variables with selects UndefinedObject Dolt 2 Query for All the assignments of variables with selec!
FullBlockClosure (BlockClosure [self value. "IMPORTANT: Do n Kernel v Step Variable Current\ CompiledMethod valueWithReceiver:arguments: Kernel v Step Variable Current
> ¥ A > J G O Q + © > ¥ A2 » I G S Q@ + ©

Proceed into Over Through Runto Restat Retum Whereis? Creste Advanced Step Proceed into Over Through Runto Restart Retum Whereis? Creste Advanced Step

1| DoIt 1| initialize

2 2

3 | huntEvent winner | 3 random := self newRandom.

4 huntEvent := AppleHunt new. 4 hunters := Dictionary new

5 huntEvent giveHuntersSomeBags. 5 add: #Alice -> AppleHunter newAlice;

6 huntEvent goHunting. 6 add: #Bob -> AppleHunter newBob;

7 winner := huntEvent calculateRanks first. 7 add: #Charlie -> AppleHunter newCharlie;

8 A winner 8 yourself

Filter. Filter.
Showing 0 results, fetched in: Oms. Showing 0 results, fetched in: Oms.
IExecuted Bytecode: 1 IOOO% of known execution) ExecutedBytecode: 405 |1.7z% of known execution)

an UndefinedObject (nil) 4 O & an UndefinedObject (nil) an AppleHunt 4 O & an UndefinedObject (nil)

Querying the execution
What is happening?

(Remember: the developer was observing [execution state 405])
On query activation:

1. The debugger traversing mechanism goes back to
[execution state 1.

2. The debugger traversing logic is executed, while selecting
and collecting relevant data, until the end of the execution.

3. The debugger goes back to the state the developer was
observing.

All this, happens “behind doors".

The developer doesn't see any stepping. 4

Installing the code used in the
presentation

The code is here:
https://github.com/maxwills/PharoDays2022

In a Pharo10 image, run the following code:

Baseline in the repository.

Get the code here: https://github.com/maxwills/PharoDays2022

50

https://github.com/maxwills/PharoDays2022

But first

An anecdote..

(To the code)

Get the code here: https://github.com/maxwills/PharoDays2022

51

Obtaining Execution Data

Instrumentation

Example: the previous “solutions” but with breakpoints.

add: newObject

A self addLast: newObject

Original code

add: newObject

A self addLastprasusfhdaat:

Equivalent to a halt. (Don't put a breakpoint there)

Break on what condition?

This expression will be evaluated in the context of the position of this breakpoint.
g You can use variables, globals, * thisContext", “self* and *super’.
*:=" and Pool variables are not supported"

e s A
[Breakpoints " {i5gh (© Breakon addLast:
¥ Debugging sepp © Breakon addLast: once
P Doit %D () Break on addLast: when ...
P> Printit %8P ‘

| & Inspect it 31 |

3/3[9]-3/3[17] ’ & Basic Inspect it o ‘
| ¥ ok it S|

Conditional

Enewobject class =Apple ‘j

OK Cancel

52

Towards a Queryable Debugger

Dissecting The Collection of Execution Data

| callsToAdd |

callsToAdd := OrderedCollection new.
seeker doAndUpdateSessionAfter: [
seeker restartAtBytecodeOne.
[seeker canStep] whileTrue: [
seeker step.
(seeker currentState isMessageSend and: [seeker currentState node selector = #add:])
ifTrue: ["This time, instead of logging, we store the data in a collection"
callsToAdd add: seeker currentState methodAboutToExecute 1] 1.
A callsToAdd

53

Towards a Queryable Debugger

Dissecting The Collection of Execution Data

Cleaning up the code

| callsToAdd |

callsToAdd := OrderedCollection new.
seeker doAndUpdateSessionAfter: [
seeker restartAtBytecodeOne.
[seeker canStep] whileTrue: [
seeker step.
(seeker currentState isMessageSend and: [seeker currentState node selector = #add:])
ifTrue: [["This time, instead of logging, we store the data in a collection"
callsToAdd add: seeker currentState methodAboutToExecute 1 1/].
A callsToAdd

We will mask irrelevant code and comments

Towards a Queryable Debugger

Dissecting The Collection of Execution Data

Prepare the storage of the collected results.

| callsToAdd |
callsToAdd := OrderedCollection new.

seeker restartAtBytecodeOne.
[seeker canStep] whileTrue: [
seeker step.
(seeker currentState isMessageSend and: [seeker currentState node selector = #add:])
ifTrue: [
callsToAdd add: seeker currentState methodAboutToExecute]]
A callsToAdd

55

Towards a Queryable Debugger

Dissecting The Collection of Execution Data

“Execution Traversing” Logic.

seeker restartAtBytecodeOne.
[seeker canStep] whileTrue: [
seeker step.
(seeker currentState isMessageSend and: [seeker currentState node selector = #add:])
ifTrue: [
callsToAdd add: seeker currentState methodAboutToExecute] |]
A callsToAdd

“Traversing the execution” logic:
1. Go to the beginning of the execution (restart).
2. Stepping the execution in a loop, until it finishes.

56

Towards a Queryable Debugger

Dissecting The Collection of Execution Data

‘Selecting the interesting states” Logic.

(seeker currentState isMessageSend and: [seeker currentState node selector = #add:])
ifTrue: [
callsToAdd add: seeker currentState methodAboutToExecute]
A callsToAdd

The “selection condition” code evaluates to true or false
on each execution state.

57

Towards a Queryable Debugger

Dissecting The Collection of Execution Data

Addition of some execution data into the result.
The “Collecting” Logic.

callsToAdd add: seeker currentState methodAboutToExecute]
A callsToAdd

58

Towards a Queryable Debugger

Dissecting The Collection of Execution Data

Return the collected results.

A callsToAdd

59

From scripts to query notation

(Components mapping)

| callsToAdd |
callsToAdd := OrderedCollection new.
seeker restartAtBytecodeOne.

[seeker canStep] whileTrue: [
seeker step.

(seeker currentState isMessageSend and: [seeker currentState node selector = #add:])

| callsToAdd add: seeker currentState methodAboutToExecute ﬂ

A callsToAdd

A (Query from: seeker newProgramStates
select: [:state | State fisMessageSend and: [state node selector = #add: 1]
collect: [:state | [state methodAboutToExecute|]) asOrderedCollection

60

