
1

Scriptable debugging, execution
querying and other advanced

debugging techniques

Maximilian Ignacio Willembrinck Santander
PharoDays 2022

Get the code here: https://github.com/maxwills/PharoDays2022

Presentation Format

2

A mix of hands-on, demonstration and explanations.

Follow the examples:

Code here: https://github.com/maxwills/PharoDays2022

Let’s go!

Get the code here: https://github.com/maxwills/PharoDays2022

Presentation Agenda

3

Introduction and what to expect

Motivation

Code insertion (+ Conditions)

Instrumentation (+ Reflection)

Context

Obtaining
Execution Data

Sindarin

Seeker
Scriptable-Debuggers

Next

Get the code here: https://github.com/maxwills/PharoDays2022

4

What to expect
(Spoilers)

We will explore a program execution, trying to answer a few
debugging questions.

We will go from commonly-used tools and techniques to
not so commonly-used:

Halts, Logging, Breakpoints, MetaLinks, MethodProxies

We will show usage of Scriptable Debuggers in Pharo.

Get the code here: https://github.com/maxwills/PharoDays2022

5

“The debugging activity does not take place only in the Debugger”.

Presentation Agenda

6

Introduction and what to expect

Motivation
Context

Next

Code insertion (+ Conditions)

Instrumentation (+ Reflection)
Obtaining
Execution Data

Sindarin

Seeker
Scriptable-Debuggers

7

Motivation

Our program tells a story …

We will explore a program
using several debugging tools and techniques

Getting data from the execution:

Q1. How many times the method OrderedCollection>>add: is called?
(and with an Apple as argument?)

Q2. How many times any method with selector add: is called? What is
the actual method in every case?

8

Motivation

9

Presentation Agenda

Introduction and what to expect

Motivation
Context

NextCode insertion (+ Conditions)

Instrumentation (+ Reflection)
Obtaining
Execution Data

Sindarin

Seeker
Scriptable-Debuggers

(To the code!)

Code Insertion

10

Obtaining Execution Data

We change the code of the execution to include our inquisitive actions.

Original OrderedCollection>>add: method
(comments removed) Note: Images for illustrative purpose only.

Don’t put an Halt in OrderedCollection>>add:
:(

Code Insertion

11

Obtaining Execution Data

We change the code of the execution to include our inquisitive actions.

● Logging (printing)

● Halt

Getting data from the execution:

Q1. How many times the method OrderedCollection>>add: is called? (and with an Apple as
argument?)

Code Insertion

12

Obtaining Execution Data

Getting data from the execution:

Q1. How many times the method OrderedCollection>>add: is called? (and with an Apple as
argument?)
Q2. How many times any method with selector add: is called? What is the actual method in
every case? Consider only cases when adding Apple, or Hunter objects.

Problem:
There are several possible methods with the #add: selector. What to do?

13

Presentation Agenda

Introduction and what to expect

Motivation
Context

Next

Code insertion (+ Conditions)

Instrumentation (+ Reflection)
Obtaining
Execution Data

Sindarin

Seeker
Scriptable-Debuggers

Instrumentation

14

Obtaining Execution Data

This time, to include our inquisitive actions, we change the execution without
altering it’s code.

A Breakpoint

A Conditional Breakpoint

MetaLinks MethodProxies+

Instrumentation

15

Obtaining Execution Data

This time, to include our inquisitive actions, we change the execution without
altering it’s code.

● Breakpoints

● MetaLinks

● MethodProxies

Adds a extra instructions to our execution without
modifying its code.

The code:

16

Instrumentation with MetaLinks

17

Instrumentation with MetaLinks

When a method is compiled:

An AST is produced:

18

Instrumentation with MetaLinks

19

“When that node is executed,
execute THIS other code!”

Transcript show: ‘#add: called’

Instrumentation with MetaLinks

20

Showing the code in Pharo

Instrumentation through MetaLinks Examples
+ Reflection

Some facts:

● Not included in Pharo.

● Get it here:
https://github.com/pharo-contributions/MethodProxies

The package is developed and maintained by S. Ducasse, G. Polito and P.
Tesone, but feel free to give a hand.

21

MethodProxies

https://github.com/pharo-contributions/MethodProxies

Adds a extra instructions to our execution without modifying its code,
by “proxying” its method(s).

22

Instrumentation with MethodProxies

When a method is compiled, the created CompiledMethod object is
stored in the methodDictionary of the class.

23

Instrumentation with MethodProxies

When sending a message to an object of our class, Pharo will get the
CompiledMethod object of the dictionary, and will execute it.

24

Instrumentation with MethodProxies

myCollection add: 1

To instrument our method, we can replace the CompiledMethod
with a Proxy

25

Instrumentation with MethodProxies

MyOwnAmazingProxy
 installInMethod: #add:
 ofClass: OrderedCollection

(To the code!)

26

Obtaining Execution Data
Comparison of approaches

Instrumentation

- Breakpoints
- MetaLinks
- MethodProxies

Code Insertion

- Halt
- Logging

Code
Insertion

Instrumentation

“Simple” to understand.

“Simple” to debug.

Don’t modify the debugged
program code.

Persistent (recompilation)

Good Scalability

27

By instrumenting a program, we alter its execution.
(Even if we don’t modify it’s code)

Can we extract execution data without altering the execution
at all?

28

Presentation Agenda

Introduction and what to expect

Motivation
Context

Next

Code insertion (+ Conditions)

Instrumentation (+ Reflection)
Obtaining
Execution Data

Sindarin

Seeker
Scriptable-Debuggers

29

Scriptable Debuggers

● Allow developers to automate debugging tasks.

● Expose an API to:

- Manipulate the debugger and debugged execution.

- Obtain information about the debugged execution.

Less tedious manual debugging work for the developer

Included in Pharo

30

Sindarin

● Two flavors:

○ With UI: Extension of the StDebugger.
■ Has to activated from the Pharo settings.

○ Headless: The SindarinDebugger Object.
■ Already included in Pharo 9.0 and Pharo 10

Enable it in the Pharo Settings
31

Sindarin
Enabling the UI version

StDebugger with Sindarin UI Extension

32

(To the code)

33

Presentation Agenda

Introduction and what to expect

Motivation
Context

Next

Code insertion (+ Conditions)

Instrumentation (+ Reflection)
Obtaining
Execution Data

Sindarin

Seeker
Scriptable-Debuggers

A prototype scriptable and queryable debugger

34

Seeker

● UI version only (as an extension of the StDebugger).

● Not included in Pharo.

● Query-based debugging.

● Time-Traveling mechanics.

Get the code here: https://github.com/maxwills/PharoDays2022

35

(To the code)

36

The Query Notation
(From scripting to querying)

37

Standard Query Notation
Equivalent queries in other languages

SELECT state.methodAboutToExecute

FROM ProgramStates

WHERE state.isMessageSend AND

state.node.selector = 'add:'

var results=(
 FROM state in seeker.newProgramStates
 WHERE state.isMessageSend && state.node.selector == "add:"
 SELECT state.methodAboutToExecute
).ToList();

results = [
 state.methodAboutToExecute
 for state in seeker.newProgramStates
 if state.isMessageSend and state.node.selector == "add:"
]

SQL Query C# (Linq)

Python (List comprehension + properties)

Pharo (Prototype implementation for Pharo 9.0/Pharo10)

(To the code!)

38

Queries In Seeker

● Not any kind of queries, but Time-Traveling Queries
(TTQs).

● A set of ready-to-use TTQs are provided.

● Developers can write their own Queries and TTQs.

39

Summary

● The debugger is not your only tool for debugging.

● Inserting extra behavior to study your program execution for your debugging
sessions.

○ Code Insertion, Instrumentation, and dangers.

● Reflection is a powerful mechanism to obtain execution data.

● Scriptable debuggers: Sindarin.

● Scriptable Time-Traveling Queryable Debugger prototype: Seeker.

○ Query Notation and Time-Traveling Queries

Have a good day!

Get the code here: https://github.com/maxwills/PharoDays2022

40

Presentation is finished.
Extra slides next.

41

Context
What to expect

We will explore an execution, to find answer to debugging
questions.

Everything goes!

The standard debugger, breakpoints, logging, proxies,
reflection, scripting, speculating, etc.

I will break some Pharo Images, and show how you can avoid
that (*).

(*In some cases. There are no guarantees, so don’t sue me)

Get the code here: https://github.com/maxwills/PharoDays2022

42

Context
What to expect
By the end of the session you will:

● Be aware of currently available yet not-so-commonly used tools
in Pharo.

● Have the knowledge on what is to come in some aspects of
debugging.

And (hopefully)

● Your debugging techniques repertory is expanded.

● You had a blast!

Get the code here: https://github.com/maxwills/PharoDays2022

43

More on Conditions …

Conditions

ReflectionExecution State

Method activation state
(local)

requires

(Self, arguments of method, instance
variables of self, temporal variables, etc)

(thisContext, “execution stack”,
activeProcess, etc)

Global state (Global variables, Classes, SharedVariables, etc)

44

Querying the execution
What is happening?

Querying during a debugging session Results are display

45

Querying the execution
What is happening?

The developer is currently observing
the [execution state 405] The TTQ to be executed looks like this

46

Querying the execution
What is happening?

On query activation:

1. The debugger traversing mechanism goes back to
[execution state 1].

47

Querying the execution
What is happening?

2. The debugger traversing logic is executed, while selecting and collecting
relevant data, until the end of the execution.

https://docs.google.com/file/d/1e8fuqa-XHk73oP7NAuoUW80qRmFntmoQ/preview

48

Querying the execution
What is happening?

3. The debugger goes back to the state the developer was observing
(Execution state 405).

49

Querying the execution
What is happening?

(Remember: the developer was observing [execution state 405])

On query activation:

1. The debugger traversing mechanism goes back to
[execution state 1].

2. The debugger traversing logic is executed, while selecting
and collecting relevant data, until the end of the execution.

3. The debugger goes back to the state the developer was
observing.

All this, happens “behind doors”.

The developer doesn’t see any stepping.

50

Installing the code used in the
presentation

The code is here:
https://github.com/maxwills/PharoDays2022

In a Pharo10 image, run the following code:

Baseline in the repository.

Get the code here: https://github.com/maxwills/PharoDays2022

https://github.com/maxwills/PharoDays2022

An anecdote…

51

But first

(To the code)

Get the code here: https://github.com/maxwills/PharoDays2022

Instrumentation

52

Obtaining Execution Data

Example: the previous “solutions” but with breakpoints.

Equivalent to a halt. (Don’t put a breakpoint there)

Conditional

Original code

53

Towards a Queryable Debugger
Dissecting The Collection of Execution Data

54

We will mask irrelevant code and comments

Cleaning up the code

Towards a Queryable Debugger
Dissecting The Collection of Execution Data

55

Prepare the storage of the collected results.

Towards a Queryable Debugger
Dissecting The Collection of Execution Data

56

“Traversing the execution” logic:
1. Go to the beginning of the execution (restart).
2. Stepping the execution in a loop, until it finishes.

“Execution Traversing” Logic.

Towards a Queryable Debugger
Dissecting The Collection of Execution Data

57

The “selection condition” code evaluates to true or false
on each execution state.

“Selecting the interesting states” Logic.

Towards a Queryable Debugger
Dissecting The Collection of Execution Data

58

Addition of some execution data into the result.
The “Collecting” Logic.

Towards a Queryable Debugger
Dissecting The Collection of Execution Data

59

Return the collected results.

Towards a Queryable Debugger
Dissecting The Collection of Execution Data

60

From scripts to query notation
(Components mapping)

