
P. Tesone - G. Polito - 03/03/2022

Pharo Virtual Machine
News from the Front

����



2022 VM+ Team



ARM64 Backend

• ARM64 is now pervasive:


• New Apple M1


• Raspberry Pi 4


• Microsoft Surface Pro X


• PineBook Pro


• …

move r1 #1

move r2 #17

checkSmallInt r1

checkSmallInt r2

add r3 r1 r2

checkSmallInt r3

move r1 r3

ret

32bit x86

64bit x86_64

32bit ARMv5-7

64bit ARMv8

3

JIT compiler IR



Testing & TDDing the VM

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64

Cross-ISA Testing of the Pharo VM. Lessons learned while porting to ARMv8 64bits. Polito et al. MPLR’21

* Numbers by 05/2021

4



5



Testing & TDDing the VM

• No useful unit tests by ~06/2020


• Large manual testing effort during 2020 while porting to ARM64bits


• Extended VM simulation with a (TDD compatible) unit testing infrastructure


• 450+ written tests on the interpreter and the garbage collector*


• 580+ written tests on the JIT compiler*


• Parametrisable for 32 and 64bits, ARM32, ARM64, x86, x86-64

Cross-ISA Testing of the Pharo VM. Lessons learned while porting to ARMv8 64bits. Polito et al. MPLR’21

* Numbers by 05/2021

1040+ tests, are they enough?

6



Automatic Test Generator
Interpreter-Guided JIT compiler Testing

1. Automatic test generation 
through interpreter concolic 
execution


2. Bug detection through 
differential testing

Pharo 
Interpreter

Pharo JIT 
Compiler

Test 
Input

Output1 Output2

2. Differential 
Tester

1. Concolic 
Execution

7



Automatic Test Generator

Interpreter JIT 
compiler

Test 
Input

Output1 Output2

2. Differential 
Tester

1. Concolic 
Execution

• Automatic test generation through interpreter 
concolic execution 

• Bug detection through differential testing


• 468 differences found, 91 causes, 6 categories 


• Practical:


• 4582 tests generated in ~8 minutes


• 4582 tests run in ~40 seconds

8

Accepted in PLDI’22 - Top Programming Language Conference



Code 
Generation

• A Transpiler


• Generates code that 
generates codeOptimizations: 

inlining 
folding 

…

Improving Slang
Automatic transformations, simplifications, C AST nodes

primitive
Add’

Slang AST



Tools for Debugging
Insights: build your own tools, based on needs, not desires

Examples:

• Machine code 

debugger

• Bytecode-IR 

visualization

• Disassembler DSL

10



Improvements: Clean Up

• V3 Support


• Old Memory Format


• Old Block Closures


• Dead Code


• ~ 65KLOC

11



Improvements: Sockets

• Unified Implementation in all Platforms


• Better Async Support


• Unix Sockets (Under Work)


• IPv6 Addresses (Under Work)

12



Improvements: Serial Port FFI

• Pure FFI implementation


• Working in all Platforms (Unix / Windows / OSX)


• Migrating Plugins to FFI

13



Improvements: RISCV64
Ongoing Port

• Currently under development: Real HW testing stage


• Taking advantage of our harness test suite.


• Improving tests and scenarios


• Collaboration with Q. Ducasse, P. Cortret, L. Lagadec from ENSTA Bretagne


• Future work on: Hardware-based security enforcement

14



Improvements: Open Build Service
Better Support for Linux Distributions

15

Building using existing 
system libraries

Supporting system 
packagingsMultiple Architectures

Initial targets: 

• Arch / Manjaro 
• Debian 
• Fedora 
• Raspbian 
• Ubuntu 
• openSuse



Improvements: Visual Studio Support

16

Building & Debugging

MSVC - No cygwin



Improvements: Windows ARM 

17

MSVC - No cygwin



Improvements: Raspbian 32/64 bits

18



Back to the Future

19

Objectives for 2022



Permanent Space
Problem

• Many permanent objects


• They have references from/to other objects


• We are traversing them to GC


• E.g., Classes, Methods, Literals, Resources

20

Generates Long 
Pauses (GC/
Saves/Loads)



Permanent Space
Our Solution

• New Object Space for permanent Objects


• Minimise or Eliminate GC passes


• Persisting them through executions

21



Permanent Space
Our Solution

• New Object Space for permanent Objects


• Minimise or Eliminate GC passes


• Persisting them through executions

22

We need to put 
them in a 

separate place



New Image Format
Problem

• Current Image format only support a single object space


• No extensible: not new metadata nor new data


• Cannot be Memory Mapped (it is modified before save/load)


• Requires to discard all state of the running VM (slow saves)

23



New Image Format
Problem

• Current Image format only support a single object space


• No extensible: not new metadata nor new data


• Cannot be Memory Mapped (it is modified before save/load)


• Requires to discard all state of the running VM (slow saves)

24

Slow and 
Restricting 
PermSpace



New Image Format
Our Solution

• New Image format based in directories / bundles


• Many Elements of data and metadata


• Metadata en User & Machine readable format (STON?)


• Extensible format

25



Fast Snapshots / Loading
Based on PermSpace & Image Format

• Memory Mapped Image


• Shareable State


• Saving / Loading Warm State of the VM

26



• ARM64, RISCV64, Slang…


• Lots of Tests!


• Integration: Sockets, serial


• Visual Studio, Open Build Service

27

@pharoproject

pharo.org 

consortium-adm@pharo.org

discord.gg/QewZMZa


thepharo.dev

Permanent Space
New Image Format

Faster Startup / Saving

Next Objectives

Ephemerons

Speculative 
Compilation


