
Stéphane Ducasse

Stéphane Ducasse	

stephane.ducasse@inria.fr	

http://stephane.ducasse.free.fr/

����

Inheritance Semantics and
Method Lookup

1

http://www.iam.unibe.ch/~ducasse/

S.Ducasse ����

Goal
Inheritance	

Method lookup	

Self/super difference

2

S.Ducasse

����

Inheritance
Do not want to rewrite everything!	

Often we want small changes	

We would like to reuse and extend existing behavior	

!
Solution: class inheritance	

!
Each class defines or refines the definition
 of its ancestors

3

S.Ducasse

����

Inheritance

New classes 	

Can add state and behavior: 	

color, borderColor, borderWidth, 	

totalArea	

!

Can specialize ancestor behavior	

intersect:	

!

Can use ancestor’s behavior and state	

Can redefine ancestor’s behavior	

area to return totalArea

4

S.Ducasse

����

Inheritance

Single inheritance
!
Static for the instance variables

At class creation time the instance variables are collected
from the superclasses and the class. No repetition of
instance variables.	

!
Dynamic for the methods

Late binding (all virtual) methods are looked up at run-
time depending on the dynamic type of the receiver.

5

S.Ducasse

����

Message Sending

 receiver selector args
!
Sending a message = looking up the method that
should be executed and executing it	

!
Looking up a method: When a message (receiver
selector args) is sent, the method corresponding to
the message selector is looked up through the
inheritance chain.

6

S.Ducasse

����

Method Lookup

Two steps process	

!

1: The lookup starts in the CLASS of the RECEIVER.	

!

2: If the method is defined in the method dictionary, it is
returned.	

!
3: Otherwise the search continues in the superclasses of
the receiver's class. If no method is found and there is no
superclass to explore (class Object), this is an ERROR

7

S.Ducasse

����

self/this	

self represents the receiver of the message, the
method lookup starts in the class of the receiver

8

S.Ducasse

����

Lookup: class and inheritance

9

Object

Node

accept:

name

sendt:

node1

msg

1

2

go to the class

look in

the classes

S.Ducasse

����

Some Cases

10

Object

Node

accept:

name

minna

accept:

Workstation

accept:

send:

1

2

Object

Node

accept:

name

minna

name

Workstation

accept:

send:

2

1

S.Ducasse ����

A

foo

bar

B

foo ^ 50

^ 10

self foo

aB

instance of

Method Lookup starts in Receiver Class

11

A new foo	

!

B new foo	

!

A new bar	

!

B new bar

S.Ducasse ����

A

foo

bar

B

foo ^ 50

^ 10

self foo

aB

instance of

Method Lookup starts in Receiver Class

aB foo
(1) aB class => B

(2) Is foo defined in B?
(3) Foo is executed -> 50

aB bar
(1) aB class => B

(2) Is bar defined in B?
(3) Is bar defined in A?

(4) bar executed
(5) Self class => B

(6) Is foo defined in B
(7) Foo is executed -> 50

12

S.Ducasse

����
self **always** represents the receiver

• A new foo	

• -> 	

• B new foo	

• -> 	

• C new foo	

• -> 	

• A new bar	

• -> 	

• B new bar	

• -> 	

• C new bar	

13

A

foo

bar

C

foo ^ 50

^ 10

self foo

aC

instance of

B

S.Ducasse

����
self **always** represents the receiver

• A new foo	

• -> 10	

• B new foo	

• -> 10	

• C new foo	

• -> 50	

• A new bar	

• -> 10	

• B new bar	

• -> 10	

• C new bar	

• -> 50

14

A

foo

bar

C

foo ^ 50

^ 10

self foo

aC

instance of

B

S.Ducasse ����

When message is not found
• If no method is found and there is no superclass to explore

(class Object), a new method called #doesNotUnderstand: is
sent to the receiver, with a representation of the initial
message.

15

S.Ducasse ����

Graphically…

Object

Node

accept:

name

sendt:

node1

print:

Error!!!

1

2

16

S.Ducasse ����

…in Smalltalk
• node1 print: aPacket	

– node is an instance of Node	

– print: is looked up in the class Node	

– print: is not defined in Node > lookup continues in Object	

– print: is not defined in Object => lookup stops	
 + exception	

– message: node1 doesNotUnderstand: #(#print aPacket) is

executed 	

– node1 is an instance of Node so doesNotUnderstand: is looked

up in the class Node	

– doesNotUnderstand: is not defined in Node => lookup

continues in Object	

– doesNotUnderstand: is defined in Object => lookup stops	
 +

method executed (open a dialog box)

17

S.Ducasse ����

Graphically…

Object

Node

accept:

name

sendt:

node1

print:

open debugger

doesNotUnderstand:

1

2

3

4

5

18

S.Ducasse ����

Roadmap
Inheritance	

Method lookup	

Self/super difference

19

S.Ducasse ����

How to Invoke Overridden Methods?
• Solution: Send messages to super	

!
	
Workstation>>accept: aPacket	

 (aPacket isAddressedTo: self)	

 ifTrue:[Transcript show: 'Accepted by the Workstation ', self
name asString]	

	
 ifFalse: [super accept: aPacket]	

!

• Design Hint: Do not send messages to super with different
selectors than the original one. It introduces implicit dependency
between methods with different names.

20

S.Ducasse ����

The semantics of super
• Like self, super is a pseudo-variable that refers to the receiver

of the message.	

• super is used to invoke overridden methods.	

!

• Using self, the lookup of the method begins in the class of
the receiver.	

!

• Using super, the lookup of the method begins in the
superclass of the class of the method containing the super
expression

21

S.Ducasse ����

super changes lookup starting class
• A new foo	

!

• A new bar	

!

• B new foo	

!

• B new bar	

!

• C new foo	

!

• C new bar

A

foo

bar

C

foo ^ 50

^ 10

self foo

aB

instance of

B

bar
^ super bar

+ self foo

22

S.Ducasse ����

super changes lookup starting class
• A new bar	

• -> 10	

• B new bar	

• -> 10 + 10	

• C new bar	

• -> 50 + 50

A

foo

bar

C

foo ^ 50

^ 10

self foo

aB

instance of

B

bar
^ super bar

+ self foo

23

S.Ducasse

����

self is dynamic

24

foo
bar

A

foo
C

^ 10

^ self foo

B

^ 42

aC foo

S.Ducasse

����

super is static

25

foo
A

C

^ 10

^ super foo
foo
bar

B

aC bar

^ self foo

S.Ducasse

����

super is NOT the superclass of the receiver

Suppose the WRONG
hypothesis: “The semantics of
super is to start the lookup of a
method in the superclass of the
receiver class”	

26

S.Ducasse

����

super is NOT the superclass of the receiver

mac is instance of ColoredWorkStation	

Lookup starts in ColoredWorkStation	

Not found so goes up...	

!
accept: is defined in Workstation	

lookup stops 	

method accept: is executed	

Workstation>>accept: does a super	

send	

Our hypothesis: start in the super of the 	

class of the receiver 	

=> superclass of class of a ColoredWorkstation	

is ... Workstation !

27

S.Ducasse

What you should know
• Inheritance of instance variables is made at class

definition time.	

• Inheritance of behavior is dynamic.	

• self **always** represents the receiver, the

method lookup starts in the class of the receiver.	

• super represents the receiver but method lookup

starts in the superclass of the class using it. 	

• Self is dynamic vs. super is static.

28

